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ABSTRACT
With the prevalence of car-hailing applications, ridesharing be-
comes more and more popular because of its great potential in mon-
etary saving and environmental protection. Order dispatch is the
key problem in ridesharing, which has a strong impact on riders’
experience and platform’s performance. Existing order dispatch re-
search works fail to consider the price of the orders, which can be
an important reference because it directly relates to the platform’s
profit. Our work takes the order price into concern, and formulates
a constrained optimization problem, which takes platform’s profit
as the optimization objective and performs controls on riders’ de-
tour distance and waiting time. We prove the problem is NP-hard,
thus, we propose approximation methods. We further develop a
simulation framework based on real ridesharing order and vehicle
data. We conduct experiments with this simulation framework to
evaluate the effectiveness and efficiency of the proposed methods.

PVLDB Reference Format:
Libin Zheng, Lei Chen and Jieping Ye. Order Dispatch in Price-aware
Ridesharing. PVLDB, 11 (8): 853-865, 2018.
DOI: https://doi.org/10.14778/3204028.3204030

1. INTRODUCTION
To utilize the empty seats in manned cars and reduce the mone-

tary cost of riders, car-hailing service providers, such as Uber1 and
Didi Chuxing2, have been promoting their ridesharing business in
recent years. In contrast to traditional ride-hailing services where
one vehicle takes at most one rider at a time, the service provider in
ridesharing may assign multiple riding orders to a car at the same
time. Ridesharing brings a lot of benefits. For riders, they get
travel fee reductions from sharing the ride with others. For car-
hailing service providers, ridesharing enables a better utilization of
the limited vehicles, which means more profits. Ridesharing also
relieves their serving stress during peak ordering hours. Besides,
the government encourages such a shared transport for the purpose
of reducing carbon dioxide emission. Due to its great significance,
ridesharing has drawn increasing attention from the academia.
1https://www.uber.com
2http://www.xiaojukeji.com/
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Figure 1: Example 1.

The dial-a-ride problem (DARP) [8, 10, 5, 16] has been widely
studied in the past years, which is a variant of the vehicle routing
problem [19] with time window constraints for pick-up and drop-
off. The problem of adopting these methods lies in their setting that
all orders are served. This is not practical in real-time ridesharing
due to the limited transportation capacity. Besides, integer pro-
gramming techniques are commonly used to solve the problem,
which leads to great time costs. Generally only small instances
are tested in their works [9]. There are also research works [1],
which use a multi-objective function to trade-off the travel distance
and the number of un-served orders. However, it is unclear on how
to regularize the penalty term. Actually, all of these works fail to
consider the order prices, which can be an important reference to
distinguish the orders during the dispatch process.

Online algorithms have also been proposed to address the real-
time ridesharing problem. [20] and [15] re-optimize the travel plans
of vehicles on arrival of each new order. This online setting con-
ducts optimizations on individual orders and give them immediate
responses. However, they do not consider the order prices either.

In typical ridesharing platforms (Uber and Didi Chuxing), the
price of a ridesharing order is decided after user’s input of desti-
nation and before his/her drop of an order. Therefore, the prices
of the ridesharing orders are fixed regardless of the dispatch and
routing results. This is quite different from non-ridesharing orders
whose price may depend on the actual travel length. Ignorance
of the price during dispatch of the ridesharing orders may prevent
the dispatcher (the server of ridesharing platforms) from finding
the profit-optimal solution. For example, when the vehicles are in
shortage, the dispatch algorithm decides to serve which orders. The
order price would be one important reference as it is directly related
to the platform’s earning. Previous works on ridesharing order dis-
patch [10, 1, 20, 15] fail to distinguish the orders according to their
prices.

Example 1. In Figure 1, there are three orders o1, o2, o3 and only
one vehicle v1. os1, os2, os3 and oe1, oe2, oe3 represent the origins and
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Figure 2: Example 2.

destinations respectively. Circles and edges represent the nodes
and paths respectively in the road network. In this example, all
edges are of equal travel distance. This example corresponds to
peak ordering periods where vehicles are in shortage. There are
two possible travel plans for v1: 1) v1os1o

s
2o

e
1o

e
2; 2) v1os1o

s
3o

e
3o

e
1.

