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ABSTRACT
Streaming applications from algorithmic trading to tra�c
management deploy Kleene patterns to detect and aggre-
gate arbitrarily-long event sequences, called event trends.
State-of-the-art systems process such queries in two steps.
Namely, they first construct all trends and then aggregate
them. Due to the exponential costs of trend construction,
this two-step approach su↵ers from both a long delays and
high memory costs. To overcome these limitations, we pro-
pose the Graph-based Real-time Event Trend Aggregation
(GRETA) approach that dynamically computes event trend
aggregation without first constructing these trends. We
define the GRETA graph to compactly encode all trends.
Our GRETA runtime incrementally maintains the graph,
while dynamically propagating aggregates along its edges.
Based on the graph, the final aggregate is incrementally
updated and instantaneously returned at the end of each
query window. Our GRETA runtime represents a win-win
solution, reducing both the time complexity from exponen-
tial to quadratic and the space complexity from exponential
to linear in the number of events. Our experiments demon-
strate that GRETA achieves up to four orders of magnitude
speed-up and up to 50–fold memory reduction compared to
the state-of-the-art two-step approaches.

PVLDB Reference Format:

Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier.
GRETA: Graph-based Real-time Event Trend Aggregation.
PVLDB, 11(1): �80�-�92, 2017.
DOI: 10.14778/3136610.3136617

1. INTRODUCTION
Complex Event Processing (CEP) is a technology for sup-

porting streaming applications from algorithmic trading to
tra�c management. CEP systems continuously evaluate
event queries against high-rate streams composed of prim-
itive events to detect event trends such as stock market
down-trends and aggressive driving. In contrast to tradi-
tional event sequences of fixed length [19], event trends have
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arbitrary length [24]. They are expressed by Kleene closure.
Aggregation functions are applied to these trends to provide
valuable summarized insights about the current situation.
CEP applications typically must react to critical changes of
these aggregates in real time [6, 31, 32].
Motivating Examples. We now describe three applica-

tion scenarios of time-critical event trend aggregation.
• Algorithmic Trading. Stock market analytics plat-

forms evaluate expressive event queries against high-rate
streams of financial transactions. They deploy event trend
aggregation to identify and then exploit profit opportunities
in real time. For example, query Q1 computes the count
of down-trends per industrial sector. Since stock trends
of companies that belong to the same sector tend to move
as a group [12], the number of down-trends across di↵er-
ent companies in the same sector is a strong indicator of
an upcoming down trend for the sector. When this indica-
tor exceeds a certain threshold, a sell signal is triggered for
the whole sector including companies without down-trends.
These aggregation-based insights must be available to an al-
gorithmic trading system in near real time to exploit short-
term profit opportunities or avoid pitfalls.
Query Q1 computes the number of down-trends per sec-

tor during a time window of 10 minutes that slides every
10 seconds. These stock trends are expressed by the Kleene
plus operator S+. All events in a trend carry the same
company and sector identifier as required by the predicate
[company, sector]. The predicate S.price > NEXT(S).price
expresses that the price continually decreases from one event
to the next in a trend. The query ignores local price fluctu-
ations by skipping over increasing price records.

Q1 : RETURN sector, COUNT(⇤) PATTERN Stock S+
WHERE [company, sector] AND S.price > NEXT(S).price
GROUP-BY sector WITHIN 10 minutes SLIDE 10 seconds

• Hadoop Cluster Monitoring. Modern computer clus-
ter monitoring tools gather system measurements regarding
CPU and memory utilization at runtime. These measure-
ments combined with workflow-specific logs (such as start,
progress, and end of Hadoop jobs) form load distribution
trends per job over time. These load trends are aggregated
to dynamically detect and then tackle cluster bottlenecks,
unbalanced load distributions, and data queuing issues [32].
For example, when a mapper experiences increasing load
trends on a cluster, we might measure the total CPU cycles
per job of such a mapper. These aggregated measurements
over load distribution trends are leveraged in near real time
to enable automatic tuning of cluster performance.
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Query Q2 computes the total CPU cycles per job of each
mapper experiencing increasing load trends on a cluster dur-
ing a time window of 1 minute that slides every 30 seconds.
A trend matched by the pattern of Q2 is a sequence of a
job-start event S, any number of mapper performance mea-
surements M+, and a job-end event E. All events in a trend
must carry the same job and mapper identifiers expressed
by the predicate [job,mapper]. The predicate M.load <
NEXT(M).load requires the load measurements to increase
from one event to the next in a load distribution trend. The
query may ignore any event to detect all load trends of in-
terest for accurate cluster monitoring.

Q2 : RETURN mapper, SUM(M.cpu)
PATTERN SEQ(Start S, Measurement M+, End E)
WHERE [job,mapper] AND M.load < NEXT(M).load
GROUP-BY mapper WITHIN 1 minute SLIDE 30 seconds

• Tra�c Management is based on the insights gained
during continuous tra�c monitoring. For example, lever-
aging the maximal speed per vehicle that follows certain
trajectories on a road, a tra�c control system recognizes
congestion, speeding, and aggressive driving. Based on this
knowledge, the system predicts the tra�c flow and computes
fast and safe routes in real time to reduce travel time, costs,
noise, and environmental pollution.

Query Q3 detects tra�c jams which are not caused by
accidents. To this end, the query computes the number
and the average speed of cars continually slowing down in
a road segment without accidents during 5 minutes time
window that slides every minute. A trend matched by Q3

is a sequence of any number of position reports P+ with-
out an accident event A preceding them. All events in a
trend must carry the same vehicle and road segment iden-
tifiers expressed by the predicate [P.vehicle, segment]. The
speed of each car decreases from one position report to
the next in a trend, expressed by the predicate P.speed >
NEXT(P ).speed. The query may skip any event to detect
all relevant car trajectories for precise tra�c statistics.

Q3 : RETURN segment, COUNT(⇤), AVG(P.speed)
PATTERN SEQ(NOT Accident A, Position P+)
WHERE [P.vehicle, segment] AND

P.speed > NEXT(P ).speed
GROUP-BY segment WITHIN 5 minutes SLIDE 1 minute

State-of-the-Art Systems do not support incremental
aggregation of event trends. They can be divided into:

• CEP Approaches including SASE [6, 32], Cayuga [9],
and ZStream [22] support Kleene closure to express event
trends. While their query languages support aggregation,
these approaches do not provide any details on how they
handle aggregation on top of nested Kleene patterns. Given
no special optimization techniques, these approaches con-
struct all event trends prior to their aggregation (Figure 1).
These two-step approaches su↵er from high computation
costs caused by the exponential number of arbitrarily-long
trends. Our experiments in Section 10 confirm that such
two-step approaches take over two hours to compute event
trend aggregation even for moderate stream rates of 500k
events per window. Thus, they fail to meet the low-latency
requirement of time-critical applications. A-Seq [26] is the
only system we are aware of that targets incremental aggre-
gation of event sequences. However, it is restricted to the
simple case of fixed-length sequences such as SEQ(A,B,C).
It supports neither Kleene closure nor expressive predicates.

