
Table Union Search on Open Data

Fatemeh Nargesian
University of Toronto

fnargesian@cs.toronto.edu

Erkang Zhu
University of Toronto
ekzhu@cs.toronto.edu

Ken Q. Pu
UOIT

ken.pu@uoit.ca

Renée J. Miller
University of Toronto
miller@cs.toronto.edu

ABSTRACT
We define the table union search problem and present a probabilis-
tic solution for finding tables that are unionable with a query ta-
ble within massive repositories. Two tables are unionable if they
share attributes from the same domain. Our solution formalizes
three statistical models that describe how unionable attributes are
generated from set domains, semantic domains with values from
an ontology, and natural language domains. We propose a data-
driven approach that automatically determines the best model to
use for each pair of attributes. Through a distribution-aware algo-
rithm, we are able to find the optimal number of attributes in two
tables that can be unioned. To evaluate accuracy, we created and
open-sourced a benchmark of Open Data tables. We show that our
table union search outperforms in speed and accuracy existing al-
gorithms for finding related tables and scales to provide efficient
search over Open Data repositories containing more than one mil-
lion attributes.

PVLDB Reference Format:
Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, Renée J. Miller. Table Union
Search on Open Data. PVLDB, 11(7): 813-825, 2018.
DOI: https://doi.org/10.14778/3192965.3192973

1. INTRODUCTION
There has been an unprecedented growth in the volume of pub-

licly available data from governments, academic institutions, and
companies alike in the form of Open Data. Table 1 lists just three
among the massive number of publishers and the size of their rapidly
growing repositories. Data publishers often do not provide search
functionality beyond simple keyword search on the metadata. This
metadata varies greatly in quality across different datasets and pub-
lishers. The lack of sophisticated search functionality creates barri-
ers for data scientists who want to use Open Data for their research.

Example 1: A data scientist is analyzing the current state of public
funding of scientific research in the US and Canada, by all levels of
governments (federal, state, etc.) and other funding agencies. She
needs a master list of all publicly funded research projects. After
searching the Web, she realizes that no such list currently exists in
the public domain. Thus, she needs to create one. Her objective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 7
Copyright 2018 VLDB Endowment 2150-8097/18/03.
DOI: https://doi.org/10.14778/3192965.3192973

is to find tables on research project funding and union them into a
master list. She first tries the US Federal Open Data portal1, and
searches for “research project funding” using keyword search. An
overwhelming 20,184 datasets are found. She could manually go
through the results to find useful data, or try different keywords.
No matter what she does, it is going to be laborious work, and she
also has to do the same for 50 states, all provinces of Canada, and
many funding agencies. 2

Table 1: Number of Published Open Data Tables as of March 2017.

Publisher Number of Tables

United States (data.gov) 165,236
United Kingdom (data.gov.uk) 38,348

Canada (open.canada.ca) 11,809

A 2017 survey by CrowdFlower reported that data scientists spend
on average 51% of their working time collecting and preparing
datasets, but 60% reported that data preparation was the least en-
joyable part of their job [9]. The same survey also indicates that
41% of data scientists use datasets from publicly available sources.
Thus, a solution for more effectively finding unionable tables from
Open Data has a very wide range of potential users.

1.1 Attribute Unionability
To solve the table union search problem, we need to first un-

derstand what it means for two attributes to be unionable. Since
Open Data Tables rarely have informative schemas, we rely on data
values to uncover as much information as possible to evaluate the
unionability of attributes.

Example 2: Consider the example tables (Figure 1), one from NSF,
one from NSERC. We have included meaningful attribute names to
make the example easy to follow, but often such meaningful and
unambiguous names are missing in Open Data. Clearly, if two at-
tributes (like country and Country) contain a large overlap in
their values, it seems reasonable to consider them “unionable”, but
an important question is how much overlap is sufficient?

Open datasets are published and maintained by many different
people and organizations, thus the format of data values can be very
different. For example, the attributes location and Geo contain
no value overlap, but do contain the same semantic type of entities
(major regions of countries). In location, these are represented
by well-known two-letter acronyms, in Geo by full names. An
ontology that contains the different types of representations can be
used to determine that these two attributes contain values from the
same semantic class. As with value overlap, an important question
is how many values need to map to the same semantic class (or set
of classes) for two attributes to be declared unionable?
1https://www.data.gov

813

pdPIName location country estAmount perfLocation title ...
Charles. . . MA US 471150675 AURA Construction of the Large...
Charles. . . MA US 433789931 Associate of Universities for... Mangement ... of the Gemini...
Daphne. . . CA US 347150000 California Institute of Tech... The Operation ... of the Laser...

Name-Nom Geo Country Amt Institution-Établissement ApplicationTitle ...

Abraham, . . . Ontario CANADA 128700 University of Toronto Probing ... Brightness Universe...
Emily, . . . Québec CANADA 87000 McGill University Exploring the origin ... universe...
Dobbs, . . . California US 45000 University of California - Berkeley The Migration and Growth ... Planets...

Figure 1: Unionable Tables from NSF (Top) and NSERC (Bottom) Datasets

Open ontologies such as YAGO [34] and DBpedia [18], or
specialized ontologies for specific domains, may help to iden-
tify syntactically different values that represent entities from the
same semantic domain. However, even general purpose ontolo-
gies may have low coverage of values in Open Data. Con-
sider the attributes, pdPIName and Name-Nom or title and
ApplicationTitle which intuitively are unionable. Neither
value overlap, nor an ontology will be sufficient to automati-
cally determine this. However, from our understanding of natu-
ral language, we can recognize that the values in pdPIName and
Name-Nom appear frequently in the same context in natural lan-
guage since they are person names. Similarly, the title of scien-
tific grants may contain scientific jargon that appears more often
in the same context together than say the words describing movies
or other titles. Again, the challenge is to define a principled math-
ematical framework for justifying how close the words in two at-
tributes need to be before the attributes are considered unionable.
Finally, which type of unionability (syntactic, semantic, and natu-
ral language) is the most suitable for estimating the unionability of
a specific pair of attributes? 2

1.2 Table Unionability
Once we have a principled way of understanding how likely it

is that two attributes contain values drawn from the same domain,
we also need a way of combining attribute unionability scores for a
pair of tables. Ideally, the most unionable tables share a large num-
ber of highly unionable attributes with a query table. However, a
candidate table might contain strongly unionable as well as weakly
unionable attributes. An important question is how to define the
unionability of two tables given the unionability of their attributes?

If table unionability decreases as more weakly unionable at-
tributes are included, we need to consider the trade-off between the
number of unionable attributes and the strength of attributes’ union-
ability. Morever, one candidate table might have very few strongly
unionable attributes and another candidate might have numerous
attributes that are only slightly unionable with the query. In this
case, to perform top-k search, how can we compare the unionabil-
ity of tables if we are unioning on different numbers of attributes
with different attribute unionability?

Example 3: Consider the two example tables in Figure 1. At-
tribute pairs (country and Country), (location, Geo),
(pdPIName, Name-Nom), and (title, ApplicationTitle)
are clearly unionable. Although attributes perfLocation
and Institution- Établissement are also intuitively
unionable, they are less unionable than other pairs since
perfLocation contains hospital names, branches of govern-
ment, and research centers in addition to the educational institu-
tions of Institution-Établissement. We need to decide
how the unionability of each attribute pair contributes to the union-
ability of NSERC and NSF tables. Now, suppose NSERC table
is the query. For top-k search, how do we rank the NSF table

(which shares a large number of weakly and highly unionable at-
tributes with NSERC) and another candidate table which has fewer,
but more strongly unionable attributes with the NSERC table? In
this comparison, is it better to compare the unionability score of
NSF based on three attributes or based on four attributes (including
perfLocation)? 2

1.3 Contributions
We present a new framework for table union search that makes

the following contributions.
• We present a mathematical framework for determining the

unionability of attributes. Unlike other approaches that use value
overlap or class overlap heuristically to find unionable attributes,
we present principled statistical tests for determining how likely a
hypothesis that two attributes are unionable is to be true. We define
attribute unionability using three statistical tests (measures) based
on: (1) value overlap (set-unionability); (2) annotation of attributes
with classes from an ontology and class overlap (sem-unionability);
and (3) natural language similarity (NL-unionability).

• We propose a data-driven way of determining the best measure
for evaluating the unionability of a specific pair of attributes.

• We present indices that permit us to quickly find an approxi-
mate set of candidate unionable attributes for each measure.

• We define the table union search problem as finding the k tables
that have the highest likelihood of being unionable with a search
table T on some subset of attributes. We present a principled way of
determining if a table S that can be unioned with T on c attributes
is more or less unionable than a table R that can only be unioned
on d < c attributes.

• We define (and publicly share) an Open Data table union
benchmark and empirically compare the three attribute unionabil-
ity measures on this benchmark. We show that NL-unionability can
be used to effectively find unionable attributes, even when there
is little value overlap and poor ontology coverage. We empiri-
cally demonstrate that in addition to greater precision and recall,
table union using NL-unionability is also faster than other mea-
sures. We show that our solution for choosing among unionability
measures (ensemble unionability) improves the accuracy of table
union search with only a small runtime cost.

