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ABSTRACT
Today’s openly available knowledge bases, such as DBpedia,
Yago, Wikidata or Freebase, capture billions of facts about
the world’s entities. However, even the largest among these
(i) are still limited in up-to-date coverage of what happens
in the real world, and (ii) miss out on many relevant predi-
cates that precisely capture the wide variety of relationships
among entities. To overcome both of these limitations, we
propose a novel approach to build on-the-fly knowledge bases
in a query-driven manner. Our system, called QKBfly, sup-
ports analysts and journalists as well as question answer-
ing on emerging topics, by dynamically acquiring relevant
facts as timely and comprehensively as possible. QKBfly is
based on a semantic-graph representation of sentences, by
which we perform three key IE tasks, namely named-entity
disambiguation, co-reference resolution and relation extrac-
tion, in a light-weight and integrated manner. In contrast
to Open IE, our output is canonicalized. In contrast to tra-
ditional IE, we capture more predicates, including ternary
and higher-arity ones. Our experiments demonstrate that
QKBfly can build high-quality, on-the-fly knowledge bases
that can readily be deployed, e.g., for the task of ad-hoc
question answering.
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1. INTRODUCTION
Motivation & Problem Setting. Knowledge bases (KBs)
contain subject-predicate-object triples about entities and
their properties. Popular KBs include DBpedia [2], Yago [51],
Wikidata [54] and Freebase [7]. Their commercial coun-
terparts at Google, Microsoft, Baidu, and others, provide
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back-end support for search engines, online recommenda-
tions, and various knowledge-centric services. They cover
many millions of entities with billions of triples for thou-
sands of predicates. However, despite this impressive size,
no KB is ever complete. In fact, even the largest KBs miss
out on many interesting predicates and emerging entities,
such as brand-new events or unknown people, who suddenly
become notable. As an example, consider what KBs pro-
vide about Brad Pitt: his birthplace, his movies, wives,
children, etc. However, they do not point out which chil-
dren have been adopted, nor that Angelina Jolie recently
filed for divorce from him. There is even interesting infor-
mation about his movies that is absent from all KBs. An
example is that he played the mountaineer Heinrich Harrer
in Seven Years in Tibet, which would ideally be captured
as a quadruple hBrad Pitt, plays role in, Heinrich Harrer,
Seven Years in Tibeti. These gaps cannot be easily filled, as
many predicates are completely missing; and even for known
predicates, it is hard to keep up with the pace at which new
facts appear in the real world. This calls for a more open-
ended and dynamic KB construction.
The goal of dynamic and broader construction of KBs

has received substantial attention in the database research
community recently. The DeepDive project [42, 48, 57] has
developed a highly versatile tool suite for information ex-
traction (IE) and KB population (KBP), based on Markov
Logic [14] and further techniques, including a variety of opti-
mizations. Another ground-breaking project in this space is
SystemT [11, 12, 45], which uses declarative rules for IE in a
wide range of applications, including enterprise content ana-
lytics. However, these prior works still require a specification
of which predicates are of interest to the IE/KBP process.
Unless predicates like has adopted child, filed divorce from

or plays role in are made explicit by the application archi-
tect (or “knowledge engineer”), they will not be discovered
automatically. This may not be a problem for most use cases
in enterprises or data science, but it does limit the ability
of these approaches to extract knowledge without any prior
setup phase.
State-of-the-Art & Limitations. The field of Open IE
[4, 35] partially addresses the task of on-the-fly KB construc-
tion. In Open IE, however, the subject-predicate-object
arguments of the extracted triples are usually not canon-
icalized. For example, triples with subjects “Brad Pitt”,
“Bradley Pitt”, “Oscar winner Pitt”, etc. will all be present
even if their statements are equivalent. The DEFIE [8]
system, for example, thus adds a post-processing stage to
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disambiguate entity names, but still leaves predicates un-
resolved. Predicates like wins prize and receives award will
co-exist, although they are synonymous. Recently, [22, 47]
further canonicalized Open IE output by clustering noun
phrases as subjects and objects, while verbal phrases are
clustered into relations. However, these approaches have
high overhead and are not geared for dynamic knowledge
acquisition. Declarative approaches to IE and KBP, such
as DeepDive [42, 48, 57] and SystemT [11, 12, 45], require
specifications of predicates and rules. Thus, they cannot
be used in a spontaneous “on-the-fly” manner. Query-time
IE, as pursued in our work, resembles the notion of query-
time inference over probabilistic databases [18, 53]. These
methods operate on uncertain relational data as well as un-
certain rules, and support flexible forms of top-k queries [17]
and general inference [23, 24, 31]. However, all of these ap-
proaches require a relational schema that underlies the KB.

Approach & Contributions. This paper presents QKBfly,
a novel system for constructing query-driven, on-the-fly KBs.
Based on our experience with various IE tasks [26, 38, 40, 41,
56], our focus in this work is to develop an end-to-end system
for KB construction, which may be triggered by an ad-hoc
user query (e.g., when an analyst or journalist becomes in-
terested in a particular person, organization or event). The
system takes as input an entity-centric query or a natural-
language question, automatically retrieves relevant source
documents (via Wikipedia and news sources), runs a novel
form of knowledge extraction on the sources, and builds a
high-coverage KB that is focused on the entities of interest.
Compared to mainstream KBs, we acquire facts for a much
larger set of predicates. Compared to Open IE methods, ar-
guments of facts are canonicalized, thus referring to unique
entities with semantically typed predicates which are derived
from precomputed clusters of phrases. Besides supporting
analytical queries, QKBfly thus also facilitates the applica-
tion of current question-answering (QA) frameworks [6, 5,
55], which increasingly rely on structured knowledge back-
ends, to currently popular events and queries.

At the heart of QKBfly is a semantic-graph representa-
tion of sentences that captures per-sentence clauses, noun-
phrases, pronouns, as well as their syntactic and semantic
dependencies. Based on this graph, we devise an e�cient in-
ference technique that performs three key IE tasks, namely
named-entity disambiguation, entity co-reference resolution
and relation extraction, in a light-weight and integrated man-
ner. Because of the clause-based representation of sentences,
QKBfly is not limited to binary predicates but can also ex-
tract ternary (or higher-arity) predicates. To conclude our
motivation for this work, we summarize the novel contribu-
tions of QKBfly as follows:

• we present an end-to-end system for on-the-fly KB con-
struction that is triggered by an entity-centric user query
or a natural-language question;

• QKBfly employs a novel graph-based approach for clean-
ing, canonicalizing and organizing noisy extractions from
Open IE into a crisp KB;

• we conduct extensive experiments that demonstrate the
viability of our approach under various IE and QA settings.

In our experiments, we evaluate QKBfly’s capability of
building on-the-fly KBs against the state-of-the-art baselines
DEFIE [8] and DeepDive [48]. As an extrinsic use case, we

employ QKBfly for ad-hoc QA on emerging topics derived
from Google Trends.

