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ABSTRACT
Lock managers are among the most studied components
in concurrency control and transactional systems. How-
ever, one question seems to have been generally overlooked:
“When there are multiple lock requests on the same object,
which one(s) should be granted first?”

Nearly all existing systems rely on a FIFO (first in, first
out) strategy to decide which transaction(s) to grant the
lock to. In this paper, however, we show that the lock
scheduling choices have significant ramifications on the over-
all performance of a transactional system. Despite the large
body of research on job scheduling outside the database con-
text, lock scheduling presents subtle but challenging require-
ments that render existing results on scheduling inapt for
a transactional database. By carefully studying this prob-
lem, we present the concept of contention-aware scheduling,
show the hardness of the problem, and propose novel lock
scheduling algorithms (LDSF and bLDSF), which guarantee
a constant factor approximation of the best scheduling. We
conduct extensive experiments using a popular database on
both TPC-C and a microbenchmark. Compared to FIFO—
the default scheduler in most database systems—our bLDSF
algorithm yields up to 300x speedup in overall transaction
latency. Alternatively, our LDSF algorithm, which is sim-
pler and achieves comparable performance to bLDSF, has
already been adopted by open-source community, and was
chosen as the default scheduling strategy in MySQL 8.0.3+.
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1. INTRODUCTION
Lock management forms the backbone of concurrency con-

trol in modern software, including many distributed systems
and transactional databases. A lock manager guarantees
both correctness and e�ciency of a concurrent application
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by solving the data contention problem. For example, be-
fore a transaction accesses a database object, it has to ac-
quire the corresponding lock; if the transaction fails to get
a lock immediately, it is blocked until the system grants it
the lock. This poses a fundamental question: when multiple
transactions are waiting for a lock on the same object, which
should be granted first when the object becomes available?
This question, which we call lock scheduling, has received
surprisingly little attention, despite the large body of work
on concurrency control and locking protocols [15, 46, 7, 68,
18, 40, 50, 54, 23]. In fact, almost all existing DBMSs1 rely
on variants of the first-in, first-out (FIFO) strategy, which
grants (all) compatible lock requests based on their arrival
time in the queue [2, 3, 4, 5, 6]. In this paper, we carefully
study the problem of lock scheduling and show that it has
significant ramifications on overall performance of a DBMS.

Related Work — There is a long history of research on
scheduling in a general context [25, 42, 69, 70, 64, 41, 35,
62], whereby a set of jobs is to be scheduled on a set of pro-
cessors such that a goal function is minimized, e.g., the sum
of (weighted) completion times [64, 41, 39] or the variance
of the completion or wait times [14, 17, 76, 49, 28]. There is
also work on scheduling in a real-time database context [75,
40, 7, 36, 74], where the goal is to minimize the total tardi-
ness or the number of transactions missing their deadlines.

In this paper, we address the problem of lock scheduling in
a transactional context, where jobs are transactions and pro-
cessors are locks, and the scheduling decision is about which
locks to grant to which transactions. However, our transac-
tional context makes this problem quite di↵erent than the
well-studied variants of the scheduling problem. First, un-
like generic scheduling problems, where at most one job can
be scheduled on each processor, a lock may be held in either
exclusive or shared modes. The fact that transactions can
sometimes share the same resources (i.e., shared locks) sig-
nificantly complicates the problem (see Section 2.4). More-
over, once a lock is granted to a transaction, the same trans-
action may later request another lock (as opposed to jobs
requesting all of their needed resources upfront). Finally,
in the scheduling literature, the execution time of each job
is assumed to be known upon its arrival [52, 70, 14, 76],
whereas the execution time of a transaction is often unknown
a priori.

Although there are scheduling algorithms designed for
real-time databases [55, 71, 77, 13], they are not applica-

1The only exceptions are MySQL and MariaDB, which have
recently adopted our Variance-Aware Transaction Schedul-
ing (VATS) [44] (see Section 7).
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ble in a general DBMS context. For example, real-time set-
tings assume that each transaction comes with a deadline,
whereas most database workloads do not have explicit dead-
lines. Instead, most workloads wish to minimize latency or
maximize throughput.

Challenges — Several aspects of lock scheduling make it
a uniquely challenging problem, particularly under the per-
formance considerations of a real-world DBMS.

1. An online problem. At the time of granting a lock
to a transaction, we do not know when the lock will be
released, since the transaction’s execution time will only
be known once it is finished.

2. Dependencies. In a DBMS, there are dependencies
among concurrent transactions when one is waiting for a
lock held by another. In practice, these dependencies can
be quite complex, as each transaction can hold locks on
several objects and several transactions can hold shared
locks on the same object.

3. Non-uniform access patterns. Not all objects in the
database are equally popular. Also, di↵erent transaction
types might each have a di↵erent access pattern.

4. Multiple locking modes. The possibility of granting
a lock to one writer exclusively or to multiple readers is
a source of great complexity (see Section 2.4).

Contributions — In this paper, to the best of our knowl-
edge, we present the first formal study of lock scheduling
problem with a goal of minimizing transaction latencies in
a DBMS context. Furthermore, we propose a contention-
aware transaction scheduling algorithm, which captures the
contention and the dependencies among concurrent transac-
tions. The key insight is that a transaction blocking many
others should be scheduled earlier. We carefully study the
di�culty of lock scheduling and the optimality of our algo-
rithm. Most importantly, we show that our results are not
merely theoretical, but lead to dramatic speedups in a real-
world DBMS. Despite decades of research on all aspects of
transaction processing, lock scheduling seems to have gone
unnoticed, to the extent that nearly all DBMSs still use
FIFO. Our ultimate hope is that our results draw attention
to the importance of lock scheduling on the overall perfor-
mance of a transactional system.

In summary, we make the following contributions:

1. We propose a contention-aware lock scheduling algorithm,
called Largest-Dependency-Set-First (LDSF). We prove
that, in the absence of shared locks, LDSF is optimal in
terms of the expected mean latency (Theorem 2). With
shared locks, we prove that LDSF is a constant factor
approximation of the optimal scheduling under certain
regularity constraints (Theorem 3).

2. We propose the idea of granting only some of the shared
lock requests on an object (as opposed to granting them
all). We study the di�culty of the scheduling prob-
lem under this setting (Theorem 5), and propose another
algorithm, called bLDSF (batched Largest-Dependency-
Set-First), which improves upon LDSF in this setting.
We prove that bLDSF is also a constant factor approxi-
mation of the optimal scheduling (Theorem 6).

3. In addition to our theoretical analysis, we use a real-world
DBMS and extensive experiments to empirically evalu-
ate our algorithms on the TPC-C benchmark, as well

as a microbenchmark. Our results confirm that, com-
pared to the commonly-used FIFO strategy, LDSF and
bLDSF reduce mean transaction latencies by up to 300x
and 290x, respectively. They also increase throughput by
up to 6.5x and 5.5x. As a result, LDSF (which is simpler
than bLDSF) has already been adopted as the default
scheduling algorithm in MySQL [1] as of 8.0.3+.

2. PROBLEM STATEMENT
In this section, we first describe our problem setting and

define dependency graphs. We then formally state the lock
scheduling problem.

2.1 Background: Locking Protocols
Locks are the most commonly used mechanism for ensur-

ing consistency when a set of shared objects are concurrently
accessed by multiple transactions (or applications). In a
locking system, there are two main types of locks: shared
locks and exclusive locks. Before a transaction can read
an object (e.g., a row), it must first acquire a shared lock
(a.k.a. read lock) on that object. Likewise, before a trans-
action can write to or update an object, it must acquire an
exclusive lock (a.k.a. write lock) on that object. A shared
lock can be granted on an object as long as no exclusive
locks are currently held on that object. However, an exclu-
sive lock on an object can be granted only if there are no
other locks currently held on that object. We focus on the
strict 2-phase locking (strict 2PL) protocol: once a lock is
granted to a transaction, it is held until that transaction
ends. Once a transaction finishes execution (i.e., it commits
or gets aborted), it releases all of its locks.