Without considering the order prices, the above two plans show
no difference because they own the same amount of travel distance
and the same number of served orders. Let us consider the order
prices and assume price(o2) > price(o3). This is reasonable
as d(os2, o

e
2) > d(os3, o

e
3). Note that d(·, ·) represents the shortest

path distance, and has a strong impact on orders’ price in practice.
Then, the price-aware solution would be dispatching o1 and o2 to
v1.

Example 2. Figure 2 gives an example which corresponds to the
scenario with enough transportation capability to serve the orders.
There are two orders o1 & o2 and two vehicles v1 & v2. In this
example, we assume d(v1, o

s
1) = d(v2, o

s
2) = d1 < d(os1, o

s
2) =

d(os1, o
e
1) = d(os2, o

e
2) = d(oe1, o

e
2) = d2. Without consideration of

order prices, the dispatch solution with minimum travel distance is
to dispatch o1 and o2 to v1 and v2 respectively. However, this may
not lead to the profit-optimal solution. Let us take the order prices
and vehicle payments into account. The profit of dispatching these
two orders is equal to price(o1)+price(o2)−pay(v1)−pay(v2).
The payment to a vehicle is comprised of the base fare (flag-down
fare) and the travel fare. The platform would pay one base fare less
if employing v1 only. Let the base fare be larger than cost(d2−d1),
i.e., the travel cost saving from adopting v1os1o

e
1, v2o

s
2o

e
2 instead of

v1o
s
1o

s
2o

e
2o

e
1. Then, the optimal dispatch solution is to dispatch both

o1 and o2 to v1.

In this work, the goal is to maximize the platform’s profit. Given
an order dispatch solution, its profit is equal to the sum of order
prices minus the payment to the vehicles. Therefore, maximiza-
tion of the profit naturally requires one to control the payment by
taking care of the vehicles’ travel distance, which is also the key
objective in previous works [20, 15]. However, profit maximiza-
tion needs to refer to the order price as well, which is ignored in
those works. Following the industrial practice [30], we adopt the
setting where the dispatcher operates on the batched orders peri-
odically. The dispatcher packs the pended orders and dispatches
them to the vehicles such that the profit is maximized. There are
constraints to ensure the rider experience, including control of de-
tour distance and pick-up distance. To the best of our knowledge,
this is the first time that the order price has been considered in the
dispatch process. The exponentially large solution space makes it
difficult to solve the problem exactly. We prove that the problem
is NP-hard, and thus we propose approximation methods. To eval-
uate their performance, we develop a simulation framework based
on the real ridesharing order and vehicle data from Didi Chuxing.
In summary, our contributions are listed as follows:

Table 1: Symbols and notations
Symbol Description
O = {oi} Set of orders.
V = {vj} Set of vehicles.
osi , oei The origin and the destination of order oi.
revi The price of order oi.
costj The payment to vehicle vj .
P The overall profit.
Pi,j The profit of dispatching oi to vj .
t(a, b) The travel time from a to b.
d(a, b) The travel distance from a to b.
dri The detour ratio of oi.
θdr The threshold of detour ratio.
pti The pick-up time of order oi.
θpt The threshold of pick-up time.
planj The travel plan of vehicle vj .
cj The capacity of vehicle vj .

• We formulate the problem of Maximizing Profit in Price-
aware Ridesharing (MPPR) and prove the problem hardness
in Section 2.

• We propose the greedy method and the matching-based order
dispatch methods in Section 3 and Section 4 respectively.

• We devise some optimization techniques in Section 5, and
devise a real-data based simulation framework in Section 6.

• We conduct experiments to investigate the performance of
our proposed algorithms, and compare them to the state-of-
art approach in section 7.

In addition to the contributions listed above, we discuss the re-
lated work in Section 8 and conclude the paper in Section 9. The
important notations and symbols in the rest of this paper are sum-
marized in Table 1 .

2. MAXIMIZING PROFIT IN PRICE-AWARE
RIDESHARING

In this section, we first explain some concepts and describe the
problem of profit maximization (Section 2.1). Then, we show the
problem hardness by a reduction from the traveling salesman prob-
lem [4] (Section 2.2). Finally, we give some preliminary discus-
sions in Section 2.3 before description of approximation methods.

