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ABSTRACT
Functional dependencies (FDs) and unique column combi-
nations (UCCs) form a valuable ingredient for many data
management tasks, such as data cleaning, schema recovery,
and query optimization. Because these dependencies are un-
known in most scenarios, their automatic discovery has been
well researched. However, existing methods mostly discover
only exact dependencies, i.e., those without violations. Real-
world dependencies, in contrast, are frequently approximate
due to data exceptions, ambiguities, or data errors. This re-
laxation to approximate dependencies renders their discov-
ery an even harder task than the already challenging exact
dependency discovery. To this end, we propose the novel
and highly efficient algorithm Pyro to discover both ap-
proximate FDs and approximate UCCs. Pyro combines a
separate-and-conquer search strategy with sampling-based
guidance that quickly detects dependency candidates and
verifies them. In our broad experimental evaluation, Pyro
outperforms existing discovery algorithms by a factor of up
to 33, scales to larger datasets, and at the same time requires
the least main memory.

PVLDB Reference Format:
Sebastian Kruse, Felix Naumann. Efficient Discovery of Approx-
imate Dependencies. PVLDB, 11 (7): 759-772, 2018.
DOI: https://doi.org/10.14778/3192965.3192968

1. THE EXCEPTION PROVES THE RULE
Database dependencies express relevant characteristics of

datasets, thereby enabling various data management tasks.
Among the most important dependencies for relational da-
tabases are functional dependencies (FDs) and unique col-
umn combinations (UCCs). In few words, an FD states that
some attributes in a relational instance functionally deter-
mine the value of a further attribute. A UCC, in contrast,
declares that some columns uniquely identify every tuple in
a relational instance. More formally, for a relation r with
the schema R with attribute sets X,Y ⊆ R, we say that
X→Y is an FD with left-hand side (LHS) X and right-hand
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side (RHS) Y if we have t1[X]=t2[X]⇒ t1[Y ]=t2[Y ] for all
pairs of distinct tuples t1, t2 ∈ r. Likewise, X is a UCC if
t1[X] 6= t2[X] for all such tuple pairs. For instance, in a
table with address data, the country and ZIP code might
determine the city; and every address might be uniquely
identified by its ZIP code, street, and house number.

FDs and UCCs have numerous applications from schema
discovery [26] over data integration [34] to schema design [23],
normalization [39], and query relaxation [35]. But because
the FDs and the UCCs are unknown for most datasets, var-
ious algorithms have been devised over the last decades to
automatically discover them [15,16,39,41]. Most of these al-
gorithms discover only exact dependencies, which are com-
pletely satisfied by the data – without even a single violation.
Real-world dependencies are all too often not exact, though.
Table 1 exemplifies common reasons for this:
(1) Data errors: One might need to determine a primary
key for the data in Table 1, and {First name,Last name}
seems to form a reasonable candidate. However, it is not a
UCC: tuple t4 is a duplicate of t1. In fact, the table does
not contain a single exact UCC.
(2) Exceptions: Most English first names determine a per-
son’s gender. There are exceptions, though. While Alex in
tuple t1 is male, Alex in t5 is female. In consequence, the
FD First name→Gender is violated.
(3) Ambiguities: In contrast to first names and genders, a
ZIP code is defined to uniquely determine its city. Still,
we find that t3 violates ZIP→Town, because it specifies a
district rather than the city.

Table 1: Example table with person data.

First name Last name Gender ZIP Town

t1 Alex Smith m 55302 Brighton
t2 John Kramer m 55301 Brighton
t3 Lindsay Miller f 55301 Rapid Falls
t4 Alex Smith m 55302 Brighton
t5 Alex Miller f 55301 Brighton

These few examples illustrate why relevant data depen-
dencies in real-world datasets are often not exact, so that
most existing discovery algorithms fail to find them. To
cope with this problem, the definition of exact dependencies
can be relaxed to allow for a certain degree of violation [21].
We refer to such relaxed dependencies as approximate de-
pendencies. Approximate dependencies can not only sub-
stitute their exact counterparts in many of the above men-
tioned use cases, but they also reveal potential data incon-
sistencies and thus serve as input to constraint-repairing sys-
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tems [7,13,19,24,42]. Furthermore, approximate dependen-
cies can help to improve poor cardinality estimates of query
optimizers by revealing correlating column sets [17,27]; and
they can support feature selection for machine learning algo-
rithms (especially for those assuming mutual independence
of features) by exposing dependent feature sets [10].

Unfortunately, their discovery is more challenging than is
the case for their exact counterparts. The main challenge
of both FD and UCC discovery is the huge search space
that grows exponentially with the number of attributes in a
dataset. To cope, exact discovery algorithms employ aggres-
sive pruning: As soon as they find a single counter-example
for a dependency candidate, they can immediately prune
this candidate [39, 41]. This obviously does not work when
violations are permitted. Hence, a new strategy is called for
to efficiently determine approximate dependencies.

We present Pyro, a novel algorithm to discover approx-
imate FDs (AFDs) and approximate UCCs (AUCCs) with
a unified approach based on two principal ideas. The first
is to use focused sampling to quickly hypothesize AFD and
AUCC candidates. The second idea is to traverse the search
space in such a way, that we can validate the dependency
candidates with as little effort as possible.

The remainder of this paper is structured as follows. In
Section 2, we survey related work and highlight Pyro’s novel
contributions. Then, we precisely define the problem of find-
ing AFDs and AUCCs in Section 3 and outline Pyro’s ap-
proach to this problem in Section 4. Having conveyed the
basic principles of our algorithms, we then proceed to de-
scribe its components in more detail. In particular, we de-
scribe how Pyro efficiently estimates and calculates the er-
ror of AFD and AUCC candidates in Section 5 and elaborate
on its focused search space traversal in Section 6. Then, we
exhaustively evaluate Pyro and compare it to three state-
of-the-art discovery algorithms in Section 7. We find that
Pyro is in most scenarios the most efficient among the al-
gorithms and often outperforms its competitors by orders of
magnitude. Finally, we conclude in Section 8.

2. RELATED WORK
Dependency discovery has been studied extensively in the

field of data profiling [1]. The efficient discovery of exact
FDs has gained particular interest [37]. Further, many ex-
tensions and relaxations of FDs have been proposed [9], e.g.,
using similarity functions, aggregations, or multiple data
sources. Pyro focuses on approximate dependencies that
may be violated by a certain portion of tuples or tuple pairs.
Note that this is different from dependency approximation
algorithms [8,22], which trade correctness guarantees of the
discovered dependencies for performance improvements. In
the following, we focus on those works that share goals or
have technical commonalities with Pyro.

Approximate dependency discovery. While there are
many works studying the discovery of FDs under various
relaxations, only relatively few of them consider approxi-
mate FDs. To cope with the problem complexity, some dis-
covery algorithms operate on samples of the profiled data
and therefore cannot guarantee the correctness of their re-
sults [17,22,31] (that is, they only approximate the approx-
imate FDs). This does not apply to Pyro. In addition,
Cords discovers only unary AFDs [17], which is a much
easier problem; and the authors of [31] detect only the top k

AFDs according to an entropy-based measure without eval-
uating the qualitative impact of this restriction.

Another approach to harness the complexity is to use
heuristics to prune potentially uninteresting AFD candi-
dates [40]. Because this can cause the loss of interesting re-
sults, Pyro instead discovers all approximate dependencies
for some given error threshold and leaves filtering or rank-
ing of the dependencies to use-case specific post-processing.
This prevents said loss and also frees users from the burden
of selecting an appropriate interestingness threshold.