2.2 Dependency Graph
Given the set T of transactions currently in the system,

and the set O of objects in the database, we define the
dependency graph of the system as an edge-labeled graph
G = (V, E ,L). The vertices of the graph V = T [ O con-
sist of the current transactions and objects. The edges of
the graph E ✓ T ⇥O [O ⇥ T describe the locking relation-
ships among the objects and transactions. Specifically, for
transaction t 2 T and object o 2 O,

• (t, o) 2 E if t is waiting for a lock on o;

• (o, t) 2 E if t already holds a lock on o.

The label L : E ! {S,X} indicates the lock type:

• L(t, o) = X if t is waiting for an exclusive lock on o;

• L(t, o) = S if t is waiting for a shared lock on o;

• L(o, t) = X if t already holds an exclusive lock on o;

• L(o, t) = S if t already holds a shared lock on o.

We assume that deadlocks are rare and are handled by an
external process (e.g., a deadlock detection and resolution
module). Thus, for simplicity, we assume that the depen-
dency graph G is always a directed acyclic graph (DAG).

2.3 Lock Scheduling
A lock scheduler makes decisions about which transactions

are granted locks upon one or both of the following events:
(i) when a transaction requests a lock, and (ii) when a lock
is released by a transaction.2 Let G be the set of all possible

2These are the only situations in which the dependency
graph changes. If a scheduler grants locks at other times,
the same decision could have been made upon the previous
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Notation Description

T the set of transactions in the system

O the set of objects in the database

G the dependency graph of the system

V vertices in the dependency graph

E edges in the dependency graph

L labels of the edges indicating the lock type

A a scheduling algorithm

lA(t) the latency of transaction t under A
l̄A(t) the expectation of lA(t)

l̄(A) the expected transaction latency under A

Table 1: Table of Notations.

dependency graphs of the system. A scheduling algorithm
A = (A

req

,A
rel

) is a pair of functions A
req

,A
rel

: G⇥O ⇥
T ⇥{S,X} ! 2T . For example, when transaction t requests
an exclusive lock on object o, A

req

(G, o, t,X) determines
which of the transactions currently waiting for a lock on o
(including t itself) should be granted their requested lock
on o, given the dependency graph G of the system. (Note
that the types of locks requested by transactions other than
t are captured in G.) Likewise, when transaction t releases a
shared lock on object o, A

rel

(G, o, t, S) determines which of
the transactions currently waiting for a lock on o should be
granted their requested lock, given the dependency graph G.
When all transactions holding a lock on an object o release
the lock, we say that o has become available. When the
lock request of a transaction t is granted, we say that t is
scheduled.
Since the execution time of each transaction is typically

unknown in advance, we model their execution time using
a random variable with expectation R. Given a particular
scheduling algorithm A, we define the latency of a transac-
tion t, denoted by lA(t), as its execution time plus the total
time it has been blocked waiting for various locks. Since
lA(t) is a random variable, we denote its expectation as
l̄A(t). We use l̄(A) to denote the expected transaction la-
tency under algorithm A, which is defined as the average of
the expected latencies of all transactions in the system, i.e.,
l̄(A) = 1

|T |
P

t2T

l̄A(t).
Our goal is to find a lock scheduling algorithm under

which the expected transaction latency is minimized. To
ensure consistency and isolation, in most database systems
A

req

simply grants a lock to the requesting transaction only
when (i) no lock is held on the object, or (ii) the currently
held lock and the requested lock are compatible and no
transaction in the queue has an incompatible lock request.
This choice of A

req

also ensures that transactions requesting
exclusive locks are not starved. The key challenge in lock
scheduling, then, is choosing an A

rel

such that the expected
transaction latency is minimized.

2.4 NP-Hardness
Minimizing the expected transaction latency under the

scheduling algorithm is, in general, an NP-hard problem.
Intuitively, the hardness is due to the presence of shared
locks, which cause the system’s dependency graph to be a
DAG, but not necessarily a tree.

event, i.e., a transaction was unnecessarily blocked. A lock
scheduler is thus an event-driven scheduler.

Theorem 1. Given a dependency graph G, when a trans-
action t releases a lock (S or X) on object o, it is NP-hard to
determine which pending lock requests to grant, in order to
minimize the expected transaction latency. The result holds
even if all transactions have the same execution time, and
no transaction requests additional locks in the future.3

Given the NP-hardness of the problem in general, in the
rest of this paper, we propose algorithms that guarantee a
constant-factor approximation of the optimal scheduling in
terms of the expected transaction latency.

3. CONTENTION-AWARE SCHEDULING
We define contention-aware scheduling as any algorithm

that prioritizes transactions based on their impact on the
overall contention in the system. First, we study several
heuristics for comparing the contribution of di↵erent trans-
actions to the overall contention, and illustrate their short-
comings through intuitive examples. We then propose a par-
ticular contention-aware scheduling that formally quantifies
this contribution, and guarantees a constant-factor approxi-
mation of the optimal scheduling when shared locks are not
held by too many transactions. (Later, in Section 4, we gen-
eralize this algorithm for situations where this assumption
does not hold.)

3.1 Capturing Contention
The degree of contention in a database system is directly

related to the number of transactions concurrently request-
ing conflicting locks on the same objects.

For example, a transaction holding an exclusive lock on a
popular object will naturally block many other transactions
requesting a lock on that same object. If such a transaction
is itself blocked (e.g., waiting for a lock on a di↵erent object),
it will negatively a↵ect the latency of many transactions, in-
creasing overall contention in the system. Thus, our goal in
contention-aware scheduling is to determine which transac-
tions have a more important role in reducing the overall
contention in the system, so that they can be given higher
priority when granting a lock. Next, we discuss heuristics
for measuring the priority of a transaction in reducing the
overall contention.

Number of locks held — The simplest criterion for pri-
oritizing transactions is the number of locks they currently
hold. We refer to this heuristic as Most Locks First (MLF).
The intuition is that a transaction with more locks is more
likely to block other transactions in the system. However,
this approach does not account for the popularity of objects
in the system. In other words, a transaction might be hold-
ing many locks but on unpopular objects, which are unlikely
to be requested by other transactions. Prioritizing such a
transaction will not necessarily reduce contention in the sys-
tem. Figure 1 demonstrates an example where transaction
t
1

holds the most number of locks, but on unpopular ob-
jects. It is therefore better to keep t

1

waiting and instead
schedule t

2

first, which holds fewer but more popular locks.

Number of locks that block other transactions — An
improvement over the previous criterion is to only count
those locks that have at least one transaction waiting on
them. This approach disregards transactions that hold many

3All missing proofs can be found in our technical report [72].
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o1

t1 t2
X X

Object
Transaction

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

Figure 1: Transaction t
1

holds the greatest number of
locks, but many of them on unpopular objects.

o1

t1 t2

t3

X X Object
Transaction

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

Figure 2: Transaction t
2

holds two locks that are waited
on by other transactions. Although only one of t

1

’s locks
is blocking other transactions, the blocked transaction (i.e.,
t
3

) is itself blocking three others.

locks, but on these locks no other transactions are waiting.
We call this heuristic Most Blocking Locks First (MBLF).
The issue with this criterion is that it treats all blocked
transactions as the same, even if they contribute unequally
to the overall contention. Figure 2 shows an example in
which the scheduler must decide between transactions t

1

and t
2

when the object o
1

becomes available. Here, this cri-
terion would choose t

2

, which currently holds two locks, each
at least blocking one other transaction. However, although
t
1

holds only one blocking lock, it is blocking t
3

which itself
is blocking three other transactions. Thus, by scheduling t

2

first, t
3

and its three subsequent transactions will remain
blocked in the system for a longer period of time than if t

1

had been scheduled first.