2.1 Problem Formulation
Definition 1 (Time epoch). A time epoch is a time instant when the
dispatcher operates on the batched orders.

The dispatcher assigns orders at a time epoch, after which it
batches new orders until the next time epoch. In each time epoch,
the input consists of the order set O = {oi} and the vehicle set
V = {vj}.

Definition 2 (Order oi). An order oi is a quaternary tuple< osi , o
e
i ,

ti, revi >, where osi and oei represent the starting (pick-up) loca-
tion and ending (drop-off) location of the order respectively, ti is
the time when oi is raised, and revi is its price (the revenue of
serving oi).

Remark: According to the handbook in the mobile application of
Didi Chuxing, users pay an upfront fare to take the ridesharing ser-
vice. Note that no further fare would be charged from users. This
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upfront fare is computed by a pricing strategy, which considers the
origin/destination, current demand-supply condition, and dynamic
discounts (unavailable for non-sharing orders), etc. Therefore, the
upfront fare is one of the inputs in the order dispatch process, and
we denote them as the order price, revi.

Definition 3 (Vehicle vj). A vehicle vj is a tuple< lj , planj , cj >,
where lj is the vehicle’s current location, planj is the travel plan,
and cj is its capacity.

planj is the travel plan comprised by the pick-up and drop-off of
the uncompleted orders. For example, in Figure 1, assuming v1 is
currently on the path between os1 and os2, the plan v1os2oe1oe2 means
that v1 is on its way towards the pick-up of o2, after which it would
drop off o1 and then o2. At any time, the number of riders in the
vehicle cannot exceed cj .

The function t(·, ·) gives the travel time needed between two lo-
cations w.r.t. the shortest path. For example, the time needed to
finish the aforementioned plan is t(v1, os2) + t(os2, o

e
1) + t(oe1, o

e
2).

Based on t(·, ·), we define a detour ratio for each order.

Definition 4 (Detour ratio dri,j). The detour ratio of oi w.r.t. planj ,
dri,j , is equal to t(osi ,o

e
i )

tj(o
s
i ,o

e
i )

, where tj(osi , o
e
i ) is the time difference

between pick-up and drop-off of oi in planj .

For example, in Figure 1, let the plan of v1 be v1os1os3oe3oe1. The
shortest path to serve order o1 is os1os2oe1. Assuming the edges are
of equal distance, the detour ratio of o1 w.r.t. this plan is:

t(os1, o
s
3) + t(os3, o

e
3) + t(oe3, o

e
1)

t(os1, o
s
2) + t(os2, o

e
1)

= 1.5

Detour ratio measures the relative time loss due to ridesharing.
Controlling the detour ratios prevents bad riding experiences.

In addition to the detour time, orders’ waiting time during pick-
up also has a strong impact on their experience.

Definition 5 (Pick-up time pti). The pick-up time of oi is the time
difference between when it is dispatched and when it is picked up.

For example, suppose we dispatch o1 and o3 to v1 with travel
plan v1os1os3oe3oe1 in the current time epoch. Then, pt3 is equal to
t(v1, o

s
1) + t(os1, o

s
3).

The profit of the platform is equal to the difference between the
price of the dispatched orders and the payment to the drivers.

Definition 6 (Driver payment). The payment to a vehicle is bcost+
costj , i.e., the base fee plus the travel fee.

The base fee, bcost, corresponds to the flag-down fee in taxi
services. For the travel fee costj , without loss of generality, we
assume that it is linear to its travel time:

costj = α ∗ t(planj)

where t(planj) is the travel time of planj , from the first pick-up,
before which vj is empty, to the last drop-off, after which vj is
empty again.

Based on the above concepts, we define the platform profit, which
is rarely considered in existing ridesharing works.

Definition 7 (Platform profit). The platform profit of a dispatch
solution is:

P =
∑
vj∈V

(
∑

oi∈planj

revi)− (bcost+ costj)

 (1)

Our objective is to maximize P , which equals the price of dis-
patched orders minus the payment to vehicles. The order prices are
fixed and known, but which orders would be dispatched are uncer-
tain. The term

∑
oi∈planj

revi is affected by the dispatch result
and cannot be omitted. Our objective differs from those proposed
by [8, 10, 5, 16] in that they simply minimize the travel distance as-
suming enough transportation capacity to serve all orders. In prac-
tice, not all orders can be dispatched timely. Some of them starve
for a long time, and then are cancelled. According to [30], the order
cancellation rate in Didi Chuxing is above 20%.