Therefore, A-Seq does not tackle the exponential complexity
of event trends – which now is the focus of our work.
• Streaming Systems support aggregation computation

over streams [8, 10, 13, 15, 30]. However, these approaches
evaluate simple Select-Project-Join queries with windows,
i.e., their execution paradigm is set-based. They support
neither event sequence nor Kleene closure as query opera-
tors. Typically, these approaches require the construction
of join-results prior to their aggregation. Thus, they define
incremental aggregation of single raw events but focus on
multi-query optimization techniques [13] and sharing aggre-
gation computation between sliding windows [15].
Challenges. We tackle the following open problems:
• Correct Online Event Trend Aggregation . Kleene

closure matches an exponential number of arbitrarily-long
event trends in the number of events in the worst case [32].
Thus, any practical solution must aim to aggregate event
trends without first constructing them to enable real-time
in-memory execution. At the same time, correctness must
be guaranteed. That is, the same aggregation results must
be returned as by the two-step approach.
• Nested Kleene Patterns. Kleene closure detects event

trends of arbitrary, statically unknown length. Worse yet,
Kleene closure, event sequence, and negation may be arbitra-
rily-nested in an event pattern, introducing complex inter-
dependencies between events in an event trend. Incremen-
tal aggregation of such arbitrarily-long and complex event
trends is an open problem.
• Expressive Event Trend Filtering . Expressive pred-

icates may determine event relevance depending on other
events in a trend. Since a new event may have to be com-
pared to any previously matched event, all events must be
kept. The need to store all matched events conflicts with the
instantaneous aggregation requirement. Furthermore, due
to the continuous nature of streaming, events expire over
time – triggering an update of all a↵ected aggregates. How-
ever, recomputing aggregates for each expired event would
put real-time system responsiveness at risk.

Figure 1: State-of-the-art versus our GRETA approach

Our Proposed GRETA Approach. We are the first to
tackle these challenges in our Graph-based Real-time Event
Trend Aggregation (GRETA) approach (Figure 1). Given
an event trend aggregation query q and a stream I, the
GRETA runtime compactly encodes all event trends matched
by the query q in the stream I into a GRETA graph. During
graph construction, aggregates are propagated from previ-
ous events to newly arrived events along the edges of the
graph following the dynamic programming principle. This
propagation is proven to assure incremental aggregation com-
putation without first constructing the trends. The final ag-
gregate is also computed incrementally such that it can be
instantaneously returned at the end of each window of q.
Contributions. Our key innovations include:
1) We translate a nested Kleene pattern P into a GRETA

template. Based on this template, we construct the GRETA
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graph that compactly captures all trends matched by pat-
tern P in the stream. During graph construction, the ag-
gregates are dynamically propagated along the edges of the
graph. We prove the correctness of the GRETA graph and
the graph-based aggregation computation.

2) To handle nested patterns with negative sub-patterns,
we split the pattern into positive and negative sub-patterns.
We maintain a separate GRETA graph for each resulting
sub-pattern and invalidate certain events if a match of a
negative sub-pattern is found.

3) To avoid sub-graph replication between overlapping
sliding windows, we share one GRETA graph between all
windows. Each event that falls into k windows maintains k
aggregates. Final aggregate is computed per window.

4) To ensure low-latency lightweight query processing, we
design the GRETA runtime data structure to support dy-
namic insertion of newly arriving events, batch-deletion of
expired events, incremental propagation of aggregates, and
e�cient evaluation of expressive predicates.

5) We prove that our GRETA approach reduces the time
complexity from exponential to quadratic in the number
of events compared to the two-step approach and in fact
achieves optimal time complexity. We also prove that the
space complexity is reduced from exponential to linear.

6) Our experiments using synthetic and real data sets
demonstrates that GRETA achieves up to four orders of mag-
nitude speed-up and consumes up to 50–fold less memory
compared to the state-of-the-art strategies [2, 24, 32].

Outline. We start with preliminaries in Section 2. We
overview our GRETA approach in Section 3. Section 4 covers
positive patterns, while negation is tackled in Section 5. We
consider other language clauses in Section 6. We describe
our data structure in Section 7 and analyze complexity in
Section 8. Section 9 discusses how our GRETA approach can
support additional language features. Section 10 describes
the experiments. Related work is discussed in Section 11.
Section 12 concludes the paper.

2. GRETA DATA AND QUERY MODEL
Time. Time is represented by a linearly ordered set of

time points (T,), where T ✓ Q+ and Q+ denotes the set
of non-negative rational numbers.

Event Stream. An event is a message indicating that
something of interest happens in the real world. An event
e has an occurrence time e.time 2 T assigned by the event
source. For simplicity, we assume that events arrive in-order
by time stamps. Otherwise, an existing approach to handle
out-of-order events can be employed [17, 18].

An event e belongs to a particular event type E, denoted
e.type = E and described by a schema which specifies the
set of event attributes and the domains of their values.

Events are sent by event producers (e.g., brokers) on an
event stream I. An event consumer (e.g., algorithmic trading
system) monitors the stream with event queries. We borrow
the query syntax and semantics from SASE [6, 32].

Definition 1. (Kleene Pattern.) Let I be an event stream.
A pattern P is recursively defined as follows:

• An event type E matches an event e 2 I, denoted
e 2 matches(E), if e.type = E.

• An event sequence operator SEQ(P
i

, P
j

) matches an
event sequence s = (e1, . . . , ek), denoted s 2 matches(SEQ(
P
i

, P
j

)), if 9m 2 N, 1  m  k, such that (e1, . . . , em) 2

matches(P
i

), (e
m+1, . . . , ek) 2 matches(P

j

), and 8l 2 N,
1  l < k, e

l

.time < e
l+1.time. Two events e

l

and e
l+1 are

called adjacent in the sequence s. For an event sequence s,
we define s.start = e1 and s.end = e

k

.
• A Kleene plus operator P

i

+ matches an event trend
tr = (s1, . . . , sk), denoted tr 2 matches(P

i

+)), if 8l 2 N,
1  l  k, s

l

2 matches(P
i

) and s
l

.end.time < s
l+1.start.

time. Two events s
l

.end and s
l+1.start are called adjacent

in the trend tr. For an event trend tr, we define tr.start =
s1.start and tr.end = s

k

.end.
• A negation operator NOT N appears within an event

sequence operator SEQ(P
i

,NOT N, P
j

) (see below). The
pattern SEQ(P

i

,NOT N,P
j

) matches an event sequence
s = (s

i

, s
j

), denoted s 2 matches(SEQ(P
i

,NOT N,P
j

)), if
s
i

2 matches(P
i

), s
j

2 matches(P
j

), and @s
n

2 matches(N)
such that s

i

.end.time < s
n

.start.time and s
n

.end.time <
s
j

.start.time. Two events s
i

.end and s
j

.start are called
adjacent in the sequence s.
A Kleene pattern is a pattern with at least one Kleene

plus operator. A pattern is positive if it contains no nega-
tion. If an operator in P is applied to the result of another
operator, P is nested. Otherwise, P is flat. The size of P
is the number of event types and operators in it.

All queries in Section 1 have Kleene patterns. The pat-
terns of Q1 and Q2 are positive. The pattern of Q3 contains
a negative sub-pattern NOT Accident A. The pattern of Q1

is flat, while the patterns of Q2 and Q3 are nested.
While Definition 1 enables construction of arbitrarily-nest-

ed patterns, nesting a Kleene plus into a negation and vice
versa is not useful. Indeed, the patterns NOT (P+) and
(NOT P )+ are both equivalent to NOT P . Thus, we as-
sume that a negation operator appears within an event se-
quence operator and is applied to an event sequence operator
or an event type. Furthermore, an event sequence opera-
tor applied to consecutive negative sub-patterns SEQ(NOT
P
i

, NOT P
j

) is equivalent to the pattern NOT SEQ(P
i

, P
j

).
Thus, we assume that only a positive sub-pattern may pre-
cede and follow a negative sub-pattern. Lastly, negation
may not be the outer most operator in a meaningful pat-
tern. For simplicity, we assume that an event type appears
at most once in a pattern. A straightforward extension of
our GRETA approach allows to drop this assumption [25].