Depth of the dependency subgraph — A more sophis-
ticated criterion is the depth of a transaction’s dependency
subgraph. For a transaction t, this is defined as the subgraph
of the dependency graph comprised of all vertices that can
reach t (and all edges between such vertices). The depth
of t’s dependency subgraph is characterized by the number
of transactions on the longest path in the subgraph that
ends in t. We refer to this heuristic as Deepest Dependency
First (DDF). Figure 3 shows an example, where the depth
of the dependency subgraph of transaction t

1

is 3, while
that of transaction t

2

is only 2. Thus, based on this crite-
rion, the exclusive lock on object o

1

should be granted to
t
1

. The idea behind this heuristic is that a longer path indi-
cates a larger number of transactions sequentially blocked.
Thus, to unblock such transactions sooner, the scheduling
algorithm must start with a transaction with deeper depen-
dency graph. However, considering only the depth of this
subgraph can limit the overall degree of concurrency in the
system. For example, in Figure 3, if the exclusive lock on
o
1

is granted to t
1

, upon its completion only one transac-
tion in its dependency subgraph will be unblocked. On the
other hand, if the lock is granted to t

2

, upon its completion
two other transactions in its dependency subgraph will be
unblocked, which can run concurrently.

o1

t1 t2
1

2

3

X X Object
Transaction

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

Figure 3: Transaction t
1

has a deeper dependency sub-
graph, but granting the lock to t

2

will unblock more trans-
actions which can run concurrently.

Later, in Section 6.4, we empirically evaluate these heuris-
tics. While none of these heuristics alone are able to guaran-
tee an optimal lock scheduling strategy, they o↵er valuable
insight in understanding the relationship between scheduling
and overall contention. In particular, the first two heuris-
tics focus on what we call horizontal contention, whereby a
transaction holds locks on many objects directly needed by
other transactions. In contrast, the third heuristic focuses
on reducing vertical contention, whereby a chain of depen-
dencies causes a series of transactions to block each other.
Next, we present an algorithm which is capable of resolving
both horizontal and vertical aspects of contention.

3.2 Largest-Dependency-Set-First
In this section, we propose an algorithm, called Largest-

Dependency-Set-First (LDSF), which provides formal guar-
antees on the expected mean latency.

Consider two transactions t
1

and t
2

in the system. If
there is a path from t

1

to t
2

in the dependency graph, we
say that t

1

is dependent on t
2

(i.e., t
1

depends on t
2

’s com-
pletion/abortion for at least one of its required locks). We
define the dependency set of t, denoted by g(t), as the set of
all transactions that are dependent on t (i.e., the set of trans-
actions in t’s dependency subgraph). Our LDSF algorithm
uses the size of the dependency sets of di↵erent transactions
to decide which one(s) to schedule first. For example, in
Figure 4, there are five transactions in the dependency set
of transaction t

1

(including t
1

itself) while there are four
transactions in t

2

’s dependency set. Thus, in a situation
where both t

1

and t
2

have requested an exclusive lock on
object o

1

, LDSF grants the lock to t
1

(instead of t
2

) as soon
as o

1

becomes available.
Now, we can formally present our LDSF algorithm. Sup-

pose an object o becomes available (i.e., all previous locks on
o are released), and there are m + n transactions currently
waiting for a lock on o: m transactions ti

1

, ti
2

, · · · , ti
m

are
requesting a shared lock o, and n transactions tx

1

, tx
2

, · · · , tx
n

are requesting an exclusive lock on object o. Our LDSF al-
gorithm defines the priority of each transaction tx

i

requesting
an exclusive lock as the size of its dependency set, |g(tx

i

)|.
However, LDSF treats all transactions requesting a shared
lock on o, namely ti

1

, ti
2

, · · · , ti
m

, as a single transaction—
if LDSF decides to grant a shared lock, it will be granted
to all of them. The priority of the shared lock requests is
thus defined as the size of the union of their dependency
sets,

��Sm

i=1

g(ti
i

)
��. LDSF then finds the transaction t̂x with

the highest priority among tx
1

, tx
2

, · · · , tx
n

. If t̂x’s priority is
higher than the collective priority of the transactions re-
questing a shared lock, LDSF grants the exclusive lock to
t̂x. Otherwise, a shared lock is granted to all transactions
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o1

t2t1

X X Object
Transaction

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

Figure 4: Lock scheduling based on the size of the depen-
dency sets.

Input : The dependency graph of the system G = (V, E,L),
transaction t, object o, label L 2 {X,S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o

should be granted

1 if there are other transactions still holding a lock on o then
2 return ;;
3 Obtain the set of transactions waiting for a shared lock on o,

T

i  {ti 2 V : (ti, o) 2 E and L(ti, o) = S} =
{ti

1

, t

i

2

, · · · , ti
m

};
4 Obtain the set of transactions waiting for an exclusive lock

on o, Tx  {tx 2 V : (tx, o) 2 E and L(tx, o) = X} =
{tx

1

, t

x

2

, · · · , tx
n

};
5 Let ⌧(T i) =

��Sn

i=1

g(ti
i

)
��;

6 Find a transaction t̂

x 2W s.t. |g(t̂x)| = max
t

x

i

2T

x

��
g(tx

i

)
��;

7 if ⌧(T i) <
��
g(t̂x)

�� then
8 return T

i;
9 else

10 return {t̂x};
Algorithm 1: Largest-Dependency-Set-First Algorithm

ti
1

, ti
2

, · · · , ti
m

. The pseudo-code of the LDSF algorithm is
provided in Algorithm 1.

Analysis — We do not make any assumptions about the fu-
ture behavior of a transaction, as they may request various
locks throughout their lifetime. Furthermore, since we can-
not predict new transactions arriving in the future, in our
analysis, we only consider the transactions that are already
in the system. Since the system does not know the execution
time of a transaction a priori, we model the execution time
of each transaction as a memoryless random variable. That
is, the time a transaction has already spent in execution
does not necessarily reveal any information about the trans-
action’s remaining execution time. We denote the remaining
execution time as a random variable R with expectation R̄.
We also assume that the execution time of a transaction is
not a↵ected by the scheduling.4 Transactions whose behav-
ior depends on the actual wall-clock time (e.g., stop if run
before 2pm, otherwise run for a long time) are also excluded
from our discussion.

We first study a simplified scenario in which there are
only exclusive locks in the system (we relax this assumption
in Theorem 3). The following theorem states that LDSF
minimizes the expected latency in this scenario.

Theorem 2. When there are only exclusive locks in the
system, the LDSF algorithm is the optimal scheduling algo-
rithm in terms of the expected latency.

4For example, scheduling causes context switches, which
may a↵ect performance. For simplicity, in our formal anal-
ysis, we assume that their overall e↵ect is not significant.

o1

t1

Object
Transaction

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

t2 t3 t4

o2

o3

t6t5

Figure 5: The critical objects of t
1

are o
1

and o
2

, as they
are locked by transactions t

2

and t
3

. Note that, although
o
3

is reachable from t
1

, it is not a critical object of t
1

since
it is locked by transactions that are not currently running,
i.e., t

5

and t
6

which themselves are waiting for other locks.

The intuition here is that if a transaction t
1

is dependent
on t

2

, any progress in the execution of t
2

can also be consid-
ered as t

1

’s progress since t
1

cannot receive its lock unless t
2

finishes execution. Thus, by granting the lock to the trans-
action with the largest dependency set, LDSF allows the
most transactions to make progress toward completion.