Following the industrial practice [30], we opt to optimize the
profit locally in each round. This proceeds in a greedy manner,
and does not guarantee a globally optimal solution with respect to
the whole time span. However, because of the real-time nature of
the problem, i.e., orders arrive dynamically and may be cancelled
due to large delays, it is infeasible to solve the problem in a static
manner. It is hard to optimize in the global scope unless a powerful
order prediction technique is offered.

Definition 8 (Maximizing profit in price-aware ridesharing, MPPR).
Given a new order set O and a vehicle set V of a time epoch, the
problem of maximizing profit in price-aware ridesharing is to dis-
patch the orders to the vehicles and update their travel plans, so
that the profit (Equation (1)) is maximized, subjecting to the fol-
lowing constraints:
I . Detour constraint. For any dispatched order, the detour ratio is
no larger than θdr , i.e., ∀oi, dri ≤ θdr;
II . Pick-up constraint. For any dispatched order, its pick-up time
is no larger than θpt, i.e., ∀oi, pti ≤ θpt;
III . Capacity constraint. At any time, the number of passengers in
a vehicle is no larger than its capacity, i.e., ∀t, |{oi in vj}| ≤ cj .

Constraint I is to protect the rider experience by controlling the
detour ratios. Similarly, Constraint II prevents bothering both rider
and driver with a large pick-up time. These two constraints corre-
spond to the service constraint and waiting time constraint in [15]
respectively.

2.2 Problem Hardness
In this section, we prove that the MPPR problem is NP-hard by

a reduction from a variant of the traveling salesman problem (TSP)
[4]. TSP without return (TSP-WR) differs from TSP in that it does
not require the salesman to return to the depot. That is, the sales-
man visits each non-depot node once without the need for return-
ing. TSP-WR is different from the Hamiltonian path problem [23],
which does not specify depots. Due to the limited space, we only
give proof sketches for the theoretical results in this section. Their
formal proofs can be found in our technical report3.

Lemma 2.1. The traveling salesman problem without return (TSP-
WR) is NP-hard.

Proof sketch. Given a TSP instance, we reduce it to a TSP-WR in-
stance by duplicating the depot node. We need to guarantee that
this duplicate node is the last visited node in TSP-WR solutions.
This can be realized by adding another node which is only accessi-
ble from the duplicate node. Then, the optimal TSP-WR solution
is the one which visits all TSP nodes between the depot and its
duplicate with the minimized travel distance.

We now prove MPPR is NP-hard by a reduction from TSP-WR.

Theorem 2.2. The problem of maximizing profit in price-aware
ridesharing is NP-hard.
3http://www.cse.ust.hk/%7Elzhengab/MPPRtech.pdf
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Proof sketch. Given a TSP-WR instance, we construct a MPPR in-
stance by mapping the depot to the current location of the only
available vehicle and the origin of all orders. Besides, each non-
depot node in TSP-WR is mapped to the destination of an order.
Then, we set critical pick-up time requirements for orders so that
they can only be picked up at the vehicle’s departure. We need to
guarantee that all orders are served in MPPR solutions. This can
be realized by setting loose detour requirements, large order prices,
and large vehicle capacity. Subsequently, the optimal MPPR solu-
tion is the one which visits all the nodes with the minimized travel
distance.

2.3 Preliminary of Approximation Methods
The MPPR problem is shown to be NP-hard with a reduction

from TSP. However, existing approximation algorithms of TSP can-
not be applied to MPPR due to the following reasons. Firstly, in
TSP, all tasks are served and the goal is to minimize the over-
all travel distance. In contrast, in a dispatch round of real-time
ridesharing, it is a common case that only part of orders can be
served due to the limited transportation capacity. This is the reason
why some orders can be immediately dispatched while others need
to wait for some moments in reality. Secondly, the algorithms of
TSP only target at routing, which is a subproblem in MPPR. MPPR
also requires its solutions to dispatch orders to different vehicles,
which obviously cannot be handled by TSP solutions. Therefore,
we propose approximation methods for MPPR in Section 3 and 4.