Definition 2. (Event Trend Aggregation Query.) An
event trend aggregation query q consists of five clauses:
• Aggregation result specification (RETURN clause),
• Kleene pattern P (PATTERN clause),
• Predicates ✓ (optional WHERE clause),
• Grouping G (optional GROUP-BY clause), and
• Window w (WITHIN/SLIDE clause).
The query q requires each event in a trend matched by

its pattern P (Definition 1) to be within the same window
w, satisfy the predicates ✓, and carry the same values of
the grouping attributes G. These trends are grouped by
the values of G. An aggregate is computed per group. We
focus on distributive (such as COUNT, MIN, MAX, SUM)
and algebraic aggregation functions (such as AVG) since they
can be computed incrementally [11].
Let e be an event of type E and attr be an attribute of

e. COUNT(⇤) returns the number of all trends per group,
while COUNT(E) computes the number of all events e in
all trends per group. MIN(E.attr) (MAX(E.attr)) computes
the minimal (maximal) value of attr for all events e in all
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trends per group. SUM(E.attr) calculates the summation
of the value of attr of all events e in all trends per group.
Lastly, AVG(E.attr) is computed as SUM(E.attr) divided by
COUNT(E) per group.

Skip-Till-Any-Match Semantics. We focus on Kleene
patterns evaluated under the most flexible semantics, called
skip-till-any-match in the literature [6, 31, 32]. Skip-till-
any-match detects all possible trends by allowing to skip any
event in the stream as follows. When an event e arrives, it
extends each existing trend tr that can be extended by e.
In addition, the unchanged trend tr is kept to preserve op-
portunities for alternative matches. Thus, an event doubles
the number of trends in the worst case and the number of
trends grows exponentially in the number of events [26, 32].
While the number of all trends is exponential, an applica-
tion selects a subset of trends of interest using predicates,
windows, grouping, and negation (Definition 2).

Detecting all trends is necessary in some applications such
as algorithmic trading (Section 1). For example, given the
stream of price records I = {10, 2, 9, 8, 7, 1, 6, 5, 4, 3}, skip-
till-any-match is the only semantics that detects the down-
trend (10,9,8,7,6,5,4,3) by ignoring local fluctuations 2 and
1. Since longer stock trends are considered to be more
reliable [12], this long trend1. can be more valuable to
the algorithmic trading system than three shorter trends
(10,2), (9,8,7,1), and (6,5,4,3) detected under the skip-till-
next-match semantics that does not skip events that can be
matched (Section 9). Other use cases of skip-till-any-match
include financial fraud, health care, logistics, network secu-
rity, cluster monitoring, and e-commerce [6, 31, 32].

3. GRETA APPROACH IN A NUTSHELL
Our Event Trend Aggregation Problem to compute

event trend aggregation results of a query q against an event
stream I with minimal latency.

Figure 2: GRETA framework

Figure 2 provides an overview of our GRETA framework.
The GRETA Query Analyzer statically encodes the query
into a GRETA configuration. In particular, the pattern is
split into positive and negative sub-patterns (Section 5.1).
Each sub-pattern is translated into a GRETA template (Sec-
tion 4.1). Predicates are classified into vertex and edge pred-
icates (Section 6). Guided by the GRETA configuration,
the GRETA Runtime first filters and partitions the stream
based on the vertex predicates and grouping attributes of the
query. Then, the GRETA runtime encodes matched event

1We sketch how constraints on minimal trend length can be
supported by GRETA in [25]

Algorithm 1 GRETA template construction algorithm

Input: Positive pattern P
Output: GRETA template T
1: generate(P ) {
2: S  event types in P, T  ;, T = (S, T )
3: for each SEQ(P

i

, P
j

) in P do
4: t (end(P

i

), start(P
j

)), t.label “SEQ”
5: T  T [ {t}
6: for each P

i

+ in P do
7: t (end(P

i

), start(P
i

)), t.label “ + ”
8: T  T [ {t}
9: return T }
10: start(P ) {
11: switch P do
12: case E return E
13: case P

i

+ return start(P
i

)
14: case SEQ(P

i

, P
j

) return start(P
i

) }
15: end(P ) {
16: switch P do
17: case E return E
18: case P

i

+ return end(P
i

)
19: case SEQ(P

i

, P
j

) return end(P
j

) }

trends into a GRETA graph. During the graph construc-
tion, aggregates are propagated along the edges of the graph
in a dynamic programming fashion. The final aggregate is
updated incrementally, and thus is returned immediately at
the end of each window (Sections 4.2, 5.2, 6).

4. POSITIVE NESTED PATTERNS
We statically translate a positive pattern into a GRETA

template (Section 4.1) At runtime, the GRETA graph is
maintained according to this template (Section 4.2).

4.1 Static GRETA Template
The GRETA query analyzer translates a Kleene pattern

P into a Finite State Automaton that is then used as a
template during GRETA graph construction at runtime. For
example, the pattern P=(SEQ(A+,B))+ is translated into
the GRETA template in Figure 3.

Figure 3: GRETA template for (SEQ(A+,B))+

States correspond to event types in P . The start state is
labeled by the first type in P , denoted start(P ). Events of
type start(P ) are called START events. The end state has
label end(P ), i.e., the last type in P . Events of type end(P )
are called END events. All other states are labeled by types
mid(P ). Events of type E 2 mid(P ) are called MID events.
In Figure 3, start(P ) = A, end(P ) = B, and mid(P ) = ;.
Since an event type may appear in a pattern at most once

(Section 2), state labels are distinct. There is one start(P )
and one end(P ) event type per pattern P [25]. There can
be any number of event types in the set mid(P ). start(P ) 62
mid(P ) and end(P ) 62 mid(P ). An event type may be both
start(P ) and end(P ), for example, in the pattern A+.
Transitions correspond to operators in P . They connect

types of events that may be adjacent in a trend matched by
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(a) A+ (b) SEQ(A+, B) (c) (SEQ(A+, B))+ (d) (SEQ(A+,NOT SEQ(C,NOTE,D), B))+

Figure 4: Count of trends matched by the pattern P in the stream I = {a1, b2, c2, a3, e3, a4, c5, d6, b7, a8, b9}

P . If a transition connects an event type E
i

with an event
type E

j

, then E
i

is a predecessor event type of E
j

, denoted
E

i

2 P.predTypes(E
j

). In Figure 3, P.predTypes(A) =
{A,B} and P.predTypes(B) = {A}.

GRETA Template Construction Algorithm. Algo-
rithm 1 consumes a positive pattern P and returns the
automaton-based representation of P , called GRETA tem-
plate T = (S, T ). The states S correspond to the event
types in P (line 2), while the transitions T correspond to
the operators in P . Initially, the set T is empty (line 2).
For each event sequence SEQ(P

i

, P
j

) in P , there is a transi-
tion from end(P

i

) to start(P
j

) with label “SEQ” (lines 3–5).
Analogously, for each Kleene plus P

i

+ in P , there is a tran-
sition from end(P

i

) to start(P
i

) with label “+” (lines 6–8).
Start and end event types of a pattern are computed by the
auxiliary methods in lines 10–19.

Complexity Analysis. Let P be a pattern of size s (Def-
inition 1). To extract all event types and operators from P ,
P is parsed once in ⇥(s) time. For each operator, we deter-
mine its start and event event types in O(s) time. Thus, the
time complexity is quadratic O(s2). The space complexity
is linear in the size of the template ⇥(|S|+ |T |) = ⇥(s).

