
Model-Free Control for Distributed Stream Data Processing

using Deep Reinforcement Learning

Teng Li, Zhiyuan Xu, Jian Tang and Yanzhi Wang

{tli01, zxu105, jtang02, ywang393}@syr.edu

Department of Electrical Engineering and Computer Science

Syracuse University

Syracuse, NY 13244

ABSTRACT
In this paper, we focus on general-purposeDistributed Stream
Data Processing Systems (DSDPSs), which deal with pro-
cessing of unbounded streams of continuous data at scale
distributedly in real or near-real time. A fundamental prob-
lem in a DSDPS is the scheduling problem (i.e., assigning
workload to workers/machines) with the objective of mini-
mizing average end-to-end tuple processing time. A widely-
used solution is to distribute workload evenly over machines
in the cluster in a round-robin manner, which is obviously
not e�cient due to lack of consideration for communication
delay. Model-based approaches (such as queueing theory)
do not work well either due to the high complexity of the
system environment.

We aim to develop a novel model-free approach that can
learn to well control a DSDPS from its experience rather
than accurate and mathematically solvable system models,
just as a human learns a skill (such as cooking, driving,
swimming, etc). Specifically, we, for the first time, propose
to leverage emerging Deep Reinforcement Learning (DRL)
for enabling model-free control in DSDPSs; and present de-
sign, implementation and evaluation of a novel and highly
e↵ective DRL-based control framework, which minimizes av-
erage end-to-end tuple processing time by jointly learning
the system environment via collecting very limited runtime
statistics data and making decisions under the guidance of
powerful Deep Neural Networks (DNNs). To validate and
evaluate the proposed framework, we implemented it based
on a widely-used DSDPS, Apache Storm, and tested it with
three representative applications: continuous queries, log
stream processing and word count (stream version). Exten-
sive experimental results show 1) Compared to Storm’s de-
fault scheduler and the state-of-the-art model-based method,
the proposed framework reduces average tuple processing by
33.5% and 14.0% respectively on average. 2) The proposed
framework can quickly reach a good scheduling solution dur-
ing online learning, which justifies its practicability for on-
line control in DSDPSs.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 6
Copyright 2018 VLDB Endowment 2150-8097/18/02.
DOI: https://doi.org/10.14778/3184470.3184474

PVLDB Reference Format:

Teng Li, Zhiyuan Xu, Jian Tang and Yanzhi Wang. Model-Free
Control for Distributed Stream Data Processing using Deep Re-
inforcement Learning. PVLDB, 11 (6): xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3184470.3184474

1. INTRODUCTION
In this paper, we focus on general-purpose Distributed

Stream Data Processing Systems (DSDPSs) (such as Apache
Storm [48] and Google’s MillWheel [3]), which deal with pro-
cessing of unbounded streams of continuous data at scale
distributedly in real or near-real time. Their programming
models and runtime systems are quite di↵erent from those of
MapReduce-based batch processing systems, such as Hadoop
[22] and Spark [46], which usually handle static big data in
an o✏ine manner. To fulfill the real or near-real time online
processing requirements, average end-to-end tuple process-
ing time (or simply average tuple processing time [52]) is
the most important performance metric for a DSDPS.

A fundamental problem in a DSDPS is the scheduling
problem (i.e., assigning workload to workers/machines) with
the objective of minimizing average tuple processing time.
A widely-used solution is to distribute workload over ma-
chines in the cluster in a round-robin manner [48], which is
obviously not e�cient due to lack of consideration for com-
munication delay among processes/machines. We may be
able to better solve this problem if we can accurately model
the correlation between a solution and its objective value,
i.e., predict/estimate average tuple processing time for a
given scheduling solution. However, this is very hard and
has not yet been well studied in the context of DSDPS. In
distributed batch processing systems (such as MapReduce-
based systems), an individual task’s completion time can
be well estimated [53], and the scheduling problem can be
well formulated into a Mixed Integer Linear Programming
(MILP) problem with the objective of minimizing the make-
span of a job [13, 55]. Then it can be tackled by optimally
solving the MILP problem or using a fast polynomial-time
approximation/heuristic algorithm. However, in a DSDPS,
a task or an application never ends unless it is terminated by
its user. A scheduling solution makes a significant impact on
the average tuple processing time. But their relationship is
very subtle and complicated. It does not even seem possible
to have a mathematical programming formulation for the
scheduling problem if its objective is to directly minimize
average tuple processing time.

Queueing theory has been employed to model distributed
stream database systems [34]. However, it does not work for

705

705 -718705 - 718

DSDPSs due to the following reasons: 1) The queueing the-
ory can only provide accurate estimations for queueing delay
under a few strong assumptions (e.g, tuple arrivals follow a
Poisson distribution, etc), which, however, may not hold in a
complex DSDPS. 2) In the queueing theory, many problems
in a queueing network (rather than a single queue) remain
open problems, while a DSDPS represents a fairly compli-
cated multi-point to multi-point queueing network where
tuples from a queue may be distributed to multiple down-
stream queues, and a queue may receive tuples from multi-
ple di↵erent upstream queues. In addition, a model-based
scheduling framework has been proposed in a very recent
work [25], which employs a model to estimate (end-to-end)
tuple processing time by combing delay at each component
(including processing time at each Processing Unit (PU)
and communication delay between two PUs) predicted by
a supervised learning method, Support Vector Regression
(SVR) [14]. However, this model-based approach su↵ers
from two problems: 1) In a very complicated distributed
computing environment such as a DSDPS, (end-to-end) tu-
ple processing time (i.e., end-to-end delay) may be caused
by many factors, which are not fully captured by the pro-
posed model. 2) Prediction for each individual component
may not be accurate. 3) A large amount of high-dimensional
statistics data need to be collected to build and update the
model, which leads to high overhead.

Hence, we aim to develop a novel model-free approach that
can learn to well control a DSDPS from its experience rather
than accurate and mathematically solvable system models,
just as a human learns a skill (such as cooking, driving,
swimming, etc). Recent breakthrough of Deep Reinforce-
ment Learning (DRL) [33] provides a promising technique
for enabling e↵ective model-free control. DRL [33] (origi-
nally developed by a startup DeepMind) enables computers
to learn to play games, including Atari 2600 video games and
one of the most complicated games, Go (AlphaGo [45]), and
beat the best human players. Even though DRL has made
tremendous successes on game-playing that usually has a
limited action space (e.g., moving up/down/left/right), it
has not yet been investigated how DRL can be leveraged for
control problems in complex distributed computing systems,
such as DSDPSs, which usually have sophisticated state and
huge action spaces.

We believe DRL is especially promising for control in DS-
DPSs because: 1) It has advantages over other dynamic
system control techniques such as model-based predictive
control in that the former is model-free and does not rely on
accurate and mathematically solvable system models (such
as queueing models), thereby enhancing the applicability in
complex systems with randomized behaviors. 2) it is ca-
pable of handling a sophisticated state space (such as Al-
phaGo [45]), which is more advantageous over traditional
Reinforcement Learning (RL) [49]. 3) It is able to deal with
time-variant environments such as varying system states and
user demands. However, direct application of the basic DRL
technique, such as Deep Q Network (DQN) based DRL pro-
posed in the pioneering work [33], may not work well here
since it is only capable of handling control problems with
a limited action space but the control problems (such as
scheduling) in a DSDPS usually have a sophisticated state
space, and a huge action (worker threads, worker processes,
virtual/physical machines, and their combinations) space
(See Section 3.2 for greater details). Moreover, the exist-

ing DRL methods [33] usually need to collect big data (e.g.,
lots of images for the game-playing applications) for learn-
ing, which are additional overhead and burden for an online
system. Our goal is to develop a method that only needs to
collect very limited statistics data during runtime.

In this paper, we aim to develop a novel and highly e↵ec-
tive DRL-based model-free control framework for a DSDPS
to minimize average data processing time by jointly learning
the system environment with very limited runtime statistics
data and making scheduling decisions under the guidance
of powerful Deep Neural Networks (DNNs). We summarize
our contributions in the following:

• We show that direct application of DQN-based DRL
to scheduling in DSDPSs does not work well.

• We are the first to present a highly e↵ective and prac-
tical DRL-based model-free control framework for
scheduling in DSDPSs.