• We empirically show that table union search outperforms ex-
isting approaches for table stitching and finding related tables by
finding unionable tables more accurately and more efficiently.

2. BACKGROUND AND RELATED WORK
A common first step to performing Open Data science is to

search for joinable and unionable tables with a source table. In
this scenario, the query is a table provided by a user and the search
space consists of tables with potentially unavailable or meaningless
schemas. In this paper, we argue that even when there is a reliable
schema, which is rare, it is crucial to uncover as much information
(or signal) from data values as possible to perform table search.

814

Web tables are tables extracted from Web pages [4]. The prob-
lem of finding related tables has been mostly studied for Web tables
using queries that are (1) keywords, (2) a set of attribute values, (3)
table schemas, and (4) table instances.

Keyword-based search. Most data portals provide keyword
search functionality on metadata, if it is available for datasets. To
find related tables to keyword queries, OCTOPUS performs Web
document-style search on the content and context of Web tables [5].
These tables are then clustered into groups of unionable tables by
means of syntactic measures such as attribute-to-attribute mean
string length difference and attribute-to-attribute tf-idf Cosine sim-
ilarity. Moreover, Pimplikar and Sarawagi present a search engine
that finds tables similar to a query table that is represented by a set
of keywords each describing a column of the query [27].

Attribute-based search. Existing work on the problem of find-
ing linkage points (attributes) among data sources on the Web pro-
pose lexical analyzers and similarity functions accompanied by a
set of effective and efficient search algorithms to discover join-
able attributes [10]. Finding such linkages potentially leads to the
alignment of data sources that have unavailable or non-overlapping
schemas. Moreover, to find joinable tables, Zhu el al. [40] studied
the domain search which is the problem of finding attributes that
highly contain the values of a query attribute. The solution to the
domain search problem uses an LSH index and a novel partition-
ing scheme to effectively find joinable tables over massive sets of
attributes even with skewed cardinality distributions. Infogather
studied entity augmentation which is the problem of extending a
Web table containing a set of entities with new attributes. Query
attributes are described by attribute names or attribute value exam-
ples [36]. Infogather applies schema matching techniques to pre-
compute a correspondence graph between Web tables. The match-
ing techniques rely on schema and instance features, page URLs,
and the text around tables in HTML pages. This correspondence
graph is then used at runtime to find relevant tables to query at-
tributes and entities.

Schema and table instance-based search. Ling et al. defined
table stitching as the task of unioning tables with identical schemas
within a given site into a union table [22]. In order to provide a
union table with semantically consistent values, Ling et al. augment
the result with new descriptive attributes, extracted from the context
of tables. For example, after stitching two tables which contain
information about schools in NY and MA, this approach adds an
extra attribute to the union table about the location of each school.
Ling’s work relies heavily on schema information and unions tables
that have identical schemas.

Das Sarma et al. defines two HTML tables as entity-
complements if they contain information about related sets of en-
tities [31]. Entity-complement assumes that each table has a sub-
ject attribute which contains the entities that the table is about, and
non-subject attributes which provide properties of the entities. It
uses an aggregation of three measures: (1) entity consistency, (2)
entity expansion, and (3) schema consistency. Entity consistency
and expansion verify if subject attributes of two tables contain the
same type of entities and if a candidate table adds new entities to
the subject attribute of a query. To do so, entity-complement re-
lies on the signals mined from high coverage ontologies curated
from all data on the Web as well as publicly available ontologies
(such as YAGO [34]). On the other hand, schema consistency de-
termines if the non-subject attributes provide similar properties of
entities by finding value-based and label-based matchings between
non-subject attributes. The strength of entity-complement search
is tied to the coverage of an ontology both for search space explo-
ration and unionability evaluation. However, due to the breadth of

tables in Open Data, ontology-based techniques are not always reli-
able. In this paper, we do not make any assumption on the existence
of subject attributes for tables and propose a suite of syntactic and
semantic measures that uncover unionable tables without requiring
the presence of schemas or an ontology with full coverage.

A plethora of research has been done on scalable schema match-
ing and ontology alignment, where the problem is to match large
schemas (ontologies) encompassing thousands of elements [28, 26,
38] or to match more than two schemas [11, 33]. Although schema
matching has been studied for tables with no or opaque attribute
names [15], schema matching and ontology alignment have not
been studied as search problems – find k best matches to a given
query table except in the case that only data (and not the schema)
is considered [11]. Recently, Lehmberg and Bizer have built upon
the work by Ling et al. and created union tables of stitched tables
by means of a set of schema-based and instance-based matching
techniques [19]. Unlike all previous work on union which finds all
unionable tables in a corpus (in one large batch computation), our
table union search algorithm is designed to efficiently find the top-k
unionable tables for a single query table over a large corpus.

3. ATTRIBUTE UNIONABILITY
In this section, we present a new principled framework for es-

timating the likelihood that two attributes contain values that are
drawn from the same domain - a problem we call attribute union-
ability. We describe three types of domains for attributes and three
statistical tests for testing the hypothesis that two attributes come
from the same domain. Furthermore, we present a data-driven way
to identify the type of domain two attributes are drawn from.

The test for the first domain type treats values as uninterpreted
and uses the co-occurrence of the same value to estimate attribute
unionability. The second test is useful for domains that have some
values that can be mapped into an ontology (for example, attributes
containing cities, countries, or diagnoses when a geography or
medical ontology is available). This test can identify attributes from
the same domain even if the values do not overlap (for example
an attribute with Canadian Universities and one with US Univer-
sities). The final test does not require values to overlap either, but
instead measures how semantically close the words in the attributes
are. This test, which we call natural language unionability can be
used for attributes like grant titles. Even though grant titles will not
overlap, the semantic similarity of the words used in the titles can
be used to estimate the likelihood that two attributes can be mean-
ingfully unioned. Throughout this paper, a denotes the values of an
attribute A.

3.1 Set Domains
In the simplest case, a domain D is a finite set of discrete val-

ues. In order to evaluate if attributes A and B are from the same
domain D, we assume A (our query attribute) contains a random
sample of D and we want to verify if B is also a sample of D.
Since D is unknown and the only known values in D are the val-
ues of A, we use the size of intersection of the values in A and B
as the test statistic for evaluating the probability that A and B are
samples from the domain D. The size of intersection of A and B
assuming they are drawn from the same domain follows a hyperge-
ometric distribution [29]. Suppose D is a population that contains
the values of A as success values and we draw |a| samples from
D, without replacement. If a draw is in the intersection of A and
B, it is a success, otherwise it is a failure. In this scenario, the
number of successful draws indicates how likely it is that A and B
are from the same domain D. The maximum number of successful

815

draws from D is the size of the intersection of A and B. The hy-
pergeometric test uses the hypergeometric distribution to calculate
the statistical significance of the number of successful draws [29].
This provides a way to statistically test whetherA andB are indeed
from the same domain D by knowing the size of their intersection.

Let C(m,n) =

(
m
n

)
be the number of n items contained

in m items. Let na = |a|, nb = |b|, and nD = |D|. If A is
in domain D and B is drawn from D, then the distribution of s
successful draws, s ∈ {1, . . . , |a ∩ b|}, is given by [29]:

p(s| na, nb, nD) =
C(na, s)C(nD − na, nb − s)

C(nD, nb)
(1)

The probability p(s) denotes the probability of achieving s suc-
cessful draws (the size of intersection) when A is the set of suc-
cessful draws in D and B is drawn from the same domain D. This
allows the evaluation of the statistical significance of the intersec-
tion size s. That is, whether a give intersection size is likely to
indicate that our hypothesis (that A and B come from the same
domain) is correct.

Using the actual intersection, t = |a ∩ b|, we can define the
cumulative distribution of t:

F(t|A,B) =
∑

0≤s≤t

p(s|na, nb, nD) (2)

The cumulative distribution of a hypergeometric distribution, F,
is often used as a hypothesis test. Namely, we can reject our hy-
pothesis thatB comes from the same domain asA, if F(t|A,B) <
θ, where θ is some confidence level (like .95). We will use F to
define unionability of two domains.

Definition 1. The set unionability of attributes A and B (where
t = |a ∩ b|) is defined as:

Uset(A,B) = F(t|A,B) (3)

Example 4: Consider the two tables from Section 1. Suppose
D is the set of world country names, thus N = 196. Suppose
attribute country of table NSF has values {UK, US, Canada,
Mexico} and attribute Country of table NSERC has values
{France, UK, Canada, Germany, Spain, Portugal, Italy}. Since
these attributes have two overlapping values, the likelihood, of
country and Country coming from the same domainD, F(t =
2|country, Country), is 0.9998. 2

Our discussion so far requires knowledge of the cardinality of
the domain D. For Open Data, it is impractical or impossible to
know the true domain. Thus, we make a practical assumption that
D is approximately the disjoint union of A and B, and therefore
nD ' |a|+ |b|. Choosing a larger D only increases the likelihood,
F(t|A,B), of the unionability of A and B, for a fixed intersection
size. In Section 5, we describe how to efficiently search a large
repository for attributes with high set unionablility with a query.