4.2 Runtime GRETA Graph
The GRETA graph is a runtime instantiation of the GRETA

template. The graph is constructed on-the-fly as events
arrive (Algorithm 2). The graph compactly captures all
matched trends and enables their incremental aggregation.

Compact Event Trend Encoding. The graph encodes
all trends and thus avoids their construction.

Vertices represent events in the stream I matched by the
pattern P . Each state with label E in the template is asso-
ciated with the sub-graph of events of type E in the graph.
We highlight each sub-graph by a rectangle frame. If E is an
end state, the frame is depicted as a double rectangle. Oth-
erwise, the frame is a single rectangle. An event is labeled by
its event type, time stamp, and intermediate aggregate (see
below). Each event is stored once. Figure 4(c) illustrates
the template and the graph for the stream I.

Edges connect adjacent events in a trend matched by the
pattern P in a stream I (Definition 1). While transitions
in the template express predecessor relationships between
event types in the pattern, edges in the graph capture pre-
decessor relationships between events in a trend. In Fig-
ure 4(c), we depict a transition in the template and its re-
spective edges in the graph in the same way. A path from

a START to an END event in the graph corresponds to a
trend. The length of these trends ranges from the shortest
(a1, b2) to the longest (a1, b2, a3, a4, b7, a8, b9).
In summary, the GRETA graph in Figure 4(c) compactly

captures all 43 event trends matched by the pattern P in
the stream I. In contrast to the two-step approach, the
graph avoids repeated computations and replicated storage
of common sub-trends such as (a1, b2).
Dynamic Aggregation Propagation. Intermediate ag-

gregates are propagated through the graph from previous
events to new events in dynamic programming fashion. Fi-
nal aggregate is incrementally computed based on interme-
diate aggregates. In the examples below, we compute event
trend count COUNT(*) as defined in Section 2. Same prin-
ciples apply to other aggregation functions [25].
Intermediate Count e.count of an event e corresponds

to the number of (sub) trends in G that begin with a START
event in G and end at e. When e is inserted into the graph,
all predecessor events of e connect to e. That is, e extends
all trends that ended at a predecessor event of e. To accu-
mulate the number of trends extended by e, e.count is set
to the sum of counts of the predecessor events of e. In ad-
dition, if e is a START event, it starts a new trend. Thus,
e.count is incremented by 1. In Figure 4(c), the count of the
START event a4 is set to 1 plus the sum of the counts of its
predecessor events a1, b2, and a3.

a4.count = 1 + (a1.count+ b2.count+ a3.count) = 6

a4.count is computed once, stored, and reused to com-
pute the counts of b7, a8, and b9 that a4 connects to. For
example, the count of b7 is set to the sum of the counts of
all predecessor events of b7.

b7.count = a1.count+ a3.count+ a4.count = 10

Final Count corresponds to the sum of the counts of all
END events in the graph.

final count = b2.count+ b7.count+ b9.count = 43

In summary, the count of a new event is computed based
on the counts of previous events in the graph following the
dynamic programming principle. Each intermediate count
is computed once. The final count is incrementally updated
by each END event and instantaneously returned at the end
of each window.

Definition 3. (GRETA Graph.) The GRETA graph G =
(V,E, final count) for a query q and a stream I is a directed
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Algorithm 2 GRETA algorithm for positive patterns

Input: Positive pattern P , stream I
Output: Count of trends matched by P in I
1: process pos pattern(P, I) {
2: V  ;, final count 0
3: for each e 2 I of type E do
4: Pr  V.predEvents(P.predTypes(E))
5: if e.type = start(P ) or Pr 6= ; then
6: V  V [ e, e.count (E = start(P )) ? 1 : 0
7: for each p 2 Pr do e.count += p.count
8: if E = end(P ) then final count += e.count
9: return final count }

acyclic graph with a set of vertices V , a set of edges E, and
a final count. Each vertex v 2 V corresponds to an event
e 2 I matched by q. A vertex v has the label (e.type e.time :
e.count) (Theorem 2). For two vertices v

i

, v
j

2 V , there is
an edge (v

i

, v
j

) 2 E if their respective events e
i

and e
j

are adjacent in a trend matched by q. Event v
i

is called a
predecessor event of v

j

.

The GRETA graph has di↵erent shapes depending on the
pattern and the stream. Figure 4(a) shows the graph for the
pattern A+. Events of type B are not relevant for it. Events
of type A are both START and END events. Figure 4(b) de-
picts the GRETA graph for the pattern SEQ(A+, B). There
are no dashed edges since b’s may not precede a’s.
Based on the GRETA graph, Theorems 1 and 2 define the

event trend count computation, i.e., COUNT(*) as defined
in Definition 2.

Theorem 1 (Correctness of the GRETA Graph).
Let G be the GRETA graph for a query q and a stream I.
Let P be the set of paths from a START to an END event in
G. Let T be the set of trends detected by q in I. Then, the
set of paths P and the set of trends T are equivalent. That
is, for each path p 2 P there is a trend tr 2 T with same
events in the same order and vice versa.

Theorem 2 (Event Trend Count Computation).
Let G be the GRETA graph for a query q and a stream I and
e 2 I be an event with predecessor events Pr in G. The
intermediate count e.count is the number of (sub) trends in
G that start at a START event and end at e. e.count =P

p2Pr

p.count. If e is a START event, e.count is incre-
mented by one. Let End be the END events in G. The final
count is the number of trends captured by G. final count =P

end2End

end.count.

The proofs of Theorems 1 and 2 are omitted here due
to space constraints. We refer the reader to the extended
version of this paper [25].

GRETA Algorithm for a Positive Patterns (Algo-
rithm 2) computes the number of trends matched by the pat-
tern P in the stream I. The set of vertices V in the GRETA

graph is initially empty (line 2). Since each edge is traversed
exactly once, edges are not stored. When an event e of type
E arrives, the method V.predEvents(P.predTypes(E)) re-
turns the predecessor events of e in the graph, i.e., previous
events of the predecessor types of E (line 4). A START
event is always inserted into the graph since it always starts
a new trend, while a MID or an END event is inserted only
if it has predecessor events (lines 5–6). The count of e is

Algorithm 3 Pattern split algorithm

Input: Pattern P with negative sub-patterns
Output: Set S of sub-patterns of P
1: S  {P}
2: split(P ) {
3: switch P do
4: case P

i

+ : S  S [ split(P
i

)
5: case SEQ(P

i

, P
j

) : S  S [ split(P
i

) [ split(P
j

)
6: case NOT P

i

:
7: Parent S.getPatternContaining(P )
8: P

i

.previous Parent.getPrevious(P )
9: P

i

.following  Parent.getFollowing(P )
10: S.replace(Parent, Parent� P )
11: S  S [ {P

i

} [ split(P
i

)
12: return S }

increased by the counts of its predecessor events (line 7). If
e is a START event, its count is incremented by 1 (line 6).
If e is an END event, the final count is increased by the
count of e (line 8). This final count is returned (line 9). We
prove the correctness of Algorithm 2 in [25]. Its complexity
is analyzed in Section 8.

5. PATTERNS WITH NESTED NEGATION
To handle nested patterns with negation, we split the pat-

tern into positive and negative sub-patterns at compile time
(Section 5.1). At runtime, we then maintain the GRETA

graph for each of these sub-patterns (Section 5.2).