A solution of MPPR includes order dispatch and route planning.
Route planning estimates the profit of assigning an order to a ve-
hicle, based on which orders are dispatched. Route planning aims
to minimize the travel distance, which has been widely studied in
existing works [6, 20, 15, 10, 14]. For efficiency concern, we fol-
low the setting in [6, 20, 10, 14] that after receiving a new order, a
vehicle keeps its existing orders’ permutation unchanged. That is,
given an order-vehicle pair, (oi, vj), we insert oi’s pick-up/drop-off
locations into vj’s plan like [6, 20]. This insertion-based algorithm
traverses all possible insertion location pairs in the plan for the new
order, and adopts the one with the least incurred travel cost.

The route planning algorithm outputs a plan of pick-up/drop-off
for the vehicle, which decides the vehicle’s route. We assume that
drivers always adopt the shortest path given two locations. The al-
gorithm has a time complexity of O(ĉ2q), where ĉ is the maximum
capacity of the vehicles and O(q) is the time cost of a shortest path
query. In the following sections, we propose approximation meth-
ods for our focused problem, i.e., order dispatch.

3. THE GREEDY ALGORITHM
Greedy based algorithms have been demonstrated effective in

spatial-related assignment problems [31, 25]. In this section, we
propose a Greedy algorithm. It proceeds step-by-step, and in each
step it makes the dispatch which brings the maximum immediate
profit gain. As shown in Algorithm 1, the Greedy algorithm keeps
dispatching orders until there is no feasible order-vehicle pairs.

Algorithm 1 first puts all feasible dispatch pairs (oi, vj) into pool
and calculates their immediate profit gains (lines 2 ∼ 6). Feasible
dispatch pairs are those which satisfy the constraints in Definition
8. The profit gain Pi,j is calculated as follows:

Pi,j = revi − α ∗∆tj(oi)− bcost ∗ 1(vj is empty) (2)

where ∆tj(oi) is the increase in travel time from inserting oi into
vj’s travel plan. 1(vj is empty) is an indicator function which
judges whether the vehicle is empty. If so, the base fee, bcost,
needs to be deducted from the earning. After this initialization, the
Greedy algorithm jumps to the while loop (lines 7 ∼ 18) which

Algorithm 1 The Greedy algorithm
Input: order set O, vehicle set V
Output: updated plans of vehicles.
1: pool← φ
2: for all (oi, vj) ∈ O × V do
3: if (oi, vj) is feasible then
4: Add pair (oi, vj) into pool and calculate Pi,j

5: end if
6: end for
7: while pool 6= φ do
8: (oi∗, vj∗)← arg max(oi,vj)∈pool Pi,j .
9: if Pi,j < 0 then

10: break.
11: end if
12: Dispatch oi∗ to vj∗ and update planj∗.
13: ∀vj , if (oi∗, vj) ∈ pool, remove (oi∗, vj)
14: for all (oi, vj∗) ∈ pool do
15: Update Pi,j∗ if it remains feasible.
16: Remove (oi, vj∗) from pool otherwise.
17: end for
18: end while
19: return R.

greedily dispatches one order at a time. In each execution of the
loop, the optimal pair (oi∗, vj∗), which brings the maximum im-
mediate profit gain, is found and removed from the pool (line 8).
The algorithm stops if the profit is negative (line 9 ∼ 11), otherwise
the corresponding dispatch is conducted (line 12). The remaining
candidate pairs of oi∗ are all removed (line 13). Similarly, due to
the update of planj∗, the candidate pairs of vj∗ are re-evaluated in
lines 14 ∼ 17.

Note that we consider the case where feasible order-vehicle pairs
become infeasible (lines 13 ∼ 17), but do not consider the other di-
rection. This is because it is impossible that infeasible pairs become
feasible after a dispatch.

Lemma 3.1. ∀i,j , (oi, vj) is feasible only if it is feasible before the
last dispatch.