3.2 Semantic Domains
Under the set domain assumption, value overlap of two attributes

provides a syntactic measure for evaluating the likelihood of their
unionability. Notice that value overlap can easily be generalized
to approximate value matching (or overlap of n-grams). However,
some attributes may contain values that come from an ontology and
this can provide more accurate information about the semantics of
the attribute domains. In particular, two attributes can be seman-
tically similar despite their syntactic dissimilarity. For example,
consider attributes Geo and location of the two tables NSERC and

NSF from Section 1. Since there is no overlap between the two at-
tributes, using our hypothesis testing for set domains (Section 3.1),
one would reject the hypothesis that these attributes have the same
domain, and this would be a false negative.

Some domains may contain values that appear in an ontology.
To keep our definitions simple, consider an ontology, with classes
and entities that belong to classes: O(E , C,R), where E is a set of
entities, C is a set of classes, and R is a set of pairs each contain-
ing an entity and a class indicating that the entity belongs to (is-a)
that class. Notice that in this formulation an entity may belong
to multiple classes. For brevity, we do not consider is-a relation-
ships between classes, but our definitions can be easily extended to
accommodate such relationships. Assuming city as a domain, two
values that have is-a relationship with the class label city are seman-
tically similar regardless of their syntax and regardless of whether
the attributes they reside in overlap. We define a semantic domain
as a subset of classes in C of ontology O.

The problem of annotating attributes with class labels from an
ontology has been well studied in the literature [21, 35]. A value
in attribute A can be mapped to zero or more entites in E . For
attribute A, let E(a) be the set of entities of O, to which some
value in a can be mapped. In attribute annotation [35], the goal
is to recognize a subset of classes in C that are most relevant to
E(a). We can do this in a variety of ways, for example, we can
take the union of all classes to which any entity in E(a) belongs, or
more commonly in the literature, we can take the class (or classes
in the case of ties) that contain the most entities in E(a) or the top-
k most represented classes [30, 35]. Regardless of the method, we
call the class annotations for attributeA, its semantic representation
denoted â ⊆ C.

Now we can perform the same statistical test on the semantic
values â of an attribute that we performed on the raw values a of
the attribute. Our goal is to test the hypothesis that A and B are
drawn from the same semantic domain D̂.

As we did with raw attribute values in Section 3.1, we consider
the intersection of x̂ and ŷ as an indicator that attributes A and B
may be drawn from the same semantic domain D̂. Let n̂a = |â|,
n̂b = |b̂|, and n̂D = |D̂|. We define the semantic intersection of A
and B as:

t̂ = |â ∩ b̂| (4)
Following Section 3.1, if we assume that both â and b̂ are random

samples of D̂, the size of the intersection t̂ follows the hypergeo-
metric distribution, which gives a way to statistically test whether
A and B are indeed from the same semantic domain [29]. Assum-
ing that D̂ is the disjoint union of â and b̂, we perform the following
statistical hypothesis test using the cumulative distribution.

F(t̂|Â, B̂) =
∑

0≤s≤t̂

p(s|n̂a, n̂b, n̂D) (5)

Definition 2. The semantic unionability of attributesA andB with
class annotations â and b̂, respectively, where t̂ = |â∩ b̂| is defined
as:

Usem(A,B) = F(t̂|Â, B̂) (6)

Example 5: Consider the two tables from Section 1. Suppose
attributes location={MA, CA, 10701} and Geo={Ontario,
Quebec, California, Toronto, 19600, M5G1Z2} and their class
labels ̂location = {north american cities, east coast cities,
west coast cities, american planned cities} and Ĝeo =
{central canada cities, west coast cities, north american cities,
east coast cities}. Suppose D̂ = ̂location∪̇Ĝeo, where ∪̇

816

refers to disjoint union. For attributes Geo and location,
Usem(t̂ = 3| ̂location, Ĝeo, D̂) is 0.9857. 2

In Open Data, it may not be the case that all (or even most) values
can be mapped to entities in the ontology. Using semantic union-
ability, only mappable values contribute to the unionability score.
Therefore, we require a unionability measure that provides more
semantic coverage of attributes.

3.3 Natural Language Domains
The presence of an ontology with large coverage of attribute val-

ues can greatly improve the accuracy of our unionability estimates.
However, in Open Data, even with some of the largest and most
precise open ontologies available such as YAGO [34], the cover-
age may be quite poor. Using an entity mapping technique and at-
tribute annotation algorithm that closely follows Venetis et al. [35],
we were able to partially or fully map 91% of attributes in Cana-
dian Open Data to classes in YAGO. However, we observed that on
average only 13% of values in attributes can be mapped to YAGO
entities. The partial coverage of an ontology may result in Usem

misidentifying unionable attributes. In this section, we present an
alternative way of measuring the semantics in an attribute that is
based on natural language rather than ontologies.

Example 6: Consider the two tables NSERC and NSF from Sec-
tion 1. Attributes pdPIName and Name-Nom contain the name of
researchers and recipients of grants. These attributes are clearly (in-
tuitively) unionable. However, since pdPIName and Name-Nom
have very small value overlap, the statistical test would fail to iden-
tify them as set unionable attributes. Furthermore, since the names
in pdPIName and Name-Nom most probably do not have many
corresponding entities in standard ontologies, the statistical test for
evaluating their semantic unionability would fail as well. 2

For many attributes, the values are part of a natural language.
Values of attributes such as names of people, grant keywords and
product descriptions can also be found as part of English sentences
which may or may not be found in ontologies. In contrast, domains
such as product ID, unique identifiers, and Web URLs may not
have values that are frequently used as part of a natural language.
We call domains with values from natural languages natural lan-
guage domains, or NL-domains. The unionability of two attributes
is determined by some relation that associates values from the re-
spective domains. Equality and ontology relations yield the union-
ability measures: Uset and Usem. However, Example 6 shows that
they are not sufficient for NL-domains. We will discover hidden
associations between NL-domains using the powerful method of
word embedding [2, 8, 25, 32].

Word embeddings have been successfully employed in various
information retrieval tasks [16, 37]. In word embedding technique
each word is mapped to a dense high dimensional unit vector.
Words that are more likely to share the same context have em-
bedding vectors that are closer in embedding space according to
Euclidean or angular distance measures. We are interested in nat-
ural language associations between domain values. We assume the
words (attribute values) that share the same context are drawn from
the same NL-domain. Therefore, we choose to use the fastText [14]
word embeddings which are trained on Wikipedia documents. This
allows NL-unionability to take advantage of the knowledge of em-
beddings trained using external sources and as we will show in Sec-
tion 6 results in high accuracy of search.

In this paper, we apply word embedding vectors to define natu-
ral language domains. Furthermore, we design statistical tests that
evaluate the likelihood that two attributes are drawn from the same
natural language domain. Each value v ∈ a is represented by a

50 40 30 20 10 0 10 20 30

40

20

0

20

40

(Att A)

50 40 30 20 10 0 10 20 30

40

20

0

20

40

(Att B)

50 40 30 20 10 0 10 20 30

40

20

0

20

40

(Att C)

50 40 30 20 10 0 10 20 30

40

20

0

20

40

(Mean Vectors)

Figure 2: The Embedding Representation of three Attributes and
their Topic (Mean) Vector Projected on 2-D Space.

p-dimensional embedding vector ~v. Thus, the embedding represen-
tation of attribute A, is a set of p-dimensional embedding vectors
each corresponding to a value v ∈ a. We assume that an NL-
domain is about one topic. Unlike semantic domains, the topic of
an NL-domain is not restricted to classes in an ontology. Suppose
µD is a vector that represents the topic of the values in an NL-
domain D. The vectors ~v in domain D are statistically close to
their topic vector µD .

Definition 3. An NL-domain is a set D of values, each with p-
dimensional embedding vector ~v, such that they form a multivari-
ate normal distribution centered around µD with some covariance
matrix ΣD:

v ∈ D =⇒ ~v ∈ N (µD,ΣD) (7)

For instance, consider the domain of researchers, where each in-
stance of researcher domain is represented by a p-dimensional unit
vector. The vectors are trained such that instances that have simi-
lar context are represented by vectors that have small angular dis-
tance (thus, small Euclidean distance, because embedding vectors
are unit vectors) [14, 25]. Since researchers appear in similar con-
texts in the natural language, their corresponding embedding vec-
tors are closely located in p-dimensional space. We assume that
the embedding vectors of instances of an NL-domain (such as re-
searcher domain) form a normal distribution with parameters µD
and ΣD .

Example 7: Figure 2 illustrates the embedding vector represen-
tation of sample values from three attributes: (A) sci-fi movie di-
rectors of year 2000, (B) sci-fi movie directors of year 2010, and
(C) university names. The embedding vectors of attribute values
are generated using pre-trained publicly available 300-dimensional
word embedding vectors [14] and projected on two-dimensional
space [23]. Each point in this figure represents an attribute value. It
is obvious that the values of attributes A and B are closely located
in the embedding space and are likely to be drawn from the same
distribution, while values of attribute C are drawn from a different
distribution. The vectors shown in Figure 2 demonstrate the topic
vectors of these attributes. 2

Our assumption on the distribution of embedding vectors in the
same domain allows the application of a statistical test to determine
whether two attributes share a common NL-domain. Attribute A is
represented by set ~a = {~v1, . . . , ~vna}, where ~vi is the embedding
vector of value vi in a. Assuming ~a has a p-variant normal distri-
bution, we can estimate the mean and covariance of ~a. Similarly,
we can define~b and its mean and convriance. The distance between
the estimated mean of two sets of embedding vectors is an indicator
of whether they are drawn from the same domain with normal dis-
tribution. The Hotelling’s two-sample statistics has been defined to
undertake tests of the differences between the multivariate means
of different sets with normal distribution [12].