5.1 Static GRETA Template
According to Section 2, negation appears within a se-

quence preceded and followed by positive sub-patterns. Thus,
we focus on the patterns of the form P = SEQ(P

i

,NOTN,P
j

)
below and consider the special cases SEQ(P

i

,NOTN) and
SEQ(NOTN,P

j

) in [25]. The pattern P means that no
matches of N may occur between the matches of P

i

and P
j

.
A match of N disqualifies the current matches of P

i

from
contributing to a trend detected by P . A match of N marks
all events in the graph of the previous event type end(P

i

) as
invalid to connect to any future event of the following event
type start(P

j

). Only valid events of type end(P
i

) connect
to events of type start(P

j

).

Figure 5: GRETA template for the pattern (SEQ(A+, NOT
SEQ(C, NOT E, D), B))+

Example 1. The pattern (SEQ(A+,NOT SEQ(C,NOT E,
D),B))+ is split into a positive sub-pattern (SEQ(A+, B))+
and two negative sub-patterns SEQ(C,D) and E. Figure 5
illustrates the previous and following connections between a
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template for a negative sub-pattern and event types in the
template for its parent pattern.

Pattern Split Algorithm. Algorithm 3 consumes a
pattern P , splits it into positive and negative sub-patterns,
and returns the set S of these sub-patterns. At the begin-
ning, S contains the pattern P (line 1). The algorithm tra-
verses P top-down. If it encounters a negative sub-pattern
P = NOT P

i

, it finds the sub-pattern containing P , called
Parent pattern, computes the previous and following event
types of P

i

, and removes P from Parent (lines 7–10). The
pattern P

i

is added to S and the algorithm is called recur-
sively on P

i

(line 11). Since the algorithm traverses the
pattern P top-down once, the time and space complexity
are linear in the size of the pattern s, i.e., ⇥(s).

Definition 4. (Dependent GRETA Graph.) Let G
N

and G
P

be GRETA graph that are constructed according
to templates T

N

and T
P

respectively. The GRETA graph
G

P

is dependent on the graph G
N

if there is a previous or
following connection from T

N

to an event type in T
P

.

5.2 Runtime GRETA Graphs
Definition 5. (Invalid Event.) Let G

P

and G
N

be GRE-
TA graphs such that G

P

is dependent on G

N

. Let tr = (e1, . . . ,
e

n

) be a finished trend captured by G

N

, i.e., e
n

is an END event.
The trend tr marks all events of the previous event type that
arrived before e1.time as invalid to connect to any event of the
following event type that will arrive after e

n

.time.

Example 2. Figure 4(d) depicts the graphs for the sub-
patterns from Example 1. The match e3 of the negative
sub-pattern E marks c2 as invalid to connect to any future
d. Invalid events are highlighted by a darker background.
Analogously, the match (c5, d6) of the negative sub-pattern
SEQ(C,D) marks all a’s before c5 (a1, a3, a4) as invalid to
connect to any b after d6. b7 has no valid predecessor events
and thus cannot be inserted. a8 is inserted and all previous
a’s are connected to it. The marked a’s are valid to connect
to new a’s. b9 is inserted and its valid predecessor event a8
is connected to it. The marked a’s may not connect to b9.

Event Pruning. Negation allows us to purge events from
the graph to speed-up insertion of new events and aggrega-
tion propagation. The following events can be deleted:

• Finished Trend Pruning . A finished trend that is
matched by a negative sub-pattern can be deleted once it
has invalidated all respective events.

• Invalid Event Pruning . An invalid event of type
end(P

i

) will never connect to any new event if events of type
end(P

i

) may precede only events of type start(P
j

). The ag-
gregates of such invalid events will not be propagated. Thus,
such events may be safely purged from the graph.

Example 3. Continuing Example 2 in Figure 4(d), the in-
valid c2 will not connect to any new event since c’s may
connect only to d’s. Thus, c2 is purged. e3 is also deleted.
Once a’s before c5 are marked, c5 and d6 are purged. In con-
trast, the marked events a1, a3, and a4 may not be removed
since they are valid to connect to future a’s.

Theorem 3. (Correctness of Event Pruning.) Let
G

P

and G
N

be GRETA graphs such that G
P

is dependent on
G

N

. Let G0
P

be the same as G
P

but without invalid events
of type end(P

i

) if P.predTypes(start(P
j

)) = {end(P
i

)}. Let
G0

N

be the same as G
N

but without finished event trends.
Then, G0

P

returns the same aggregation results as G
P

.

The proof of Theorem 3 is omitted due to space limita-
tions. Please refer to the extended version of this paper [25].

GRETA Algorithm for Patterns with Negation. Al-
gorithm 2 is called on each event sub-pattern with the fol-
lowing modifications. First, only valid predecessor events
are returned in line 4. Second, if the algorithm is called on
a negative sub-pattern N and a match is found in line 12,
then all previous events of the previous event type of N
are either deleted or marked as incompatible with any fu-
ture event of the following event type of N . Afterwards, the
match of N is purged from the graph. GRETA concurrency
control is described in Section 7.

6. OTHER LANGUAGE CLAUSES
We now expand our GRETA approach to handle sliding

windows, predicates, and grouping.
Sliding Windows. Due to continuous nature of stream-

ing, an event may contribute to the aggregation results in
several overlapping windows. Furthermore, events may ex-
pire in some windows but remain valid in other windows.
• GRETA Sub-Graph Replication . A naive solution

would build a GRETA graph for each window independently
from other windows. Thus, it would replicate an event e
across all windows that e falls into. Worse yet, this solution
introduces repeated computations, since an event p may be
predecessor event of e in multiple windows.

Example 4. In Figure 6(a), we count the number of trends
matched by the pattern (SEQ(A+, B))+ within a 10-seconds-
long window that slides every 3 seconds. The events a1–b9
fall into window W1, while the events a4–b9 fall into win-
dow W2. If a GRETA graph is constructed for each window,
the events a4–b9 are replicated in both windows and their
predecessor events are recomputed for each window.

• GRETA Sub-Graph Sharing . To avoid these draw-
backs, we share a sub-graph G across all windows to which
G belongs. Let e be an event that falls into k windows.
The event e is stored once and its predecessor events are
computed once across all k windows. The event e main-
tains a count fro each window. To di↵erentiate between k
counts maintained by e, each window is assigned an identi-
fier wid [16]. The count with identifier wid of e (e.count

wid

)
is computed based on the counts with identifier wid of e’s
predecessor events (line 10 in Algorithm 2). The final count
for a window wid (final count

wid

) is computed based on the
counts with identifier wid of the END events in the graph
(line 12). In Example 4, the events a4–b9 fall into two win-
dows and thus maintain two counts in Figure 6(b). The first
count is for W1, the second one for W2.
Predicates on vertices and edges of the GRETA graph

are handled di↵erently by the GRETA runtime.
• Vertex Predicates restrict the vertices in the GRETA

graph. They are evaluated on single events to either filter
or partition the stream [26].
Local predicates restrict the attribute values of events, for

example, companyID=IBM. They purge irrelevant events
early. We associate each local predicate with its respective
state in the GRETA template.
Equivalence predicates require all events in a trend to have

the same attribute values, for example, [company, sector] in
query Q1. They partition the stream by these attribute
values. Thereafter, GRETA queries are evaluated against
each sub-stream in a divide and conquer fashion.
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(a) GRETA sub-graph replication (b) GRETA sub-graph sharing

Figure 6: Sliding window WINDOW 10 seconds SLIDE 3 seconds

Figure 7: Edge predicate
A.attr < NEXT(A).attr

• Edge Predicates restrict the edges in the graph (line 4
of Algorithm 2). Events connected by an edge must satisfy
these predicates. Therefore, edge predicates are evaluated
during graph construction. We associate each edge predicate
with its respective transition in the GRETA template.