• We show via extensive experiments with three repre-
sentative Stream Data Processing (SDP) applications
that the proposed framework outperforms the current
practice and the state-of-the-art.

To the best of our knowledge, we are the first to lever-
age DRL for enabling model-free control in DSDPSs. We
aim to promote a simple and practical model-free approach
based on emerging DRL, which, we believe, can be extended
or modified to better control many other complex distributed
computing systems.

The rest of the paper is organized as follows: We give a
brief background introduction in Section 2. We then present
design and implementation details of the proposed frame-
work in Section 3. Experimental settings are described, and
experimental results are presented and analyzed in Section 4.
We discuss related work in Section 5 and conclude the paper
in Section 6.

2. BACKGROUND
In this section, we provide a brief background introduction

to DSDPS, Storm and DRL.

2.1 Distributed Stream Data Processing Sys-
tem (DSDPS)

In a DSDPS, a stream is an unbounded sequence of tuples.
A data source reads data from external source(s) and emits
streams into the system. A Processing Unit (PU) consumes
tuples from data sources or other PUs, and processes them
using code provided by a user. After that, it can pass it to
other PUs for further processing.

A DSDPS usually uses two levels of abstractions (logical
and physical) to express parallelism. In the logical layer, an
application is usually modeled as a directed graph, in which
each vertex corresponds to a data source or a PU, and di-
rect edges show how data tuples are routed among data
sources/PUs. A task is an instance of a data source or PU,
and each data source or PU can be executed as many par-
allel tasks on a cluster of machines. In the physical layer, a
DSDPS usually includes a set of virtual or physical machines
that actually process incoming data, and a master serving as
the central control unit, which distributes user code around

706

the cluster, scheduling tasks, and monitoring them for fail-
ures. At runtime, an application graph is executed on mul-
tiple worker processes running on multiple (physical or vir-
tual) machines. Each machine is usually configured to have
multiple slots. The number of slots indicates the number of
worker processes that can be run on this machine, and can
be pre-configured by the cluster operator based on hardware
constraints (such as the number of CPU cores). Each worker
process occupies a slot, which uses one or multiple threads
to actually process data tuples using user code. Normally,
a task is mapped to a thread at runtime (even it does not
have to be this way). Each machine also runs a daemon that
listens for any work assigned to it by the master. In a DS-
DPS, a scheduling solution specifies how to assign threads
to processes and machines. Many DSDPSs include a default
scheduler but allow it to be replaced by a custom scheduler.
The default scheduler usually uses a simple scheduling solu-
tion, which assigns threads to pre-configured processes and
then assigns those processes to machines both in a round-
robin manner. This solution leads to almost even distribu-
tion of workload over available machines in the cluster. In
addition, a DSDPS usually supports several ways for group-
ing, which defines how to distribute tuples among tasks.
Typical grouping policies include: fields grouping (based on
a key), shu✏e grouping (random), all grouping (one-to-all)
and global grouping (all-to-one).

When the message ID of a tuple coming out of a spout
successfully traverses the whole topology, a special acker is
called to inform the originating data source that message
processing is complete. The (end-to-end) tuple processing
time is the duration between when the data source emits
the tuple and when it has been acked (fully processed).
Note that we are only interested in processing times of those
tuples emitted by data sources since they reflect the total
end-to-end processing delay over the whole application. To
ensure fault tolerance, if a message ID is marked failure due
to acknowledgment timeout, data processing will be recov-
ered by replaying the corresponding data source tuple. The
master monitors heartbeat signals from all worker processes
periodically. It re-schedules them when it discovers a failure.

2.2 Apache Storm
Since we implemented the proposed framework based on

Apache Storm [48], we briefly introduce it here. Apache
Storm is an open-source and fault-tolerant DSDPS, which
has an architecture and programming model very similar to
what described above, and has been widely used by quite a
few companies and institutes. In Storm, data source, PU,
application graph, master, worker process and worker thread
are called spout, bolt, topology, Nimbus, worker and execu-
tor, respectively. Storm uses ZooKeeper [54] as a coordi-
nation service to maintain it’s own mutable configuration
(such as scheduling solution), naming, and distributed syn-
chronization among machines. All configurations stored in
ZooKeeper are organized in a tree structure. Nimbus (i.e.,
master) provides interfaces to fetch or update Storm’s mu-
table configurations. A Storm topology contains a topology
specific configuration, which is loaded before the topology
starts and does not change during runtime.

2.3 Deep Reinforcement Learning (DRL)
A DRL agent can be trained via both o✏ine training

and online deep Q-learning [33, 45]. It usually adopts a

DNN (known as DQN) to derive the correlation between
each state-action pair (s,a) of the system under control and
its value function Q(s,a), which is the expected cumula-
tive (with discounts) reward function when system starts at
state s and follows action a (and certain policy thereafter).
Q(s,a) is given as:

Q(s,a) = E

h 1X

t=0

�krt(st,at)
���s

0

= s,a
0

= a

i
, (2.1)

where rt(·) is the reward, and � < 1 is the discount factor.
The o✏ine training needs to accumulate enough samples

of value estimates and the corresponding state-action pair
(s,a) for constructing a su�ciently accurate DNN using ei-
ther a model-based (a mathematical model) procedure or
actual measurement data (model-free) [33]. For example, in
game-playing applications [33], this procedure includes pre-
processing game playing samples, and obtaining state tran-
sition samples and Q-value estimates (e.g., win/lose and/or
the score achieved). The deep Q-learning is adopted for the
online learning and dynamic control based on the o✏ine-
built DNN. More specifically, at each decision epoch t, the
system under control is at a state st. The DRL agent per-
forms inference using the DNN to select action at, either
the one with the highest Q-value estimate, or with a certain
degree of randomness using the ✏-greedy policy [41].

Using a neural network (or even a DNN) as a function
approximator in RL is known to su↵er from instability or
even divergence. Hence, experience replay and target net-
work were introduced in [33] to improve stability. A DRL
agent updates the DNN with a mini-batch from the experi-
ence replay bu↵er [33], which stores state transition samples
collected during training. Compared to using only immedi-
ately collected samples, uniformly sampling from the replay
bu↵er allows the DRL agent to break the correlation be-
tween sequential generated samples, and learn from a more
independently and identically distributed past experiences,
which is required by most of training algorithms, such as
Stochastic Gradient Descent (SGD). So the use of experience
replay bu↵er can smooth out learning and avoid oscillations
or divergence. Besides, a DRL agent uses a separate target
network (with the same structure as the original DNN) to
estimate target values for training the DNN. Its parameters
are slowly updated every C > 1 epochs and are held fixed
between individual updates.

The DQN-based DRL only works for control problems
with a low-dimensional discrete action space. Continuous
control has often been tackled by the actor-critic-based pol-
icy gradient approach [44]. The traditional actor-critic ap-
proach can also be extended to use a DNN (such as DQN) to
guide decision making [26]. A recent work [26] from Deep-
Mind introduced an actor-critic method, called Deep Deter-
ministic Policy Gradient (DDPG), for continuous control.
The basic idea is to maintain a parameterized actor func-
tion and a parameterized critic function. The critic function
can be implemented using the above DQN, which returns Q
value for a given state-action pair. The actor function can
also be implemented using a DNN, which specifies the cur-
rent policy by mapping a state to a specific action. Both
the experience replay and target network introduced above
can also be integrated to this approach to ensure stability.

707

3. DESIGN AND IMPLEMENTATION OF
THE PROPOSED FRAMEWORK

In this section, we present the design and implementation
details of the proposed framework.

3.1 Overview

Master

Processes

Process

Machine

…...DS
DP

S

Process

Custom
Scheduler

Database DRL Agent

Machine
Processes

DR
L-

ba
se

d
Co

nt
ro

l

St
at

e
an

d
Re

w
ar

d

Scheduling
Solution

Transition
Samples

Thread

Thread

Thread
Thread

Thread

Figure 1: The architecture of the proposed DRL-

based control framework

We illustrate the proposed framework in Figure 1, which
can be viewed to have two parts: DSDPS and DRL-based
Control. The architecture is fairly simple and clean, which
consists of the following components:

1) DRL Agent (Section 3.2): it is the core of the proposed
framework, which takes the state as input, applies a
DRL-based method to generating a scheduling solu-
tion, and pushes it to the custom scheduler.