Proof. We conduct the proof by contradiction. Suppose after a dis-
patch of (o1, v1), an infeasible dispatch pair (o2, v1) becomes fea-
sible. In the following, we show that any feasible insertion of o2
into plan1 would make it a feasible insertion before the dispatch,
which contradicts that (o2, v1) is originally infeasible.

Without loss of generality, we assume the plan of v1, plan1,
as v1os0os1oe1oe0, and assume a feasible insertion of o2 as plan′1:
v1o

s
0o

s
1o

s
2o

e
1o

e
2o

e
0. Then, plan′1 respects the three constraints, i.e.,

detour constraint, pick-up constraint and capacity constraint. We
construct a new plan plan′′1 by removing o1 from plan′j , which
is v1os0os2oe2oe0. It is obvious that plan′′j satisfy the capacity con-
straint. Besides, both o0 and o1 must satisfy the detour constraint
and pick-up constraint, because their detour travel time and pick-
up time both decrease benefited from removal of o1. This indicates
that plan′′j is a valid plan, and therefore (o2, v1) should be feasi-
ble before the dispatch of (o1, v1). This contracts our assumption.
Though our proof proceeds by giving an example, it holds for other
types of travel plans and insertions.

Under same conditions (demand-supply condition, ordering pe-
riod, etc.), it is clear that common ridesharing platforms (Didi Chux-
ing, Uber) would make a higher price for longer trips. Then, in Al-
gorithm 1, orders with long trips tend to be prioritized and assigned
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Figure 3: Example of Lemma 3.2

in early steps, because it greedily pursues profits. In the follow-
ing, we show that this prioritization pattern is wise/reasonable with
some discussions. Dispatching long trips at first is beneficial for
both empty and manned vehicles.

For empty vehicles, assigning them a long trip as the first trip
offers them a long initial travel. This brings more opportunities for
their travel to be shared with latter trips.

For manned vehicles, without loss of generality, we assume the
initial travel plan of a manned vehicle is voe1. A new order o2 is
firstly added to the plan as shown in Figure 3. LetD andD′ denote
the travel distance of voe1 and vos2oe1oe2 respectively. Besides, let
∆D(·) and ∆D′(·) denote the distance increase of inserting a node
right after v in the two plans respectively. That is, for another order
o3, ∆D(os3) = d(v, os3) + d(os3, o

e
1) − d(v, oe1), and ∆D′(os3) =

d(v, os3) + d(os3, o
s
2)− d(v, os2).

Lemma 3.2. ∀o1, o2, o3, ∆D(os3)−∆D(os2) ≤ ∆D′(os3)

Proof. With some simple deductions, we have:

∆D(os3)−∆D′(os3) = d(os3, o
e
1)−d(os3, o

s
2)+d(v, os2)−d(v, oe1).

According to triangle inequality, we have d(os3, o
e
1) − d(os3, o

s
2) ≤

d(os2, o
e
1). Then,

∆D(os3)−∆D′(os3) ≤ d(os2, o
e
1)+d(v, os2)−d(v, oe1) = ∆D(os2)

Lemma 3.2 states that the new insertion cost of latter orders,
∆D′(os3), is lower bounded by their original insertion cost minus
the insertion cost of os2, i.e., ∆D(os3) − ∆D(os2). Note that this
lower bound is tight. ∆D(os3) − ∆D(os2) = ∆D′(os3) happens
when os2 = os3, i.e., the two orders have same origin. Besides,
Lemma 3.2 also holds when ∆D′(·) refers to the distance increase
of insertion between os2 and oe1.

We know that if the first added trip, o2, is a longer trip, their
insertion cost, ∆D(os2), tends to be larger. According to Lemma
3.2, for latter orders, their least possible insertion cost gets smaller.
Time complexity. Let degv and dego denote respectively the aver-
age number of feasible matches per vehicle and per order initially.
The initialization (lines 2 ∼ 6) costsO(|V ||O|ĉ2q), whereO(ĉ2q)
is the time cost of route planning as mentioned in Section 2.3, and
|V | and |O| represent the number of vehicles and orders respec-
tively. In the while loop, dispatch operations in lines 8 ∼ 12 cost
O(|V |degv) in total. Update operations in lines 13 ∼ 17 cost
O(degv ĉ

2q). The while loop executes at most |O| times, leading
to an overall complexity ofO

(
(|V |+ ĉ2q)degv|O|

)
. Summing up

the initialization cost and loop execution cost, the time complexity
of Greedy is O

(
(ĉ2q + degv)|O||V |+ ĉ2q|O|degv

)
.