2. DESIGN RATIONALE AND OVERVIEW

2.1 Design Space and Choices
KB construction generally faces an inherent trade-o↵ be-

tween precision (i.e., fraction of correct tuples among the ac-
quired ones) and recall (i.e., fraction of correct tuples among
the ones that could possibly be acquired from the input). In
traditional KB construction, the priority is usually precision,
since large KBs (e.g., commercial knowledge graphs, DBpe-
dia, Yago, Wikidata, Freebase, etc.) are an infrastructure
asset meant to support a wide variety of applications. In
contrast, on-the-fly KB building is intended to support an-
alysts in ad-hoc exploration and querying. Therefore, recall
is the primary priority, and good precision is a secondary
goal within this regime.
This overriding design decision has consequences on the

system architecture. While holistic methods with joint in-
ference on all steps and sub-goals (e.g., probabilistic graph-
ical models, constraint-based reasoners, etc.) are often at-
tractive, they are much harder to control in their behavior
towards separately tunable precision and recall. Moreover,
tools like Alchemy [14], DeepDive [42, 48], Markov-TheBeast
[46] or Sofie [52] require sophisticated modeling, training
and configuration upfront, which is all but straightforward
in our open-domain on-the-fly setting. These considerations
are the rationale for splitting our approach to on-the-fly KB
construction into two phases: a recall-oriented extraction
phase followed by a precision-oriented cleaning phase. This
separation gives us best control on the trade-o↵.

Extraction. Since on-the-fly KB construction aims for high
recall, we adopt the Open IE paradigm [4] for this phase.
To cope with the high diversity of input documents that a
query-driven approach comes with, we employ a judiciously
designed set of linguistic pre-processing steps. For these,
we use standard tools that are state-of-the-art in NLP. One
of these is ClausIE [13], which decomposes sentences into
a set of clauses. For e�ciency, we modified ClausIE, to
use the MaltParser [43] instead of its original reliance on
the Stanford parser [28]. In our experiments, we compare
QKBfly against a variety of best-practice Open IE tools.

Cleaning. The extraction phase produces a large set of –
still noisy – candidates for triples and tuples. To remove
false positives and reconcile semantic redundancy, we per-
form two major cleaning steps: one resolving entity men-
tions and co-references (see Section 4), and one for canoni-
calizing relational predicates (see Section 5). Both are po-
tentially expensive tasks. Since the case for on-the-fly KB
construction are ad-hoc information needs that should sup-
port analysts in a same-day manner, we decided to devise
light-weight algorithms for both tasks (see below), based on
a graph model, but avoiding the heavy-duty joint inference
that probabilistic graphical models (PGMs) usually incur.
Our experiments provide some comparison points for preci-
sion and run-time of our method against the joint-inference
paradigm. As MAP inference (“maximum a posteriori”)
in PGMs is related to solving a weighted MaxSat problem,
which in turn is a form of constraint programming, we picked
the Integer Linear Programming (ILP) solver Gurobi for
comparison. This is a mature and highly optimized tool,
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Figure 1: QKBfly overview. Blue-shaded components are processed on-the-fly.

performing very well on a wide range of constraint-based
reasoning tasks. Note that some PGMs actually use ILP for
e�cient MAP inference (e.g., [46]).

2.2 QKBfly Overview
Figure 1 depicts the architecture of QKBfly. Given a

set of input documents (D), retrieved in response to a user
query (Q), QKBfly works in three stages. First, it builds
a semantic graph (G) from clauses and initial co-references
extracted from each of the sentences contained in (D). Sec-
ond, it refines each semantic graph by jointly performing
named-entity disambiguation and co-reference resolution via
a graph-densification algorithm (A). Third, it canonicalizes
the on-the-fly KB (K) by merging co-reference nodes and by
mapping relational paraphrases to a canonical set of entities
and relations.

Background Repositories. As static input, QKBfly em-
ploys three types of repositories, namely a background cor-
pus (C), a pattern repository (P) and an entity repository
(E). From (C), we also extract background statistics (S) used
later by QKBfly. Each of these background repositories is
exchangeable. For the experimental setup described in Sec-
tion 7, we fixed them as follows: we employ a Wikipedia1

full-text dump from Sep. 1, 2015 as (C), PATTY2 [38] con-
sisting of 127,811 relational paraphrases as (P), and Yago3

[51] with 3,420,126 known entities as (E). As for Yago, we
merely harness its knowledge about alias names of entities
together with their gender attributes (for better pronoun
resolution), while none of the actual KB facts are used in
QKBfly. In particular, we do not require all entities we rec-
ognize during KB construction to be present in the given
entity repository.

Statistics. Both the background corpus (C) and the input
documents (D) are pre-processed by a pipeline of linguistic
tools, consisting of tokenization, part-of-speech (POS) tag-
ging, noun-phrase chunking and named-entity recognition
(NER), all of which are performed by the Stanford CoreNLP
toolkit [34]. In addition, we employ time tagging [10] and
the Open-IE-tool ClausIE [13] to extract clause structures in
which all arguments are annotated either as names or time

1https://dumps.wikimedia.org/enwiki/
2https://d5gate.ag5.mpi-sb.mpg.de/pattyweb/
3https://www.yago-knowledge.org/

expressions. As for the Wikipedia-based background corpus
(C), we also map clause components to Wikipedia entities by
their href links (if the NER type of the clause component
matches the type of Wikipedia entity). Based on the re-
sulting clause structures, we compute (co-)occurrence statis-
tics for clause-argument-types and the relationships among
them. These serve as input to the feature functions de-
scribed in Section 4.

Stage 1: Semantic Graph. From the pre-processed input
documents (D), we build a semantic graph for each sentence
in (D) based on the clause structure detected by ClausIE.
A leaf node in this graph represents an occurrence of an
entity, while an edge among two leaf nodes represents a re-
lation pattern in our on-the-fly KB (K). The per-sentence
graphs are linked via an initial set of possible co-reference
edges (based on the technique of [3]), thus connecting pairs
of leaf nodes that potentially refer to the same entity (see
Section 3).

Stage 2: Graph Algorithm. Next, the graph-densification
algorithm refines each of the connected semantic graphs.
It thereby jointly performs entity disambiguation and co-
reference resolution based on an e�cient algorithm for den-
sifying the semantic graphs. The method is inspired by and
generalizes the dense-subgraph algorithm introduced in [27],
which we judiciously chose as a basis due to its good runtime
performance and accuracy. The algorithm employs a greedy
heuristic for pruning edges to obtain a dense subgraph un-
der a set of given constraints. The remaining edges in the
densified subgraph link mentions to unique entities in the
resulting on-the-fly KB (see Section 4).

Stage 3: On-the-fly KB Canonicalization. In the final
stage, QKBfly constructs the on-the-fly KB (K) by com-
bining and canonicalizing the remaining nodes and edges in
the semantic graph. Entities are either linked to the entity
repository (E) or are identified as a cluster of new names
(for emerging entities) which are connected by co-reference
edges. At this stage, QKBfly uses the pattern repository (P)
to map relational paraphrases to a canonicalized set of rela-
tions. Similarly to the entity repository, new relational para-
phrases not contained in (P) are considered as new relations.
Moreover, by considering the per-sentence clause structure,
QKBfly is able to acquire triples as well as higher-arity facts
(see Section 5).
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3. SEMANTIC GRAPH
When given a set of natural-language sentences (e.g., a

Web page, a Wikipedia article, etc.) as input, QKBfly first
builds one semantic graph for each input sentence. It then
connects the per-sentence graphs by additional co-reference
links among nodes that potentially refer to the same entity.
QKBfly primarily employs ClausIE to construct these per-
sentence graphs. To improve the e�ciency of the extraction
process, we use the MaltParser [43] in our implementation
instead of the Stanford parser [28] used in the original ver-
sion of ClausIE. Besides dependency parsing, ClausIE ex-
ploits further linguistic features such as POS tagging and
noun-phrase chunking to detect so-called clauses.