Example 5. The edge predicate A.attr < NEXT(A).attr
in Figure 7 requires the value of attribute attr of events of
type A to increase from one event to the next in a trend.
The attribute value is shown in the bottom left corner of a
vertex. Only two dotted edges satisfy this predicate.

Event Trend Grouping. As illustrated by our moti-
vating examples in Section 1, event trend aggregation often
requires event trend grouping. Analogously to A-Seq [26],
our GRETA runtime first partitions the event stream into
sub-streams by the values of grouping attributes. A GRETA

graph is then maintained separately for each sub-stream.
Final aggregates are output per sub-stream.

7. GRETA FRAMEWORK
Putting Setions 4–6 together, we now describe the GRETA

runtime data structures and parallel processing.
Data Structure for a Single GRETA Graph. Edges

logically capture the paths for aggregation propagation in
the graph. Each edge is traversed exactly once to com-
pute the aggregate of the event to which the edge connects
(lines 8–10 in Algorithm 2). Hence, edges are not stored.

Vertices must be stored in such a way that the predecessor
events of a new event can be e�ciently determined (line 4).
To this end, we leverage the following data structures. To
quickly locate previous events, we divide the stream into
non-overlapping consecutive time intervals, calledTime Pa-
nes [15]. Each pane contains all vertices that fall into it
based on their time stamps. These panes are stored in a
time-stamped array in increasing order by time (Figure 8).
The size of a pane depends on the window specifications
and stream rate such that each query window is composed
of several panes – allowing panes to be shared between over-
lapping windows [8, 15]. To e�ciently find vertices of prede-
cessor event types, each pane contains an Event Type Hash
Table that maps event types to vertices of this type.

To support edge predicates, we utilize a tree index that
enables e�cient range queries. The overhead of maintaining
Vertex Trees is reduced by event sorting and a pane purge
mechanism. An event is inserted into the Vertex Tree for its
respective pane and event type. This sorting by time and
event type reduces the number of events in each tree. Fur-
thermore, instead of removing single expired events from the

Figure 8: Data structure for a single GRETA graph

Vertex Trees, a whole pane with its associated data struc-
tures is deleted after the pane has contributed to all windows
to which it belongs. To support sliding windows, each vertex
e maintains a Window Hash Table storing an aggregate
per window that e falls into. Similarly, we store final aggre-
gates per window in the Results Hash Table.
Data Structure for GRETA Graph Dependencies.

To support negative sub-patterns, we maintain a Graph
Dependencies Hash Table that maps a graph identifier
G to the identifiers of graphs upon which G depends.
Parallel Processing. The grouping clause partitions the

stream into sub-streams that are processed in parallel inde-
pendently from each other. Such stream partitioning enables
a highly scalable execution as demonstrated in Section 10.4.
In contrast, negative sub-patterns require concurrent main-

tenance of inter-dependent GRETA graphs. To avoid race
conditions, we deploy the time-based transaction model [21].
A stream transaction is a sequence of operations triggered
by all events with the same time stamp on the same GRETA

graph. The application time stamp of a transaction (and
all its operations) coincides with the application time stamp
of the triggering events. For each time stamp t and each
GRETA graph G, our time-driven scheduler waits till the
processing of all transactions with time stamps smaller than
t on the graph G and other graphs that G depends upon is
completed. Then, the scheduler extracts all events with the
time stamp t, wraps their processing into transactions, and
submits them for execution.
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8. OPTIMALITY OF GRETA APPROACH
We now analyze the complexity of GRETA. Since a nega-

tive sub-pattern is processed analogously to a positive sub-
pattern (Section 5), we focus on positive patterns below.

Theorem 4 (Complexity). Let q be a query with edge
predicates, I be a stream, G be the GRETA graph for q and I,
n be the number of events per window, and k be the number
of windows into which an event falls. The time complexity
of GRETA is O(n2k), while its space complexity is O(nk).

Proof. Time Complexity. Let e be an event of type
E. The following steps are taken to process e. Since events
arrive in-order by time stamps (Section 2), the Time Pane
to which e belongs is always the latest one. It is accessed in
constant time. The Vertex Tree in which e will be inserted is
found in the Event Type Hash Table mapping the event type
E to the tree in constant time. Depending on the attribute
values of e, e is inserted into its Vertex Tree in logarithmic
time O(log

b

m) where b is the order of the tree and m is the
number of elements in the tree, m  n.

The event e has n predecessor events in the worst case,
since each vertex connects to each following vertex under
the skip-till-any-match semantics. Let x be the number
of Vertex Trees storing previous vertices that are of pre-
decessor event types of E and fall into a sliding window
wid 2 windows(e), x  n. Then, the predecessor events of
e are found in O(log

b

m +m) time by a range query in one
Vertex Tree with m elements. The time complexity of range
queries in x Vertex Trees is computed as follows:

xX

i=1

O(log
b

m
i

+m
i

) =
xX

i=1

O(m
i

) = O(n).

If e falls into k windows, a predecessor event of e up-
dates at most k aggregates of e. If e is an END event, it also
updates k final aggregates. Since these aggregates are main-
tained in hash tables, updating one aggregate takes constant
time. GRETA concurrency control ensures that all graphs
this graph G depends upon finishing processing all events
with time stamps less than t before G may process events
with time stamp t. Therefore, all invalid events are marked
or purged before aggregates are updated in G at time t.
Consequently, an aggregate is updated at most once by the
same event. Putting it all together, the time complexity is:

O(n(log
b

m+ nk)) = O(n2k).

Space Complexity. The space complexity is determined
by x Vertex Trees and k counts maintained by each vertex.

xX

i=1

O(m
i

k) = O(nk). 2

Theorem 5 (Time Optimality). Let n be the num-
ber of events per window and k be the number of windows
into which an event falls. Then, GRETA has optimal worst-
case time complexity O(n2k).

Proof. Any event trend aggregation algorithm must pro-
cess n events to guarantee correctness of aggregation re-
sults. Since any previous event may be compatible with a
new event e under the skip-till-any-match semantics [31], the
edge predicates of the query q must be evaluated to decide
the compatibility of e with n previous events in worst case.
While we utilize a tree-based index to sort events by the

most selective predicate, other predicates may have to be
evaluated in addition. Thus, each new event must be com-
pared to each event in the graph in the worst case. Lastly, a
final aggregate must be computed for each window of q. An
event that falls into k windows contributes to k aggregates.
In summary, the time complexity O(n2k) is optimal.