Along these lines, exact approaches for the discovery of
AFDs and AUCCs have been devised. Arguably, the most
adapted one is Tane [16], which converts the columns of a
profiled relation into stripped partitions (also: position list
indices, PLIs) and exhaustively combines them until it has
discovered the minimal approximate dependencies. Being
mainly designed for exact FD and UCC discovery, some of
Tane’s pruning rules do not work in the approximate case,
leading to degraded performance. In fact, before discover-
ing an approximate dependency involving n columns, Tane
tests 2n − 2 candidates corresponding to subsets of these
columns. Note that many works build upon Tane without
changing these foundations [5, 20, 28]. Pyro avoids these
problems by estimating the position of minimal approximate
dependencies and then immediately verifying them.

Further approaches to infer approximate dependencies are
based on the pairwise comparison of all tuples. The Fdep al-
gorithm proposes (i) to compare all tuple pairs in a database,
thereby counting any FD violations; (ii) to apply an error
threshold to discard infrequent violations; and (iii) to deduce
the AFDs from the residual violations [11, 12]. We found
this algorithm to yield incorrect results, though: Unlike ex-
act FDs, AFDs can be violated by combinations of tuple
pair-based violations, which Step (ii) neglects. In addition
to that, the quadratic load of comparing all tuple pairs does
not scale well to large relations [37]. In a related approach,
Lopes et al. propose to use tuple pair comparisons to de-
termine the most specific non-FDs in a given dataset whose
error should then be calculated subsequently [30]. This ap-
proach is quite different from the aforementioned ones be-
cause it discovers only a small subset of all AFDs.

In a different line of work, an SQL-based algorithm for
AFD discovery has been proposed [33]. As stated by the
authors themselves, the focus of that work lies on ease of im-
plementation in practical scenarios rather than performance.

Last but not least, the discovery of dependencies in the
presence of NULL values has been studied [23]. This work
considers replacements for NULL values, such that exact de-
pendencies emerge. This problem is distinct from that of
Pyro, which does not incorporate a special treatment of
NULL but considers arbitrary dependency violations.

Exact dependency discovery. Many algorithms for
the discovery of exact FDs and UCCs have been devised,
e.g., [15, 16, 39, 41]. These algorithms can generally be di-
vided into (i) those that are based on the pairwise compar-
isons of tuples and scale well with the number of attributes
and (ii) those that are based on PLI intersection and scale
well with the number of tuples [37].

The algorithms Ducc [15] and the derived Dfd [2] be-
long to the latter and resemble Pyro in that they use a
depth-first search space traversal strategy. Still, both ex-
hibit substantial differences: While Ducc and Dfd perform
a random walk through the search space, Pyro performs
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a sampling-based best-first search along with other tech-
niques to reduce the number of dependency candidate tests.
Interestingly, the authors of Dfd suggest that it could be
modified to discover AFDs and we will therefore consider a
modified version of this algorithm in our evaluation.

The recent HyFD algorithm manages to scale well with
growing numbers of tuples and columns by combining tuple
comparisons and PLI intersections [38]. Pyro also com-
bines these two base techniques. However, HyFD aggres-
sively prunes FDs as soon as it discovers a violation of the
same. While this pruning is key to HyFD’s efficiency, it
is not applicable to approximate dependencies. Instead,
Pyro uses tuple comparisons to hypothesize dependency
candidates rather than falsifying them and its search space
traversal is adaptive rather than bottom-up.

Lattice search. In a broader sense, Pyro classifies nodes
in a power set lattice, as we explain in Section 3. Apart
from dependency discovery, several other problems, such as
frequent itemset mining [3, 14], belong in this category and
can be tackled with the same algorithmic foundations [32].
For instance, AFD discovery can be modeled as a frequent
itemset mining problem; however, such adaptations require
additional tailoring to be practically usable [40].

3. PROBLEM STATEMENT
Before outlining our algorithm Pyro, let us formalize

the problem of finding the AFDs and AUCCs in a dataset.
When referring to approximate dependencies, we need to
quantify the degree of approximation. For that purpose, we
use a slight adaptation of the well-established g1 error [21]
that ignores reflexive tuple pairs.

Definition 1 (AFD/AUCC error). Given a dataset r and an
AFD candidate X→A, we define its error as

e(X→A, r) =
|{(t1, t2) ∈ r2 | t1[X]=t2[X] ∧ t1[A] 6=t2[A]}|

|r|2 − |r|

Analogously, the error of an AUCC candidateX is defined as

e(X, r) =
|{(t1, t2) ∈ r2 | t1 6= t2 ∧ t1[X]=t2[X]}|

|r|2 − |r|

Example 1. For Table 1, we can calculate e(First name→
Gender, r) = 4

52−5
= 0.2 (violated by (t1, t5), (t4, t5), and

their inverses) and e({First name, Last name}, r) = 2
52−5

=

0.1 (violated by (t1, t4) and its inverse).

These error measures lend themselves for Pyro for two
reasons. First, and as we demonstrate in Section 5, they can
be easily calculated from different data structures. Second,
and more importantly, they are monotonous. That is, for
any AFD X → Y and an additional attribute A we have
e(X→Y ) ≥ e(XA→Y ). Likewise for an AUCC X, we have
e(X) ≥ e(XA). In other words, adding an attribute to the
LHS of an AFD or to an AUCC can only remove violations
but not introduce new violations. We refer to those XA→Y
and XA, respectively, as specializations and to X→Y and
X, respectively, as generalizations. With these observations,
we can now precisely define our problem statement.

Problem Statement . Given a relation r and error thresholds
eφ and eυ, we want to determine all minimal AFDs with a
single RHS attribute and all minimal AUCCs. A minimal

AFD has an AFD error of at most eφ, while all its general-
izations have an AFD error greater than eφ. Analogously, a
minimal AUCC has an AUCC error of at most eυ, while all
its generalizations have an AUCC error greater than eυ.

Example 2. Assume we want to find all minimal AUCCs in
Table 1 with the error threshold of eυ = 0.1. Amongst oth-
ers, υ1 = {First name, Last name} and υ2 = {First name,
Last name, Gender} have an AUCC of 0.1 ≤ eυ. However,
υ1 is a generalization of υ2, so υ2 is not minimal and need
not be discovered explicitly.

Let us finally explain, why we exclude AFDs with com-
posite RHSs, i.e., with more than one attribute. For exact
dependency discovery, this exclusion is sensible because the
FD X→AB holds if and only if X→A and X→B hold [4].
For AFDs as defined in Definition 1, this is no longer the
case. However, considering composite RHSs potentially in-
creases the number of AFDs drastically and might have se-
rious performance implications. Furthermore, it is not clear
how the use cases mentioned in Section 1 would benefit from
such additional AFDs, or whether they would even be im-
paired by their huge number. Hence, we deliberately focus
on single RHSs for pragmatic reasons and do so in accor-
dance with related work [12, 16, 30]. Nevertheless, it can be
shown that an AFD X→AB can hold only if both X→A
and X→B hold. Hence, AFDs with a single RHS can be
used to prune AFD candidates with composite RHSs.

4. ALGORITHM OVERVIEW
Before detailing Pyro’s individual components, let us out-

line with the help of Algorithm 1 and Figure 1 how Pyro
discovers all minimal AFDs and AUCCs for a given dataset
and error thresholds eφ and eυ. For simplicity (but without
loss of generality), we assume eφ = eυ = emax for some user-
defined emax. Furthermore, we refer to AFD and AUCC
candidates with an error ≤ emax as dependencies and oth-
erwise as non-dependencies. Now, given a dataset with n
attributes, Pyro spawns n+1 search spaces (Line 1): one
search space per attribute to discover the minimal AFDs
with that very attribute as RHS; and one search space for
AUCCs. The AUCC search space is a powerset lattice of
all attributes, where each attribute set directly forms an
AUCC candidate. Similarly, each AFD search space is a
powerset lattice with all but the RHS attribute A, where
each attribute set X represents the AFD candidate X→A.
In other words, each attribute set in the powerset lattices
forms a unique dependency candidate. We may therefore use
attribute sets and dependency candidates synonymously.

In a second preparatory step before the actual depen-
dency discovery, Pyro builds up two auxiliary data struc-
tures (called agree set sample (AS) cache and position list
index (PLI) cache; Lines 2–3), both of which support the
discovery process for all search spaces by estimating or cal-
culating the error of dependency candidates. We explain
these data structures in Section 5.