Following [44], a clause is a coherent piece of informa-
tion within a sentence that consists of one subject (S), one
verb (V), an optional (either direct or indirect) object (O),
an optional complement (C), and a variable amount of ad-
verbials (A). A main observation of [44] is that only seven
combinations of the above constituents, namely SV, SVA,
SVC, SVO, SVOO, SVOA and SVOC, actually occur in the
English language, which is a key for relation extraction in
ClausIE. That is, one clause confirms to exactly one n-ary
fact that has these constituents as arguments. In addition,
we use the Stanford NER tagger [34] and the SUTime an-
notator [10] to detect named entities and time expressions
within the clauses.

Nodes. A node in our semantic graph is a container for
clauses, noun-phrases, pronouns and entities occurring in
an input sentence and the entity repository, respectively.
Specifically, we distinguish the following four types of nodes:

• A clause node is generated for each clause detected by
ClausIE. A clause may be connected to multiple depen-
dent clauses in the same sentence. Their dependency
structure is also detected by ClausIE.

• A noun-phrase node is generated for each noun phrase de-
tected by the noun-phrase chunker and for each named
entity detected by the NER tagger (both using [34]). Ad-
ditional time expressions are detected by the time tagger
(using [10]).

• A pronoun node is generated for a pronoun (such as “he”,
“she”, etc.). Noun-phrases and pronouns together form
the leaves of the subtree built for each sentence.

• An entity node is generated for each entity candidate
(e.g., Brad Pitt) of a noun-phrase node that matches a
known alias name in the entity repository.

Edges. Edges represent the syntactic and semantic depen-
dencies among nodes in the semantic graph. Here, we dis-
tinguish the following four types of edges:

• A depends edge links two dependent clauses. It addition-
ally links a clause node with the noun-phrase and pronoun

nodes it contains.

• A relation edge represents a relation pattern (i.e., the
lemmatized verb (V) constituent of the clause with an
optional preposition such as “to”, “in”, etc.) that con-
nects two noun-phrase or pronoun nodes in a clause.

• A sameAs edge links two noun-phrase or pronoun nodes
which likely refer to the same entity (by following [3] for
co-reference and pronoun resolution).

• A means edge links a noun-phrase or pronoun node with an
entity node based on matching alias names in the entity
repository.

We follow the method of [3] to initialize the sameAs edges
between noun-phrase nodes and pronoun nodes, respectively.
The sameAs edges among two noun-phrase nodes with the
same NER label (e.g., PERSON) are determined by string match-
ing (e.g., between “Brad Pitt” and “Pitt”). Additionally,
sameAs edges are created between pronoun nodes and all noun-
phrase nodes that precede the pronoun by at most five back-
ward sentences. Our graph algorithm (see Section 4) will
later remove all but the most likely sameAs edge between a
pronoun node and its linked noun-phrase nodes. In addition
to the verb (V) constituents detected by ClausIE, we apply
one more heuristic to label relation edges. That is, for text
patterns of the form “’s hnouni” (e.g., “Pitt’s ex-wife An-
gelina Jolie”), we consider the middle noun (i.e., “ex-wife”)
as the relation candidate between the two noun-phrase nodes.

Figure 2 depicts a semantic graph built from the two input
sentences shown on top of the figure. The first sentence
contains an SVC and an SVO clause, namely “Brad Pitt
is an actor” and “he supports the ONE Campaign”, which
results in two triples h“Brad Pitt”, “be”, “actor”i and h“he”,
“support”, “ONE Campaign”i whose arguments are not yet
canonicalized. Similarly, the quadruple h“Pitt”, “donate to”,
“$100,000”, “Daniel Pearl Foundation”i is extracted from
the SVOO clause of the second sentence. The noun phrases
“actor” and “$100,000” could not be linked to any entity
in the entity repository. These will remain string literals in
the respective arguments of the former two facts.

4. GRAPH ALGORITHM
We henceforth refer to the semantic graph built accord-

ing to the previous section as G = (N ,R), where N de-
notes the set of nodes, and R denotes the set of edges (i.e.,
“relationships”) among nodes in G. The goal of our graph-
densification algorithm then is to remove false-positive means

and sameAs edges from R by solving a constraint-based opti-
mization problem. In doing so, we perform a form of joint
inference for the two key IE tasks of named-entity disam-
biguation and co-reference resolution.

Edge Weights. For a subgraph S = hN 0 ✓ N ,R0 ✓ Ri
of G, we first distinguish the following dependencies among
nodes.

• For each noun-phrase node ni, let ent(ni,S) be the set of
all entity nodes linked to ni by means edges in R0.

• For each pronoun node pi, let np(pi,S) be the set of all
noun- phrase nodes linked to pi by sameAs edges in R0.

• Further, let ent(pi,S) denote the union of all ent(nt,S)
sets, where nt 2 np(pi,S).

Next, we define the edge weights to establish our densest-
subgraph objective as follows.

(1) The weight of a means edge between a noun-phrase node
ni and an entity node eij 2 ent(ni,S) for a subgraph S is
computed as

w(ni, eij ) = ↵1 · prior(ni, eij ) +

↵2 · sim

�
cxt(ni), cxt(eij )

�

where ↵1 and ↵2 are hyper-parameters and:
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Figure 2: Semantic graph example.

• prior(ni, eij ) captures the prior probability of a noun-
phrase ni denoting an entity candidate eij with respect
to the link structure of Wikipedia. Following recent en-
tity disambiguation approaches [27, 36, 41], we compute
this prior as the relative frequency under which a link
with anchor ni points to a Wikipedia article that repre-
sents entity eij . The respective counts are obtained from
the background corpus. Each such count is normalized
by the number of times eij occurs as an anchor among
all links in the same corpus.

• sim(cxt(ni), cxt(eij )) captures the similarity of two con-
text vectors. The context vector of a noun-phrase, cxt(ni),
is built from tokens in the sentence that contains this
noun phrase, while the context vector of an entity, cxt(eij ),
is built from tokens occurring in the entity’s Wikipedia
article. Both vectors are weighted using the common
TF-IDF scheme, which assigns the product of term fre-
quency and inverse document frequency to each dimen-
sion in the vectors. As for similarity measure, we em-
ploy the weighted overlap coe�cient between two vectors
cxt(ni) = hv1, v2, . . . i and cxt(eij ) = hv01, v02, . . . i:

sim

�
cxt(ni), cxt(eij )

�
=

P
k min(vk, v

0
k)

min
�P

k vk,
P

k v
0
k

�

(2) The weight of a relation edge between two noun-phrase

or pronoun nodes ni, nt for a subgraph S is computed as

w(ni, nt,S) = ↵3 ·
X

eij2ent(ni,S)

etk2ent(nt,S)

coh(eij , etk ) +

↵4 ·
X

eij2ent(ni,S)

etk2ent(nt,S)

ts(eij , etk , ri,t)

where ↵3 and ↵4 are hyper-parameters and:

• coh(eij , etk ) captures the coherence between two entity
candidates. The coherence is computed as the weighted
overlap similarity between the entities’ context vectors.

• ts(eij , etk , ri,t) is the relative frequency under which the
semantic types of eij , etk occur under the relation pat-
tern ri,t in the clauses detected by ClausIE. Since an
entity can have several types (e.g., ACTOR and PERSON), we
take the sum over all type combinations for the given
entity pair.

Type Signatures. To compute the weights for the above
type signatures, we run the Stanford NER tagger, SUTime,
and ClausIE on all sentences in the background corpus.
Subsequently, we compute (co-)occurrence statistics for the
types of arguments and the relation patterns on clauses
in which all arguments are mapped to Wikipedia entities,
or are recognized as either names or time expressions. In
addition to the five general NER types including PERSON,
ORGANIZATION, LOCATION, MISC and TIME, we use an extended
type system based on frequently used infobox templates4. In
our experiments, we only use prominent types that have at
least 1,000 articles as instances in Wikipedia, thereby reduc-
ing bias towards entities with very many fine-grained types.
From the resulting 167 types, we manually built a subsump-
tion hierarchy (e.g., FOOTBALLER ✓ ATHLETE ✓ PERSON, etc.).