Given two attributes A and B and their corresponding embed-
ding representation ~a and ~b, the Hotelling’s statistics can be con-

817

structed as follows. Let the sample mean of the embeddings of
attribute values be (recall na = |~a|):

ā =

∑
v∈~a ~v

na
(8)

The sample covariance matrix is given by:

Sa =
1

na − 1

∑
v∈~a

(~v − ā)(~v − ā)T (9)

Similarly, we define b̄ and Sb. The Hotelling’s two sample statistics
is:

T 2(A,B) =
nanb
na + nb

(ā− b̄)TS−1(ā− b̄) (10)

where S is an estimation of the covariance of ā and b̄, namely the
pooled covariance:

S =
(na − 1)Sa + (nb − 1)Sb

na + nb − 2
(11)

If A and B are samples of a p-variant normal distribution, then we
know that the T 2 has a well defined probability distribution known
as the F-distribution (parameterized by p and na + nb − 2 degree
of freedom) [12]. Hence, T 2 can be used as a way of converting
the distance between topic vectors to the probability of belonging
to the same NL-domain.

Definition 4. The natural-language unionability of attributesA and
B represented by ~a and~b is defined as:

Unl(A,B) = 1− F(T 2, p, na + nb − p− 1) (12)

where F is the cumulative distribution function of F-distribution.

F -distribution is inversely proportional to Hotelling’s T -squared
statistic. In other words, as the T 2(A,B, p) increases, the probabil-
ity of A and B being from the same NL-domain decreases. There-
fore, we use the inverse of T -squared as a way of comparing the
unionability ofA andB. In Section 5, we explain how we estimate
Hotelling’s T -squared likelihood to efficiently search for unionable
attributes drawn from the same NL-domain.

Using pre-trained word embedding models for NL-unionability
is limited to the vocabulary of the training corpus. This results in
NL-unionability not having full coverage on Open Data attribute
values (such as codes). Next, we describe how we address the lim-
itations of all unionability measures by picking the best-suited one
during search.

3.4 Ensemble Unionability
We presented three tests for measuring the unionability of at-

tributes based on the assumption of knowing the type of domain
they are drawn from.

Example 8: Consider the two tables NSERC and NSF from Sec-
tion 1 and their unionable attributes from Examples 4, 5, and 6.
Attributes of NSERC and NSF tables are drawn from different
types of domains. Attributes country and Country are clearly
drawn from the set domain of countries and have Uset=0.9998. Al-
though attributes Geo and location have very small value over-
lap, they are drawn from a semantic domain with Usem=0.9857.
Moreover, pdPIName and Name-Nom are clearly NL-unionable
despite small raw value and ontology class overlap. Attributes of
two tables can be samples drawn from different types of domains,
thus we need to be able to pick the best measure, even though the
measures are not directly comparable. 2

In this section, we describe how the unionability of attributes is
evaluated without knowing the domain type by using the ensem-
ble of the three unionability measures. Suppose qm is the dis-
tribution of unionability probabilities generated by measure Um,
m ∈ {Set, Sem,NL}, in corpus C. The cumulative distribution
function of Um(A,B), namely Gm(A,B), is defined as follows:

Gm(A,B) =
∑

s′≤Um(A,B)

qm(s′) (13)

Intuitively, Gm(A,B) is the probability of A and B being the
most unionable pair in C according to measure m. In other words,
1 − Gm(A,B) is the probability of finding an attribute pair in
C that has higher m-unionability score than Um(A,B). We call
Gm(A,B) the goodness score of m-unionability of A and B. We
will use Gm to compare the unionability of attributes across the
three measures. In the ensemble of the three measures, we select
the unionability measure that has the highest goodness.

Definition 5. Given an attribute pair A and B, and the good-
ness scores Gm(A,B), m ∈ {Set, Sem,NL}, the ensemble-
unionability of A and B is:

Uensemble(A,B) = max
m∈{Set,Sem,NL}

Gm(A,B) (14)

Ensemble-unionability provides a way of ranking attributes with
respect to a query attribute even if different measures are found to
be best-suited for unionability evaluation. Moreover, the goodness
score of A and B is monotonically increasing with respect to the
unionability probability of A and B. In Section 5, we show how
this property allows us to perform efficient attribute search based
on Uensemble.

Finding the best unionability measure to evaluate an attribute
pair requires knowing the distribution of unionability probabilities
for each measure in a corpus. Modelling the exact distributions for
a corpus of n attributes involves computing the unionability prob-
abilities for n2 attribute pairs. Large corpuses, such as Canadian
Open Data, contain too many attributes to permit exact computa-
tion of the distribution. To overcome this, in Section 5, we propose
an efficient algorithm that accurately approximates the unionability
distributions of the three measures for large corpuses.

4. TABLE UNIONABILITY
Given a source table S, we want to discover tables which are

unionable with S. We will use X and Y to denote sets of attributes
in tables S and T. We assume S and T are unionable if there is a
one-to-one alignment A between subsets of X and Y such that the
aligned attributes are highly unionable. To define table unionabil-
ity, we need to define a unionability score for alignments and we
need to define a meaningful way of comparing the unionability of
alignments between sets of attributes of different sizes.

Definition 6. A c-alignment is a one-to-one mapping h : X ′ → Y ′

such that X ′ ⊆ X , Y ′ ⊆ Y , and |X ′| = |Y ′| = c. We denote all
c-alignments from X to Y as Ac(X,Y).

Assuming independence among the unionability probability of
attributes, we can compute an alignment unionability probability.
Let h be a c-alignment over X = {A1, . . . , Ac}.

Definition 7. The unionability score of a c-alignment h : X → Y
is the joint probability of the unionability of attribute pairs, namely
U(Ai, h(Ai)), in the alignment.

U(h) = Πi∈{1,...,c}U(Ai, h(Ai)) (15)

818

For a pair of relations S and T, we define their c-unionability as
the highest unionability score of all possible c-alignments.

Definition 8. The c-unionability of S and T , written as σc(S, T),
is defined as:

max{U(h) : h ∈ Ac(X,Y)} (16)

Any c-alignment h that achieves this maximum is called a max-c-
alignment.

Example 9: Consider the two tables from Section 1 and the fol-

lowing ensemble attribute unionability scores.

U(NSF[pdPIName],NSERC[Name-Nom]) = 0.7

U(NSF[location],NSERC[Geo]) = 0.9

U(NSF[location],NSERC[Country]) = 0.2

U(NSF[country],NSERC[Geo]) = 0.4

U(NSF[country],NSERC[Country]) = 0.9

Assume (to simplify the example) that all other ensemble attribute
unionability scores are 0.1 or lower. The max 2-alignment h2 is:

h2(NSF[location]) = NSERC[Geo]

h2(NSF[country]) = NSERC[Country]

The max 3-alignment h3 is

h2(NSF[pdPIName]) = NSERC[Name-Nom]

h2(NSF[location]) = NSERC[Geo]

h2(NSF[country]) = NSERC[Country]

The concept of max c-alignment allows us to compare alignments
of the same size (same number of attributes). But it does not pro-
vide a way of comparing alignments of different sizes. Since our
best max 2-alignment in this example is a subset of our best max
3-alignment, it is necessarily the case that U(h2) ≥ U(h3). But
this does not imply that h2 is a better alignment. 2

To compare alignments of different scores, we define table
unionability relative to all possible c-alignments. Suppose rc is
the distribution of unionability probabilities of max-c-alignments
(σc) in corpus C. In Section 5, we describe how this function is
estimated for a corpus. The cumulative distribution function of
σc(S, T), namely Jc(S, T), is defined as follows:

Jc(S, T) =
∑

s′≤σc(S,T)

rc(s
′) (17)

Intuitively, 1 − Jc(S, T) is the probability of finding another pair
of tables in C with higher σc than that of S and T. We call Jc(S, T)
the c-goodness of S and T. This notion allows the comparison of
c-alignments of two table across c values. It also provides a way of
ranking tables with respect to a query table. Notice that although c-
goodness of a table pair is monotonically increasing with respect to
their c-unionability, it is not monotonically increasing with respect
to c.

Definition 9. Given a source table S and a candidate table T, and
c-goodness scores Jc(S, T), for c ∈ {1, . . . , |X|}, the table union-
ability score of S and T is defined as follows:

U(S, T) = max
c∈{1,...,|X|}

Jc(S, T) (18)

Any alignment h that achieves this maximum is called a max-
alignment.

From all tables in a repository, the table unionability search prob-
lem is to find the top-k tables based on table unionability scores.

Definition 10. Table union search problem. Given a set of tables
T = {T1, . . . , Tz} and a query table S, the top-k table union
search problem is to find k tables in T , whose table unionability
with S is the highest.