Eventually, Pyro traverses each search space with a sepa-
rate-and-conquer strategy to discover their minimal depen-
dencies (Lines 4–5). Said strategy employs computationally
inexpensive error estimates (via the AS cache) to quickly
locate a promising minimal dependency candidate and then
efficiently checks it with only few error calculations (via the
PLI cache). As indicated in Figure 1, the verified (non-)
dependencies are then used to prune considerable parts of
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Algorithm 1: Pyro’s general workflow.

Data: Relation schema R with instance r, AFD error
threshold eφ, AUCC error threshold eυ

. Section 4
1 search-spaces ← {create-aucc-space(R, eυ)}∪⋃

A∈R create-afd-space(R \ {A}, A, eφ)

. Section 5
2 pli-cache ← init-pli-cache(r)
3 as-cache ← init-as-cache(r, pli-cache)
. Section 6

4 foreach space ∈ search-spaces do
5 traverse(space, pli-cache, as-cache)

PLI cacheAS cache

(non-)AFD/AUCCdependency candidate inferred (non-)AFD/AUCC

AUCC search space
AFD search space (RHS=A)

Figure 1: Intermediate state of Pyro while profiling
a relation with the schema R = (A,B,C,D).

the search space and as a result Pyro needs to inspect only
the residual dependency candidates. Notice that our traver-
sal strategy is sufficiently abstract to accommodate both
AFD and AUCC discovery without any changes.

5. ERROR ASSESSMENT
As Pyro traverses a search space, it needs to estimate and

calculate the error of dependency candidates. This section
explains the data structures and algorithms to perform both
operations efficiently.

5.1 PLI Cache
As we shall see in the following, both the error estima-

tion and calculation involve position list indices (PLIs) (also
known as stripped partitions [16]):

Definition 2 (PLI). Let r be a relation with schema R and
let X ⊆ R be a set of attributes. A cluster is a set of
all tuple indices in r that have the same value for X, i.e.,
c(t) = {i | ti[X] = t[X]}. The PLI of X is the set of all such
clusters except for singleton clusters:

π̄(X) := {c(t) | t ∈ r ∧ |c(t)| > 1}

We further define the size of a PLI as the number of included
tuple indices, i.e., ‖π̄(X)‖ :=

∑
c∈π̄(X) |c|.

Example 3. Consider the attribute Last name in Table 1. Its
associated PLI consists of the clusters {1, 4} for the value
Smith and {3, 5} for the value Miller. The PLI does not
include the singleton cluster for the value Kramer, though.

Pyro (and many related works, for that matter) employ
PLIs for various reasons. First, and that is specific to Pyro,
PLIs allow to create focused samples on the data, thereby
enabling precise error estimates of dependency candidates.
Second, PLIs have a low memory footprint because they
store only tuple indices rather than actual values and omit
singleton clusters completely. Third, the g1 error can be

directly calculated on them, as we show in the next section.
Finally, π̄(XY ) can be efficiently calculated from π̄(X) and
π̄(Y ) [16], denoted as intersecting PLIs. In consequence, we
can represent any combination of attributes as a PLI.

For clarity, let us briefly describe the PLI intersection.
As an example, consider the data from Table 1 and assume
we want to intersect the PLIs π̄(Firs name) = {{1, 4, 5}}
and π̄(Last name) = {{1, 4}, {2, 5}}. In the first step, we
convert π̄(Last name) into the attribute vector vLast name =
(1, 0, 2, 1, 2), which simply is a dictionary-compressed array
of the attribute Last name with one peculiarity: All values
that appear only once are encoded as 0. This conversion
is straight-forward: For each cluster in π̄(Last name), we
simply devise an arbitrary ID and write this ID into the
positions contained in that cluster. In the second step, the
probing, we group the tuple indices within each cluster of
π̄(First name). Concretely, the grouping key for the tuple
index i is the i-th value in vLast name unless that value is
0: In that case the tuple index is dropped. For the cluster
{1, 4, 5}, we obtain the groups 1 → {1, 4} and 2 → {5}.
Eventually, all groups with a size greater than 1 form the
new PLI. In our example, we get π̄(First name,Last name) =
{{1, 4}}. Because t1 and t4 are the only tuples in Table 1
that agree in both First name and Last name, our calcu-
lated PLI indeed satisfies Definition 2.

That being said, intersecting PLIs is computationally ex-
pensive. Therefore, Pyro puts calculated PLIs into a PLI
cache (cf. Figure 1) for later reuse. Caching PLIs has been
proposed in context of the Ducc algorithm [15] (and was
adopted by Dfd [2]), however, a description of the caching
data structure has not been given. It has been shown, how-
ever, that the set-trie of the Fdep algorithm [12] is suitable
to index and look up PLIs [43].

As exemplified in Figure 2, Pyro’s PLI cache adopts a
similar strategy: It is essentially a trie (also: prefix tree)
that associates attribute sets to their respective cached PLI.
Assume we have calculated π̄({C,E}). Then we convert this
attribute set into the list (C,E), which orders the attributes
according to their order in the relation schema. Then, we
index π̄({C,E}) in the trie using (C,E) as key.

However, when Pyro requests some PLI π̄(X), it may
well not be in the cache. Still, we can leverage the cache by
addressing the following criteria:
(1) We want to obtain π̄(X) with only few PLI intersections.
(2) In every intersection π̄(Y )∩ π̄(Z), where we probe π̄(Y )
against vZ , we would like ‖π̄(Y )‖ to be small.

While Criterion 1 addresses the number of PLI intersec-
tions, Criterion 2 addresses the efficiency of the individual
intersections, because probing few, small PLI clusters is ben-
eficial performance-wise. Algorithm 2 considers both criteria
to serve PLI requests utilizing the PLI cache. As an exam-
ple, assume we want to construct the PLI π̄(ABCDE) with

A B C D E

B

C D

D

E

s=823 s=944 s=665 s=994 s=813

s=42 s=23 s=102

A B C D E

B

s=823 s=944 s=665 s=994 s=813

s=42 s=23 s=102

A B C D E

ED

B

Cache node

Cached PLI

Attribute
PLI for CE (size 102)

Figure 2: Example PLI cache.
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Algorithm 2: Retrieve a PLI from the PLI cache.

Data: PLI cache cache, attribute set X
1 Π← lookup PLIs for subsets of X in cache

2 π̄(Y )← pick the smallest PLI indices from Π
3 Z ← new list, C ← Y
4 while C ⊂ X do
5 π̄(Z)← pick PLI from Π that maximizes |Z \ C|
6 append π̄(Z) to Z
7 C ← C ∪ Z
8 sort Z by the PLIs’ sizes, C ← Y
9 foreach π̄(Z) ∈ Z do

10 π̄(C ∪ Z)← π̄(C) ∩ π̄(Z), C ← C ∪ Z
11 if coin flip shows head then put π̄(C) into cache

12 return π̄(C)

the PLI cache from Figure 2. At first, we look up all PLIs
for subsets of ABCDE in the cache (Line 1). This look-up
can be done efficiently in tries. Among the retrieved PLIs,
we pick the one π̄(Y ) with the smallest size (Line 2). In our
example, this is the case for π̄(AD) with a size of 23. This
smallest PLI shall be used for probing in the first PLI inter-
section. The resulting PLI, which cannot be larger in size,
will then be used for the subsequent intersection’s probing
and so on. This satisfies Criterion 2.

Next, we need to determine the remaining PLIs to probe
against. Here, we follow Criterion 1 and repeatedly pick
whatever PLI provides the most new attributes to those in
the already picked PLIs (Lines 3–7). In our example, we
thus pick π̄(CE), which provides two new attributes, and
then π̄(B). Finally, all attributes in ABCDE appear in at
least one of the three selected PLIs. Note that Pyro always
maintains PLIs for the single attributes in the PLI cache
and can therefore serve any PLI request.