However, this does not necessarily hold true with the ex-
istence of shared locks. Even if transaction t

1

is dependent
on t

2

, the execution of t
2

does not necessarily contribute
to t

1

’s progress. Specifically, consider the set of all objects
that are reachable from t

1

in the dependency graph, but are
locked (shared or exclusively) by currently running transac-
tions. We call these objects the critical objects of t

1

, and
denote them as C(t

1

).5 For example, in Figure 5, we have
C(t

1

) = {o
1

, o
2

}. Note that not all transactions that hold
a lock on a critical object of t

1

contribute to t
1

’s progress.
Rather, only the transaction that releases the last lock on
that critical object allows for the progress of t

1

. In the ex-
ample of Figure 5, t

2

’s execution does not contribute to t
1

’s
progress, unless t

3

releases the lock before t
2

.
Nonetheless, when the number of transactions waiting for

each shared lock is bounded, LDSF is a constant-factor ap-
proximation of the optimal scheduler.

Theorem 3. Let the maximum number of critical objects
for any transaction in the system be c. Assume that the
number of transactions waiting for a shared lock on the same
object is bounded by u. The LDSF algorithm is a (c · u)-
approximation of the optimal scheduling (among strategies
that grant all shared locks simultaneously) in terms of the
expected latency.

4. SPLITTING SHARED LOCKS
In the LDSF algorithm, when a shared lock is granted, it is

granted to all transactions waiting for it. In Section 4.1, we
show why this may not be the best strategy. Then, in Sec-
tion 4.2, we propose a modification to our LDSF algorithm,
called bLDSF, which improves upon LDSF by exploiting the
idea of not granting all shared locks simultaneously.

4.1 The Benefits and Challenges
As noted earlier, when the LDSF algorithm grants a shared

lock, it grants the lock to all transactions waiting for it.
However, this may not be the optimal strategy. In general,
granting a larger number of shared locks on the same object
increases the probability that at least one of them will take

5Note that the critical objects of a transaction may change
throughout its lifetime.
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a long time before releasing the lock. Until the last transac-
tion completes and releases its lock, no exclusive locks can
be granted on that object. In other words, the expected du-
ration that the slowest transaction holds a shared lock grows
with the number of transactions sharing the lock. This is the
well-known problem of stragglers [21, 27, 31, 63, 79], which is
exacerbated as the number of independent processes grows.

To illustrate this more formally, consider the following
example. Suppose that a set of m transactions, t

1

, · · · , t
m

,
are sharing a shared lock. Let Rrem

1

, Rrem

2

, · · · , Rrem

m

be a
set of random variables representing the remaining times
of these transactions. Then, the time needed before an
exclusive lock can be granted on the same object is the
remaining time of the the slowest transaction, denoted as
Rrem

max,m

= max{Rrem

1

, · · · , Rrem

m

}, which itself is a random
variable. Let R̄rem

max,m

be the expectation of Rrem

max,m

. As long
as the Rrem

i

’s have non-zero variance6 (i.e., �2

i

> 0), R̄rem

max,m

strictly increases with m, as stated next.

Lemma 4. Suppose that Rrem

1

, Rrem

2

, · · · are random vari-
ables with the same range of values. If �2

k+1

> 0, then
R̄rem

max,k

<R̄rem

max,k+1

for 1  k < m.

We define the delay factor as f(m) =
R̄rem

max,m

R̄rem

. According

to Lemma 4, f(m) is strictly monotonically increasing with
respect to m. The exact formula for f(m) will depend on the
specific distribution of R

i

’s. For example, if R
i

’s are expo-
nentially distributed (i.e., a memoryless distribution) with

mean R̄, then their CDF is given by F (x) = 1 � e�x/

¯

R

rem

.

Then, f(m) can be computed as f(m) =
P

m

i=1

1
i
However,

regardless of the distribution of the latencies, f(m) is guar-
anteed to satisfy the following three properties:

C1. f(1) = 1;

C2. f(m) < f(m+ 1);

C3. f(m)  m.

The first property is trivial: granting the lock to only one
transaction at a time does not incur any delays. The second
property is based on Lemma 4. The third is based on the
fact that sharing a lock between a group of m transactions
cannot be slower than granting the lock to them one after
another and sequentially.

Since granting a shared lock to more transactions can de-
lay the exclusive lock requests, it is conceivable that granting
a shared lock to only a subset of the transactions waiting
for it might reduce the overall latency in the system. In-
tuitively, when many transactions are waiting for the same
shared lock, it would be better to grant the shared lock only
to a few that have a higher priority (i.e., a larger dependency
set), and leave the rest until the next time. This strategy
can therefore reduce the time that other transactions have to
wait for an exclusive lock, as illustrated in Figure 6. How-
ever, lock scheduling in this situation becomes extremely
di�cult. We have the following negative result.

Theorem 5. Let A¬f

be the set of scheduling algorithms
that do not use the knowledge of the delay factor f(k) in
their decisions. For any algorithm A¬f

2 A¬f

, there exists

an algorithm A, such that
w̄(A¬f

)
w̄(A)

= !(1) for some delay

factor f(k).
6This assumption holds unless all instances of a transaction
type take exactly the same time, which is unlikely.
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Figure 6: Assume that f(2) = 1.5 and f(3) = 2. If we first
grant a shared lock to all of t

1

, t
2

, and t
3

, all transactions in
t
4

’s dependency set will wait for at least 2R̄. The total wait
time will be 10R̄. However, if we only grant t

1

’s lock, then
t
4

’s lock, and then grant t
2

’s and t
3

’s locks together, the
transactions in t

4

’s dependency set will only wait R̄, while
those in t

2

’s and t
3

’s dependency sets will wait 2R̄. Thus,
the total wait time in this case will be only 9R̄.

According to this theorem, any algorithm that does not
rely on knowing the delay factor is not competitive: it per-
forms arbitrarily poor, compared to the optimal scheduling.
Thus, in the next section, we take the delay factor f(k) as
an input, and propose an algorithm that adopts the idea of
granting shared locks only to a subset of the transactions
requesting it. We also discuss the criteria for choosing delay
factors that can yield good performance in practice.

4.2 The bLDSF Algorithm
In this section, we present a simple algorithm, called bLDSF,

which inherits the intuition behind the LDSF algorithm, but
also exploits the idea that a shared lock does not have to be
granted to all transactions waiting for it.

While LDSF measures the progress enabled by di↵erent
scheduling decisions, our bLDSF algorithm measures the
speed of progress. If a transaction tx waiting for an exclu-
sive lock is scheduled, |g(tx)| transactions will make progress
over the next R̄ (expected) units of time. Thus, the speed of

progress can be measured as
|g(tx)|

R̄
. On the other hand, by

scheduling a batch of transactions ti
1

, ti
2

, · · · , ti
k

waiting for
a shared lock together, |

S
k

i=1

g(ti
i

)| transactions will make
progress over the next f(k) · R̄ units of time. The speed of

progress can then be measured as
|
S

k

i=1

g(ti
i

)|
f(k)R̄

.

The bLDSF algorithm works as follows. First, it finds the
transaction waiting for an exclusive lock with the largest
dependency set, denoted as t̂x. Denote the size of its de-
pendency set as p =

��g(t̂x)
��. Then, bLDSF finds the batch

of transactions, t̂i
1

, t̂i
2

, · · · , t̂i
k

, waiting for a shared lock such

that q =
|
S

k

i=1

g(t̂i
i

)|
f(k)

is maximized. When q < p, the sys-

tem will make faster progress if t̂x is scheduled first, in which
case bLDSF will grant an exclusive lock to t̂x. Conversely,
when q > p, the system will make faster progress if the batch

of t̂i
1

, t̂i
2

, · · · , t̂i
k

is scheduled first, in which case bLDSF will

grant shared locks to t̂i
1

, t̂i
2

, · · · , t̂i
k

simultaneously. When
q = p, the speed of progress in the system will be the same
under both scheduling decisions. In this case, bLDSF grants
shared locks to the batch, in order to increase the overall
degree of concurrency in the system. The pseudocode for
bLDSF is provided in Algorithm 2.