2) Database: It stores transition samples including state,
action and reward information for training (See Sec-
tion 3.2 for details).

3) Custom Scheduler: It deploys the generated scheduling
solution on the DSDPS via the master.

Our design leads to the following desirable features:
1) Model-free Control: Our design employs a DRL-based

method for control, which learns to control a DSDPS from
runtime statistics data without relying on any mathemati-
cally solvable system model.

2) Highly E↵ective Control: The proposed DRL-based
control is guided by DNNs, aiming to directly minimize av-
erage tuple processing time. Note that the current practise
evenly distributes workload over machines; and some exist-
ing methods aim to achieve an indirect goal, (e.g., minimiz-
ing inter-machine tra�c load [52]), with the hope that it can

lead to minimum average tuple processing time. These so-
lutions are obviously less convincing and e↵ective than the
proposed approach.

3) Low Control Overhead: The proposed framework only
needs to collect very limited statistics data, i.e., just the av-
erage tuple processing time, during runtime for o✏ine train-
ing and online learning (see explanations in Section 3.2),
which leads to low control overhead.

4) Hot Swapping of Control Algorithms: The core compo-
nent of the proposed framework, DRL agent, is external to
the DSDPS, which ensures minimum modifications to the
DSDPS, and more importantly, makes it possible to replace
it or its algorithm at runtime without shutting down the
DSDPS.

5) Transparent to DSDSP users: The proposed framework
is completely transparent to DSDSP users, i.e., a user does
not have to make any change to his/her code in order to run
his/her application on the new DSDPS with the proposed
framework.

We implemented the proposed framework based on Apache
Storm [48]. In our implementation, the custom scheduler
runs within Nimbus, which has access to various informa-
tion regarding executors, supervisors and slots. A socket is
implemented for communications between the custom sched-
uler and the DRL agent. When an action is generated by the
DRL agent, it is translated to a Storm-recognizable schedul-
ing solution and pushed to the custom scheduler. Upon
receiving a scheduling solution, the custom scheduler first
frees the executors that need to be re-assigned and then
adds them to the slots of target machines. Note that during
the deployment of a new scheduling solution, we try to make
a minimal impact to the DSDPS by only re-assigning those
executors whose assignments are di↵erent from before while
keeping the rest untouched (instead of deploying the new
scheduling solution from scratch by freeing all the executors
first and assigning executors one by one as Storm normally
does). In this way, we can reduce overhead and make the
system to re-stabilize quickly. In addition, to make sure of
accurate data collection, after a scheduling solution is ap-
plied, the proposed framework waits for a few minutes until
the system re-stabilizes to collect the average tuple process-
ing time and takes the average of 5 consecutive measure-
ments with a 10-second interval.

3.2 DRL-based Control
In this section, we present the proposed DRL-based con-

trol, which targets at minimizing the end-to-end average tu-
ple processing time via scheduling.

Given a set of machines M, a set of processes P, and a
set of threads N , a scheduling problem in a DSDPS is to as-
sign each thread to a process of a machine, i.e., to find two
mappings: N 7! P and P 7! M. It has been shown [52]
that assigning threads from an application (which usually
exchange data quite often) to more than one processes on a
machine introduces inter-process tra�c, which leads to seri-
ous performance degradation. Hence, similar as in [52, 25],
our design ensures that on every machine, threads from the
same application are assigned to only one process. Therefore
the above two mappings can be merged into just one map-
ping: N 7!M, i.e., to assign each thread to a machine. Let
a scheduling solution be X =< xij >, i 2 {1, · · · , N}, j 2
{1, · · · ,M}, where xij = 1 if thread i is assigned to ma-
chine j; and N and M are the numbers of threads and

708

machines respectively. Di↵erent scheduling solutions lead
to di↵erent tuple processing and transfer delays at/between
tasks at runtime thus di↵erent end-to-end tuple processing
times [25]. We aim to find a scheduling solution that mini-
mizes the average end-to-end tuple processing time.

We have described how DRL basically works in Section 2.3.
Here, we discuss how to apply DRL to solving the above
scheduling problem in a DSDPS. We first define the state
space, action space and reward.

State Space: A state s = (X,w) consists of two parts:
the scheduling solution X, i.e., the current assignment of
executors, and the workload w, which includes the tuple
arrival rate (i.e., the number of tuples per second) of each
data source. The state space is denoted as S. Workload is
included in the state to achieve better adaptivity and sen-
sitivity to the incoming workload, which has been validated
by our experimental results.

Action Space: An action is defined as a =< aij >, 8i 2
{1, ..., N}, 8j 2 {1, ...,M}, where

PM
j=1

aij = 1, 8i, and
aij = 1 means assigning thread i to machine j. The ac-
tion space A is the space that contains all feasible actions.
Note that the constraints

PM
j=1

aij = 1, 8i ensure that each
thread i can only be assigned to a single machine, and the
size of action space |A| = MN . Note that an action can be
easily translated to its corresponding scheduling solution.

Reward : The reward is simply defined to be the negative
average tuple processing time so that the objective of the
DRL agent is to maximize the reward.

Note that the design of state space, action space and re-
ward is critical to the success of a DRL method. In our case,
the action space and reward are straightforward. However,
there are many di↵erent ways for defining the state space
because a DSDPS includes various runtime information (fea-
tures) [25], e.g., CPU/memory/network usages of machines,
workload at each executor/process/ machine, average tuple
processing delay at each executor/PU, tuple transfer delay
between executors/PUs, etc. We, however, choose a simple
and clean way in our design. We tried to add additional
system runtime information into the state but found that it
does not necessarily lead to performance improvement. Dif-
ferent scheduling solutions lead to di↵erent values for the
above features and eventually di↵erent average end-to-end
tuple processing times; and the tuple arrival rates reflect the
incoming workload. These information turns out to be suf-
ficient for representing runtime system state. We observed
that based on our design, the proposed DNNs can well model
the correlation between the state and the average end-to-end
tuple processing time (reward) after training.

A straightforward way to apply DRL to solving the schedu-
ling problem is to directly use the DQN-based method pro-
posed in the pioneering work [33]. The DQN-based method
uses a value iteration approach, in which the value function
Q = Q(s,a;✓) is a parameterized function (with parameters
✓) that takes state s and the action space A as input and
return Q value for each action a 2 A. Then we can use a
greedy method to make an action selection:

�Q(s) = argmax
a2A

Q(s,a;✓) (3.1)

If we want to apply the DQN-based method here, we need
to restrict the exponentially-large action space A described
above to a polynomial-time searchable space. The most nat-
ural way to achieve this is to restrict each action to assigning

only one thread to a machine. In this way, the size of the
action space can be significantly reduced to |A| = N ⇥M ,
which obviously can be searched in polynomial time. Specif-
ically, as mentioned above, in the o✏ine training phase, we
can collect enough samples of rewards and the correspond-
ing state-action pairs for constructing a su�ciently accurate
DQN, using a model-free method that deploys a randomly-
generated scheduling solution (state), and collect and record
the corresponding average tuple processing time (reward).
Then in the online learning phase, at each decision epoch
t, the DRL agent obtains the estimated Q value from the
DQN for each at with the input of current state st. Then ✏-
greedy policy [41] is applied to select the action at according
to the current state st: with (1 � ✏) probability, the action
with the highest estimated Q value is chosen, or an action
is randomly selected with probability ✏. After observing im-
mediate reward rt and next state st+1

, a state transition
sample (st,at, rt, st+1

) is stored into the experience replay
bu↵er. At every decision epoch, the DQN is updated with
a mini-batch of collected samples in the experience replay
bu↵er using SGD.

Although this DQN-based method can provide solutions
to the scheduling problem and does achieve model-free con-
trol for DSDPSs, it faces the following issue. On one hand,
as described above, its time complexity grows linearly with
|A|, which demands an action space with a very limited size.
On the other hand, restricting the action space may result
in limited exploration of the entire exponentially-large ac-
tion space and thus suboptimal or even poor solutions to
the scheduling problem, especially for the large cases. The
experimental results in Section 4 validate this claim.

3.2.1 The Actor-critic-based Method for Scheduling

In this section, we present a method that can better ex-
plore the action space while keeping time complexity at a
reasonable level.