Having selected the PLIs, we intersect them using small
PLIs as early as possible due to Criterion 2 (Lines 8–10).
For our example, this yields the intersection order (π̄(AD)∩
π̄(CE)) ∩ π̄(B). Compared to intersecting PLIs of single
attributes, we save two out of four intersection operations.
Additionally, we can use the PLI π̄(AD), which is much
smaller than any single-attribute PLI. Hence, the PLI cache
is useful to address both Criteria 1 and 2.

Finally, we cache randomly selected PLIs (Line 11).
Caching all calculated PLIs would quickly fill the cache
with redundant PLIs or those that will not be needed again.
Our random approach, in contrast, caches frequently needed
PLIs with a higher probability – with virtually no overhead.

5.2 Evaluating Dependency Candidates
PLIs are vital to calculate the error of an AFD or AUCC,

respectively. Having shown how to efficiently obtain the PLI
for some attribute set X, let us show how to calculate the
g1 error (see Definition 1) from π̄(X) in Algorithm 3.

For an AUCC candidate X, the error calculation given
π̄(X) is trivial: We merely count all tuple pairs inside of
each cluster because these are exactly the violating tuple
pairs (Lines 1–2). In contrast, the error calculation of an
AFD candidate X → A is a bit more complex. According
to Definition 1, those tuple pairs violate X→A that agree
in X and disagree in A. We do not count these tuple pairs
directly. Instead, for each cluster of π̄(X) we calculate the

Algorithm 3: Error calculation for AFDs and AUCCs.

1 Function e(X, r) = calc-AUCC-error(π̄(X), r)

2 return
∑
c∈π̄(X)

|c|2−|c|
|r|2−|r|

3 Function e(X→A, r) = calc-AFD-error(π̄(X), vA, r)
4 e← 0
5 foreach c ∈ π̄(X) do
6 counter← dictionary with default value 0
7 foreach i ∈ c do
8 if vA[i] 6= 0 then increase counter[vA[i]]

9 e← e+
(
|c|2 − |c|

)
−
∑
cA∈counter

(
c2A − cA

)
10 return e

|r|2−|r|

number of tuple pairs also agreeing in A (Lines 4–8) and
then subtract this number from all tuple pairs in the cluster
(Lines 9–10). For this calculation, we need the attribute
vector vA of attribute A (cf. Section 5.1), in addition to
π̄(X). Note that we must not count zeros in vA, because
they represent singleton values. By summing the errors of
all clusters in π̄(X), we finally obtain e(X→A, r).

5.3 Estimating Dependency Errors
A key idea of Pyro is to avoid costly PLI-based error cal-

culations by estimating the errors of dependency candidates
and only then conduct a few targeted error calculations. As
a matter of fact, an error calculation can be orders of magni-
tudes slower than an error estimation. Generally speaking,
we can estimate dependency errors by comparing a subset of
tuples – or better: a subset of tuple pairs – and extrapolate
the number of encountered violations to the whole relation.
Such error estimation is related to (but far more efficient
than) algorithms that exhaustively compare all tuple pairs
to discover dependencies [12,30]. The basis for this approach
are agree set samples (AS samples).

Definition 3 (AS sample). Given a relational instance r with
schema R and two tuples t1, t2 ∈ r, their agree set [6] is
ag(t1, t2) := {A ∈ R | t1[A] = t2[A]}.1 Further, let s ⊆ r2

be a sample of tuple pairs of the relational instance r. Then,
s induces the AS sample

AS := {(a, c(a)) | ∃(t1, t2) ∈ s : a = ag(t1, t2)}

where c(a) := |{(t1, t2) ∈ s | a = ag(t1, t2)}| counts the
number of occurrences of each agree set in s.

Example 4. Assume that we randomly sample three tuple
pairs from Table 1, e.g., (t1, t3), (t1, t5), and (t2, t3). This
gives us the AS sample AS = {({Gender,Town}, 1),
({First name,Town}, 1), ({Gender,ZIP}, 1)}.

Now to estimate AFD and AUCC errors from an AS sam-
ple AS, we define a query that reports the number of agree
sets in AS that include some attribute set inc and do not
contain any attribute of a further attribute set exc:

count(AS, inc, exc) :=
∑

(a,c)∈AS

{
c if inc ⊆ a ∧ exc ∩ a = ∅
0 otherwise

1For improved memory and computation efficiency, we cal-
culate agree sets from cached attribute vectors (see Sec-
tion 5.1) rather than the original input dataset.
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Pyro stores agree sets efficiently as bit masks using one-hot
encoding. This allows to keep AS samples in memory and
perform count efficiently with a full scan over the AS sample.
So, to estimate the error of an AFD candidate X→A, we
could count its numbers of violating agree sets in AS as
count(AS, X, {A}) and divide the result by ‖AS‖. Likewise,
for an AUCC candidate X, we could count the violations
count(AS, X, ∅) and, again, divide by ‖AS‖:

Lemma 1. Let ê be the estimated error of an AFD or AUCC
candidate using the AS sample AS. Further, let e denote
the actual dependency error. Then ê is unbiased, i. e., its
expectation value is exactly e, and the probability that |e−
ê| ≤ ε for some user-defined ε is given by

Pε(AS, e) :=

b(e+ε)·‖AS‖c∑
i=d(e−ε)·‖AS‖e

(
‖AS‖
i

)
ei(1− e)‖AS‖−i

Proof. Sampling n tuple pairs and testing whether they
violate an AUCC or AFD candidate follows a binomial dis-
tribution whose probability parameter is exactly the depen-
dency error as defined in Definition 1. The mean of this
distribution, i. e., the expected number of violations in AS,
is e · ‖AS‖ (= E[ê] · ‖AS‖) and the above error bounds can be
immediately derived from the cumulative distribution func-
tion of the binomial distribution.

Interestingly, the accuracy of our error estimates does not
depend on the size of the input relation, which makes it
highly scalable. Instead, we observe an influence of the ac-
tual dependency error e. Indeed, the variance of the bino-
mial distribution (and thus the uncertainty of our estimator)
is maximized for e = 0.5. However, for typical error thresh-
olds we need accurate estimates only when e approaches 0 to
tell apart partial dependencies and non-dependencies. For
instance, for e = 0.01 and ‖AS‖ = 1, 000 our error estimates
are off by at most 0.006 with a probability of 0.96.

However, if we had only a single AS sample for the whole
relation, this sample might need to be huge to achieve high
precision estimates when needed: The standard deviation

of our bionomially distributed error estimator,
√

e(1−e)
‖AS‖ , is

inversely proportional to the square root of the sample size.
Intuitively, one might suspect that the above accuracy for
‖AS‖ = 1, 000 is sufficient to discover partial AFDs and
AUCCs with an error threshold of 0.01, but that is not nec-
essarily the case. As an example, assume a relation with
n attributes Ai (1 ≤ i ≤ n), each having an AUCC error
of 0.0101, while their combination A1. . .An has an error of
0.0999. In this scenario, any set of two or more attributes
might be a minimal AUCCs and, for that matter, there are
2n − (n + 1) such sets. Obviously, we would need samples
with much more than the above 1,000 agree sets to reason-
ably predict where the minimal AUCCs might be, which
would come at a high cost.

To provide high precision error estimates from small AS
samples, Pyro uses focused sampling. However, the result-
ing samples must still be random, so as to preserve the
above explained unbiasedness of our estimator. To solve
this conflict, we sample only such agree sets a that are su-
persets of some given attribute set X, i.e. a ⊇ X. Such
a sample can be created efficiently: We obtain the PLI
π̄(X) and then sample only such tuple pairs that co-occur

in some cluster c ∈ π̄(X). As an example, consider the PLI
π̄({Zip}) = {{1, 4}, {2, 3, 5}} for Table 1. This PLI restricts
the sampling to tuple pairs from {t1, t4} or {t2, t3, t5}.