Example 10: Continuing Example 9, the c-unionability of h2 is
0.81 and of h3 is 0.567. To understand which is a better alignment,
we compare each alignment with the distribution of all other 2-
alignments (and 3-alignments) respectively. If we find that h2 is in
the 90th percentile of 2-alignment scores and h3 is in the 80th per-
centile of 3-alignment scores, then we would return h2 as it is more
surprising (higher-rated) alignment. If however, h2 is only in the
70th percentile, meaning there are lots of other max 2-alignments
that are better than this, but h3 is in the 85th percentile, then we
would just return h3 to be the better alignment. 2

Given a repositoryR of n tables where each table has on average
t attributes and an attribute unionability measure m, searching for
top-k unionable tables with a query table Q with s attributes has
a complexity of O(n × C(s × t,min(s, t)) × fm ×min(s, t)),
where C(s× t,min(s, t)) is the number of c-alignments between
R and a candidate table, and fm is the complexity of computing the
attribute unionability score of an attribute pair using measure m.
Because of this large complexity, we give an approximate solution
that uses indices to efficiently retrieve a set of likely candidates.

5. ALGORITHM
Given a query table S, our goal is to find the k tables with the

highest unionability with S. To do this interactively over mas-
sive repositories of data, we cannot afford to do a linear scan.
To perform table union search for S, we first find most unionable
attributes with attributes of S, which gives us a set of candidate
unionable tables. Then, we compute exact unionability scores only
for the candidates. The challenge we face is that to the best of our
knowledge, there are no efficient indexing structures for any of our
three unionability measures. To overcome this challenge, we ob-
serve empirically that each of our unionability measures is highly
correlated with well-known metrics (specifically Jaccard and Co-
sine similarity) that can be efficiently indexed using Locality Sen-
sitive Hashing (LSH) [20]. We rely on this observation to find a set
of candidate unionable attributes and tables using the index.

5.1 Attribute Unionability Search
In attribute search, our goal is to find the most unionable at-

tributes with a given attributeA considering Uensemble. According
to Definition 5, the ensemble-unionability maximizes the goodness
score of an attribute pair across all three measures. Finding at-
tributes with high goodness scores for at least one measure gives a
set of candidate attributes with high Uensemble scores. By defini-
tion, the goodness score is monotonically increasing with respect
to unionability probability. Thus, attributes with high unionability
probability based on any of unionability measures are candidates
for high Uensemble scores. Attribute search using any unionability
measure is a nearest neighbor search. Locality Sensitive Hashing
(LSH) provides an efficient solution [20], which we use as an index
structure for attribute unionability search. Next, we explain how
we use index structures for different measures to find candidate at-
tributes. Notice that we compute exact ensemble-unionability only
on merged candidates returned by each of indices. In Section 5.3,
we describe how we estimate the unionability distributions required
for calculating goodness scores in practice.

819

5.1.1 Set Unionability
We observed that in Open Data, the cumulative hypergeomer-

tic distribution of the intersection of a pair of attributes (their
Uset) is positively correlated with their Jaccard similarity. Fig-
ure 3a shows this correlation for 40K attribute pairs from Canadian
Open Data. Attributes with high Jaccard similarity have high Uset

scores. Moreover, the goodness score is monotonically increasing
with respect to unionability probability. Thus, attributes with high
Jaccard similarity have high goodness score. To identify attributes
with high goodness of Uset, we use minhash LSH [3] to find at-
tributes with high Jaccard similarity. We then compute the exact
ensemble-unionability score of these pairs. Hence, we are using
the Jaccard score as a filter to efficiently find attributes that have
high ensemble-unionability.

5.1.2 Semantic Unionability
Similar to Uset, attributes with high Jaccard similarity of an-

notation classes have high Usem, thus high goodness scores. For
semantic unionability, we construct an LSH index over minhash
of the class annotations of attributes, rather than the raw values.
Building LSH indices for set and sem-unionability can be done ef-
ficiently, even for large repositories [40].

5.1.3 Natural Language Unionability
To efficiently identify natural language unionable attributes, we

unfortunately cannot use the Jaccard similarity. Through empiri-
cal evaluation, however, we observe that the Cosine similarity of
the mean vectors of attributes’ embedding vectors is strongly nega-
tively correlated with T-squared and positively correlated with Unl.
Specifically, suppose that attribute A with values a is represented
by a set of vectors ~vi, where ~vi is the embedding vector of value vi
in a. The sample mean of the embeddings of attribute values of A
is (recall na = |~a|):

Ā =

∑
vi∈a ~vi

na
(19)

We observe that there is a positive correlation between the Unl

of attributes A and B and the Cosine similarity of their Ā and B̄.
Figure 3b shows this correlation for 10K attribute pairs from Cana-
dian Open Data. This empirical observation is aligned with the
Hotelling test (the basis for Unl) which assigns higher probability
to populations with close mean and small covariance [12]. Ac-
cording to Definition 4, we favor attribute pairs with low T-squared
scores. To identify attributes with high natural language unionabil-
ity, thus goodness score, we use simhash LSH [6] to find attributes
with high Cosine similarity. We later compute the exact ensemble-
unionability score of these pairs.

Example 11: Figure 2 illustrates the mean vectors of the embed-
ding vectors of three attributes described in Example 7. Attributes
A and B belong to the same domain (domain of sci-fi movie direc-
tors) and their representative mean vectors have high Cosine sim-
ilarity, while the mean vector of attribute C which is drawn from
the domain of university names has a small Cosine similarity with
A and B. Thus, assuming A is a query attribute, it is more likely
that a simhash LSH index built on attributes B and C returns B as a
candidate unionable attribute. 2

Notice that our indexing techniques let us retrieve a set of at-
tributes that are likely to have high unionability. In Section 6, we
show that these approximations (using Jaccard similarity as a sur-
rogate for set and semantic unionability, and using Cosine similar-
ity as a surrogate for natural language unionability) do not lead to
missing many of the actual most unionable attributes.

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard

0.0

0.2

0.4

0.6

0.8

1.0

U
se
t

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Cosine

0.0

0.2

0.4

0.6

0.8

1.0

U
n
l

(b)
Figure 3: (a) Jaccard vs. Uset and (b) Cosine vs. Unl.

5.2 Table Search
Given a set of tables T = {T1, . . . , Tz} and a query table S,

the table union search problem is to find k tables in T , whose
unionability with S is the highest. The unionability of S and
T , with attributes X and Y , is the alignment h that maximizes
goodness score. We consider all alignments of size up to |X|.
To compute the unionability score of alignments (U(h)), we can
use any measure or the ensemble-unionability of attributes. Re-
call attribute unionability score of A and B is U(A,B). Since
U(h) is upper bounded with its highest attribute unionability good-
ness, maxi=1,...,c(U(xi, h(xi)), in our search, we approximate
the score of an alignment with the maximum attribute unionabil-
ity score in the alignment.

Definition 11. Given tables S and T (with attributes X and Y), and
alignments A, the maxattr of an alignment h is:

maxattr(h) = maxi=1,...,c{U(Ai, h(Ai))} (20)

where Ai ∈ X and c is the size of h.

In top-k table union search, we seek k tables with highest max-
attr. The monotonicity property of maxattr with respect to attribute
unionability probability allows early pruning of certain tables with-
out exactly computing their scores. Specifically, if T has a maxattr
score smaller than the k other tables, we prune T and no longer con-
sider it. Obviously, T could have an exact unionability score that
is better than some of the k tables with higher maxattr. The per-
formance experiments of Section 6 shows that this approximation
does not lead to missing many of the actual top-k most unionable
tables.

The table union search procedure is described in Algorithm 1.
For a given set of tables T and for each unionability measure f ,
we build an index, If (T), on attributes in T as described in Sec-
tion 5.1. Given a query table S, Att-Search probes the indices
with all attributes in S, in parallel, and gets candidate attributes
with high goodness scores in a streaming fashion. Candidates are
processed in batches. For each batch, Att-Search computes
the exact ensemble-unionability of candidate attributes and ranks
them from highest-to-lowest ensemble-unionability. Since maxattr
is an upper bound for table unionability score, tables of attributes
in Aunion are candidate unionable tables. The goal is to find top-k
unionable tables, hence, we only need to rank candidates based on
their table unionability.