â

AK

Q(·)f(·)

Figure 2: The actor-critic-based method

We leverage some advanced RL techniques, including
actor-critic method [49, 6] and the deterministic policy gra-
dient [44], for solving the scheduling problem. Note that
since these techniques only provide general design frame-
works, we still need to come up with a specific solution to
our problem studied here. The basic idea of the proposed
scheduling method is illustrated in Figure 2, which includes
three major components: 1) an actor network that takes the

709

state as input and returns a proto-action â, 2) an optimizer
that finds a set AK of K Nearest Neighbors (K-NN) of â

in the action space, and 3) a critic network that takes the
state and and AK as input and returns Q value for each
action a 2 AK . Then an action with the highest Q value
can be selected for execution. The basic design philosophy
of this method is similar to that of a rounding algorithm,
which finds a continuous solution by solving a relaxed ver-
sion of the original integer (i.e., discrete) problem instance
and then rounds the continuous solution to a “close” feasible
integer solution that hopefully o↵ers an objective value close
to the optimal. Specifically, the actor network f(s;✓�) = â

is a function parameterized by ✓� and f : S 7! RMN
. â is

returned as a proto-action that takes continuous values so
â /2 A. In our design, we use a 2-layer fully-connected feed-
forward neural network to serve as the actor network, which
includes 64 and 32 neurons in the first and second layer re-
spectively and uses the hyperbolic tangent function tanh(·)
for activation. Note that we chose this activation function
because our empirical testing showed it works better than
the other commonly-used activation functions.

The hardest part is to find the K-NN of the proto-action,
which has not been well discussed in related work before.
Even though finding K-NN can easily be done in linear time,
the input size is MN here, which could be a huge number
even in a small cluster. Hence, enumerating all actions in
A and doing a linear search to find the K-NN may take
an exponentially long time. We introduce an optimizer,
which finds the K-NN by solving a series of Mixed-Integer
Quadratic Programming (MIQP) problems presented in the
following:
MIQP-NN:

min
a

: ka� âk2
2

s.t.:
MX

j=1

aij = 1, 8i 2 {1, · · · , N};

aij 2 {0, 1}, 8i 2 {1, · · · , N}, 8j 2 {1, · · · ,M}.

(3.2)

In this formulation, the objective is to find the action a

that is the nearest neighbor of the proto-action â. The con-
straints ensure that action a is a feasible action, i.e., a 2 A.
To find the K-NN, the MIQP-NN problem needs to be it-
eratively solved K times. Each time, one of the KNN of
the proto-action will be returned, the corresponding values
< aij > are fixed, then the MIQP-NN problem is updated
and solved again to obtain the next nearest neighbor until
all the K-NN are obtained. Note that this simple MIQP
problem can usually be e�ciently solved by a solver as long
as the input size is not too large. In our tests, we found our
MIQP-NN problem instances were all solved very quickly
(within 10ms on a regular desktop) by the Gurobi Opti-
mizer [19]. For very large cases, the MIQP-NN problem
can be relaxed to a convex programming problem [11] and
a rounding algorithm can be used to obtain approximate
solutions.
The set AK of K-NN actions are further passed to the

critic network to select the action. The critic network
Q(s,a;✓Q) is a function parameterized by ✓Q, which returns
Q value for each action a 2 AK , just like the above DQN.
The action can then be selected as follows:

�Q(s) = argmax
a2AK

Q(s,a;✓Q). (3.3)

Similar to the actor network f(·), we employ a 2-layer fully-
connected feedforward neural network to serve as the critic
network, which includes 64 and 32 neurons in the first and
second layer respectively and uses the hyperbolic tangent
function tanh(·) for activation. Note that the two DNNs
(one for actor network and one for critic network) are jointly
trained using the collected samples.

Algorithm 1 The actor-critic-based method for scheduling

1: Randomly initialize critic network Q(·) and actor net-
work f(·) with weights ✓Q and ✓� respectively;

2: Initialize target networks Q0 and f 0 with weights ✓Q0

✓Q, ✓� 0
 ✓� ;

3: Initialize experience replay bu↵er B;
/**O✏ine Training**/

4: Load the historical transition samples into B, train the
actor and critic network o✏ine;
/**Online Learning**/

5: Initialize a random process R for exploration;
6: Receive a initial observed state s

1

;
/**Decision Epoch**/

7: for t = 1 to T do

8: Derive proto-action â from the actor network f(·);
9: Apply exploration policy to â: R(â) = â+ ✏I;
10: Find K-NN actions AK of â by solving a series of

MIQP-NN problems (described above);
11: Select action at = argmaxa2AK

Q(st,a);
12: Execute action at by deploying the corresponding

scheduling solution, and observe the reward rt;
13: Store transition sample (st,at, rt, st+1

) into B;
14: Sample a random mini-batch of H transition samples

(si,ai, ri, si+1

) from B;
15: yi := ri+�maxa2Ai+1,K Q0(si+1

,a), 8i 2 {1, · · · , H},
where Ai+1,K is the set of K-NN of f 0(si+1

);
16: Update the critic network Q(·) by minimizing the loss:

L(✓Q) = 1

H

HP
i=1

[yi �Q(si,ai)]
2;

17: Update the weights ✓� of actor network f(·) using the
sampled gradient:

r✓� f � 1

H

HP
i=1

r
ˆaQ(s, â)|

ˆa=f(si) ·r✓� f(s)|si ;

18: Update the corresponding target networks:
✓Q0

:= �✓Q + (1� �)✓Q0
;

✓� 0
:= �✓� + (1� �)✓� 0

19: end for

We formally present the actor-critic-based method for sch-
eduling as Algorithm 1. First, the algorithm randomly ini-
tializes all the weights ✓� of actor network f(·) and ✓Q of
critic network Q(·) (line 1). If we directly use the actor
and critic networks to generate the training target values
< yi > (line 15), it may su↵er from unstable and divergence
problems as shown in paper [6]. Thus, similar as in [6, 26],
we create the target networks to improve training stability.
The target networks are clones of the original actor or critic
networks, but the weights of the target networks ✓Q0

and
✓� 0

are slowly updated, which is controlled by a parameter
�. In our implementation, we set � = 0.01.

To robustly train the the actor and critic networks, we
adopt the experience replay bu↵erB [33]. Instead of training
network using the transition sample immediately collected
at each decision epoch t (from line 8 to line 12), we first store

710

the sample into a replay bu↵er B, then randomly select a
mini-batch of transition samples from B to train the actor
and critic networks. Note that since the size of B is limited,
the oldest sample will be discarded when B is full. The sizes
of replay bu↵er and mini-batch were set to |B| = 1000 and
H = 32 respectively in our implementation.

The online exploration policy (line 9) is constructed as
R(â) = â+✏I, where ✏ is an adjustable parameter just as the
✏ in the ✏-greedy method [41], which determines the proba-
bility to add a random noise to the proto-action rather than
take the derived action from the actor network. ✏ decreases
with decision epoch t, which means with more training, more
derived actions (rather than random ones) will be taken. In
this way, ✏ can tradeo↵ exploration and exploitation. The
parameter I is a uniformly distributed random noise, each
element of which was set to a random number in [0, 1] in our
implementation.

The critic network Q(·) is trained by the mini-batch sam-
ples from B as mentioned above. For every transition sam-
ple (si,ai, ri, si+1

) in the mini-batch, first we obtain the
proto-action âi+1

of the next state si+1

from the target actor
network f 0(si+1

); second, we find K-NN actions Ai+1,K of
the proto-action âi+1

by solving a series of MIQP-NN prob-
lems presented above; then we obtain the highest Q-value
from the target critic network, maxa2Ai+1,K Q0(si+1

,a). To
train critic network Q(si,ai), the target value yi for input si
and ai is given by the sum of the immediate reward ri and
the discounted max Q-value (line 15). The discount factor
� = 0.99 in our implementation. A common loss function
L(·) is used to train the critic network (line 16). The actor
network f(·) is trained by the deterministic policy gradient
method [44] (line 17). The gradient is calculated by the
chain rule to obtain the expected return from the transition
samples in the mini-batch with respect to the weights ✓� of
the actor network.
The actor and critic networks can be pre-trained by the

historical transition samples, so usually the o✏ine training
(line 4) is performed first, which is almost the same as on-
line learning (lines 13–18). In our implementation, we first
collected 10, 000 transition samples with random actions for
each experimental setup and then pre-trained the actor and
critic networks o✏ine. In this way, we can explore more
possible states and actions and significantly speed up online
learning.