9. DISCUSSION
In this section, we sketch how our GRETA approach can

be extended to support additional language features.
Disjunction and Conjunction can be supported by our

GRETA approach without changing its complexity because
the count for a disjunctive or a conjunctive pattern P can
be computed based on the counts for the sub-patterns of
P as defined below. Let P

i

and P
j

be patterns (Defini-
tion 1). Let P

ij

be the pattern that detects trends matched
by both P

i

and P
j

. P
ij

can be obtained from its DFA repre-
sentation that corresponds to the intersection of the DFAs
for P

i

and P
j

[28]. Let COUNT(P ) denote the number of
trends matched by a pattern P . Let C

ij

= COUNT(P
ij

),
C

i

= COUNT(P
i

) � C
ij

, and C
j

= COUNT(P
j

) � C
ij

. In
contrast to event sequence and Kleene plus (Definition 1),
disjunctive and conjunctive patterns do not impose a time
order constraint upon trends matched by their sub-patterns.
Disjunction (P

i

_P
j

) matches a trend that is a match of
P
i

or P
j

. COUNT(P
i

_P
j

) = C
i

+C
j

�C
ij

. C
ij

is subtracted
to avoid counting trends matched by P

ij

twice.
Conjunction (P

i

^ P
j

) matches a pair of trends tr
i

and
tr

j

where tr
i

is a match of P
i

and tr
j

is a match of P
j

.
COUNT(P

i

^P
j

) = C
i

⇤C
j

+C
i

⇤C
ij

+C
j

⇤C
ij

+
�
Cij
2

�
since

each trend detected only by P
i

(not by P
j

) is combined with
each trend detected only by P

j

(not by P
i

). In addition, each
trend detected by P

ij

is combined with each other trend
detected only by P

i

, only by P
j

, or by P
ij

.
Kleene Star and Optional Sub-patterns can also be

supported without changing the complexity because they are
syntactic sugar operators. Indeed, SEQ(P

i

⇤, P
j

) = SEQ(P
i

+,
P
j

) _ P
j

and SEQ(P
i

?, P
j

) = SEQ(P
i

, P
j

) _ P
j

.

Table 1: Event selection semantics

Event selection
semantics

Skipped
events

Number
of trends

Skip-till-any-match Any Exponential
Skip-till-next-match Irrelevant

Polynomial
Contiguous None

Event Selection Semantics are summarized in Table 1.
As explained in Section 2, we focus on Kleene patterns
evaluated under the most flexible semantics returning all
matches, called skip-till-any-match in the literature [6, 31,
32]. Other semantics return certain subsets of matches [6,
31, 32]. Skip-till-next-match skips only those events that
cannot be matched, while contiguous semantics skips no event.
To support these semantics, Definition 1 of adjacent events
in a trend must be adjusted. Then, fewer edges would be es-
tablished in the GRETA graph than for skip-till-any-match
resulting in fewer trends. Based on this modified graph,
Theorem 2 defines the event trend count computation.
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(a) Latency (b) Memory (c) Throughput

Figure 9: Positive patterns (Stock real data set)

(a) Latency (b) Memory (c) Throughput

Figure 10: Patterns with negative sub-patterns (Stock real data set)

10. PERFORMANCE EVALUATION

10.1 Experimental Setup
Infrastructure. We have implemented our GRETA ap-

proach in Java with JRE 1.7.0 25 running on Ubuntu 14.04
with 16-core 3.4GHz CPU and 128GB of RAM. We execute
each experiment three times and report their average.

Data Sets. We evaluate the performance of our GRETA

approach using the following data sets.
• Stock Real Data Set . We use the real NYSE data

set [5] with 225k transaction records of 19 companies in 10
sectors. Each event carries volume, price, time stamp in
seconds, type (sell or buy), company, sector, and transaction
identifiers. We replicate this data set 10 times.

• Linear Road Benchmark Data Set . We use the traf-
fic simulator of the Linear Road benchmark [7] for streaming
systems to generate a stream of position reports from vehi-
cles for 3 hours. Each position report carries a time stamp in
seconds, a vehicle identifier, its current position, and speed.
Event rate gradually increases during 3 hours until it reaches
4k events per second.

Table 2: Attribute values

Attribute Distribution min–max

Mapper id, job id Uniform 0–10
CPU, memory Uniform 0–1k
Load Poisson with � = 100 0–10k

• Cluster Monitoring Data Set . Our stream genera-
tor creates cluster performance measurements for 3 hours.
Each event carries a time stamp in seconds, mapper and job
identifiers, CPU, memory, and load measurements. The dis-
tribution of attribute values is summarized in Table 2. The
stream rate is 3k events per second.

Event Queries. Unless stated otherwise, we evaluate
query Q1 (Section 1) and its nine variations against the
stock data set. These query variations di↵er by the predi-
cate S.price⇤X < NEXT(S).price that requires the price to
increase (or decrease with >) by X 2 {1, 1.05, 1.1, 1.15, 1.2}
percent from one event to the next in a trend. Similarly, we
evaluate query Q2 and its nine variations against the clus-
ter data set, and query Q3 and its nine variations against
the Linear Road data set. We have chosen these queries be-
cause they contain all clauses (Definition 2) and allow us to
measure the e↵ect of each clause on the number of matched
trends. The number of matched trends ranges from few
hundreds to trillions. In particular, we vary the number of
events per window, presence of negative sub-patterns, pred-
icate selectivity, and number of event trend groups.
Methodology. We compare GRETA to CET [24], SA-

SE [32], and Flink [2]. To achieve a fair comparison, we
have implemented CET and SASE on top of our platform.
We execute Flink on the same hardware as our platform.
While Section 11 is devoted to a detailed discussion of these
approaches, we briefly sketch their main ideas below.
• CET [24] is the state-of-the-art approach to event trend

detection. It stores and reuses partial event trends while
constructing the final event trends. Thus, it avoids the re-
computation of common sub-trends. While CET does not
explicitly support aggregation, we extended this approach
to aggregate event trends upon their construction.
• SASE [32] supports aggregation, nested Kleene pat-

terns, predicates, and windows. It implements the two-step
approach as follows. (1) Each event e is stored in a stack
and pointers to e’s previous events in a trend are stored. For
each window, a DFS-based algorithm traverses these point-
ers to construct all trends. (2) These trends are aggregated.
• Flink [2] is an open-source streaming platform that sup-

ports event pattern matching. We express our queries using
Flink operators. Like other industrial systems [1, 3, 4], Flink
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(a) Latency (b) Memory (c) Throughput

Figure 11: Selectivity of edge predicates (Linear Road benchmark data set)

(a) Latency (b) Memory (c) Throughput

Figure 12: Number of event trend groups (Cluster monitoring data set)

does not explicitly support Kleene closure. Thus, we flatten
our queries, i.e., for each Kleene query q we determine the
length l of the longest match of q. We specify a set of fixed-
length event sequence queries that cover all possible lengths
from 1 to l. Flink is a two-step approach.

Metrics. We measure common metrics for streaming sys-
tems, namely, latency, throughput, and memory. Latency
measured in milliseconds corresponds to the peak time dif-
ference between the time of the aggregation result output
and the arrival time of the latest event that contributes to
the respective result. Throughput corresponds to the average
number of events processed by all queries per second. Mem-
ory consumption measured in bytes is the peak memory for
storing the GRETA graph for GRETA, the CET graph and
trends for CET, events in stacks, pointers between them,
and trends for SASE, and trends for Flink.

10.2 Number of Events per Window
Positive Patterns. In Figure 9, we evaluate positive

patterns against the stock real data set while varying the
number of events per window.

Flink does not terminate within several hours if the num-
ber of events exceeds 100k because Flink is a two-step ap-
proach that evaluates a set of event sequence queries for
each Kleene query. Both the unnecessary event sequence
construction and the increased query workload degrade the
performance of Flink. For 100k events per window, Flink
requires 82 minutes to terminate, while its memory require-
ment for storing all event sequences is close to 1GB. Thus,
Flink is neither real time nor lightweight.