In detail, to sample a tuple pair that agrees in X, we first

select a cluster c′ ∈ π̄(X) with a probability of |c
′|2−|c′|

pairs(X)

where pairs(X) :=
∑
c∈π̄(X) |c|

2 − |c| denote the number of

overall tuple pairs agreeing in X. That is, the probability of
picking c′ is proportional to the number of its tuple pairs.
Then, we randomly sample two distinct tuples from c′, so
that each tuple pair within c′ is sampled with the proba-
bility 1

|c′|2−|c′| . In consequence, any tuple pair with tuples

agreeing in X from the input relation has the same prob-
ability 1

pairs(X)
of being sampled. Finally, we calculate the

agree sets for the sampled tuple pairs and obtain a focused,
yet random, AS sample, denoted ASX .

Based on ASX , we can now estimate the error of any AFD
candidate Y →A and AUCC candidate Y if Y ⊇ X. In fact,
the error of the AUCC candidate Y in a relation r can be
estimated as

ê(Y, r) :=
count(ASX , Y, ∅)

‖ASX‖
· pairs(X)

|r|2 − |r|

and the error of the AFD candidate Y →A as

ê(Y →A, r) :=
count(ASX , Y, {A})

‖ASX‖
· pairs(X)

|r|2 − |r|

where ‖ASX‖ :=
∑

(a,c)∈ASX
c.

Theorem 1. Given an AUCC candidate Y or AFD candidate
Y → A (Y ⊇ X), our focused estimators based on sample
ASX are unbiased and the probability that |e − ê| ≤ ε for
an actual dependency error e, error estimate ê, some user-

defined ε is given by Pε(ASX , e
|r|2−|r|
pairs(X)

).

Proof. The first terms of the estimators estimate the
ratio of the tuple pairs violating the dependency candidate
among all tuple pairs agreeing in X; Lemma 1 shows their
unbiasedness and error bounds. Because all violating tuple
pairs must agree in X, the additional terms exactly extrapo-
late this “focused” estimate to the whole relation, thereby
preserving the unbiasedness and shrinking the error bounds
by a constant factor.

Theorem 1 explains why focused samples are effective.
Consider again the ZIP column in Table 1: Out of all 10
tuple pairs, only 4 agree in their ZIP values, so that a ZIP-
focused estimator is 10

4
= 2.5× more precise than an unfo-

cused estimator with the same sample size and confidence
level. This effect is even stronger in larger, real-world data
sets. For instance, a focused estimator for an attribute with
1,000 equally distributed values shrinks the error bounds by
a factor of 106. Hence, it is more efficient to create and
use multiple focused samples rather than one highly exten-
sive one. In fact, Pyro operates only on focused samples –
initially one for each attribute.

Having explained focused AS samples and how to estimate
AFD and AUCC errors with them, it remains to be shown
how Pyro serves an actual request for an error estimate
of some dependency candidate. Without loss of generality,
assume that the dependency candidate in question is the
AUCC candidate Y . As for the PLIs, whenever Pyro cre-
ates an AS sample, it caches it in a trie (cf. Figure 1 and
Section 5.1). Pyro first determines all AS samples with
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focus X for some X ⊆ Y , which can be done efficiently
because the AS cache is a trie. Recall that the focus of
the AS sample must be a subset of the dependency candi-
date to obtain an unbiased estimate. Then, Pyro picks the
AS sample with the highest sampling ratio, i. e.,the ratio of

sampled agree sets to the population; formally ‖ASX‖
pairs(X)

. The

reason is that larger AS samples and smaller sampling foci
yield more precise error estimates (see Theorem 1). What
is more, when the population for the sample ASX is very
small (because X is almost a UCC), then the sample can
even be exhaustive and, hence, the error estimate is known
to be exact and need not be calculated with PLIs anymore.

6. SEARCH SPACE TRAVERSAL
To discover dependencies, it is not only important to effi-

ciently assess individual dependency candidates as explained
in the above section; a search space traversal strategy that
combines efficient error estimations and final error calcula-
tions is crucial, too. In contrast to Tane, which systemati-
cally traverses large parts of the search space, and in contrast
to Ducc/Dfd, which perform random walks through the
search space, Pyro employs a novel separate-and-conquer
strategy: It separates a part of the search space, estimates
the position of the minimal dependencies within that sub-
space, and then validates this estimate. Afterwards, consid-
erable parts of the search space can be pruned.

Let us outline Pyro’s traversal strategy more concretely
with the example in Figure 3 before elaborating on its indi-
vidual phases in detail. The traversal can be thought of as a
firework display – which inspired the name Pyro. It consists
of multiple rounds starting from the single attributes, the
launchpads. In our example, Pyro selects A as launchpad2

and ascends (like a skyrocket) in the search space until it de-
tects the dependency ABCD (Step (1), Section 6.1). From
this dependency, called peak, Pyro trickles down (like an
exploded skyrocket) and estimates the position of all min-
imal dependencies that generalize the peak (Step (2), Sec-
tion 6.2), which is the case for CD. Then, it verifies the
estimate by checking the complementary, untested depen-
dency candidates, namely ABD (Step (3), Section 6.3).

This completes the first search round and, as shown in
Figure 3, Pyro uses both discovered non-dependencies and
dependencies to drastically narrow down the search space
for subsequent search rounds. In fact, discovered (non-)
dependencies are stored in a trie (cf. Section 5.1) to effi-
ciently determine whether following dependency candidates
are already pruned. Finally, in the next search round, Pyro
might pick up a pruned launchpad; in Figure 3, we pick
again A. In that case, Pyro escapes the launchpad into the
unpruned part of the search space (Step (4), Section 6.4).

6.1 Ascend
The ascend phase should efficiently determine some de-

pendency in a given search space, which will then form the
input to the subsequent trickle-down phase. Algorithm 4
depicts how Pyro achieves that. The ascend starts at the
launchpads, where are minimal dependency candidates with

2Recall from Section 4 that we use dependency candidates
and attribute sets synonymously: A can be an AUCC can-
didate or an AFD candidate A→R for some RHS R. As a
result, the traversal works for both dependency types.

AFD/AUCC non-AFD/AUCC launchpadstate unknown

A B C D E

pruned (non)-AFD/AUCC traversal step pruning

AB AC AD BC BD BE CD CE DEAE

ABC ABD ACD BCD BCE BDE CDEADEACEABE

ABCDE

ABCD ABCE ACDE BCDE

(1)

(1)

(1) (2)

(2)(3)

(4)

ABDE

Figure 3: Example of a search space traversal round.

an unknown state. Hence, the single attributes are the ini-
tial launchpads. Pyro estimates their error and picks the
one with the smallest error, e.g., attribute A as in Figure 3,
assuming it to lead to a dependency quickly (Line 1).

Algorithm 4: The ascend phase.

Data: launchpads L, maximum error emax

1 (X, êX)← pick launchpad with smallest error estimate
êX from L

2 while True do
3 if êX ≤ emax then
4 if êX is not known to be exact then
5 êX ← calculate error of X

6 if êX ≤ emax then break

7 A← arg minA∈R\X êXA with XA is not pruned

8 if no such A then break
9 X ← XA

10 êX ← estimate error of X

11 if êX is not known to be exact then êX ← eX
12 if eX ≤ emax then
13 trickle down from X
14 else
15 declare X a maxmimum non-dependency

Then, Pyro greedily adds that attribute to the launch-
pad that reduces the (estimated) dependency error the most
(Line 7), until either a dependency is met (Line 6) or no at-
tribute can be added anymore (Line 8). The latter case
occurs when there simply is no attribute left to add or when
all possible candidates are already known dependencies from
previous rounds. In this case, we declare it as a maximum
non-dependency for pruning purposes and cease the current
search round (Line 15). However, if we meet a dependency,
as is the case for ABCD in Figure 3, we proceed with the
trickle-down phase starting from that dependency (Line 13).