4. PERFORMANCE EVALUATION
In this section, we describe experimental setup, followed

by experimental results and analysis.

4.1 Experimental Setup
We implemented the proposed DRL-based control frame-

work over Apache Storm [48] (obtained from Storm’s repos-
itory on Apache Software Foundation) and installed the sys-
tem on top of Ubuntu Linux 12.04. We also used Google’s
TensorFlow [50] to implement and train the DNNs. For per-
formance evaluation, we conducted experiments on a cluster
in our data center. The Storm cluster consists of 11 IBM
blade servers (1 for Nimbus and 10 for worker machines)
connected by a 1Gbps network, each with an Intel Xeon
Quad-Core 2.0GHz CPU and 4GB memory. Each worker
machine was configured to have 10 slots.

We implemented three popular and representative SDP
applications (called topologies in Storm) to test the pro-
posed framework: continuous queries, log stream processing
and word count (stream version), which are described in the
following. These applications were also used for performance
evaluation in [25] that presented the state-of-the-art model-
based approach; thus using them ensures fair comparisons.

Continuous Queries Topology (Figure 3): This topol-
ogy represents a popular application on Storm. It is a select
query that works by initializing access to a database ta-
ble created in memory and looping over each row to check
if there is a hit [8]. It consists of a spout and two bolts.
Randomly generated queries are emitted continuously by
the spout and sent to a Query bolt. The database tables
are placed in the memory of worker machines. After tak-
ing queries from the spout, the Query bolt iterates over
the database table to check if there is any matching record.
The Query bolt emits the matching record to the last bolt
named the File bolt, which writes matching records into
a file. In our experiments, a database table with vehicle
plates and their owners’ information including their names
and SSNs was randomly generated. We also randomly gen-
erated queries to search the database table for owners of
speeding vehicles, while vehicle speeds were randomly gen-
erated and attached to every entry.

To perform a comprehensive evaluation, we came up with
3 di↵erent setups for this topology: small-scale, medium-
scale and large-scale. In the small-scale experiment, a total
of 20 executors were created, including 2 spout executors,
9 Query bolt executors and 9 File bolt executors. In the
medium-scale experiment, we had 50 executors in total, in-
cluding 5 spout executors, 25 Query bolt executors and 20
File bolt executors. For the large-scale experiment, we had
a total of 100 executors, including 10 spout executors, 45
Query bolt executors and 45 File bolt executors.

Continuous Queries Topology

Spout Query
Bolt

File
Bolt

Output
File

Database
Table

Figure 3: Continuous Queries Topology

Log Stream Processing Topology (Figure 4): Being
one of the most popular applications for Storm, this topol-
ogy uses an open-source log agent called LogStash [29] to
read data from log files. Log lines are submitted by LogStash
as separate JSON values into a Redis [39] queue, which emits
the output to the spout. We used Microsoft IIS log files col-
lected from computers at our university as the input data.
The LogRules bolt performs rule-based analysis on the log
stream, delivering values containing a specific type of log
entry instance. The results are simultaneously delivered to
two separate bolts: one is the Indexer bolt performing index
actions and another is the Counter bolt performing count-
ing actions on the log entries. For the testing purpose, we

711

slightly revised the original topology to include two more
bolts, two Database bolts, after the Indexer and Counter
bolts respectively. They store the results into separate col-
lections in a Mongo database for verification purpose.

In our experiment, the topology was configured to have a
total of 100 executors, including 10 spout executors, 20 Lo-
gRules bolt executors, 20 Indexer bolt executors, 20 Counter
bolt executors and 15 executors for each Database bolt.

Log Stream Processing TopologyLog
Files

Log
Stash

Redis Spout LogRules
Bolt

Indexer
Bolt

Database
Bolt

Counter
Bolt

Database
Bolt

Mongo
DB

Figure 4: Log Stream Processing Topology

Word Count Topology (stream version) (Figure 5):
The original version of the topology is widely known as a
classical MapReduce application that counts every word’s
number of appearances in one or multiple files. The stream
version used in our experiments runs a similar routine but
with a stream data source. This topology consists of one
spout and three bolts with a chain-like structure. LogStash
[29] was used to read data from input source files. LogStash
submits input file lines as separate JSON values into a Re-
dis [39] queue, which are consumed and emitted into the
topology. The text file of Alice’s Adventures in Wonder-
land [1] was used as the input file. When the input file
is pushed into the Redis queue, the spout produces a data
stream which is first directed to the SplitSentence bolt, which
splits each input line into individual words and further sends
them to the WordCount bolt. This bolt then counts the
number of appearances using fields grouping. The Database
bolt finally stores the results into a Mongo database.

In the experiment, the topology was configured to have
a total of 100 executors, including 10 spout executors, 30
SplitSentence bolt executors, 30 WordCount executors and
30 Database bolt executors.

Word Count Topology

Spout SplitSentence
BoltRedis

Input
File

Log
Stash

WordCount
Bolt

Database
Bolt

Mongo
DB

Figure 5: Word Count Topology (stream version)

4.2 Experimental Results and Analysis
In this section, we present and analyze experimental re-

sults. To well justify e↵ectiveness of our design, we com-
pared the proposed DRL-based control framework with the
actor-critic-based method (labeled as “Actor-critic-based
DRL”) with the default scheduler of Storm (labeled as “De-
fault”) and the state-of-the-art model-based method pro-
posed in a very recent paper [25] (labeled as “Model-based”)

in terms of average (end-to-end) tuple processing time. More-
over, we included the straightforward DQN-based DRL me-
thod (described in Section 3.2) in the comparisons (labeled
as “DQN-based DRL”).

For the proposed actor-critic-based DRL method and the
DQN-based DRL method, both the o✏ine training and on-
line learning were performed to train the DNNs to reach
certain scheduling solutions, which were then deployed to
the Storm cluster described above. The figures presented in
the following show the average tuple processing time corre-
sponding to the scheduling solutions given by all these meth-
ods in the period of 20 minutes. In addition, we show the
performance of the two DRL methods over the online learn-
ing procedure in terms of the reward. For illustration and
comparison purposes, we normalize and smooth the reward
values using a commonly-used method r�r

min

r
max

�r
min

(where r

is the actual reward, r
min

and r
max

are the minimum and
maximum rewards during online learning respectively) and
the well-known forward-backward filtering algorithm [20] re-
spectively. Note that in Figures 6, 8 and 10, time 0 is the
time when a scheduling solution given by a well-trained DRL
agent is deployed in the Storm. It usually takes a little while
(10-20 minutes) for the system to gradually stabilize after
a new scheduling solution is deployed. This process is quite
smooth, which has also been shown in [25]. So these figures
do not show the performance of the DRL methods during
training processes but the performance of the scheduling
solutions given by well-trained DRL agents. The rewards
given by the DRL agents during their online learning pro-
cesses are shown in Figures 7, 9 and 11. This process usually
involves large fluctuations, which have also been shown in
other DRL-related works such as [23, 26].

Continuous Queries Topology (Figure 3): We present
the corresponding experimental results in Figures 6 and 7.
As mentioned above, we performed experiments on this topol-
ogy using three setups: small-scale, medium-scale and large-
scale, whose corresponding settings are described in the last
subsection.

From Figure 6, we can see that for all 3 setups and all the
four methods, after a scheduling solution is deployed, the
average tuple processing time decreases and stabilizes at a
lower value (compared to the initial one) after a short period
of 8� 10 minutes. Specifically, in Figure 6(a) (small-scale),
if the default scheduler is used, it starts at 3.71ms and sta-
bilizes at 1.96ms; if the model-based method is employed, it
starts at 3.22ms and stabilizes at 1.46ms; if the DQN-based
DRL method is used, it starts at 3.20ms and stabilizes at
1.54ms; and if the actor-critic-based DRL method is applied,
it starts at 2.94ms and stabilizes at 1.33ms. In this case, the
actor-critic-based DRL method reduces the average tuple
processing time by 31.4% compared to the default scheduler
and by 9.5% compared to the model-based method. The
DQN-based DRL method performs slightly worse than the
model-based method.