We remark that we do not compute weights for sameAs and
depends edges. While sameAs edges are used as constraints in
the optimization model, while depends edges only contribute
to the final KB construction (particularly for determining
the fact boundaries as described in Section 5).

Optimization Objective. After assigning the edge weights,
we next aim to find the densest subgraph S⇤ = hN ⇤ ✓
N , R⇤ ✓ Ri that maximizes the following objective function.

• The sum of all edge weights in subgraph S⇤, denoted as
W (S⇤), is maximized,

which is subject to the following constraints:

(1) each noun-phrase node is connected to at most one entity
node by a means edge in R⇤;

(2) each pronoun node is connected to at most one noun-phrase
node by a sameAs edge in R⇤;

4https://en.wikipedia.org/wiki/Wikipedia:List_of_
infoboxes
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(3) all noun-phrase or pronoun nodes that are mutually linked
by sameAs edges, are connected to the same entity;

(4) each pronoun node connected to a noun-phrase node that
is connected to an entity node of type PERSON, for which
the background KB provides gender information, must
match that gender.

Approximation Algorithm. [50] show that the above for-
mulation of a densest-subgraph problem with constraints is
NP-hard. We thus resort to approximating our optimization
objective by the following greedy algorithm. We first restrict
the entity candidates for each noun-phrase node to the ones
contained in the dictionary of the background KB, but al-
low unlinked noun-phrase nodes in the final subgraph for
out-of-KB entities. For all noun-phrase nodes that are mu-
tually connected via sameAs edges, the entity candidate sets
are intersected. The approximation algorithm then greedily
iterates on the graph’s edges as long as none of the above
constraints is violated. In each round, the algorithm re-
moves the means or sameAs edge between two nodes (x, y)
with the smallest contribution to the objective function of
the current subgraph S. This contribution to the objective
function is defined as

c(x, y,S) = W (S)�W (S 0)

where S 0 is the subgraph of S we obtain by removing edge
(x, y) from S. If removing an edge leaves an entity candi-
date isolated, then that entity node is removed as well. After
each edge removal, the weights of all remaining edges need
to be recomputed, as the cutting of sameAs edges modifies
the influence of relation edges attached to noun-phrase or
pronoun nodes. Our implementation performs this recompu-
tation step in a selective and incremental way. Algorithm 1
shows pseudocode for our algorithm.

Confidence Scores. As an additional filtering step, we
assign a normalized confidence score to each noun-phrase or
pronoun node ni that is disambiguated to an entity eij as

score(ni, eij ,S
⇤) =

c(ni, eij ,S⇤)
X

eit2ent(ni,G)

c(ni, eit ,St)

where the denominator sums up over all subgraphs St con-
structed from S⇤ by replacing eij (and its associated means

edge) with one of the original candidates eit (and its means

edge). For the confidence of an extracted triple (or higher-
arity fact), we choose the minimum of the confidence scores
of all disambiguated entities that occur as the arguments
of the fact. In our experiments, we use a score threshold
⌧ = 0.5 to distill high-quality facts.

Hyper-Parameter Tuning. We manually annotated 162
sentences from 5 Wikipedia articles about prominent per-
son entities, including Andrew Ng, Angela Merkel, David
Beckham, Larry Page and Paris Hilton (thus covering scien-
tists, politicians, sports stars, business people and models).
These annotations comprise 203 facts, each consisting of a
pair of Yago entities and a relation pattern (e.g., hLarry Page,
“born in”, Michigani). By independently constructing a
graph G with two noun-phrase nodes ni and nt for each ex-
tracted fact, we define the probability of choosing entity

node eij 2 ent(ni,G) and entity node etk 2 ent(nt,G) as

prob(ni, eij , nt, etk ,G) =
W (S)
W (G)

Algorithm 1: Densest-Subgraph Algorithm.

Data: Semantic graph G = hN ,Ri from the input text.
Result: The densest subgraph

S⇤ = hN ⇤ ✓ N ,R⇤ ✓ Ri which satisfies the
four constraints (1), (2), (3) and (4).

for subgraph S = hN 0 ✓ N ,R0 ✓ Ri do
for node x 2 N 0 do

np(x) all noun-phrase nodes linked to x by
sameAs edges in R0;

for noun-phrase node ni 2 N 0 do
ent(ni) all entity nodes linked to ni by means

edges in R0;
if ent(ni) = ; then

report a new entity;

for noun-phrase node ni 2 N 0 do
for noun-phrase node nt 2 np(ni) do

ent(ni) ent(ni) \ ent(nt);

for pronoun node pi 2 N 0 do
ent(pi) [nt2np(pi)ent(nt);
for entity e 2 ent(pi) do

if doesn’t satisfy gender constraint (4) then
remove e from ent(pi);

W (S) sum over all edge weights in S;
/* start with the original graph */
S  G;
while all constraints are satisfied do

for means or sameAs edge of two node (x, y) 2 R0 do
S 0  subgraph of S by removing (x, y);
c(x, y,S) = W (S)�W (S 0);

find and remove the means or sameAs edge between
two node (x, y) with the smallest contribution
c(x, y,S) and no constraint will be violated;
update S;
if no edge is removed then

S⇤  S;
return S⇤;

where the subgraph S is constructed from G by removing
all entity nodes except eij and etk . Finally, the ↵1..4 pa-
rameters are learned by maximizing the probability of the
ground-truth annotations using L-BFGS optimization [33],
which implements a memory-e�cient variant of stochastic
gradient descent.

5. ON-THE-FLY KB CANONICALIZATION
In the final stage, QKBfly processes the output of the

graph densification to perform our final IE task, relation
extraction, to populate our on-the-fly KB with facts. Noun-
phrases and pronouns at this time are either linked to unique
entities in the entity repository or are identified by a group
of noun-phrase nodes connected via sameAs edges. Specifi-
cally, a new entity is introduced for each group of sameAs

nodes that consists only of out-of-repository names. We
additionally consider all groups of noun-phrase nodes that
link to entities in the background repository with very low
confidence scores as new entities. These are added to the
on-the-fly KB as emerging entities—an important asset for
up-to-date knowledge.
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Relation edges carry surface-form labels: patterns that
denote predicates. To canonicalize also these patterns, we
harness the pattern repository, specifically the PATTY dic-
tionary of relational paraphrases [38]. All node-edge-node
triples that have the same node labels and have edge labels
that belong to the same synset in PATTY are combined into
a single triple, thereby clustering the relation patterns to-
gether. For example, relation edges with labels “play in”,
“act in” and “star in” that connect the same actor-movie
pair are combined. This way, we are not limited to the rela-
tions that are registered in an existing KB (such as the ca.
100 predicates in Yago or the ca. 6,000 property labels in
DBpedia), but can also capture many interesting relations
on-the-fly. Unlike all of the major KBs, we also construct
facts for ternary or higher-arity relations. This is where
the extraction of clauses pays o↵. Whenever noun-phrase

or pronoun nodes are linked to the same clause node via
depends edges, we merge those nodes into a single fact. For
example, QKBfly can construct ternary facts from SVOO or
SVOA clauses such as hBrad Pitt, play in, Heinrich Harrer,
Seven Years In Tibeti, hBrad Pitt, adopt in, Pax Thien Jolie-

Pitt, “2008”i, etc. Those higher-arity facts provide more
complete information than triple facts, which is useful for
many extrinsic use cases such as QA on complex questions
(e.g., “Who plays Achilles in Troy?”).