6.2 Trickle down
Given a dependency from the ascend phase, called peak

P , Pyro trickles down to estimate the position of all min-
imal dependencies that generalize P . Algorithm 5 outlines
how Pyro performs this estimation. First, P is placed into
a new priority queue that orders peaks by their estimated
dependency error (Line 2). Pyro then takes the smallest el-
ement (which initially is P ) without removal (Line 4), checks
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Algorithm 5: Estimate position of minimal dependen-
cies.
Data: peak P , maximum error emax

1 M← new trie
2 P ← new priority queue with P
3 while P is not empty do
4 P ′ ← peek from P
5 M′ ← look up subsets of P ′ in M
6 if M′ 6= ∅ then
7 remove P ′ from P
8 foreach H ∈ hitting-set(M′) do
9 if P ′ \H is not an (estimated)

non-dependency then
10 add P ′ \H to P

11 else
12 M ← trickle-down-from(P ′, emax)
13 if M 6= ⊥ then add M to M else remove P ′

from P

14 Function trickle-down-from(P ′, emax)
15 if |P ′| > 1 then
16 G ← error-based priority queue with

generalizations of P ′

17 while G is not empty do
18 G, êG ← poll from G
19 if êG > emax then break
20 C ← trickle-down-from(G, emax)
21 if C 6= ⊥ then return C

22 eP ′ ← calculate error of P ′

23 if eP ′ ≤ emax then return P ′

24 create and cache AS sample with focus P ′

25 return ⊥

whether it is pruned by some already estimated minimal de-
pendencies (Line 5) (which is initially not the case), and then
invokes the function trickle-down-from with P whose pur-
pose is to estimate the position of exactly one minimal de-
pendency that generalizes P or return ⊥ if P and none of its
generalizations are estimated to be a dependency (Line 12).

In our example, we initially invoke trickle-down-from

with our peak P = ABCD. It now creates a priority queue
that orders the immediate generalizations of P , i.e., ABC,
ABD etc., by their estimated dependency error (Line 16).
These generalizations are potential minimal dependencies,
therefore any of them with an estimated error of less than
emax is recursively trickled down from (Lines 17–21). If the
recursion yields a minimal dependency candidate, Pyro im-
mediately reports it. In Figure 3, we recursively visit BCD
and then CD. Neither C nor D is estimated to be a depen-
dency, so CD might be a minimal dependency. Eventually,
we calculate the error of CD to make sure that it actually
is a dependency and return it (Lines 22–23). If, in contrast,
we had falsely assumed CD to be a dependency, we would
create a focused sample on CD so as to obtain better error
estimates for dependency candidates between CD and the
peak ABCD and continue the search at BCD.

Finally, we add CD to the estimated minimal dependen-
cies M (Line 13) and peek again from the peak priority
queue (Line 4), which still contains the original peakABCD.
However, now there is the alleged minimal dependency CD,

Algorithm 6: Calculate minimal hitting sets.

Data: attribute sets S, relation schema R
1 Function hitting-set(S)
2 T ← set trie initialized with ∅
3 LS ← list of elements in S
4 sort LS ascending by set size
5 foreach S ∈ LS do
6 S ← R \ S
7 V ← remove all subsets of S from T
8 foreach V ∈ V do
9 foreach A ∈ S do

10 if no subset of V A is in T then
11 add V A to T

12 return T

which explains ABCD. Still, we must not simply discard
this peak, because there might be further minimal depen-
dencies generalizing it. Therefore, we identify all maximal
dependency candidates that are a subset of ABCD but not a
superset of CD. As detailed below, Pyro determines those
candidates by calculating the minimal hitting sets of CD,
namely C and D, and removing them from ABCD (Line 8–
10), which yields ABD and ABC. These form the new
peaks from which the search for minimal dependencies is
continued. In our example, we estimate both to be non-
dependencies and remove them from the queue (Line 13).

Let us now explain the hitting set calculation in more
detail. Formally, a set is a hitting set of a set family S
(here: a set of attribute sets) if it intersects every set S ∈ S.
It is minimal if none of its subsets is a hitting set. The
calculation of minimal hitting sets is employed in the fol-
lowing traversal steps, too, and furthermore constitutes an
NP-hard problem [18]. Facing this computational complex-
ity, the problem should be solved as efficiently as possible.
Algorithm 6 displays how Pyro calculates all minimal hit-
ting sets for a set of attribute sets.

First, we initialize a set trie (cf. Section 5.1) with the
empty set as initial solution (Line 2). Next, we order the
attribute sets by size (Lines 3–4). If S contains two sets
A and B with A ⊆ B, we want to process A first, because
any intermediate hitting set that intersects A will also in-
tersect B. When processing B, we do not need to update
the intermediate solution. Then, we iterate the ordered in-
put attribute sets one after another (Line 5). Assume, we
have S = CD as above. Then, we remove all current hitting
sets that do not intersect with S by looking up subsets of
its inversion (Line 6–7); recall that we can perform subset
lookups on tries efficiently. In our example, the inversion of
CD is ABE and the initial solution in T , the empty set, is
a subset of it. Eventually, we combine all removed sets with
all attributes in S to re-establish the hitting set property
(Line 8–11). For instance, combining V = ∅ with S = CD
yields the two new hitting sets C and D. However, these new
hitting sets might not be minimal. Therefore, before adding
a new hitting set H back to the trie, we check if there is an
existing minimal hitting set in the trie that is a subset of
H. Again, subset look-ups can be performed efficiently on
tries. After all attributes from S have been processed, the
trie contains all minimal hitting sets.
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6.3 Validate
While the estimated set of minimal dependenciesM from

the trickle-down phase contains only verified dependencies,
it is not known whether these dependencies are minimal and
whetherM is complete. For instance, we might have incor-
rectly deemed several dependencies to be non-dependencies
in the in ascend or trickle-down phase. Pyro validates the
completeness of M with as few error calculations as possi-
ble. M is complete if and only if any dependency candidate
X ⊆ P is either a specialization of some allegedly minimal
dependency Y ∈M, i.e., X ⊇ Y , or X is a non-dependency.

To test this, it suffices to test the maximal alleged non-de-
pendencies “beneath” the peak, i.e., those dependency can-
didates that generalize P and whose specializations are all
known dependencies. If these maximal candidates are in-
deed non-dependencies, then so are all their generalizations
and M is complete. As in Algorithm 5, Pyro calculates
these candidates, denoted asM, by calculating the minimal
hitting sets of all elements inM and removing them from P .
For our example, we have hitting-sets({CD}) = {C,D}
and thus need to check P\C = ABD and P\D = ABC.

Pyro checks all candidates in M with two possible out-
comes. If those candidates are non-dependencies, then M
is indeed complete. If, however, M contains dependencies,
M is not complete. Nonetheless, we can use this result to
narrow the focus our search.

Let D ⊆ M denote said dependencies in M and assume
that ABD turned out to be a dependency, i.e., D = {ABD}.
Any dependency not covered byM must be a generalization
of some dependency in D, because any candidate X ⊆ P
is either a superset of some element in M or a subset of
some element M. Further, let N = M \ D denote the
non-dependencies in M. In our modified example, we have
N = {ABC}. These are maximal w.r.t. the peak P , i.e., all
their supersets that are also subsets of P are known depen-
dencies. We can now determine the dependency candidates
that are not subsets of any such maximal non-dependency
in N , denoted as N : We invert all elements in N w.r.t. P
and calculate their minimal hitting sets. For N = {ABC},
we get N = {D}. It follows that any dependency not cov-
ered byM is a specialization of some dependency candidate
in N and a generalization of some dependency in D, i.e., in
our example the unknown minimal dependencies must be a
superset of D and a subset of ABD.