From Figure 6(b) (medium-scale), we can see that the
average tuple processing times given by all the methods
slightly go up. Specifically, if the default scheduler is used, it
stabilizes at 2.08ms; if the model-based method is employed,
it stabilizes at 1.61ms; if the DQN-based DRL method is
used, it stabilizes at 1.59ms; and if the actor-critic-based
DRL method is applied, it stabilizes at 1.43ms. Hence, in
this case, the actor-critic-based DRL method achieves a per-
formance improvement of 31.2% over the default scheduler

712

0 5 10 15 20
1

1.5

2

2.5

3

3.5

4

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Default
Model−based
DQN−based DRL
Actor−critic−based DRL

(a) Small-scale

0 5 10 15 20
1

1.5

2

2.5

3

3.5

4

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Default
Model−based
DQN−based DRL
Actor−critic−based DRL

(b) Medium-scale

0 5 10 15 20
1.5

2

2.5

3

3.5

4

4.5

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Default
Model−based
DQN−based DRL
Actor−critic−based DRL

(c) Large-scale

Figure 6: Average tuple processing time over the continuous queries topology

0 500 1000 1500 2000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Decision epoch

N
or

m
al

iz
ed

 re
w

ar
d

Actor−critic−based DRL
DQN−based DRL

Figure 7: Normalized reward over the continuous

queries topology (large-scale)

and 11.2% over the model-based method. The performance
of DQN-based DRL method is still comparable to the model-
based method.

From Figure 6(c) (large-scale), we can observe that the
average tuple processing times given by all the methods in-
crease further but still stabilize at reasonable values, which
essentially shows that the Storm cluster undertakes heav-
ier workload but has not been overloaded in this large-scale
case. Specially, if the default scheduler is used, it stabilizes
at 2.64ms; if the model-based method is employed, it sta-
bilizes at 2.12ms; if the DQN-based DRL method is used,
it stabilizes at 2.45ms; and if the actor-critic-based DRL
method is applied, it stabilizes at 1.72ms. In this case, the
actor-critic-based DRL method achieves a more significant
performance improvement of 34.8% over the default sched-
uler and 18.9% over the model-based method. In addition,
the performance of the DQN-based DRL method is notice-
ably worse than that of the model-based method.

In summary, we can make the following observations: 1)
The proposed actor-critic-based DRL method consistently
outperforms all the other three methods, which well justi-
fies the e↵ectiveness of the proposed model-free approach

for control problems in DSDPSs. 2) The performance im-
provement (over the default scheduler and the model-based
method) o↵ered by the proposed actor-critic-based DRL met-
hod become more and more significant with the increase
of input size, which shows that the proposed model-free
method works even better when the distributed comput-
ing environment becomes more and more sophisticated. 3)
Direct application of DQN-based DRL method does not
work well, especially in the large case. This method lacks a
carefully-designed mechanism (such as the proposed MIQP-
based mechanism presented in Section 3.2.1) that can fully
discover the action space and make a wise action selection.
Hence, in large cases with huge action spaces, random se-
lection of action may lead to a suboptimal or even poor
decision.

We further exploit how the two DRL methods behave dur-
ing online learning by showing how the normalized reward
varies over time within T = 2000 decision epochs in Fig-
ure 7. We performed this experiment using the large-scale
setup described above. From this figure, we can observe
that both methods start from similar initial reward values.
The DQN-based DRL method keeps fluctuating during the
entire procedure and ends at an average award value of 0.44
(the average over the last 200 epochs); while the actor-critic-
based DRL method experiences some fluctuations initially,
then gradually climbs to a higher value. More importantly,
the actor-critic-based DRL method consistently o↵ers higher
rewards compared to the DQN-based method during on-
line learning. These results further confirm superiority of
the proposed method during online learning. Moreover, we
find that even in this large-scale case, the proposed actor-
critic-based DRL method can quickly reach a good schedul-
ing solution (whose performance have been discussed above)
without going though a really long online learning proce-
dure (e.g., several million epochs) shown in other applica-
tions [33]. This justifies the practicability of the proposed
DRL method for online control in DSPDSs.

Log Stream Processing Topology (Figure 4): We
performed a large-scale experiment over the log stream pro-
cessing topology, whose settings have been discussed in the
last subsection too. We show the corresponding results in
Figures 8 and 9. This topology is more complicated than the
previous continuous queries topology, which leads to a longer
average tuple processing time no matter which method is
used.

713

0 5 10 15 207

8

9

10

11

12

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Default
Model−based
DQN−based DRL
Actor−critic−based DRL

Figure 8: Average tuple processing time over the

log processing topology (large-scale)

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Decision epoch

N
or

m
al

iz
ed

 re
w

ar
d

Actor−critic−based DRL
DQN−based DRL

Figure 9: Normalized reward over the log processing

topology (large-scale)

0 5 10 15 20
1.5

2

2.5

3

3.5

4

4.5

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Default
Model−based
DQN−based DRL
Actor−critic−based DRL

Figure 10: Average tuple processing time over the

word count topology (large-scale)

0 500 1000 1500

0.4

0.45

0.5

0.55

Decision epoch

N
or

m
al

iz
ed

 re
w

ar
d

Actor−critic−based DRL
DQN−based DRL

Figure 11: Normalized reward over the word count

topology (large-scale)

In Figure 8, if the default scheduler is used, it stabilizes at
9.61ms; if the model-based method is employed, it stabilizes
at 7.91ms; if the DQN-based DRL method is used, it stabi-
lizes at 8.19ms; and if the actor-critic-based DRL method is
applied, it stabilizes at 7.20ms. As expected, the proposed
actor-critic-based DRL method consistently outperforms the
other three methods. Specifically, it reduces the average
tuple processing time by 25.1% compared to the default
scheduler and 9.0% compared to the model-based method.
Furthermore, the DQN-based DRL method performs worse
than the model-based method, which is consistent with the
results related to the continuous queries topology. Similarly,
we show how the normalized reward varies over time within
T = 1500 decision epochs in Figure 9. From this figure, we
can make a similar observation that the actor-critic-based
DRL method consistently leads to higher rewards compared
to the DQN-based method during online learning. Obvi-
ously, after a short period of online learning, the proposed
actor-critic-based DRL method can reach a good scheduling
solution (discussed above) in this topology too.

Word Count Topology (stream version) (Figure 5):
We performed a large-scale experiment over the word count
(stream version) topology and show the corresponding re-
sults in Figures 10 and 11. Since the complexity of this
topology is similar to that of the continuous queries topol-
ogy, all the four methods give similar average time process-
ing times.

In Figure 10, if the default scheduler is used, it stabilizes at
3.10ms; if the model-based method is employed, it stabilizes
at 2.16 ms; if the DQN-based DRL method is used, it sta-
bilizes at 2.29ms; and if the actor-critic-based DRL method
is applied, it stabilizes at 1.70ms. The actor-critic-based
DRL method results in a performance improvement of 45.2%
over the default scheduler and 21.3% improvement over the
model-based method. The performance of the DQN-based
DRL method is still noticeably worse than the model-based
method. We also show the performance of the two DRL
methods during online learning in Figure 11, from which we
can make observations similar to those related to the first
two topologies.

In addition, we compared the proposed model-free method
with the model-based method under significant workload

714

0 10 20 30 40 50
1.5

2

2.5

3

3.5

4

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Model−based
Actor−critic−based DRL

(a) Continuous queries topology

0 10 20 30 40 50
7

7.5

8

8.5

9

9.5

10

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Model−based
Actor−critic−based DRL

(b) Log stream processing topology

0 10 20 30 40 50
1.5

2

2.5

3

3.5

4

Running time (min)

A
ve

ra
ge

 tu
pl

e
pr

oc
es

si
ng

 ti
m

e
(m

s)

Model−based
Actor−critic−based DRL

(c) Word count topology

Figure 12: Average tuple processing time over 3 di↵erent topologies (large-scale) under significant workload

changes

changes on 3 di↵erent topologies (large-scale). For the con-
tinuous queries topology (large-scale), we can see from Fig-
ure 12(a) that when the workload is increased by 50% at 20
minute, the average tuple processing time of the actor-critic-
based DRL method rises sharply to a relatively high value
then gradually stabilizes at 1.76ms, while the model-based
method rises sharply too and then stabilizes at 2.17ms. The
spikes are caused by the adjustment of the scheduling solu-
tion. However, we can observe that once the system stabi-
lizes, the proposed method leads to a very minor increase on
average tuple processing time. Hence, it is sensitive to the
workload change and can quickly adjust its scheduling so-
lution accordingly to avoid performance degradation. This
result well justifies the robustness of the proposed method
in a highly dynamic environment with significant workload
changes. Moreover, during the whole period, we can see
that the proposed method still consistently outperforms the
model-based method. We can make similar observations for
the other two topologies from Figures 12(b)–12(c).