We show that, when the number of transactions waiting
for shared locks on the same object is bounded, the bLDSF
algorithm is a constant factor approximation of the optimal
scheduling algorithm in terms of the expected wait time.
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Input : The dependency graph of the system G = (V, E,L),
transaction t, object o, label L 2 {X,S}
// meaning t has just released a lock of type L on o

Output: The set of transactions whose requested lock on o

should be granted

1 if there are other transactions still holding a lock on o then
2 return ;;
3 Obtain the set of transactions waiting for a shared lock on o,

T

i  {ti 2 V : (ti, o) 2 E and L(ti, o) = S} =
{ti

1

, t

i

2

, · · · , ti
m

};
4 Obtain the set of transactions waiting for an exclusive lock

on o, Tx  {tx 2 V : (tx, o) 2 E and L(tx, o) = X} =
{tx

1

, t

x

2

, · · · , tx
n

};
5 Let t̂

i

1

, t̂

i

2

, · · · , t̂i
k

be the set of transactions in T

i such that

|
S

k

i=1

g(t̂i
i

)|
f(k)

is maximized ;

6 Let t̂

x be the transaction in T

x with the largest dependency
set;

7 if
��
g(t̂x)

�� · f(k) 
���
S

k

i=1

g(t̂i
i

)
��� then

8 return {t̂i
1

, t̂

i

2

, · · · , t̂i
k

};
9 else

10 return t̂

x;
Algorithm 2: The bLDSF Algorithm

Theorem 6. Let the maximum number of critical objects
for any transaction in the system be c. Assume that the
number of transactions waiting for shared locks on the same
object is bounded by v. Then, given a delay factor of f(k),
the bLDSF algorithm is an h-approximation of the opti-
mal scheduling algorithm in terms of the expected wait time,
where h = cv2 · f(v).

Unlike the LDSF algorithm, bLDSF requires a delay fac-
tor for its analysis. However, since the remaining times of
transactions can be modeled as random variables, the exact
form of the delay factor f(k) will also depend on the distribu-
tion of these random variables. For example, the delay fac-
tor for exponential random variables is f(k) = O(log k) [22],
for geometric random variables is f(k) = O(log k) [29], for
Gaussian random variables is f(k) = O(

p
log k) [47], and for

power law random variables with exponent 3 is f(k) =
p
k.

In Section 6.7, we empirically show that bLDSF’s per-
formance is not sensitive to the specific choice of the de-
lay factor, as long as it is a sub-linear function that grows
monotonically with k (conditions C1, C2, and C3 from Sec-
tion 4.1). This is because, when the batch size is small,
the di↵erence between all sub-linear functions is also small.
For example, when b = 10,

p
b ⇡ 3.16 and log

2

(1 + b) ⇡
3.46, leading to similar scheduling decisions. Even thoughp

log
2

(1 + b) ⇡ 1.86 is smaller than the other two, it can
still capture condition C2 quite well.

4.3 Discussion
In our analysis, we have assumed no additional informa-

tion regarding a transaction’s remaining execution time, or
its lock access pattern. However, with the recent progress
on incorporating machine learning models into DBMS tech-
nology [58, 11], one might be able to predict transaction
latencies [78, 59] in the near future. When such information
is available, a lock scheduling algorithm could take that into
account when maximizing the speed of progress: a transac-
tion that will take longer should be given less priority. The
priority of a transaction would then be the size of its depen-
dency set divided by its estimated execution time. Likewise,

2

t15

2

1
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t4

t3

x
Object
Transaction with approximate
dependency set size x

Transaction     holds 
a lock on object 
Transaction     waits
for a lock on object

Figure 7: The e↵ective size of t
1

’s dependency set is 5. But
its exact size is only 4.

a transaction performing a table scan will request a large
number of locks, and will not make any progress until all of
its locks can be granted. Thus, knowing a transaction’s lock
pattern in advance would also be beneficial. We leave such
extensions of our algorithms (e.g., to hybrid workloads [60])
to future work.

5. IMPLEMENTATION
We have implemented our scheduling algorithm in MySQL.

Similar to all major DBMSs, the default lock scheduling pol-
icy in MySQL was FIFO.7 Specifically, all pending lock re-
quests on an object are placed in a queue. A lock request
is granted immediately upon its arrival only if one of these
two conditions holds: (i) there are no other locks currently
held on the object, or (ii) the requested lock type is com-
patible with all of the locks currently held on the object and
there are no incompatible requests ahead of it waiting in the
queue. Similarly, whenever a lock is released on an object,
MySQL’s scheduler scans the entire queue from beginning
to the end. It grants any waiting requests as long as one
of these conditions holds. As soon as the scheduler encoun-
ters the first lock request that cannot be granted, it stops
scanning the rest of the queue.

One challenge in implementing LDSF and bLDSF is keep-
ing track of the sizes of the dependency sets. Exact calcu-
lation would require either (i) searching down the reverse
edges in the dependency graph in real-time, whenever a
scheduling decision is to be made, or (ii) storing the depen-
dency sets for all transactions and maintaining them each
time a transaction is blocked or a lock is granted. Both op-
tions are relatively costly. Therefore, in our implementation,
we rely on an approximation of the sizes of the dependency
sets, rather than computing their exact values. When a
transaction t holds no locks that block other transactions,
|g(t)| = 1. Otherwise, let T

t

be the set of transactions wait-
ing for an object currently held by transaction t. Then,
|g(t)| ⇡

P
t

02T

t

|g(t0)| + 1. The reason this method is only
an approximation of |g(t)| is that the dependency graph is a
DAG (but not necessarily a tree), which means the depen-
dency sets of di↵erent transactions may overlap. Figure 7
illustrates an example, where the dependency set of t

1

is
{t

1

, t
2

, t
3

, t
4

} and is therefore of size 4. However, its e↵ec-
tive size is calculated as one plus the sum of the e↵ective
sizes of t

2

and t
3

’s dependency sets, resulting in 5. To en-
sure that transactions appearing on multiple paths will not
be updated multiple times, we also keep track of those that
have already been updated.

Another implementation challenge lies in the di�culty of
finding the desired batch of transactions in bLDSF. Cal-
culating the size of the union of several dependency sets

7Now, our LDSF algorithm is the default (MySQL 8.0.3+).
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requires detailed information about the elements in each de-
pendency set (since the dependency sets may overlap due to
shared locks). Therefore, we rely on the following approxi-
mation in our implementation. We first sort all transactions
waiting for a shared lock in the decreasing order of their de-
pendency set sizes. Then, for k = 1, 2, · · · , we calculate the
q value (see Section 4.2) for the first k transactions. Here,
we approximate the size of the union of the dependency sets
as the sum of their individual sizes. Let k⇤ be the k value
that maximizes q. We then take the first k⇤ transactions as
our batch, which we consider for granting a shared lock to.

In Section 6, we show that, despite using these approxi-
mations in our implementation, our algorithms remain quite
e↵ective in practice.

Starvation Avoidance — In MySQL’s implementation of
FIFO, when there is an exclusive lock request in the queue,
it serves as a conceptual barrier: later requests for shared
locks cannot be granted, even if they are compatible with the
currently held locks on the object. This mechanism prevents
starvation when using FIFO. In our algorithms, starvation
is prevented using a similar mechanism. We place a barrier
at the end of the current wait queue. Lock requests that
arrive later are placed behind this barrier and are not con-
sidered for scheduling. In other words, the only requests
that are considered are those that are ahead of the barrier.
Once all such requests are granted, this barrier is lifted, and
a new barrier is added to the end of the current queue, i.e.,
those requests that were previously behind a barrier are now
ahead of one. This mechanism prevents a transaction with
a small dependency set from waiting indefinitely behind an
infinite stream of newly arrived transactions with larger de-
pendency sets. An alternative strategy to avoid starvation
is to simply add a fraction of the transaction’s age to its
dependency set size when making scheduling decisions. A
third strategy is to replace a transaction’s dependency set
size with a su�ciently large number once its wait time has
exceeded a certain timeout threshold.