To find max-alignments of a candidate T and S, Align finds the
max-c-alignments of S and T for all possible c’s. To achieve that,
Align only needs to build the max-c-alignment of tables for the
largest possible c. Given tables S and T , we build a bipartite graph,
G, where nodes are the attributes of S and T and edges are weighted
by the unionability score of attributes. A matching of c edges in G
(called c-matching) is equivalent to a c-alignment. Thus, finding a

820

Algorithm 1: Table Union Search

Table-Union-Search(Iset(T), Isem(T), Inl(T), S, k)
Input: Iset(T), Isem(T), Inl(T): indices on attributes in T ,

S: a query table, k: search parameter
1 let Tunion ← ∅, Aunion ← ∅
2 while |Tunion| 6= k do
3 Aunion = Att-Search(Iset(T), Isem(T), Inl(T), S)
4 for T ∈ Get-Tables(Aunion) do
5 A ← Align(S, T , {1, . . . , min(|S|, |T |)})
6 Tunion ← Merge(Tunion, Rank(A));

7 return Tunion

0.92 0.94 0.97 1.00
LSH Bucket Goodness

0.0

0.3

0.5

0.8

1.0

G
lo

b
a
l
G

o
o
d
n
e
ss

Uset

0.91 0.94 0.97 1.00
LSH Bucket Goodness

0.3

0.4

0.6

0.8

1.0

G
lo

b
a
l
G

o
o
d
n
e
ss

Usem

0.93 0.95 0.98 1.00
LSH Bucket Goodness

0.0

0.3

0.5

0.8

1.0

G
lo

b
a
l
G

o
o
d
n
e
ss

Unl

Figure 4: The estimation of unionability distribution using all pairs
(3 millions) versus pairs in LSH buckets.

max-c-alignment of S and T becomes a bipartite graph c-matching
problem. The max-c-alignment of S and T is the c-matching, with
the maximum unionability score. Align implements the greedy
solution for graph matching and builds all alignments incremen-
tally. The process of searching unionable attributes and aligning
tables is done iteratively until k tables with max-alignments are
found.

5.3 Estimating Unionability Distributions
Computing goodness and c-goodness scores requires the distri-

butions of attribute unionability probability and table unionability
probability. We assume that unionability scores between a query
and tables in a sufficiently large corpus follow a similar distribu-
tion to that of all attribute and table pairs in the corpus. Therefore,
the distributions can be pre-computed. Doing this exactly would
require a quadratic number of computations in the number of at-
tributes and tables in a corpus.

To do efficient search, LSH indices bucketize attributes into
groups of highly unionable pairs. Therefore, LSH buckets contain
attribute pairs that cover the head (highest values) of probability
distribution. The attributes that do not appear in the same bucket
are likely to be pairs from the tail of the distribution and their union-
ability can be estimated as zero. Therefore, estimating unionability
distribution requires computing scores only for the pairs in the same
index buckets.

Figure 4 shows the goodness scores in a corpus of three million
attribute pairs when cumulative distribution functions are computed
using all pairs versus using only pairs of the same buckets. The
goodness rankings are strongly correlated, especially for pairs with
high goodness scores, which are the ones returned by indices. In
fact, the calculated Spearman’s rank correlation coefficient [17] of
the rankings is 1.0 for all measures. Out of three million pairs, the
number of pairs in the same buckets are 40,967 for set-unionability,
41,886 for sem-unionability, and 72,608 for NL-unionability. Thus,
in practice, estimating unionability distributions has linear compu-
tational complexity in the number of attributes in a corpus. Follow-
ing the same paradigm, to estimate table unionability distributions
for various cwe only consider table pairs whose attributes are buck-
etized together.

To make sure that goodness evaluation is not affected by distri-
bution estimation, we perform a robustness test. We modify the
calculated unionability probability scores by one standard devia-
tion σ and calculate an interval of goodness scores. During search,
whenever we need to rank attribute pairs and table pairs by good-
ness, we rank them by their goodness intervals.

6. EXPERIMENTAL EVALUATION
We evaluated the effectiveness and efficiency of table union

search on a repository of Canadian, UK and US Open Data ta-
bles. We also compared table union search with approaches that
solve relevant problems for Web tables in terms of accuracy and
efficiency.

6.1 Data Preparation
In this section, we describe the datasets and pre-processing steps

we took to prepare for our experimental evaluation.

6.1.1 Datasets
We have downloaded CSV-formatted tables from the Canadian,

UK and US Open Data portals. In our experiments, we consider
attributes with text values. Canadian Open Data consists of 11,809
tables with 40,308 text attributes, UK Open Data contains 38,348
tables with 217,445 text attributes, and US Open Data contains
165,236 tables with 25,127,735 text attributes.

6.1.2 Entity Recognition and Attribute Annotation
To generate the semantic representation of attributes, â, we use

YAGO [34], which is one of the largest and most current publicly
available ontologies. In order to use an entity mapping technique
that closely follows Zhou et al. [39], we downloaded the YAGO
database (2013 version) and built a full-text search index on the en-
tity names. To map an attribute value to entities in YAGO, we first
lowercase and remove all punctuation characters, then query the
full-text search index with AND query of all tokens in the attribute
value. Each entity name in the search result should contain all to-
kens of the query. We map the data value to the top-3 entities in
the search result ranked by BM25 score [13]. Based on the mapped
entities, we annotate each attribute with classes from YAGO, us-
ing the MAJORITY algorithm proposed by Venetis et al. [35]. We
observed that on average only 13% of values in attributes can be
mapped to entities in YAGO. Using the mapped entities, we were
able to map 36,826 (91%) of attributes in Canadian Open Data to
classes in YAGO.

6.1.3 Word Embedding
We downloaded the word embedding database for English pub-

lished by Facebook AI Research from the fastText2 project [14].
To build embedding vectors for each attribute value, we first lower-
case and remove all punctuation characters, then find the embed-
ding vector of each token (tokens with no embedding vector in
the fastText database are skipped). Following Mikolov et al., the
embedding vector of an attribute value is constructed by summing
the individual embedding vectors of its tokens [25]. The generated
vectors form the embedding set of the attribute. We were able to
generate embedding representations for 196,666 (90%) attributes
of UK Open Data, 40,268 (99%) attributes of Canadian Open Data,
and 17,516 (0.06%) attributes of US Open Data. The coverage of
word embedding on US Open Data is surprisingly low because the
majority of attributes in this corpus contain encodings that do not
exist in natural language.
2https://github.com/facebookresearch/fastText

821

6.2 Implementation
Estimation of Unionability Distribution. To estimate the dis-
tribution of unionability probabilities, we applied the technique
of Section 5.3 to 150,000 random Open Data table pairs with
seven million attribute pairs and calculated unionability distribu-
tions for all measures. We used the 150,000 table pairs and cal-
culated their alignments using greedy graph matching for various
values of c. Our parallel implementation of this task took under
three hours. Computing the goodness of a table or attribute union-
ability score requires evaluating Cumulative Distribution Functions
(CDFs) for the score during search. To do this efficiently, during
pre-processing we rank and group scores into 500 equi-depth parti-
tions between zero and one, and estimate CDFs using the partitions.
Theses CDFs and partitions are used in evaluating goodness during
search. Equi-depth partitioning provides a more accurate approxi-
mation of goodness scores compared to equi-width partitioning be-
cause the unionability distributions are not uniform. In order to
make sure that goodness evaluation is not affected by distribution
estimation, we perform the robustness test explained in Section 5.3
with standard-deviation σ=1%.
Calculation of NL-unionability. Evaluating NL-unionability re-
quires the calculation of mean vector and covariance matrix of the
embedding vectors of each attribute. In order to improve the inter-
activity of search, like Venetis et al., we assume that attribute values
are generated independently [35]. Therefore, we can use the vari-
ance vector of attributes’ embedding vectors instead of covariance,
which saves us time during data preparation and NL-unionability
calculation during search.
Unionability Indices. We build all unionability indices using
self-tuning LSH-forest [1] with optimal parameters calculated for
threshold 0.7.

6.3 Effectiveness
We report the precision, recall and mean average precision

(MAP) of table union search devising single unionability measure
and the ensemble measure on a benchmark created from Open Data
tables.

6.3.1 Benchmark
Since there is no available ground truth for table union search,

we synthesized a benchmark3 using tables from Canadian and UK
Open Data. The ground truth provided by the benchmark allows us
to evaluate the precision, recall and MAP of table union search.

Das Sarma et al. [35] consider unionable tables as results of pro-
jections, selections, or a sequence of selections and projections on
a base table. Following this intuition, we start by finding base ta-
bles from Open Data. Then, we perform selection and projections
to divide them into unionable tables. Various projection sizes and
projected attributes give us a set of tables that are unionable on dif-
ferent c’s.

We choose the base tables by looking at all Open Data tables in
descending order of row counts and pick tables that have at least 5
text columns. This is to ensure both natural language and ontology
measures are treated equally. In order to avoid using near-duplicate
tables, every pair of selected tables must have at least 5 different
column names. Octopus performs keyword search to find related
tables, then clusters the results into groups of unionable tables [5].
Following the Octopus intuition, to add diversity and find vaguely
unionable tables with base tables, we use the meta-data (table name
and publisher) of each base table to perform keyword search on the
meta-data of Open Data tables. For each base table, we select one

3https://github.com/RJMillerLab/table-union-search-benchmark

of the highly ranked and non-duplicate result tables. This gives us
an extended set of base tables. The added tables are about similar
topics as the original base tables but are not necessarily unionable
on all attributes. We manually align each search result table with
the corresponding query table.

Next, we create groups of unionable tables by first issuing a pro-
jection on a random c-subset of columns of a base table, and then
a selection with some limit and offset on the projected table. We
make sure selection offsets on the same base table do not overlap.
For every original table with n columns, we generate up to two ran-
dom c-subset projections for c = 1, 2, . . . , n. For each projection
we generate five unionable tables by performing selection.