5. RELATED WORK
In this section, we provide a comprehensive review for

related systems and research e↵orts.
Distributed Stream Data Processing Systems (DS-

DPS): Recently, a few general-purpose distributed systems
have been developed particularly for SDP in a large cluster
or in the cloud. Storm [48] is an open-source, distributed
and fault-tolerant system that was designed particularly for
processing unbounded streams of data in real or near-real
time. Storm provides a directed graph based model for
programming as well as a mechanism to guarantee mes-
sage processing. S4 [42] is another general-purpose DSDPS
that has a similar programming model and runtime sys-
tem. MillWheel [3] is a platform designed for building low-
latency SDP applications, which has been used at Google.
A user specifies a directed computation graph and appli-
cation code for individual nodes, and the system manages
persistent states and continuous flows of data, all within
the envelope of the framework’s fault-tolerance guarantees.
TimeStream [38] is a distributed system developed by Mi-
crosoft specifically for low-latency continuous processing of
stream data in the cloud. It employs a powerful new abstrac-
tion called resilient substitution that caters to specific needs
in this new computation model to handle failure recovery

and dynamic reconfiguration in response to load changes.
Spark Streaming [47] is a DSDPS that uses the core Spark
API and its fast scheduling capability to perform streaming
analytics. It ingests data in mini-batches and performs RDD
transformations on those mini-batches of data. Other DS-
DPSs include C-MR [7], Apache Flink [16], Google’s Flume-
Java [12], M3 [2], WalmartLab’s Muppet [24], IBM’s System
S [32] and Apache Samza [43].

Modeling and scheduling have also been studied in the
context of DSDPS and distributed stream database system.
In an early work [34], Nicola and Jarke provided a sur-
vey of performance models for distributed and replicated
database systems, especially queueing theory based mod-
els. In [30], scheduling strategies were proposed for a data
stream management system, aiming at minimizing the tu-
ple latency and total memory requirement. In [51], Wei et
al. proposed a prediction-based Quality-of-Service (QoS)
management scheme for periodic queries over dynamic data
streams, featuring query workload estimators that predict
the query workload using execution time profiling and input
data sampling. The authors of [40] described a decentral-
ized framework for pro-actively predicting and alleviating
hot-spots in SDP applications in real-time. In [5], Aniello et
al. presented both o✏ine and online schedulers for Storm.
The o✏ine scheduler analyzes the topology structure and
makes scheduling decisions; the online scheduler continu-
ously monitors system performance and reschedules execu-
tors at runtime to improve overall performance. Xu et al.
presented T-Storm in [52], which is a tra�c-aware schedul-
ing framework that minimizes inter-node and inter-process
tra�c in Storm while ensuring no worker nodes were over-
loaded, and enables fine-grained control over worker node
consolidation. In [9], Bedini et al. presented a set of models
that characterize a practical DSDPS using the Actor Model
theory. They also presented an experimental validation of
the proposed models using Storm. In [10], a general and
simple technique was presented to design and implement
priority-based resource scheduling in flow-graph-based DS-
DPSs by allowing application developers to augment flow
graphs with priority metadata and by introducing an ex-
tensive set of priority schemas. In [31], a novel technique
was proposed for resource usage estimation of SDP work-
loads in the cloud, which uses mixture density networks, a
combined structure of neural networks and mixture models,

715

to estimate the whole spectrum of resource usage as prob-
ability density functions. In a very recent work [25], Li et
al. presented a topology-aware method to accurately predict
the average tuple processing time for a given scheduling so-
lution, according to the topology of the application graph
and runtime statistics. For scheduling, they presented an
e↵ective algorithm to assign threads to machines under the
guidance of the proposed prediction model.

Unlike them, we aim to develop a model-free control frame-
work for scheduling in DSDPSs to directly minimize the av-
erage tuple processing time by leveraging the state-of-the-art
DRL techniques, which has not been done before.

Deep Reinforcement Learning (DRL): DRL has re-
cently attracted extensive attention from both industry and
academia. In a pioneering work [33], Mnih et al. proposed
Deep Q Network (DQN), which can learn successful poli-
cies directly from high dimensional sensory inputs. This
work bridges the gap between high-dimensional sensory in-
puts and actions, resulting in the first artificial agent that
is capable of learning to excel at a diverse array of chal-
lenging gaming tasks. The authors of [23] proposed double
Q-learning as a specific adaptation to the DQN, which is in-
troduced in a tabular setting and can be generalized to work
with a large-scale function approximation. The paper [17]
considered a problem of multiple agents sensing and acting
with the goal of maximizing their shared utility, based on
DQN. The authors designed agents that can learn commu-
nication protocols to share information needed for accom-
plishing tasks. In order to further extend DRL to address
continuous actions and large discrete action spaces, Duan
et al. [15] presented a benchmark suite of control tasks to
quantify progress in the domain of continuous control; and
Lillicrap et al. [26] proposed an actor-critic, model-free al-
gorithm based on the policy gradient that can operate over
continuous action spaces. Gu et al. [18] presented normal-
ized advantage functions to reduce the sample complexity of
DRL for continuous tasks. Arnold et al. [6] extended the
methods proposed for continuous actions to make decisions
within a large discrete action space. In [36], the authors
employed a DRL framework to jointly learn state represen-
tations and action policies using game rewards as feedback
for text-based games, where the action space contains all
possible text descriptions.

It remains unknown if and how the emerging DRL can be
applied to solving complicated control and resource alloca-
tion problems in DSDPSs.

In addition, RL/DRL has been applied to control of big
data and cloud systems. In [35], the authors proposed a
novel MapReduce scheduler in heterogeneous environments
based on RL, which observes the system state of task execu-
tion and suggests speculative re-execution of the slower tasks
on other available nodes in the cluster. An RL approach
was proposed in [37] to enable automated tuning configura-
tion of MapReduce parameters. Liu et al. [27] proposed
a novel hierarchical framework for solving the overall re-
source resource allocation and power management problem
in cloud computing systems with DRL. The control prob-
lems in MapReduce and cloud systems are quite di↵erent
from the problem studied here. Hence, the methods pro-
posed in these related works cannot be directly applied here.

6. CONCLUSIONS
In this paper, we investigated a novel model-free approach

that can learn to well control a DSDPS from its experience
rather than accurate and mathematically solvable system
models, just as a human learns a skill. We presented design,
implementation and evaluation of a novel and highly e↵ec-
tive DRL-based control framework for DSDPSs, which min-
imizes the average end-to-end tuple processing time. The
proposed framework enables model-free control by jointly
learning the system environment with very limited runtime
statistics data and making decisions under the guidance of
two DNNs, an actor network and a critic network. We imple-
mented it based on Apache Storm, and tested it with three
representative applications: continuous queries, log stream
processing and word count (stream version). Extensive ex-
perimental results well justified the e↵ectiveness of our de-
sign, which showed: 1) The proposed framework achieves
a performance improvement of 33.5% over Storm’s default
scheduler and 14.0% over the state-of-the-art model-based
method on average. 2) The proposed DRL-based framework
can quickly reach a good scheduling solution during online
learning.

7. ACKNOWLEDGEMENT
This research was supported in part by AFOSR grants

FA9550-16-1-0077 and FA9550-16-1-0340. The information
reported here does not reflect the position or the policy of
the federal government.

8. REFERENCES
[1] Alice’s Adventures in Wonderland,

http://www.gutenberg.org/files/11/11-pdf.pdf
[2] A.M. Aly, A. Sallam, B.M. Gnanasekaran, L.

Nguyen-Dinh, W.G. Aref, M. Ouzzani, and A.
Ghafoor, M3: Stream Processing on Main-Memory
MapReduce, Proceedings of IEEE ICDE’2012,
pp.1253–1256, 2012.