Space Complexity — Given the approximation methods
mentioned above, both LDSF and bLDSF only require main-
taining the approximate size of the dependency set of each
transaction. Therefore, the overall space overhead of our
algorithms is only O(|T |).

Time Complexity — In MySQL, all lock requests on an
object (either granted or not) are stored in a linked list.
Whenever a transaction releases a lock on the object, the
scheduler scans this list for requests that are not granted
yet. For each of these requests, the scheduler scans the
list again to check compatibility with granted requests. If
the request is found compatible with all existing locks, it is
granted, and the scheduler checks the compatibility of the
next request. Otherwise, the request is not granted, and the
scheduler stops granting further locks. Let N be the num-
ber of lock requests on an object (either granted or not).
Then, FIFO takes O(N2) time in the worst case. LDSF
and bLDSF both use the same procedure as FIFO to find
compatible requests that are not granted yet, which takes
O(N2) time. For bLDSF, we also sort all transactions wait-
ing for a shared lock by the size of their dependency sets,
which takes O(N logN) time. Thus, the time complexity of
LDSF and bLDSF is still O(N2).

6. EXPERIMENTS
Our experiments aim to answer several key questions:

• How do our scheduling algorithms (LDSF and bLDSF)
a↵ect the overall throughput of the system?

• How do our algorithms compare against FIFO (the
default policy in nearly all databases) and VATS (re-
cently adopted by MySQL), in terms of reducing av-
erage and tail transaction latencies?

• How do our scheduling algorithms compare against
various heuristics?

• How much overhead do our algorithms incur, com-
pared to the latency of a transaction?

• How does the e↵ectiveness of our algorithms vary with
di↵erent levels of contention?

• What is the impact of the choice of delay factor on the
e↵ectiveness of bLDSF?

• What is the impact of approximating the dependency
sets (Section 5) on reducing the overhead?

In summary, our experiments show the following:

1. By resolving contention much more e↵ectively than FIFO
and VATS, bLDSF improves throughput by up to 6.5x
(by 4.5x on average) over FIFO, and by up to 2x (1.5x
on average) over VATS. (Section 6.2)

2. bLDSF can reduce mean transaction latencies by up to
300x and 80x (30x and 3.5x, on average) compared to
FIFO and VATS, respectively. It also reduces the 99th
percentile latency by up to 190x and 16x, compared to
FIFO and VATS, respectively. (Section 6.3)

3. Both bLDSF and LDSF outperform various heuristics by
2.5x in terms of throughput, and by up to 100x (8x on
avg.) in terms of transaction latency. (Section 6.4)

4. Our algorithms reduce queue length by reducing con-
tention, and thus incur much less overhead than FIFO.
However, their overhead is larger than VATS. (Section 6.5)

5. As the degree of contention rises in the system, bLDSF’s
improvement over both FIFO and VATS increases. (Sec-
tion 6.6)

6. bLDSF is not sensitive to the specific choice of delay fac-
tor, as long as it is chosen to be an increasing and sub-
linear function. (Section 6.7)

7. Our approximation technique reduces scheduling over-
head by up to 80x.

6.1 Experimental Setup
Hardware & Software — All experiments were performed
using a 5 GB bu↵er pool on a Linux server with 16 Intel(R)
Xeon(R) CPU E5-2450 processors and 2.10GHz cores. The
clients were run on a separate machine, submitting transac-
tions to MySQL 5.7 running on the server.

Methodology — We used the OLTP-Bench tool [24] to run
the TPC-C workload. We also modified this tool to run a mi-
crobenchmark (explained below). OLTP-Bench generated
transactions at a specified rate, and client threads issued
these transactions to MySQL. The latency of each transac-
tion was calculated as the time from when it was issued until
it finished. In all experiments, we controlled the number of
transactions issued per second within a safe range to prevent
MySQL from falling into a thrashing regime. We also no-
ticed that the number of deadlocks was negligible compared
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Figure 8: Throughput improvement
with bLDSF (TPC-C).

Figure 9: Avg. latency improvement
with bLDSF (under the same TPC-C
transactions per second).

Figure 10: Tail latency improvement
w/ bLDSF (under the same number of
TPC-C transactions per second).

to the total number of transactions, across all experiments
and algorithms.

TPC-C Workload — We used a 32-warehouse configura-
tion for the TPC-C benchmark. To simulate a system with
di↵erent levels of contention, we relied on changing the fol-
lowing two parameters: (i) number of clients, and (ii) num-
ber of submitted transactions per second (a.k.a. through-
put). Each of our client threads issued a new transaction as
soon as its previous transaction finished. Thus, by creating
a specified number of client threads, we e↵ectively controlled
the number of in-flight transactions. To control the system
throughput, we created client threads that issued transac-
tions at a specific rate.

Microbenchmark — We created a microbenchmark for a
more thorough evaluation of our algorithm under di↵erent
degrees of contention. Specifically, we created a database
with only one table that had 20,000 records in it. The clients
would send transactions to the server, each comprised of 5
queries. Each query was randomly chosen to be either a “SE-
LECT” query (acquiring a shared lock) or an “UPDATE”
query (acquiring an exclusive lock). The records in the table
were accessed by the queries according to a Zipfian distri-
bution. To generate di↵erent levels of contention, we varied
the following two parameters in our microbenchmark:

1. skew of the access pattern (the parameter ✓ of the Zipfian
distribution)

2. fraction of exclusive locks (probability of “UPDATE” queries).

Baselines — We compared the performance of our bLDSF
algorithm (with f(k)=log

2

(1 + k) as default) against the
following baselines:

1. First In First Out (FIFO). FIFO is the default sched-
uler in MySQL and nearly all other DBMSs. When an
object becomes available, FIFO grants the lock to the
transaction that has waited the longest.

2. Variance-Aware Transaction Scheduling (VATS).
This is the strategy proposed by Huang et al. [44]. When
an object becomes available, VATS grants the lock to the
eldest transaction in the queue.

3. Largest Dependency Set First (LDSF). This is the
strategy described in Algorithm 1, which is equivalent to
bLDSF with b = inf, and f(k) = 1.

4. Most Locks First (MLF). When an object becomes
available, grant a lock on it to the transaction that holds
the most locks (introduced in Section 3.1).

5. Most Blocking Locks First (MBLF). When an ob-
ject becomes available, grant a lock on it to the transac-

tion that holds the most locks which block at least one
other transaction (introduced in Section 3.1).

6. Deepest Dependency First (DDF). When an object
becomes available, grant a lock on it to the transaction
with the deepest dependency subgraph (Section 3.1).

For MLF, MBLF, and DDF, if a shared lock is granted,
all shared locks on that object are granted. For LDSF and
bLDSF, we use the barriers explained in Section 5 to prevent
starvation. For FIFO and VATS, if a shared lock is granted,
they continue to grant shared locks to other transactions
waiting in the queue until they encounter an exclusive lock,
at which point they stop granting more locks.

6.2 Throughput
We compared the system throughput when using FIFO

and VATS versus bLDSF, given an equal number of clients
(i.e., in-flight transactions). We varied the number of clients
from 100 to 900. The results of this experiment for TPC-C
are presented in Figure 8.

In both cases, the throughput dropped as the number of
clients increased. This is expected, as more transactions in
the system lead to more objects being locked. Thus, when
a transaction requests a lock, it is more likely to be blocked.
In other words, the number of transactions that can make
progress decreases, which leads to a decrease in throughput.