For every pair of benchmark tables originated from the same
base table or unionable base tables found by keyword search, the
ground truth alignment can be derived from matching or aligned
columns, respectively. A correct alignment only happens when all
and only matching or aligned columns are aligned, which means
tables are aligned with the correct number of attributes (optimal c).

6.3.2 Effectiveness Measures
We report the precision and recall of top-k table union search at

various k. For multiple queries, we average the precision and recall
scores of all queries, respectively. We also use mean average pre-
cision (MAP) as a single-figure measure to evaluate the quality of
top-k search on results ordered by exact table unionability scores.
Given a set of query tables Q, suppose Aq is an ordered list of re-
sult table alignments for query q in Q. Suppose Gq is the set of
unionable table alignments with q based on the ground truth. The
mean average precision of Q is defined as follows [24].

MAP(Q) =
1

|Q|
∑
qi∈Q

1

|Gqi |
∑

gl∈Gqi

Precision(Tgl , qi) (21)

where Tgl is the set of alignments in Aqi starting from the top-1
until we find table gl and Precision is the precision of Tgl given the
ground truth of qi. If gl does not appear in the returned results, the
Precision is considered as 0.

Moreover, for each measure we report the relative recall [7] of
top-k results and the number of queries for which they can success-
fully find some unionable tables. For the unionability measures
U = {Uset,Usem,Unl,Uensemble}, suppose AUi is the set of
search results (tables) returned by measure Ui. The relative recall
of Ui with respect to all measures is defined as follows.

RecallRelative(Ui) =
|AUi |

| ∪Uj∈U AUj |
(22)

6.3.3 Attribute and Table Unionability
We used the benchmark of Section 6.3.1 to generate 5,000 tables,

starting with 32 base tables and their unionable tables found by
keyword search. All benchmark tables are indexed as described in
Section 5. We randomly select 1,000 benchmark tables as queries.
These queries are consistently used to evaluate the quality of search
in four experiment sets. In three experiments, we only apply a
single unionability measure and its corresponding index during
search. The fourth set of experiments uses ensemble-unionability
for search. Table 2 and Figure 5 report the precision, recall, MAP,
and the result counts of top-60 table union search.

NL-unionability outperforms all single measures in precision, re-
call, MAP, and relative recall. This shows that NL-unionability is
capturing the similarity shared by real unionable attributes. NL-
unionability has slightly smaller query count than set-unionability
due to the limited coverage of word embeddings on some unionable
benchmark tables. On the other hand, although set-unionability is

822

Table 2: Accuracy and Result Counts of Search of 1,000 Queries.
Measure Set Sem NL Ensemble

MAP@60 0.7202 0.5269 0.7236 0.9249
Relative Recall 0.4867 0.4737 0.4896 0.4560
Precision 0.6239 0.5389 0.7570 0.9095
Recall 0.5489 0.4095 0.6918 0.8377
#Queries w/ Answers 995 966 986 995
#Returned Results 63,681 61,968 64,050 59,653

1 10 20 30 40 50 60
K

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

UEnsemble

UNL

USet

USem

(a) Average Precision.

1 10 20 30 40 50 60
K

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

UEnsemble

UNL

USet

USem

(b) Average Recall.
Figure 5: Precision and Recall at different k over 1,000 Queries.

the most successful of all three measures in finding at least one
unionable table for each query, it can misguide search when it finds
value overlap in attributes of non-unionable tables. As a result, set-
unionability has lower precision and recall than NL-unionability.
Despite the partial coverage of the ontology, sem-unionability is
sufficient to find some unionable tables for most queries. Recall
that we strictly apply a 0/1 evaluation for the correctness of align-
ments, thus, if a measure fails to detect all unionable attributes of
two tables, the result is evaluated as incorrect. Due to partial cov-
erage, some unionable attributes cannot be detected by only con-
sidering sem-unionability which results in a drop in precision and
recall. We observed that set and sem-unionability measures find
some unionable tables, but NL-unionability is better at high k.

Ensemble-unionability chooses the best measure to evaluate at-
tribute unionability. In particular for the same table, it can use dif-
ferent measures for different attributes, choosing the measure with
best goodness (meaning the least likelihood of there being a more
unionable pair based on that measure in the corpus). This results in
the ensemble-unionability achieving the highest precision, recall,
MAP and relative recall compared to table union search using only
a single measure.

Figure 5 shows the precision and recall curves for k = 1 to
k = 60. The precision of set and sem-unionability decreases as
recall increases and as k increases. NL-unionability sustains pre-
cision as recall increases and can achieve the highest recall among
three measures. As the high MAP of the ensemble-unionability
also suggests, ensemble-unionability demonstrates the lowest de-
crease in precision and highest increase in recall across all k’s.

6.4 Efficiency
To evaluate the efficiency of search devised by different union-

ability measures, we indexed 5,000 benchmark tables and used the
1,000 queries of Section 6.3.3. The index creation time for set,
sem, NL, and ensemble-unionability are 12.90, 8.86, 10.76, and
10.78 seconds, respectively. Sem-unionability has the lowest in-
dexing time because the number of attributes that have semantic
domain representation is smaller than that of other types of do-
mains due to partial coverage of ontology. Figure 6 reports the

10th and 90th percentile response times4. NL-unionability and
ensemble-unionability achieve interactive response times, while
sem-unionability has a significantly higer response time. There are
two factors to the overall performance of search using a measure:
(1) the access speed of the corresponding index, and (2) the prun-
ing power of the unionability measure. We used LSH forest for set,
sem and NL-unionability. Therefore, the index access speed is con-
sistent across all measures. Figure 6 shows that NL-unionability
has the most pruning power, of all single unionability measures.
Due to the low coverage of the ontology on Open Data attributes,
the sem-unionability of most attribute pairs are low. Recall that
LSH forest starts with an optimal set of parameters based on a
threshold and searches for unionable attributes. If the parameters
do not lead to any results, LSH forest changes the parameters to
search for attributes with lower unionability, until it finds some.
Sem-unionability distribution has a long tail, this results in the cor-
responding index returning a lot of candidate attributes when no
highly unionable attribute exists. We observed that only 3% of at-
tribute pairs in Open Data have sem-unionability greater than 0.5.

Ensemble-unionability probes all indices in parallel. It involves
computing all three measures for candidate attributes returned by
any of the indices. In spite of this overhead, the combined pruning
power of the three unionability measures results in the ensemble
measure being only slightly more expensive than NL-unionability
(in particular, the large number of candidates for sem-unionability
can often quickly be pruned). As shown in Figure 6, all unionability
measures scale smoothly with respect to k.

We further evaluated the response time of ensemble-unionability
with respect to different Open Data corpus sizes. The index cre-
ation time for corpora with 200K, 400K, 600K, 800K and 1M
attributes of Open Data are 142.25, 250.08, 333.97, 346.98, and
412.25 seconds respectively. Figure 6c reports the 90th percentile
of the response time of top-10 table union search of 1,000 queries
using ensemble-unionability on repositories containing 200K to
over 1M attributes. Ensemble-unionability consistently achieves
interactive speeds.

6.5 Comparison with Existing Approaches
We compared table union search using ensemble-unionability

with approaches that address similar problems for Web tables. We
were unable to run the open source implementations of some ap-
proaches on our full benchmark, so we generated a smaller bench-
mark consisting of 1,300 tables originating from 10 base tables.
Figure 7 reports the precision and recall of top-60 results of these
frameworks and table union search. The overall run time of top-60
table union search on the benchmark is less than four minutes.

Octopus. Octopus clusters the results of keyword search on
a repository of Web tables using two text-based attribute simi-
larity measures: (1) column-text-cluster, and (2) size-cluster [5].
Column-text-cluster uses the tf-idf Cosine similarity of attributes
while size-cluster uses the difference between the mean string
length of attributes as a signal for structural similarity. The over-
all similarity of two tables using each measure is the score of the
matching that maximizes the sum of attribute similarity scores.
We consider an Octopus alignment to be correct if it matches at
least all attributes in a ground truth alignment. Although column-
text-cluster outperforms size-cluster, it can only detect similarity
when value-overlap exists. Our table union search algorithm which
uses semantic and natural language unionability in addition to text
overlap-based unionability greatly outperforms both Octopus mea-
sures (Figure 7). The overall run time of Octopus on the benchmark
4The 10th and 90th percentile of x means 10% and 90% of queries
have response times faster than x, respectively.

823

10 20 30 40 50 60
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

0
th

 P
ct

 R
e
sp

o
n
se

 T
im

e
 (

s) UEnsemble UNL USet USem

(a)

10 20 30 40 50 60
k

0

20

40

60

80

100

120

140

160

9
0

th
 P

ct
 R

e
sp

o
n
se

 T
im

e
 (

s) UEnsemble UNL USet USem

(b)

20
0K

40
0K

60
0K

80
0K 1M

Corpus Size (Num. of Attr.)

0

1

2

3

4

5

6

9
0
th

 P
ct

 R
e
sp

o
n
se

 T
im

e
 (

s)

(c)
Figure 6: (a), (b) The 10th and 90th percentile response times, respectively, of table union search for various k on 5,000 Benchmark Tables.
(c) The 90th percentile response times of top-10 table union search using Uensemble for various Open Data corpus sizes.

is over one hour. This is due to the batch processing of tables by
Octopus which has complexity in the number of tables in the corpus
multiplied by the number of queries.