[3] T. Akidau, A. Balikov, K. Bejiroglu, S. Chernyak, J.
Haberman, R. Lax, S. McVeety, D. Mills, P.
Nordstrom and S. Whittle, MillWheel: fault-tolerant
stream processing at internet scale. PVLDB,
6(11): 1033–1044, 2013.

[4] Q. Anderson, Storm real-time processing cookbook,
PACKT Publishing, 2013.

[5] L. Aniello, R. Baldoni and L. Querzoni, Adaptive
online scheduling in Storm, Proceedings of ACM
DEBS’2013.

[6] G. D. Arnold, R. Evans, H. v. Hasselt, P. Sunehag, T.
Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris and
B. Coppin, Deep reinforcement learning in large
discrete action spaces, arXiv: 1512.07679, 2016.

[7] N. Backman, K. Pattabiraman, R. Fonseca and U.
Cetintemel, C-MR: continuously executing
MapReduce workflows on multi-core processors,
Proceedings of MapReduce’12.

[8] P. Bakkum and K. Skadron, Accelerating SQL
database operations on a GPU with CUDA,
Proceedings of the 3rd Workshop on General-Purpose
Computation on GPU (GPGPU’10), pp. 94–103.

[9] Ivan Bedini, Sherif Sakr, Bart Theeten, Alessandra
Sala, Peter Cogan, Modeling performance of a parallel

716

streaming engine: bridging theory and costs,
Proceedings of IEEE ICPE’2013, pp. 173–184.

[10] P. Bellavista, A. Corradi, A. Reale and N. Ticca,
Priority-based resource scheduling in distributed
stream processing systems for big data applications,
Proceedings of IEEE/ACM International Conference
on Utility and Cloud Computing, 2014, pp. 363–370.

[11] S. Boyd and L. Vandenberghe, Convex Optimization
Cambridge University Press, 2004.

[12] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.
Henry, R. Bradshaw and N. Weizenbaum, FlumeJava:
easy, e�cient data-parallel pipelines, Proceedings of
ACM PLDI’2010, pp. 363–375.

[13] F. Chen, M. Kodialam and T. V. Lakshman, Joint
scheduling of processing and shu✏e phases in
MapReduce systems, Proceedings of IEEE
Infocom’2012, pp. 1143–1151.

[14] H. Drucker, C. Burges, L. Kaufman, A. Smola and V.
Vapnik, Support vector regression machines,
Proceedings of NIPS’1996, pp. 155–161.

[15] Y. Duan, X. Chen, R. Houthooft, J. Schulman and P.
Abbeel, Benchmarking deep reinforcement learning for
continuous control, Proceedings of ICML’2016.

[16] Apache Flink, https://flink.apache.org/
[17] J. N. Foerster, Y. M. Assael, N. d. Freitas and S.

Whiteson, Learning to communicate with deep
multi-agent reinforcement learning, Proceedings of
NIPS’2016.

[18] S. Gu, T. Lillicrap, I. Sutskever and S. Levine,
Continuous deep Q-Learning with model-based
acceleration, Proceedings of ICML’2016.

[19] Gurobi Optimizer, http://www.gurobi.com/
[20] F. Gustafsson, Determining the initial states in

forward-backward filtering, IEEE Transactions on
Signal Processing, Vol. 44, No. 4, 1996, pp. 988–992.

[21] J. Han, M. Kamber and J. Pei, Data Mining:
Concepts and Techniques (3rd Edition), Morgan
Kaufmann, 2011.

[22] Apache Hadoop, http://hadoop.apache.org/
[23] H. v. Hasselt, A. Guez, and D. Silver, Deep

reinforcement learning with double Q-learning,
Proceedings of AAAI’2016.

[24] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri
and A. Doan, Muppet: MapReduce-style processing of
fast data, PVLDB, 5(12): 1814–1825, 2012.

[25] T. Li, J. Tang and J. Xu, Performance modeling and
predicitive scheduling for distributed stream data
processing, IEEE Transactions on Big Data,
2(4): 353–364, 2016.

[26] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T.
Erez, Y. Tassa, D. Silver and D. Wierstra, Continuous
control with deep reinforcement learning, Proceedings
of ICLR’2016.

[27] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang
and Y. Wang, A hierarchical framework of cloud
resource allocation and power management using deep
reinforcement learning, Proceedings of ICDCS’2017.

[28] S. Loesing, M. Hentschel, T. Kraska and D.
Kossmann, Stormy: an elastic and highly available
streaming service in the cloud, Proceedings of the 2012
ACM Joint EDBT/ICDT Workshops, pp. 55–60.

[29] Logstash - Open Source Log Management,
http://logstash.net/

[30] Q. Jiang and S. Chakravarthy, Scheduling strategies
for a data stream management system, Technical
Report CSE-2003-30.

[31] A. Khoshkbarforoushha, R. Ranjan, R. Gaire, P. P.
Jayaraman, J. Hosking and E. Abbasnejad, Resource
usage estimation of data stream processing workloads
in datacenter clouds, 2015,
http://arxiv.org/abs/1501.07020. Proceedings of ACM
STOC’1997, pp. 654–663.

[32] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu,
Deduce: at the intersection of Mapreduce and stream
processing, Proceedings of ACM EDBT’2010,
pp. 657–662.

[33] V. Mnih, et al. , Human-level control through deep
reinforcement learning, Nature, 518(7540): 529–533,
2015.

[34] M. Nicola and M. Jarke, Performance modeling of
distributed and replicated databases, IEEE
Transactions on Knowledge Discovery and Data
Engineering, 12(4): 645–672, 2000.

[35] N. Naik, A. Negi and V. Sastry, Performance
improvement of MapReduce framework in
heterogeneous context using reinforcement learning,
Procedia Computer Science, 50: 169–175, 2015.

[36] K. Narasimhan, T. D Kulkarni and R. Barzilay,
Language understanding for text-based games using
deep reinforcement learning, Proceedings of
Conference on Empirical Methods in Natural
Language Processing, 2015.

[37] C. Peng, C. Zhang, C. Peng and J. Man, A
reinforcement learning approach to map reduce
auto-configuration under networked environment,
International Journal of Security and Networks,
12(3): 135–140, 2017.

[38] Z. Qian, et al. , Timestream: reliable stream
computation in the cloud, Proceedings of
EuroSys’2013.

[39] Redis, http://redis.io
[40] T. Repantis and V. Kalogeraki, Hot-spot prediction

and alleviation in distributed stream processing
applications, Proceedings of IEEE DSN’2008,
pp. 346–355.

[41] M. Restelli, Reinforcement learning - exploration vs
exploitation, 2015,
http://home.deib.polimi.it/restelli/MyWebSite/pdf/
rl5.pdf

[42] Apache S4, http://incubator.apache.org/s4/
[43] Apache Samza, http://samza.apache.org/
[44] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra

and M. Riedmiller, Deterministic policy gradient
algorithms, Proceedings of ICML’2014.

[45] D. Silver, et al. , Mastering the game of Go with deep
neural networks and tree search Nature, 529: 484–489,
2016.

[46] Apache Spark, http://spark.apache.org/
[47] Spark Streaming — Apache Spark,

http://spark.apache.org/streaming/
[48] Apache Storm, http://storm.apache.org/

717

[49] R. Sutton and A. Barto, Reinforcement learning: an
introduction, MIT press Cambridge, 1998.

[50] TensorFlow, https://www.tensorflow.org/
[51] Y. Wei, V. Prasad, S. Son and J. Stankovic,

Prediction-based QoS management for real-time data
streams, Proceedings of IEEE RTSS’2006.

[52] J. Xu, Z. Chen, J. Tang and S. Su, T-Storm:
tra�c-aware online scheduling in Storm, Proceedings
of IEEE ICDCS’2014, pp. 535–544.

[53] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I.
Stoica, Improving MapReduce performance in
heterogeneous environments, Proceedings of
OSDI’2008.

[54] Apache Zookeeper, https://zookeeper.apache.org/
[55] Y. Zhu, et al. , Minimizing makespan and total

completion time in MapReduce-like systems,
Proceedings of IEEE Infocom’2014, pp. 2166–2174.

718