However, the throughput decreased more rapidly when
using FIFO or VATS than bLDSF. For example, when there
were only 100 clients, bLDSF outperformed FIFO by only
1.4x and VATS by 1.1x. However, with 900 clients, bLDSF
achieved 6.5x higher throughput than FIFO and 2x higher
throughput than VATS. As discussed in Section 4.2, bLDSF
always schedules transactions that maximize the speed of
progress in the system. This is why it allows for more trans-
actions to be processed in a certain amount of time.

6.3 Average and Tail Transaction Latency
We compared transaction latencies of FIFO, VATS, and

bLDSF under an equal number of transactions per second
(i.e, throughput). We varied the number of clients (and
hence, the number of in-flight transactions) from 100 to
900 for FIFO and VATS, and then ran bLDSF at the same
throughput as VATS, which is higher than the throughput
of FIFO. This means that we compare bLDSF with FIFO
at a higher throughput. The result is shown in Figure 9.
Our bLDSF algorithm dramatically outperformed FIFO by
a factor of up to 300x and VATS by 80x. This outstanding
improvement confirms our Theorems 3 and 6, as our algo-
rithm is designed to minimize average transaction latencies.
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Figure 11: Maximum throughput un-
der various algorithms (TPC-C).

Figure 12: Transaction latency under
various algorithms (TPC-C).

Figure 13: Scheduling overhead of var-
ious algorithms (TPC-C).

Figure 14: Average number of transac-
tions waiting in the queue under various
algorithms (TPC-C).

Figure 15: Average transaction la-
tency for di↵erent degrees of skewness
(microbenchmark).

Figure 16: Average latency for dif-
ferent numbers of exclusive locks (mi-
crobenchmark).

We also report the 99th percentile latencies in Figure 10.
Here, bLDSF outperformed FIFO by up to 190x. Interest-
ingly, bLDSF outperformed VATS too (by up to 16x), even
though the latter is specifically designed to reduce tail la-
tencies. This is because bLDSF causes all transactions to
finish faster on average, and thus, those transactions waiting
at the end of the queue will also wait less, leading to lower
tail latencies.

6.4 Comparison with Other Heuristics
In this section, we report our comparison of both bLDSF

and LDSF algorithms against the heuristic methods intro-
duced in Section 3, i.e., MLF, MBLF, and DDF. Moreover,
we compare our algorithms with VATS too.

First, we compared their throughput given an equal num-
ber of clients. We varied the number of clients from 100
to 900. The results are shown in Figure 11. LDSF and
bLDSF achieve up to 2x and 2.5x improvement over the
other heuristics in terms of throughput, respectively.

We also measured transaction latencies under an equal
number of transactions per second (i.e, throughput). We
varied the number of clients from 100 to 900 for the heuris-
tics, and then ran bLDSF and LDSF at the maximum through-
put achieved by any of the heuristics. For those heuris-
tics which were not able to achieve this throughput, we
compared our algorithms at a higher throughput than they
achieved. The results are shown in Figure 12, indicating that
MLF, MBLF, and DDF outperformed FIFO by almost 2.5x
in terms of average latency, while our algorithms achieved up
to 100x improvement over the best heuristics (MBLF with
900 transactions). Furthermore, bLDSF was better than
LDSF by a small margin.

6.5 Scheduling Overhead
We also compared the overhead of our algorithms (LDSF

and bLDSF) against both FIFO and VATS: the overhead of

a scheduling algorithm is the time needed by the algorithm
to decide which lock(s) to grant.

In this experiment, we fixed the number of clients to 100
while varying throughput from 200 to 1000. The result is
shown in Figure 13. We can see that, although all three
algorithms have the same time complexity in terms of the
queue length (Section 5), ours resulted in much less over-
head than FIFO because they led to much shorter queues
for the same throughput. This is because our algorithms ef-
fectively resolve contention, and thus, reduce the number of
waiting transactions in the queue. To illustrate this, we also
measured the average number of waiting transactions when-
ever an object becomes available. As shown in Figure 14,
this number was much smaller for LDSF and bLDSF. How-
ever, VATS incurred less overhead than LDSF and bLDSF,
despite having longer queues. This is because VATS does
not compute the sizes of the dependency sets.

6.6 Studying Different Levels of Contention
In this section, we study the impact of di↵erent levels

of contention on the e↵ectiveness of our bLDSF algorithm.
Contention in a workload is a result of two factors: (i) skew
in the data access pattern (e.g., popular tuples), and (ii) a
large number of exclusive locks. There is more contention
when the pattern is more skewed, as transactions will re-
quest a lock on the same records more often. Likewise, ex-
clusive lock requests cause more contention, as they cannot
be granted together and result in blocking more transac-
tions. We studied the e↵ectiveness of our algorithm under
di↵erent degrees of contention by varying these two factors
using our microbenchmark:

1. We fixed the fraction of exclusive locks to be 60% of all
lock requests, and varied the ✓ parameter of the Zipfian
distribution of our access distribution between 0.5 and
0.9 (larger ✓, more skew).
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Figure 17: The impact of delay factor
on average latency.

Figure 18: Scheduling overhead with
and without our approximation heuristic
for choosing a batch.

Figure 19: CCDF of the relative error
of the approximation of the sizes of the
dependency sets.

2. We fixed the ✓ parameter to be 0.8 and varied the prob-
ability of an “UPDATE” query in our microbenchmark
between 20% and 100%. The larger this probability, the
larger the fraction of exclusive locks.

First, we ran FIFO using 300 clients, and then ran both
VATS and bLDSF at the same throughput as FIFO. The
results of these experiments are shown in Figures 15 and 16.

Figure 15 shows that when there is no skew, there is no
contention, and thus most queues are either empty or only
have a single transaction waiting. Since there is no schedul-
ing decision to be made in this situation, FIFO, VATS and
bLDSF become equivalent and exhibit a similar performance.
However, the gap between bLDSF and the other two algo-
rithms widens as skew (and thereby contention) increases.
For example, when the data access is highly skewed (✓ =
0.9), bLDSF outperforms FIFO by more than 50x and VATS
by 38x. Figure 16 reveals a similar trend: as more exclusive
locks are requested, bLDSF achieves greater improvement.
Specifically, when 20% of the lock requests are exclusive,
bLDSF outperforms FIFO by 20x and VATS by 9x. How-
ever, when all the locks are exclusive, the improvement is
even more dramatic, i.e., 70x over FIFO and 25x over VATS.
Note that, although VATS guarantees optimality when there
are only exclusive locks [44], it fails to account for transac-
tion dependencies in its analysis (see Section 7 for a discus-
sion of the assumptions made in VATS versus bLDSF). In
summary, when there is no contention in the system, there
are no scheduling decisions to be made, and all scheduling
algorithms are equivalent. However, as contention rises, so
does the need for better scheduling decisions, and so does
the gap between bLDSF and other algorithms.

6.7 Choice of Delay Factor
To better understand the impact of delay factors on bLDSF,

we experimented with several functions of di↵erent growth
rates, ranging from the lower bound of all functions that
satisfy conditions C1, C2, and C3 (i.e., f(k) = 1) to their
upper bound (i.e., f(k) = k). Specifically, we used each
of the following delay factors in our bLDSF algorithm, and
measured the average transaction latency:

• f
1

(k) = 1;

• f
2

(k) =
p

log
2

(1 + k);

• f
3

(k) = log
2

(1 + k);

• f
4

(k) =
p
k;

• f
5

(k) = 0.5(1 + k);

• f
6

(k) = k.

The results are shown in Figure 17. We can see that all sub-
linear functions (i.e., f

2

, f
3

, and f
4

) performed comparably,
and that they performed better than the other functions.

Understandably, f
1

did not perform well, as it did not satisfy
condition C2 from Section 4.1. Functions f

5

and f
6

did not
perform well either, since linear functions overestimate the
delay. For example, two transactions running concurrently
take less time than if they ran one after another.