Table 1 shows sample results (entities and their mentions,
relations and patterns, as well as facts) of the on-the-fly
KB constructed by QKBfly from the Wikipedia page of
Brad Pitt. QKBfly captures long-tail entities such as Brad
Pitt’s father William Alvin Pitt, who is missing in most KBs.
QKBfly captures binary facts such as hBrad Pitt, born to,
William Alvin Pitti, as well as ternary facts such as hBrad
Pitt, play in, Achilles, Troy (film)i.

Table 1: Excerpt of QKBfly output on Brad Pitt
page. Out-of-Yago entities are with an asterisk.

Entities & Mentions
Brad Pitt ! “William Bradley Pitt”, “Brad Pitt”, etc.

William Alvin Pitt⇤ ! “William Alvin Pitt”

Achilles ! “Achilles”, “warrior Achilles”, etc.
Troy (film) ! “Troy”

Relations & Patterns
born to ! “born to”, “father”, etc.
play in ! “act in”, “star in”, “play in”, “have role in”, etc.

Facts
hBrad Pitt, born to, William Alvin Pitt⇤i
hBrad Pitt, play in, Achilles, Troy (film)i

Table 2: Excerpt of QKBfly output from news arti-
cles. Out-of-Yago entities are with an asterisk.

Query Fact

Brad Pitt
hBrad Pitt, divorce from, Angelina Joliei
hAngelina Jolie, file for on,“divorce”,

“September 19, 2016”i

Bob Dylan
hBob Dylan,win for,Nobel Prize in Literature,

“having created new poetic expressions within

the American song tradition”i
Donald hJessica Leeds⇤, accuse of, Donald Trump,
Trump “groping her on an airplane in the 1980s”i

As a demonstration of QKBfly’s ability to compile KBs
in a query-driven manner, we ran various queries over news
articles returned by the Google search engine. Table 2 shows
sample results extracted from top-ranked news about celebri-
ties. QKBfly compiles up-to-date knowledge like the Pitt
and Jolie divorce, and the Nobel prize for Bob Dylan. Addi-
tionally, QKBfly captures emerging entities (i.e., entities not
contained in the given entity repository) such as the woman
accusing Donald Trump of sexual abuse: Jessica Leeds.

6. QKBfly AT WORK
We developed a user interface to demonstrate the ability

of QKBfly to construct KBs on-the-fly. Given a set of input
documents, such as a Wikipedia page or a collection of news
articles, QKBfly can build a KB with hundreds to a few
thousands of facts within a minute.

System Implementation. Figure 3 and Figure 4 show
two screenshots of QKBfly in a browser.

• For the input, we let the user choose a query (e.g., “Bob
Dylan”), the input source (Wikipedia or news articles)
and the desired number of input documents. QKBfly
processes relevant documents by restricting the search
to en.wikipedia.org for Wikipedia, and to bbc.com for
news articles.

• For the output, we show all facts from the on-the-fly
KB. Prominent entities may be linked to entities in the
entity repository. As the number of facts can be huge, we
o↵er a string search on subjects, predicates or objects.
QKBfly also supports type search if the user specifies the
prefix Type: to the queried category. Figure 3 shows
the result of 4 out of 721 facts in total by searching for
Type:MUSICAL ARTIST as the subject and receive in from

as the predicate in the on-the-fly KB constructed from
the Wikipedia page of Bob Dylan.

Figure 4 also illustrates the ability of QKBfly to cap-
ture up-to-date facts from news. For example, there is
the fact that Patti Smith forgot the lyrics when perform-
ing Bob Dylan’s song at the Nobel Prize ceremony, which is
extracted from 10 news articles. The predicate forget would
not be covered by many of the existing KBs. Also, obtaining
this kind of knowledge is not possible with state-of-the-art
tools for IE and knowledge base population. Methods, like
DeepDive or SystemT, would require substantial setup work
by a knowledge engineer to obtain these results.

7. EXPERIMENTS
In our experiments, we first compare QKBfly’s capability

of building on-the-fly KBs against the state-of-the-art Open
IE baseline DEFIE [8]. Second, we compare our greedy ap-
proximation algorithm for the joint inference of named en-
tity disambiguation (NED) and co-reference resolution (CR)
against an integer linear programming algorithm. Third,
we compare QKBfly’s capability of performing mentions of
spouses extraction (i.e., the married to relation) against Deep-
Dive [57]. Finally, as an extrinsic use case, we dynamically
construct ad-hoc KBs for question answering.

7.1 Experiments on KB Construction
Benchmarks. We focus on two datasets for our experi-
ments as follows:
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Query: Bob Dylan Corpus: Size: 1en.wikipedia.org Build Onthefly KB

Subject: Type:MUSICAL ARTIST Predicate: receive_in_from Object: E.g. Nobel Prize

Show 4 out of 721 facts:

Subject Predicate Objects

Dylan receive_in_from the Presidential Medal of Freedom May 2012 President Barack Obama

Dylan receive_in_from a Grammy Lifetime Achievement Award 1991 American actor Jack Nicholson

Dylan receive_in_from the Polar Music Prize May 2000 Sweden 's King Carl XVI

Dylan receive_in_from the accolade of Légion d'Honneur November 2013 the French education minister Aurélie Filippetti

Filter LOG:

1  https://en.wikipedia.org/wiki/Bob_Dylan

Figure 3: Sample of higher-arity facts extracted by QKBfly from Wikipedia.

Query: Bob Dylan Corpus: Size: 10bbc.com Build Onthefly KB

Subject: Patti_Smith Predicate: E.g. win Object: E.g. Nobel Prize

Show 2 out of 195 facts:

Subject Predicate Objects

Patti Smith perform his song A Hard Rain 's AGonna Fall at the ceremony

she forget the lyric

Filter LOG:

1  http://www.bbc.com/news/entertainmentarts37643621

2  http://www.bbc.com/news/entertainmentarts37655068

3  http://www.bbc.com/news/entertainmentarts37689160

4  http://www.bbc.com/news/entertainmentarts37646293

5  http://www.bbc.com/news/entertainmentarts37806639

6  http://www.bbc.com/news/entertainmentarts37645503

7  http://www.bbc.com/news/worldeurope38280402

8  http://www.bbc.com/news/entertainmentarts38003818

9  http://www.bbc.com/news/entertainmentarts37740379

10  http://bbc.com/music/artists/72c536dc71374477a521
567eeb840fa8?imz_s=fqvn75i454pqto24tcp4tgf324

Figure 4: Sample of up-to-date facts extracted by QKBfly from news articles.

• DEFIE-Wikipedia dataset5 [8], consisting of 14,072 ran-
domly chosen Wikipedia pages with 225,867 sentences.
We use this dataset to run experiments on end-to-end
KB construction.

• Reverb dataset6 [20], consisting of 500 sentences which
have been obtained by the random-link service of Yahoo.
This is used to run experiments on Open IE components.

Methods under Comparison. We compare several con-
figurations of QKBfly against DEFIE:

• QKBfly jointly performs fact extraction, NED and CR.

• QKBfly-pipeline is a pipeline architecture with three sep-
arate stages for fact extraction, NED and CR. The type
signature feature is omitted.

• QKBfly-noun only performs fact extraction and NED.
CR is omitted.