As a result, Pyro can create a search sub-space with ex-
actly those dependency candidates and recursively process
it, including all steps presented in this section. In addition,
Pyro boosts the size of AS samples while working in this
sub-space so as to decrease the probability of new mispre-
dictions about the minimal dependencies. Still, in the case of
another misprediction Pyro can recursively create new sub-
spaces. The recursion is guaranteed to terminate, though,
because the sub-spaces are continuously shrinking. How-
ever, in our experiments we rarely saw a recursion depth of
even 2. After the recursion, Pyro eventually needs to check
for which dependencies inM the recursion has not yielded a
generalizing minimal dependency. Those dependencies were
minimal all along and must be reported as such.

6.4 Escape
After each search round, great parts of the search space

can be pruned. As shown in Figure 3, also launchpads might
now be in the pruned space. Unless these launchpads have

been found to be (minimal) dependencies, we must not dis-
card them, though: There might still be undiscovered min-
imal dependencies that are supersets of that launchpad.

Whenever Pyro picks up a pruned launchpad, it needs
to escape it out of the pruned search space part by adding
a minimum amount of attributes to it. Let us assume that
Pyro picks up the launchpad A once more. To determine
whether it is pruned, Pyro determines all previously vis-
ited peaks that are supersets of A, which is ABCD in our
case. Again, a hitting set calculation can now determine
minimum attribute sets to add to A, such that it is not a
subset of ABCD anymore: Pyro calculates the hitting sets
of R \ ABCD = E, which is simply E. By adding E to
A, we get the only minimal escaping (cf. Step (4) in Fig-
ure 3). Note that this operation is the exact inverse of the
relocation of peaks in Algorithm 5. However, because we
have the launchpad E, which is a subset of AE, we finally
have to discard AE and, as a matter of fact, all unknown
dependency candidates are indeed supersets of E.

Because Pyro maintains the launchpads, such that they
form exactly the minimal untested dependency candidates,
a search space is completed when it contains no more launch-
pads. As a result, Pyro will eventually terminate with the
complete set of dependencies of the search space.

7. EVALUATION
Pyro aims for efficient and scalable discovery of approx-

imate dependencies in given datasets. To evaluate in how
far Pyro attains this goal, we empirically investigate how
Pyro compares to (extensions of) three state-of-the-art al-
gorithms in terms of efficiency and scalability and further-
more conduct several in-depth analyses of Pyro. A the-
oretical comparison of the algorithms would be of limited
value, because in the worst case AUCC/AFD discovery is
of exponential complexity w. r. t. the number of profiled at-
tributes due to the possibly exponential numbers of depen-
dencies [2,29] – even a brute-force algorithm that checks ev-
ery dependency candidate would meet that complexity. An
average-case complexity analysis, on the other hand, would
have to resort to strong, perhaps unjustifiable, assumptions
on the data due to the adaptivity of the algorithms. That
being said, we close the evaluation with an investigation of
the interestingness of AUCCs and AFDs.

7.1 Experimental setup
We have carefully (re-)implemented Pyro, Tane, Fdep,

and Ducc/Dfd in Java, so that their runtimes are compara-
ble. For easy repeatability of our experiments, all algorithms
are integrated with the profiling frameworks Metanome [36]
and Metacrate [25]. Our Pyro prototype implements a
simple parallelization strategy (“Pyro (parallel)”) that tra-
verses multiple search spaces in parallel and also executes
multiple search rounds in a single search space simultane-
ously, when there are fewer search spaces than available
cores. Pyro further monitors the memory usage of the PLI
and AS caches and halves them when running low on mem-
ory. Additionally, we fixed a known issue regarding Tane’s
key-pruning [37] and extended both Tane and Fdep to out-
put also AUCCs. For Fdep and Ducc/Dfd specifically, we
consulted the original implementations whenever we found
that their respective publications were not specific enough.
Eventually, we modified Ducc/Dfd to discover approximate
dependencies as suggested in [2]. To our knowledge, this
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Figure 4: Runtime comparison of Pyro, Tane, Ducc/Dfd, and Fdep. The crosses indicate that an algorithm
either ran out of time or memory.

modification was never implemented or evaluated. There-
fore, we believe that the respective experiments are inter-
esting in itself.

We conducted our experiments on a Dell PowerEdge R430
with an Intel Xeon E5-2630 v4 (2.2 GHz, 10 cores, 20 threads,
25 MB cache), 32 GB RAM (2.4 MT/s), and 2 hard disks
(7.2 kRPM, SATA) running Ubuntu 16.04.1 and Oracle
JDK 1.8.0 112 with a maximum heap size of 24 GB. Un-
less specified otherwise, we considered an error threshold
of 0.01 for both AFDs and AUCCs and used an initial AS
sample size of 1,000 and a boost factor of 2 with Pyro.
The partition cache size for Ducc/Dfd was set to 1,000
in accordance to the suggested value and our main mem-
ory size [2]. Our datasets were stored as CSV files on disk.
Their sizes can be found in Table 2. For repeatability pur-
poses, our implementations and pointers to the datasets
can be found on our webpage: https://hpi.de/naumann/

projects/repeatability/data-profiling/fds.html.

Table 2: Overview of the evaluation datasets sorted
by their size (columns × tuples).

Dataset AFDs + AUCCs

Name Cols. Rows emax = 0.01 emax = 0.05

School results 27 14,384 3,408 1,527
Adult 15 32,561 1,848 1,015
Classification 12 70,859 119 1311
Reflns 37 24,769 9,396 3,345
Atom sites 31 32,485 79 78
DB status 35 29,787 108,003 45,617
Entity source 46 26,139 (unknown) (unknown)
Bio entry 9 184,292 29 39
Voter 19 100,001 647 201
FDR-15 15 250,001 225 225
FDR-30 30 250,001 900 900
Atom 31 160,000 1,582 875
Census 42 199,524 (unknown) (unknown)
Wiki image 12 777,676 92 74
Spots 15 973,510 75 79
Struct sheet 32 664,128 1,096 1,458
Ditag feature 13 3,960,124 187 260

7.2 Efficiency
Let us begin with a broad comparison of all four algo-

rithms to show in how far Pyro advances the state of the
art in AUCC and AFD discovery. For that purpose, we ran
all algorithms on the datasets from Table 2 on two differ-
ent, typical error thresholds. Note that we report runtimes
for Pyro in a parallel version (to show its best runtimes)
and a non-parallel version (for comparison with the other al-
gorithms). We also report runtimes for the logically flawed
Fdep algorithm (see Section 2) to include an algorithm that
is based on the comparison of all tuple pairs in a dataset.
The results are shown in Figure 4.

Obviously, Pyro is the most efficient among the correct
algorithms: While the non-parallel version is outperformed
on some easy-to-process datasets by at most 0.6 seconds,
Pyro outperforms its competitors by at least a factor of 2
in 59 % of the configurations. For that matter, for hard-
to-process datasets we observe the greatest speed-ups. For
instance on the DB status dataset for emax = 0.05, Pyro
outperforms the best competitor, Ducc/Dfd, at least by a
factor of 33 (or 7.7 h in absolute terms) – for the parallel
version, we even measured a speed-up factor of at least 123.
The actual speed-up might even be greater, because Ducc/
Dfd did not complete the profiling within the 8 h time limit.
This shows that Pyro’s approach to estimate and verify
dependency candidates is much more efficient than Tane’s
breadth-first search and Ducc/Dfd’s random walk search.

The above comparison omits Fdep, because it reports in-
correct results (see Section 2). Nonetheless, we find it to
be regularly inferior in terms of performance. The reason
is that it compares all possible tuple pairs in a dataset,
thereby incurring quadratic load in the number of tuples,
which is prohibitive on larger datasets. On the other hand,
the few scenarios where Fdep is faster than Pyro can be at-
tributed to its logical flaw: For instance on the DB status for
emax = 0.01, Fdep reports only 15,138 supposed dependen-
cies – 7× fewer than there actually are. And what is more,
67 % of these supposed dependencies are incorrect. Correct-
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Figure 5: Row and column scalability of Pyro, Ducc/Dfd, and Tane (emax = 0.01). Crosses indicate that an
algorithm ran out of memory and stopwatches mean that the algorithm exceeded the 1 h time limit.

ing those results would require additional time. Note that,
although Pyro also compares tuple pairs, it does not run
into the quadratic trap because it requires only a constant
number of comparisons (cf. Theorem 1) and reports correct
results because it does not deduce the final dependencies
from those tuple comparisons.