SASE. The latency of SASE grows exponentially in the
number of events until it fails to terminate for more than
500k events. Its throughput degrades exponentially. De-
layed responsiveness of SASE is explained by the DFS-based
stack traversal which re-computes each sub-trend tr for each

longer trend containing tr. The memory requirement of
SASE exceeds the memory consumption of GRETA 50–fold
because DFS stores the trend that is currently being con-
structed. Since the length of a trend is unbounded, the peak
memory consumption of SASE is significant.
CET. Similarly to SASE, the latency of CET grows expo-

nentially in the number of events until it fails to terminate
for more than 700k events. Its throughput degrades expo-
nentially. In contrast to SASE, CET utilizes the available
memory to store and reuse common sub-trends instead of
recomputing them. To achieve almost double speed-up com-
pared to SASE, CET requires 3 orders of magnitude more
memory than SASE for 500k events.

GRETA consistently outperforms all above two-step ap-
proaches regarding all three metrics because it does not
waste computational resources to construct and store ex-
ponentially many event trends. Instead, GRETA incremen-
tally computes event trend aggregation. Thus, it achieves
4 orders of magnitude speed-up compared to all above ap-
proaches. GRETA also requires 4 orders of magnitude less
memory than Flink and CET since these approaches store
event trends. The memory requirement of GRETA is com-
parable to SASE because SASE stores only one trend at a
time. Nevertheless, GRETA requires 50–fold less memory
than SASE for 500k events.
Patterns with Negative Sub-Patterns. In Figure 10,

we evaluate the same patterns as in Figure 9 but with nega-
tive sub-patterns against the stock real data set while vary-
ing the number of events. Compared to Figure 9, the latency
and memory consumption of all approaches except Flink sig-
nificantly decreased, while their throughput increased. Neg-
ative sub-patterns have no significant e↵ect on the perfor-
mance of Flink because Flink evaluates multiple event se-
quence queries instead of one Kleene query and constructs
all matched event sequences. In contrast, negation reduces
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the GRETA graph, the CET graph, and the SASE stacks
before event trends are constructed and aggregated based
on these data structures. Thus, both CPU and memory
costs reduce. Despite this reduction, SASE and CET fail to
terminate for over 700k events.

10.3 Selectivity of Edge Predicates
In Figure 11, we evaluate positive patterns against the

Linear Road benchmark data set while varying the selectiv-
ity of edge predicates. We focus on the selectivity of edge
predicates because vertex predicates determine the number
of trend groups (Section 6) that is varied in Section 10.4.
To ensure that the two-step approaches terminate in most
cases, we set the number of events per window to 10k.

The latency of Flink, SASE, and CET grows exponentially
with the increasing predicate selectivity until they fail to
terminate when the predicate selectivity exceeds 50%. In
contrast, the performance of GRETA remains fairly stable
regardless of the predicate selectivity. GRETA achieves 2
orders of magnitude speed-up and throughput improvement
compared to CET for 50% predicate selectivity.

The memory requirement of Flink and CET grows expo-
nentially (these lines coincide in Figure 11(b)). The memory
requirement of SASE remains fairly stable but almost 22–
fold higher than for GRETA for 50% predicate selectivity.

10.4 Number of Event Trend Groups
In Figure 12, we evaluate positive patterns against the

cluster monitoring data set while varying the number of
trend groups. The number of events per window is 10k.

The latency and memory consumption of Flink, SASE,
and CET decrease exponentially with the increasing num-
ber of event trend groups, while their throughput increases
exponentially. Since trends are constructed per group, their
number and length decrease with the growing number of
groups. Thus, both CPU and memory costs reduce. In con-
trast, GRETA performs equally well independently from the
number of groups since event trends are never constructed.
Thus, GRETA achieves 4 orders of magnitude speed-up com-
pared to Flink for 10 groups and 2 orders of magnitude
speed-up compared to CET and SASE for 5 groups.

11. RELATED WORK
Complex Event Processing. CEP approaches like SASE

[6, 32], Cayuga [9], ZStream [22], and E-Cube [19] sup-
port aggregation computation over event streams. SASE
and Cayuga deploy a Finite State Automaton (FSA)-based
query execution paradigm, meaning that each query is trans-
lated into an FSA. Each run of an FSA corresponds to an
event trend. ZStream translates an event query into an op-
erator tree that is optimized based on the rewrite rules and
the cost model. E-Cube employs hierarchical event stacks
to share events across di↵erent event queries.

However, the expressive power of all these approaches is
limited. E-Cube does not support Kleene closure, while
Cayuga and ZStream do not support the skip-till-any-match
semantics nor the GROUP-BY clause in their event query
languages. Furthermore, these approaches define no opti-
mization techniques for event trend aggregation. Instead,
they handle aggregation as a post-processing step that fol-
lows trend construction. This trend construction step delays
the system responsiveness as demonstrated in Section 10.

In contrast to the above approaches, A-Seq [26] proposes
online aggregation of fixed-length event sequences. The ex-
pressiveness of this approach is rather limited, namely, it
supports neither Kleene closure, nor arbitrarily-nested event
patterns, nor edge predicates. Therefore, it does not tackle
the exponential complexity of event trends.
The CET approach [24] focuses on optimizing the con-

struction of event trends. It does not support aggregation,
grouping, nor negation. In contrast, our GRETA approach
focuses on aggregation of event trends without trend con-
struction. Due to the exponential time and space complexity
of trend construction, the CET approach is neither real-time
nor lightweight as confirmed by our experiments.
Data Streaming. Streaming approaches [8, 10, 13, 15,

16, 30, 33, 34] support aggregation computation over data
streams. Some approaches incrementally aggregate raw in-
put events for single-stream queries [15, 16]. Others share
aggregation results between overlapping sliding windows [8,
15], which is also leveraged in our GRETA approach (Sec-
tion 4.2). Other approaches share intermediate aggregation
results between multiple queries [13, 33, 34]. However, these
approaches evaluate simple Select-Project-Join queries with
window semantics. Their execution paradigm is set-based.
They do not support CEP-specific operators such as event
sequence and Kleene closure that treat the order of events as
first-class citizens. Typically, these approaches require the
construction of join results prior to their aggregation. Thus,
they define incremental aggregation of single raw events but
implement a two-step approach for join results.
Industrial streaming systems including Flink [2], Esper [1],

Google Dataflow [3], and Microsoft StreamInsight [4] do not
explicitly support Kleene closure. However, Kleene closure
computation can be simulated by a set of event sequence
queries covering all possible lengths of a trend. This ap-
proach is possible only if the maximal length of a trend is
known apriori – which is rarely the case in practice. Fur-
thermore, this approach is highly ine�cient for two reasons.
First, it runs a set of queries for each Kleene query. This in-
creased workload degrades the system performance. Second,
since this approach requires event trend construction prior
to their aggregation, it has exponential time complexity and
thus fails to compute results within a few seconds.
Static Sequence Databases. These approaches extend

traditional SQL queries by order-aware join operations and
support aggregation of its results [14, 20]. However, they do
not support Kleene closure. Instead, single data items are
aggregated [14, 23, 27, 29]. Furthermore, these approaches
assume that the data is statically stored and indexed prior to
processing. Hence, these approaches do not tackle challenges
that arise due to dynamically streaming data such as real-
time responsiveness and event expiration.

12. CONCLUSIONS
To the best of our knowledge, our GRETA approach is

the first to aggregate event trends that are matched by
nested Kleene patterns without constructing these trends.
We achieve this goal by compactly encoding all event trends
into the GRETA graph and dynamically propagating the ag-
gregates along the edges of the graph during graph construc-
tion. We prove that our approach has optimal time complex-
ity. Our experiments demonstrate that GRETA achieves up
to four orders of magnitude speed-up and requires up to
50–fold less memory than the state-of-the-art solutions.
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