• DEFIE is a pipeline architecture with two stages for
Open IE and NED, using Babelfy [36] for NED.

Environment. In order to have a fair comparison among
systems, all experiments are run single-threaded on an Intel
Xeon X5650 server with 64GB RAM.

5provided by the authors
6http://reverb.cs.washington.edu/

Assessment. We asked 2 human assessors to evaluate the
correctness of 200 randomly sampled extractions. Inter-
assessor agreement was high, with Cohen’s kappa being  =
0.7. Precision values are reported with Wald confidence in-
tervals at 95%.

Results on Fact Extraction. Table 3 shows experimental
results for fact extraction on the DEFIE-Wikipedia dataset.
QKBfly-noun achieves the highest precision: 73% for triple
facts and 68% for quadruple facts. QKBfly significantly in-
creases the number of extractions, with a relatively small
loss in precision. This suggests that our method works
fairly well for co-references. Compared to the pipeline ar-
chitecture, the joint model of QKBfly increases precision
by 5%. All QKBfly variants significantly outperform DE-
FIE in terms of both precision and absolute recall (i.e.,
the number of exractions). DEFIE has been optimized for
short sentences (i.e., definitions) and loses e↵ectiveness when
processing complex texts with subordinate clauses and co-
references. Additionally, DEFIE only yields triples, whereas
QKBfly returns a large number of higher-arity facts with
good precision.
In terms of runtime e�ciency, all QKBfly variants per-

form similarly, less than a second for processing one docu-
ment. Almost half of the runtime is for pre-processing via
the Stanford CoreNLP pipeline and the MaltParser. Thus,
all approaches, including the joint models, are e�cient and
scale to processing large input corpora on the fly. Note that
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Table 3: Experimental results on fact extraction (at 95% confidence intervals).

Method
Triple Facts Higher-arity Facts Avg. Run-time (s)

Precision #Extractions Precision #Extractions per Document
DEFIE 0.62 ± 0.06 39,684 — — unknown
QKBfly 0.67 ± 0.06 44,605 0.63 ± 0.06 25,025 0.88 ± 0.03

QKBfly-pipeline 0.62 ± 0.06 44,605 0.58 ± 0.06 25,025 0.85 ± 0.03
QKBfly-noun 0.73 ± 0.06 33,400 0.68 ± 0.06 16,626 0.76 ± 0.02

the runtimes for DEFIE are not known; all DEFIE numbers
in Table 3 are from [8].

Results on Entity Disambiguation. We compare QKBfly
variants to DEFIE/Babelfy on the NED sub-task: linking
entities to the KB (Yago and BabelNet, cross-linked via
Wikipedia). We remark that Babelfy [36] also is a graph-
based approach to NED. It performs word sense disambigua-
tion based on a loose identification of candidate meanings.
This is coupled with a densest subgraph heuristic which se-
lects high-coherence semantic interpretations. Since Babelfy
does not consider pronouns, we omit the pronoun resolu-
tion. As shown in Table 4, QKBfly gains 4% while QKBfly-
pipeline loses 2% against Babelfy. We observe subtle errors
of QKBfly-pipeline and Babelfy coming from the missing
type signature feature (e.g., for Liverpool the city versus
Liverpool F.C. the soccer club).

Table 4: Experimental results on linking entities to
Yago (at 95% confidence intervals).

Method Precision #Extractions
DEFIEBabelfy 0.82 ± 0.05 39,684

QKBfly 0.86 ± 0.04 50,026
QKBfly-pipeline 0.80 ± 0.05 50,026

Results on Initial Extraction. We compare the Open IE
component of QKBfly against state-of-the-art methods in-
cluding the original work of ClausIE, Reverb [20], Ollie [35]
and Open IE 4.27. Table 5 shows experimental results on
the Reverb dataset. ClausIE performs best in terms of pre-
cision and the number of extractions. However, it does not
provide any canoncalized output and is much slower than
the other methods including QKBfly, Ollie, and Open IE
4.2 that benefit from using the MaltParser instead of the
Stanford Parser. The purely pattern-based Reverb, which
does not use any dependency parsing, is the fastest one.
QKBfly shows decent performance in all regards.

Table 5: Experiments on Open IE component. Av-
erage runtime in ms/sentence (at 95% confidence
intervals).

Method Precision #Extract.
Avg.

Runtime (ms)
ClausIE 0.62 1,707 374 ± 127
QKBfly 0.57 1,308 36 ± 11
Reverb 0.53 727 8 ± 2
Ollie 0.44 1,242 24 ± 9

Open IE 4.2 0.56 1,153 59 ± 14

7https://github.com/knowitall/openie

7.2 Experiment on Joint NED and CR
Benchmark. In addition to DEFIE-Wikipedia dataset, we
run experiments on two new benchmarks:

• News dataset, consisting of 100 sport news articles with
3,751 sentences extracted from more than 20 news web-
sites such as bbc.com, telegraph.co.uk, nytimes.com,
and more on 3rd June 2017.

• Wikia dataset, consisting of 10 Wikia pages with 880
sentences about Game of Thrones, Season 18. Each page
consists of text describing an episode of the series.

Methods under Comparison. We compare two configu-
rations of QKBfly with di↵erent graph algorithms.

• QKBfly, which performs NED and CR by the greedy
approximation algorithm (described in Section 4).

• QKBfly-ilp, which performs NED and CR by an Inte-
ger Linear Programming (ILP) approach (described in
Appendix A).

Results. As shown in Table 6, even though QKBfly-ilp
gains 1%-2% in precision, which we also found to be signif-
icant under a t-test with a p-value of 0.01 on the DEFIE-
Wikipedia dataset, it is much slower than QKBfly, especially
when processing long documents in the Wikia dataset. This
is because QKBfly-ilp has to handle a very large number
of variables in the ILP translation of the graph problem,
which makes it less suitable for on-the-fly KB construction.
The QKBfly variants generally lose around 10% in precision
when working on the Wikia dataset in comparison to the
News and DEFIE-Wikipedia datasets, since the former con-
tains many emerging (“out-of-Yago”) entities such as movie
characters. We observe that 71% of entities extracted from
the Wikia dataset are out-of-Yago, while only 24% of en-
tities extracted from the News dataset and 13% of entities
extracted from the DEFIE-Wikipedia dataset are new.

7.3 Experiments on Information Extraction
To understand how well our method works on a more tra-

ditional IE task, we compare QKBfly also against Deep-
Dive [57] by extracting instances of the spouse relation from
the entire DEFIE-Wikipedia dataset. The DeepDive tuto-
rials9 specifically provide a pre-configured extraction model
for this particular relation, which we additionally retrained
by feeding all instances of married couples in DBpedia as
positive examples into the DeepDive learner. As in tradi-
tional IE, the priority here is on precision, such that we use
a high confidence threshold ⌧ = 0.9 for both systems.

8http://gameofthrones.wikia.com/wiki/Season_1
9http://deepdive.stanford.edu/example-spouse
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Table 6: Experiments on graph algorithms (at 95%
confidence intervals).

DEFIE-Wikipedia dataset

Method Precision #Extract.
Avg.

Runtime (s)
QKBfly 0.65 ± 0.06 69,630 0.88 ± 0.03

QKBfly-ilp 0.66 ± 0.06 69,630 46.59 ± 16.41

News dataset

Method Precision #Extract.
Avg.

Runtime (s)
QKBfly 0.65 ± 0.06 2,096 1.43 ± 0.07

QKBfly-ilp 0.67 ± 0.06 2,096 71.18 ± 25.76

Wikia dataset

Method Precision #Extract.
Avg.