6.8 Approximating Sizes of Dependency Sets
We studied the e↵ectiveness of our approximation heuris-

tic from Section 5 for choosing a batch of shared requests.
Computing the optimal batch accurately was costly, and sig-
nificantly lowered the throughput. However, we measured
the scheduling overhead, and compared it to when we used
an approximation. We ran TPC-C, and varied the number
of clients from 100 to 900. As shown in Figure 18, our ap-
proximation reduced the scheduling overhead by up to 80x.

We also measured the error of our approximation tech-
nique for estimating the dependency set sizes—the deviation
from the actual sizes of the dependency sets—for varying ra-
tios of shared locks in the workload. Figure 19 shows the
complementary cumulative distribution function (CCDF) of
the relative error of approximating the dependency set sizes.
The error grew with the ratio of shared locks; this was ex-
pected, as shared locks are the cause of error in our approx-
imation. However, the errors remained within a reasonable
range, e.g., even with 80% shared locks, we observed a 2-
approximation of the exact sizes in 99% of the cases.

7. RELATED WORK
In short, the large body of work on traditional job schedul-

ing is unsuitable in a database context due to the unique
requirements of locking protocols deployed in databases. Al-
though there is some work on lock scheduling for real-time
databases, they aim at supporting explicit deadlines rather
than minimizing the mean latency of transactions.

Job Scheduling — Outside the database community, there
has been extensive research on scheduling problems in gen-
eral. Here, the duration (and sometimes the weight and
arrival time) of each task is known a priori, and a typical
goal is to minimize (i) the sum of (weighted) completion
times (SCT) [64, 41, 39], (ii) the latest completion time [20,
34, 67], (iii) the completion time variance (CTV) [14, 17,
76, 49], or even (iv) the waiting time variance (WTV) [28].
The o✏ine SCT problem can be optimally solved using a
Shortest-Weighted-Execution-Time approach, whereby jobs
are scheduled in the non-decreasing order of their ratio of
execution time to weight [70], if they all arrive at the same
time. However, when the jobs arrive at di↵erent times, the
scheduling becomes NP-hard [52].

None of these results are applicable to our setting, mainly
because of their assumption that each processor/worker can
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be used by only one job at a time, whereas in a database,
locks can be held in shared and exclusive modes. Moreover,
they assume the execution time of each job is known, which
is not the case in a database (i.e., the database does not
know when the application/user will commit and release its
locks). Finally, with the exception of [64, 41], prior work on
scheduling either assumes that all tasks are available at the
beginning, or that their arrival time is known. In a database,
however, such information is unavailable.

Dependency-based Scheduling — Scheduling tasks with
dependencies among them has been studied for both single
machines [69, 42] and multiprocessors [25, 26, 30, 61]. Here,
each job only needs one processor and once scheduled, it will
not be blocked again. However, in a database, a transaction
can request many locks, and thus, can be blocked even after
it is granted some locks.

Real-time Databases (RTDB) — There is some work on
lock scheduling in the context of RTDBs, where transactions
are scheduled to meet a set of user-given deadlines [75, 7, 55,
71, 77, 13, 36, 74, 73, 38, 33, 8, 53, 66, 19, 40]. It is shown
that the First-In-First-Out (FIFO) policy performs poorly in
this setting [33, 7, 8, 53], compared to the Earliest-Deadline-
First policy [55, 71, 77], which is also used in practice [13].

Unfortunately, the work in this area is not applicable to
general-purpose database systems. First, in an RTDB, each
transaction comes with a pre-specified deadline, while in a
general-purpose database such deadlines are not provided.
Second, a key assumption in this line of work is that the exe-
cution time of each transaction is known in advance, whereas
in a general database the execution time of a transaction
is only known once it is finished. Finally, the scheduling
goal in an RTDB is to minimize the total tardiness or the
number of missed deadlines. In other words, as long as a
transaction meets its deadline, RTDBs do not care whether
it finishes right before the deadline or much earlier. In con-
trast, general databases aim to execute transactions as fast
as possible.

Scheduling in Existing DBMS — For simplicity and
fairness [12], the First-In-First-Out (FIFO) policy and its
variants are the most widely adopted scheduling policies
in many of today’s databases [9], operating systems [16],
and communication networks [51]. FIFO is the default lock
scheduling policy in MySQL [3], MS SQL Server [6], Post-
gres [5], Teradata [4], and DB2 [2]. Despite its popularity,
FIFO does not provide any guarantees in terms of average
or percentile latencies. Huang et al. [44] propose a schedul-
ing algorithm, called Variance-Aware Transaction Schedul-
ing (VATS), which aims at minimizing the variance of trans-
action latencies, and its optimality holds only when there
are no shared locks in the system. In contrast, we focus
on minimizing mean latency, and allow for both shared and
exclusive locks. In short, designing optimal lock scheduling
algorithms for databases has remained an open problem.

VATS — Based on the findings of a new profiler, called
VProfiler [45], we have previously proposed Variance-Aware
Transaction Scheduling (VATS) [44]. VATS prioritizes trans-
actions according to their arrival time in the system, as op-
posed to FIFO, which prioritizes them according to their
arrival time in the current queue. Our prior work proves the
optimality of VATS in terms of minimizing the L

p

-norm of
transaction latencies [44], when there are no shared locks. In

contrast, the current paper proves the optimality of bLDSF
in terms of minimizing mean latency. More importantly, our
analysis of VATS uses a simplifying assumption that mod-
els the latency of a transaction t as l(t) = A(t) + U(t) +
R · (N(t) + 1), where A(t) is the age of t (i.e., time since
arrival), U(t) is the time since t arrives in the current queue
until the lock becomes available, and N(t) is the number
of transactions in the current queue that will be scheduled
before t. However, VATS does not account for the fact that
U(t) itself can be a↵ected by the scheduling decision. In
this paper, in our analysis of bLDSF, we have been able to
remove both assumptions and hence, prove optimality un-
der a more realistic setting. We consider both shared and
exclusive locks, and account for the impact of our schedul-
ing decision on the wait times of other transactions waiting
for other objects in the system. Our experiments show that
bLDSF’s more realistic assumptions lead to better decisions
(see Section 6).

Deadlock Resolution — The problem of deadlock resolu-
tion is about deciding which transaction(s) to abort in order
to resolve a deadlock [65, 37, 56, 43, 32]. Typically, trans-
actions with lower priority are aborted, in order to reduce
the amount of work wasted. Here, transactions are priori-
tized based on their age [32, 10], deadline [48], or number
of held locks [57]. Franaszek et al. [32] empirically show
that an age-based priority improves concurrency, and re-
duces the amount of work wasted. Agrawal et al. [10] argue
that choosing victims based on their age and number of held
locks leads to fewer rollbacks, than (i) choosing a transac-
tion randomly, or (ii) aborting the most recently blocked
transaction. These proposals take contention into account
only for deadlock resolution. In contrast, we focus on lock
scheduling and show that contention-aware scheduling yields
significant performance benefits in practice.

8. CONCLUSION
We study a fundamental (yet, surprisingly overlooked)

problem: lock scheduling in a database system. Despite the
massive body of work on transactional databases, the aston-
ishing impact of lock scheduling on overall performance of
a transactional system seems to have been largely under-
recognized—to the extent that every DBMS to date has
simply relied on FIFO. To our knowledge, we are the first
to propose the idea of contention-aware lock scheduling,
and present e�cient algorithms that are guaranteed to re-
duce mean transaction latencies down to a constant-factor-
approximation of the optimal scheduling. We also empiri-
cally confirm our theoretical analysis by modifying a real-
world DBMS. Our extensive experiments show that our al-
gorithms reduce transaction latencies by up to two orders of
magnitude, while delivering 6.5x higher throughput. More
importantly, our algorithm has already been adopted by
MySQL, and has started to impact real world applications.
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