Clearly, Pyro is superior in terms of performance. Nev-
ertheless, no algorithm could profile the complete Entity
source and Census datasets within the time limit. The next
section shows the reason: These datasets entail tremendous
dependency sets.

7.3 Scalability
Our next experiment analyzes the algorithms’ scalability,

i. e., how they compare as the profiled datasets grow in the
number of tuples and columns. Note that we again exclude
Fdep from these and following detail analyses and include
both the non-parallel and parallel version of Pyro.

To determine the row scalability of the algorithms, we ex-
ecute them on various samples of the four datasets with the
most rows; Figures 5(a–d) depict the results. Because the
number of dependencies is mainly stable across the samples,
each algorithm tests more or less the same dependency can-
didates, regardless of the sample size. While all algorithms
exhibit a somewhat linear scaling behavior, Ducc/Dfd is
usually up to 20 times faster than Tane, and Pyro is up to
15 times faster than Ducc/Dfd. In both cases, the speed-
up increases as the sample size increases, which is because
on larger datasets the overhead, e. g., for initially loading
the data and maintaining AS samples to avoid PLI-based
error calculations, is more effectively redeemed.

In our column scalability experiments on the four datasets
with the most columns, Pyro also shows the best scaling
behavior, as can be seen in Figures 5(e–h): Ducc/Dfd is
up to 22 times faster than Tane and Pyro up to 12 times
faster than Ducc/Dfd– the more columns are considered,
the greater is the speed-up. A particularly interesting ob-
servation is that all algorithms’ runtime curves somewhat
follow the number of dependencies. Such behavior is opti-
mal, in the sense that any algorithm has to be at least of

linear complexity in its output size; still the algorithms dif-
fer greatly in terms of absolute runtimes. Also, the number
of columns that can be processed by each algorithm differs.
Tane always fails first due to its high memory demand. In
contrast, Pyro and Ducc/Dfd fail only when they exceed
the 1 h time limit of this experiment. They are less suscep-
tible to run out of main memory because of their dynamic
caches. Still, Pyro outperforms Ducc/Dfd because of its
high efficiency and, as a result, scales further.

Nonetheless, Pyro can only mitigate, but not completely
avoid the effects of the exponential complexity of the depen-
dency discovery problem, of course. Figure 6 breaks down
Pyro’s runtime from Figures 5(f–h), thereby showing that
the growing number of dependencies requires Pyro to calcu-
late more dependency errors, which dominates the runtime.
Avoiding the exponential complexity altogether would re-
quire a relaxation of the problem itself, which is not the
goal of this paper. However, the above experiments clearly
demonstrate Pyro’s improved scalability, thereby making it
an excellent basis for relaxed algorithms.
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Figure 6: Runtime breakdown of Pyro (emax = 0.01).

7.4 Memory requirements
A particular concern of data profiling algorithms is their

memory requirement, because computers vary greatly in the
amount of available main memory. And after all, perfor-
mance improvements might be just an advantage gained by
using the available main memory more extensively. Thus,
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we compare Pyro’s, Ducc/Dfd’s, and Tane’s memory re-
quirements. In detail, we execute all three algorithms with a
maximum heap size of 32 MB and continuously double this
value until the respective algorithm is able to process the
given dataset. As can be seen in Figure 7, Pyro always re-
quires the least amount of memory. In fact, we find Pyro to
run out of memory only while loading the data. In contrast
to Tane and Ducc/Dfd, Pyro pins only very few larger
data structures in main memory, while managing PLIs and
AS samples in caches that adapt themselves to the amount
of available main memory. This renders Pyro highly robust.
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Figure 7: Memory requirements of Pyro, Tane, and
Ducc/Dfd (emax = 0.01).

7.5 Sampling
One of Pyro’s principal approaches is to save costly de-

pendency error calculations by estimating the error of de-
pendency candidates. Even though Theorem 1 describes the
accuracy of Pyro’s estimator depending on the AS sample
size, it is unknown, which accuracy works best to find the
minimal dependencies in real-world datasets. To investi-
gate this matter, we execute Pyro with different AS sample
sizes on hard-to-profile datasets and display the results in
Figure 8.
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Figure 8: Comparison of Pyro’s sampling strategies
(emax = 0.01).

Apparently, not using AS samples (and thus error esti-
mations) is always the worst option, while AS sample sizes
of 1,000 and 10,000 work well on all tested datasets. That
being said, using a tiny sample is consistently better than
using no sampling at all to guide the search space traver-
sal. For instance, on the Atom dataset, using a sample of
only 10 agree sets reduces the number of dependency error
calculations from 15,708 to 7,920. A sample size of 10,000
further reduces this value to 4,562. Note that the latter
number leaves only little room for improvement: The Atom
dataset has 1,582 minimal dependencies and about as many
maximal non-dependencies, all of which need to be verified
by an individual error calculation in the optimal case.

7.6 Ranking
Table 2 reveals that certain datasets entail an unwieldy

number of approximate dependencies. While some use cases,
such as query optimization and feature selection (see Sec-
tion 1), can make use of all those dependencies regardless of
their semantics, other use cases, such as data cleaning, re-
quire semantically meaningful dependencies. This raises the
question whether users can be supported to quickly spot
relevant dependencies.

For that purpose, we developed a simple ranking scheme
for AFDs. For an AFD X → A, our metric models the
overlap in tuple pairs agreeing in either X or A with the
hypergeometric distribution and measures how many stan-
dard deviations the actual overlap and the mean overlap are
apart – let h denote this value. Intuitively, if h is large,
X and A strongly correlate. Additionally, we consider the
conditional probability that a tuple pair agrees in A given it
agrees in X. This is similar to the confidence of association
rules, thus let c denote this probability. Now, we can assign
each AFD c · sgnh · log |h| as ranking score, where sgn is the
signum function.

We applied this ranking to the Voter dataset, for which we
have column headers, and report the highest ranked AFDs:
(1+2) The AFDs voter id→voter reg num and voter reg num
→voter id uncover that both are equivalent voter identifica-
tions. Note that they are not keys, though. (3) The AFD
zip code→city reflects a rule of the data domain and lends it-
self to data cleaning. (4) The AFD first name→gender also
exposes a latent rule of the data domain, thereby support-
ing knowledge discovery. These examples demonstrate that
it is possible to quickly draw relevant dependencies from
large dependency sets. Note that, although often only few
of the discovered dependencies are meaningful, we must still
discover all of them: Unlike the error measures from Defini-
tion 1, our ranking criterion lacks the monotonicity required
for pruning during the discovery process.

8. CONCLUDING REMARKS
We presented Pyro, an efficient and scalable algorithm

to discover all AFDs and all AUCCs in a given dataset. Us-
ing a separate-and-conquer discovery strategy, Pyro quickly
approaches minimal dependencies via samples of agree sets,
efficiently verifies them, and effectively prunes the search
spaces with the discovered dependencies. In addition, Pyro
has a small memory footprint and benefits from parallel ex-
ecution. In our evaluation with state-of-the-art dependency
discovery algorithms, we found Pyro to be up to 33× more
efficient than the best competitor. Parallelization regularly
allows even greater speed-ups.

Pyro is formulated in an abstract manner that fits both
the AUCC and AFD discovery problem. It is hence interest-
ing to investigate whether Pyro can be used as a framework
to solve other lattice-based problems efficiently, e. g., fre-
quent itemset mining or hypergraph transversal calculation.
We are also investigating how to incorporate semantic mea-
sures for pruning: Besides filtering spurious dependencies,
considerably reduced result sizes might proportionally im-
prove Pyro’s performance.
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