Runtime (s)
QKBfly 0.54 ± 0.06 917 4.29 ± 0.11

QKBfly-ilp 0.55 ± 0.06 917 542.36 ± 61.72

Results. Figure 5 shows the precision-recall curves of Deep-
Dive and QKBfly over the results, which we ranked by the
confidence scores that each of the two systems assigns to its
extracted facts. Table 7 also depicts the precision values at
various recall levels (measured in terms of the number of
extractions). Both systems perform very well in terms of
precision at the lower recall levels, while QKBfly tends to
outperform DeepDive at the higher recall levels. We observe
that many extractions of QKBfly come from co-reference
resolution for pronouns, which is not part of the extraction
model of DeepDive. On the downside, QKBfly is substan-
tially slower than DeepDive in this setting. However, one
should notice that QKBfly always performs extractions for
all relations – not just for the spouse relation. Considering
that DeepDive needs a separate (manually crafted) extrac-
tion model for each individual target relation, we believe
that this is an excellent result for QKBfly.
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Figure 5: Precision-recall curves.

Table 7: Experiments on extracting instances of
spouses on DEFIE-Wikipedia dataset.

Method Precision #Extractions
Runtime
(minutes)

QKBfly
1.0 50

2060.95 150
0.87 250

DeepDive
1.0 50

1170.91 150
— 250

7.4 Experiments on On-the-fly KB for Ad-hoc
Question Answering

Benchmark. As a final use-case, we run experiments on
a newly designed QA benchmark which we coin “Google-
TrendsQuestions”. First, we used the popular Google Trends
service to identify 50 recent events of wider interest between
January 2015 and October 2016. Second, we asked students
to formulate meaningful questions about these events, and
also provide the gold-standard answers. This resulted in
100 questions in total. An example question is: “Which
band was playing during the Paris attacks?”

Evaluation Metric. We report the macro-averaged preci-
sion, recall and F1 score across all test questions. That is,
given a set of questions q1 . . . qn, their gold answers g1 . . . gn
and the answer sets a1 . . . an returned by our system, where
each answer set ai can consist of a single value or a list of
values, we compute the macro-average precision, recall and
F1 score as

avg. precision =
1
n

nX

i=1

precision(gi, ai)

avg. recall =
1
n

nX

i=1

recall(gi, ai)

avg. F1 =
1
n

nX

i=1

F1(gi, ai)

where each of precision(gi, ai), recall(gi, ai) and F1(gi, ai)
is computed in the regular way.

Methods under Comparison. We compare several con-
figurations of QKBfly:

• QKBfly answers questions from an on-the-fly KB dynam-
ically constructed by QKBfly. The KB contains triples
as well as higher-arity facts.

• QKBfly-triples is an variant where the on-the-fly KB is
limited to subject-predicate-object (SPO) triples.

• Sentence-Answers is a text-centric baseline where QKBfly
is used to retrieve relevant sentences, but does not per-
form any fact extraction. Entities in these sentences then
become answer candidates.

• QA-Freebase is baseline with a static KB where we ap-
ply the same QA method on the huge fact collection of
Freebase.

A detailed description of how we implement QA in QKBfly
is described in Appendix B. The Sentence-Answers baseline
di↵ers from the others in the step of collecting answer can-
didates (Step 3 in the Appendix). Here, all entities that
co-occur with one of the question entities in the same sen-
tence are considered as candidate answers. Additionally, the
candidate features are the tokens in the sentences (rather
than facts) where the candidate occurs. This is in the spirit
of a traditional passage-retrieval-based QA method. It uses
the same on-the-fly corpus as QKBfly, but does not perform
explicit knowledge extraction.

Results. Table 9 shows the results on the GoogleTrend-
sQuestions benchmark. Here, QKBfly achieves an F1 score
of 34.1%, and QKBfly-triples reaches 30.7%. QA-Freebase
and Sentence-Answers perform far inferior. Particularly,
QA-Freebase returns empty results in most cases due to the
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Table 8: Sample questions and facts extracted by QKBfly. Final answers are marked with an asterisk.

Question Fact

Who plays Han Solo in ’Star Wars: The Force Awakens’?
hHarrison Ford⇤, act in, Han Solo, Star Wars: The Force Awakensi
hHarrison Ford⇤, return in as, “Star Wars film series”, Han Soloi

Which band was playing during the Paris attacks?
hEagles of Death Metal⇤, play in, “a concert”, Parisi
hEagles of Death Metal⇤, injured in in, “the attack”, Parisi

Where was Pope Francis born?
hPope Francis, born in on, Buenos Aires⇤, “17 December 1936”i
hPope Francis, birth place, Buenos Aires⇤i

Who shot Keith Lamont Scott?
hKeith Lamont Scott, shot by, “a black o�cer”

⇤i
hBrently Vinson⇤, shoot, “Mr Scott”i

lack of facts about recent events. QKBfly performs better
than QKBfly-triples in questions which require ternary facts,
such as “Who plays Han Solo in ’Star Wars: The Force
Awakens’?” (see Table 8). To separate the e↵ects of the
two kinds of input documents we considered – Wikipedia
and Google News –, we also ran QKBfly by using only
Wikipedia articles and only the top-10 news articles, respec-
tively. When using only Wikipedia articles to construct the
on-the-fly KB, QKBfly achieves 32.4% in the F1 measure.
Restricting it to using only Google news, on the other hand,
leads to an F1 score of 33.2%.

Table 9: Results on GoogleTrendsQuestions.

Method Precision Recall F1
QKBfly 0.330 0.383 0.341

QKBfly-triples 0.294 0.363 0.307
Sentence-Answers 0.173 0.199 0.179

QA-Freebase 0.095 0.100 0.096

As for an end-to-end experiment, we compare QKBfly
against the state-of-the-art KB-QA system, namely AQQU
[5]. AQQU achieves an F1 score of 10%. To be fair, we em-
phasize that this system has not been designed for a huge
but static KB, namely Freebase, and thus cannot utilize any
on-the-fly knowledge. Table 10 shows anecdotal samples for
illustration.

Table 10: Samples of GoogleTrendsQuestions.

Question & Answers
Where was Pope Francis born?

Gold Answers: [Buenos Aires]
AQQU: [Buenos Aires]
QKBfly: [Buenos Aires]

Who shot Keith Lamont Scott?
Gold Answer: [Brentley Vinson]
AQQU: []
QKBfly: [“a black o�cer”, Brentley Vinson]

8. RELATED WORK
Knowledge Base Population. KBs like Yago [51], DB-
pedia [2], Freebase [7], NELL [9], BabelNet [39] and Wiki-
data [54] extract SPO facts fromWikipedia and other sources.
However, all of these are limited to a prespecified set of
predicates: a few hundred in some, up to a few thousand
in Freebase and Wikidata. Moreover, there is very limited
support for higher-arity facts: Yago has temporal scopes

for triples, Freebase contains compound objects for special
kinds of higher-arity predicates (e.g., awards and marriages).
IE methods for ternary facts have been developed by [30],
based on distant supervision from large KBs. However, also
these methods require prespecified relations and do not scale
well. [29] proposes Sar-graphs, a semantic representation of
higher-arity facts and their grounding in language. This
approach relies on manual curation and is fairly limited in
scope and scale. The idea of on-the-fly KB construction
was also brought up by [37] as a challenge, but not pursued
any further. Declarative methods to IE and KBP, includ-
ing DeepDive [42, 48, 57] and SystemT [11, 12, 45], work
on carefully-predefined sets of predicates and rules. Thus,
they cannot directly be applied in a spontaneous “on-the-
fly” manner.