Web Table Stitching. Lehmberg and Bizer applied schema
matching techniques to the problem of stitching Web tables [19].
Given two tables, this framework generates matching correspon-
dences between their attributes. The label-based matching, which
matches attributes with identical names, is the most effective table
stitching technique. However, since most Open Data tables have
missing or meaningless attribute names, label-based matching does
not apply to Open Data. We considered their second best matcher,
namely the value-based matcher. This matcher measures the over-
lap of the domains of two attributes followed by a matching re-
finement stage, during which inconsistent matchings are removed
and new matchings are inferred via transitivity. To compare stitch-
ing with table union search, we apply maximum graph matching
to generate the best alignment for two tables using the generated
correspondences. The matching of two tables is considered to be
correct if the correspondences in the matching include at least all
attribute pairs in the ground truth alignment. Figure 7 shows that
table union greatly outperforms Web Table Stitching, since it ap-
plies an ensemble of semantic and natural language unionability
in addition to a text overlap-based unionability (set-unionability).
The overall runtime of Web Table Stitching using the open source
implementation of the framework on the benchmark is 19 minutes.

Entity complement. Das Sarma et al. defines two Web tables as
entity complements if they contain information about related sets
of entities (entity consistency and schema consistency) and if a
candidate table expands a query with new entities (entity expan-
sion) [31]. To evaluate these measures, entity complement uses the
signals mined from high coverage ontologies curated from all data
on the Web. In our experiments, we consider a publicly available
ontology (YAGO [34]). Since the entity complement does not pro-
vide a way of evaluating the unionability of attributes or of aligning
attributes, we only evaluate its precision and recall on the problem
of finding entity-complement tables. Entity complement achieves
a precision of 0.6252 and recall of 0.6378 on the benchmark. This
result cannot be directly compared to the accuracy results of align-
ments produced by the other frameworks (and reported in Figure 7).
Since the entity complement relies heavily on a high coverage on-
tology for evaluating the entity and schema consistency, and for
evaluating entity expansion, the low coverage of publicly available
ontologies on Open Data negatively affects its accuracy (we ob-
served that only 54.6% of values in subject attributes of the bench-
mark tables are mapped to an entity in YAGO). Table union search
has much better accuracy than the entity-complement framework
even in the harder task of finding and aligning unionable tables.
The overall runtime of entity complement was 15 hours. Although

entity complement enforces a set of heuristics for filtering candi-
dates during batch processing, we observed that the bottleneck is in
the value-based schema consistency evaluation.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OctopusColumnText

OctopusSize

TableUnionSearch

WTStitching

Figure 7: Comparison of Table Union Search with Octopus
(Column-Text-Cluster and Size-Cluster) and Web Table Stitching.

7. CONCLUSION AND FUTURE WORK
We defined table union search problem and presented an efficient

approximate solution. We defined three probabilistic measures for
evaluating the unionability of attributes – the hypothesis that two at-
tributes are drawn from the same domain. We have used these mea-
sures to develop a scalable table search framework. We proposed
a novel distribution-aware way of deciding which measure to use
for an attribute pair and what the optimal number of unionable at-
tributes in two tables are. Our table union search achieves response
times typically much less than five seconds on a real corpus of over
a million Open Data attributes. We showed that our table search
achieves greater accuracy, at much lower response time, than any
of the existing related table union and stitching approaches.

Our search algorithm assumes independence of the unionabil-
ity of attribute pairs when aligning two tables. In future work, it
would be interesting to take into account the correlations between
attributes in searching for unionable tables. While our empirical
evaluation uses Open Data (and a new Open Data benchmark that
we have made public), our techniques show great promise for help-
ing to manage both public and private data lakes. Our framework
uses publicly available word embedding vectors to evaluate natural
language unionability. We plan to investigate the use of domain-
specific word embeddings trained on Open Data or other data lakes.

8. ACKNOWLEDGMENT
This work was partially supported by NSERC.

824

9. REFERENCES
[1] M. Bawa, T. Condie, and P. Ganesan. LSH forest: self-tuning

indexes for similarity search. In Proceedings of the 14th
international conference on World Wide Web, pages
651–660, 2005.

[2] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural
probabilistic language model. Journal of Machine Learning
Research, 3:1137–1155, 2003.

[3] A. Broder. On the resemblance and containment of
documents. In Proceedings of the Compression and
Complexity of Sequences, pages 21–30, 1997.

[4] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: Exploring the power of tables on the
web. PVLDB, 1(1):538–549, 2008.

[5] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1):1090–1101,
2009.

[6] M. Charikar. Similarity estimation techniques from rounding
algorithms. In Proceedings on 34th Annual ACM Symposium
on Theory of Computing, pages 380–388, 2002.

[7] S. J. Clarke and P. Willett. Estimating the recall performance
of web search engines. Aslib Proceedings, 49(7):184–189,
1997.

[8] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. P. Kuksa. Natural language
processing (almost) from scratch. Journal of Machine
Learning Research, 12:2493–2537, 2011.

[9] CrowdFlower. 2017 data scientist report.
https://visit.crowdflower.com/
WC-2017-Data-Science-Report_LP.html, 2017.

[10] O. Hassanzadeh, K. Q. Pu, S. H. Yeganeh, R. J. Miller,
L. Popa, M. A. Hernández, and H. Ho. Discovering linkage
points over web data. PVLDB, 6(6):444–456, 2013.

[11] B. He and K. C. Chang. Statistical schema matching across
web query interfaces. In SIGMOD, pages 217–228, 2003.

[12] H. Hotelling. The generalization of student’s ratio. The
Annals of Mathematical Statistics, 2(3):360–378, 08 1931.

[13] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic
model of information retrieval: development and
comparative experiments - part 1. Information Processing
and Management, 36(6):779–808, 2000.

[14] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of
tricks for efficient text classification. ACL, 2017.

[15] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In SIGMOD, pages
205–216, 2003.

[16] S. Kuzi, A. Shtok, and O. Kurland. Query expansion using
word embeddings. In CIKM, pages 1929–1932, 2016.

[17] A. Lehman. JMP for Basic Univariate and Multivariate
Statistics: A Step-by-step Guide. SAS Institute, 2005.

[18] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef,
S. Auer, and C. Bizer. Dbpedia - A large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web,
6(2):167–195, 2015.

[19] O. Lehmberg and C. Bizer. Stitching web tables for
improving matching quality. PVLDB, 10(11):1502–1513,
2017.

[20] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of
Massive Datasets, 2nd Ed. Cambridge University Press,
2014.

[21] G. Limaye, S. Sarawagi, and S. Chakrabarti. Annotating and
searching web tables using entities, types and relationships.
PVLDB, 3(1):1338–1347, 2010.

[22] X. Ling, A. Y. Halevy, F. Wu, and C. Yu. Synthesizing union
tables from the web. In IJCAI, pages 2677–2683, 2013.

[23] L. Maaten and G. Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(11):2579–2605,
2008.

[24] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
information retrieval. Cambridge University Press, 2008.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NISP, pages 3111–3119, 2013.

[26] A. Nandi and P. A. Bernstein. HAMSTER: using search
clicklogs for schema and taxonomy matching. PVLDB,
2(1):181–192, 2009.

[27] R. Pimplikar and S. Sarawagi. Answering table queries on
the web using column keywords. PVLDB, 5(10):908–919,
2012.

[28] E. Rahm. Towards large-scale schema and ontology
matching. In Schema Matching and Mapping, pages 3–27.
2011.

[29] J. A. Rice. Mathematical Statistics and Data Analysis. 2006.
[30] D. Ritze, O. Lehmberg, and C. Bizer. Matching HTML

tables to dbpedia. In Proceedings of the 5th International
Conference on Web Intelligence, pages 10:1–10:6, 2015.

[31] A. D. Sarma, L. Fang, N. Gupta, A. Y. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, pages 817–828, 2012.

[32] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing
natural scenes and natural language with recursive neural
networks. In ICML, pages 129–136, 2011.

[33] W. Su, J. Wang, and F. H. Lochovsky. Holistic schema
matching for web query interfaces. In EDBT, pages 77–94,
2006.

[34] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[35] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of tables
on the web. PVLDB, 4(9):528–538, 2011.

[36] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri.
Infogather: Entity augmentation and attribute discovery by
holistic matching with web tables. In SIGMOD, pages
97–108, 2012.

[37] H. Zamani and W. B. Croft. Estimating embedding vectors
for queries. In Proceedings of the International Conference
on the Theory of Information Retrieval, pages 123–132,
2016.

[38] S. Zhang, P. Mork, O. Bodenreider, and P. A. Bernstein.
Comparing two approaches for aligning representations of
anatomy. Artificial Intelligence in Medicine, 39(3):227–236,
2007.

[39] X. Zhou, X. Zhang, and X. Hu. Maxmatcher: Biological
concept extraction using approximate dictionary lookup. In
PRICAI: Trends in Artificial Intelligence, pages 1145–1149,
2006.

[40] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller. LSH
ensemble: Internet-scale domain search. PVLDB,
9(12):1185–1196, 2016.

825