Open IE. Open IE methods, like [1, 4, 8, 13, 19] overcome
some of the limitations of KB population, but face issues re-
garding the quality and informativeness of their extractions,
where neither entities nor predicates are canonicalized. Con-
sequently, applications using Open IE output still need to
deal with NED and the resolution of relational paraphrases.
Some recent works have aimed to advance Open IE towards
structured KBs. [1] map facts from Open IE techniques to
a small number of pre-specified predicates. DEFIE [8] is a
large-scale IE systems that feeds Open IE output into the
NED tool Babelfy [36]. However, relational predicates are
still not canonicalized. DEFIE is the main baseline against
which we evaluate the coverage and quality of QKBfly. Re-
lated to Open IE are the TREC 2012–2014 Knowledge Base
Acceleration (KBA) and 2015–2016 Dynamic Domain (DD)
tracks. Both tracks aim to extract on-the-fly knowledge
(coined “cold start”) from text sources. However, virtu-
ally all contestants there also resort to extracting short text
snippets or sentences rather than building a structured and
canonicalized KB.
Finally, joint models for related NLP tasks include work

on combinations of NER, NED, co-reference resolution (CR)
and relation extraction. NER and CR have recently been
jointly addressed by [25, 15]; this has been further extended
by [16] to also include NED. [49] jointly tackles NER, CR
relation extraction, but does not canonicalize entities and
predicates. [32] jointly infers NER types and relational facts,
again without canonicalization.

9. CONCLUSIONS
We presented QKBfly, a novel approach to build on-the-

fly knowledge bases in a query-driven manner. We acquire
facts for a much larger set of predicates than those in main-
stream KBs. In contrast to the output of Open IE, ar-
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guments of facts are canonicalized, so that they refer to
unique entities with semantically typed predicates derived
from clusters of phrases. Moreover, QKBfly is not limited
to binary facts, but comprises also higher-arity ones by ana-
lyzing the clause structure of the input sentences. Use cases
for QKBfly include ad-hoc question answering, summariza-
tion and other kinds of machine-reading applications. The
QKBfly software is available10 under the Apache License 2.0.

As for future work, on-the-fly KB construction faces a
fundamental trade-o↵ between extraction speed and output
quality. While this paper has aimed to reconcile these goals,
further improvements are needed. Additionally, on-the-fly
relational paraphrase mining would be another important
research direction.
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APPENDIX
A. ILP SETUP

We next describe how we translate the densest-subgraph
problem S⇤ into an ILP. We introduce a binary variable
cndij for each noun-phrase or pronoun node ni and each
entity candidate eij 2 ent(ni,G). The variable cndij = 1
i↵ eij is chosen for ni in the densest subgraph S⇤. As
constraints, we have (1)

P
j cndij = 1 8i, and (2) two

noun-phrase or pronoun nodes ni, nt are linked by a sameAs

edge in S⇤ i↵ cndij = cndtj 8j. We additionally introduce
a binary variable joint-relijtk for each pair of noun-phrase

or pronoun nodes ni, nt, which are connected by a relation

edge ri,t, and similarly for each pair of entity nodes eij 2
ent(ni,G), etk 2 ent(nt,G). Thus, the variable joint-relijtk =
1 i↵ eij is chosen for ni and etk is chosen for nt in S⇤. Con-
sequently, joint-relijtk = 1 i↵ cndij = 1 and cndtk = 1. We
then aim to maximize

X

ni2G
eij2ent(ni,G)

cndij · w(ni, eij ) +

X

ni,nt2G

joint-relijtk · w(ni, nt,Sijtk )

where:

• w(ni, eij ) is the means edge weight between ni and eij ,

• w(ni, nt,Sijtk ) is the relation edge weight between ni

and nt in a subgraph Sijtk constructed from G by only
considering eij and etk as the candidates for ni and nt,
respectively.

In our experiments, we used the Gurobi11 solver to find the
solution to the above programs.

10https://people.mpi-inf.mpg.de/~datnb/
11http://www.gurobi.com

B. QA SETUP
Question answering over structured knowledge bases (KB-

QA) [5, 6, 55] denotes the task of translating a natural lan-
guage question into a structured query (e.g., using SPARQL
for querying SPO triples), which is then executed over the
underlying KB (e.g., Freebase [7]) to obtain answer entities.
As an extrinsic use-case, we harness QKBfly for KB-QA. In
contrast to mainstream works, we pursue the case where no
fact repository is available upfront and all relevant facts need
to be gathered on-the-fly, triggered by a natural-language
question. Specifically, when given a question like “who did
vladimir lenin marry?”, QKBfly computes the answers in
the following four steps.

Step 1. Entities in the question are detected and used to
retrieve relevant documents in Wikipedia and Google News.
For example, we use the Wikipedia article that has the id
of Vladimir Lenin, and we issue a Google News query with
the full text of the input question. For each question, we
retrieve the top-10 results from Google News.

Step 2. QKBfly processes the retrieved documents to ex-
tract facts. No pre-existing fact repository is used.

Step 3. As answer candidates, our method fetches all en-
tities (or string literals like dates) from its question-specific
ad-hoc KB. A type filter is applied to ensure that candidates
satisfy the expected answer type(s). For example, a ques-
tion starting with “Who” can be answered only by entities
of types PERSON, CHARACTER or ORGANIZATION. Here, we use our
type system based on infoboxes for entities, combined with
Stanford NER and SUTime tags. Note that this step is fo-
cused on recall, ensuring that we do not miss good answers.
The following step ensures high precision by further filtering
the candidates and ranking them.

Step 4. We run each answer candidate through a pre-
trained binary classifier, using an SVM model. The model
is trained on the WebQuestions training questions and their
gold-standard answers [6]. The positively labeled candidates
are output as final answers. For single-answer factoid ques-
tions (if detectable), only the top-ranked answer is output.

Classifier Features. For each question, we extract all to-
kens: word-level lemmatized unigrams and entities. For ex-
ample, the question “who did vladimir lenin marry?” con-
tains “who”, “do”, “marry” and the entity Vladimir Lenin.
For each candidate answer, we similarly extract all tokens
co-occurring in the same KB facts, again all word-level lem-
matized unigrams and all entities. The feature set for a pair
of a question and its candidate answer then are all token
pairs (x, y) where x is a token occurring with the question
and y is a token occurring with the candidate. For data
sparseness and simplicity, we treat these as binary features.

Classifier Training. WebQuestions consists of 3,778 train-
ing questions, each of which is paired with its answer set.
These were collected using the Google Suggest API and fur-
ther crowdsourcing. Answers (i.e., Freebase entities) are fi-
nally converted to Wikipedia pages by the Freebase API.
We use the gold answers of the WebQuestions training cor-
pus and Wikipedia-based question-specific KBs produced by
QKBfly for training the SVM classifier. Facts extracted by
QKBfly that contain correct or incorrect answers are used
as positive or negative training samples, respectively. The
model is constructed using the Liblinear SVM library [21]
by using the default settings.
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Collaborative Knowledgebase. CACM, 57(10):78–85,
2014.

[55] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao.
Question Answering on Freebase via Relation
Extraction and Textual Evidence. In ACL, 2016.

[56] M. A. Yosef, J. Ho↵art, I. Bordino, M. Spaniol, and
G. Weikum. AIDA: An Online Tool for Accurate
Disambiguation of Named Entities in Text and Tables.
PVLDB, 4(12):1450–1453, 2011.

[57] C. Zhang, J. Shin, C. Ré, M. Cafarella, and F. Niu.
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