4. MATCHING-BASED METHODS
In this section, in contrast to greedily assigning orders, we con-

sider matching orders and vehicles in a one-shot manner. We treat
the vehicles and orders as nodes in a bipartite graph, and combine
them using matching algorithms. More specifically, we first show
in Section 4.1 that a dispatch solution can be obtained by using

maximum weighted matching algorithms. Then, in section 4.2, we
improve the bipartite matching method by properly packing the or-
ders a priori.

4.1 Bipartite Matching (BM)
In [22], vehicles and orders are treated as nodes of a bigraph, and

a maximum weighted matching is computed to dispatch the orders.
Similarly, we can obtain a dispatch solution with the graph match-
ing method. To construct the graph, we firstly create max{|O|, |V |}
− min{|O|, |V |} dummy nodes to ensure equal number of nodes
in the two sides. Then, we obtain a complete bigraph by connecting
nodes in one side to all nodes from another side. For each order-
vehicle pair, we set their edge weights to Pi,j if the dispatch is
feasible and Pi,j > 0, otherwise we set the edge weights to 0.

The maximum weighted matching of the constructed bipartite
graph can be found by using combinatorial algorithms such as the
Kuhn-Munkres method [21]. A matching solution can be trans-
formed into a dispatch solution by selecting the matched pairs with
non-zero edge weights. The disadvantage of this pure matching-
based method lies in that it does not consider packing new orders.
Two new orders in the same round would not be combined even if
their origins/destinations are very close to each other.

Figure 4(a) gives a toy example where there are three orders
(o1, o2, o3) and two vehicles (v1, v2). v1 and v2 are currently lo-
cated at the origin of o1 and o2 respectively. The order prices
(revi), the base fare (bcost), and the charge per unit distance (αd)
in this example are shown in Table 2. All the road segments are of
unit length, so the cost of traveling per segment is αd = 1. Ac-
cordingly we can construct a bigraph as shown Figure 4(b), where
the zero weighted edges and dummy vehicles are omitted for sim-
plicity. The maximum weighted matching on the bigraph indicates
the following dispatch: (o1, v1), (o3, v2). Note that o2 should be
matched to a dummy vehicle, which represents it is not dispatched.

4.2 Packing Based Matching (PBM)
In this subsection, we tend to improve the pure matching method

(in Section 4.1) by properly packing orders beforehand. Observing
that the current practice in typical ridesharing applications (Didi
Chuxing) allows at most three riders in a shared travel, packing
more than three orders is meaningless. We consider only packing
two orders in our algorithm. This is because, we observe from the
real data that in a dispatch round, it is uncommon that three pended
orders can be packed without violation of the constraints. The rea-
son is that the pended order set in a round is relatively sparse, and its
size is around several hundred. Generally the triply shared rides are
produced by assigning an order or a pack (of size two) to manned
vehicles. Manned vehicles refer to those which have received or-
ders in previous rounds.

The packing based matching algorithm proposed in this section,
consists of two steps:

(i) Order packing. Construct an order graph, based on which
pack the orders.

(ii) Order dispatch. Construct a bigraph with orders/packs and
vehicles, based on which dispatch the orders.

Actually, step (ii) does exactly what we have described in Section
4.1. That is, for each order or order pack, we compute the profit
of assigning it to each vehicle, which serves as the edge weight in
the bigraph. A dispatch solution is then obtained by computing a
maximum weighted matching. In the following, we focus on step
(i), explaining how to construct the order graph and pack the orders.

To construct the order graph, we virtually create an empty vehi-
cle at the origin of each order like [1]. Assuming the availability of
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Table 2: Variables of example in Figure 4
Variable rev1 rev2 rev3 bcost αd

Value 12 10 15 5 1

𝑶𝟏𝒔

𝑶𝟑𝒔 𝑶𝟑𝒆𝑶𝟐𝒆

𝑶𝟏𝒆

𝑽𝟏

𝑽𝟐
𝑶𝟐𝒔

(a) The example

($
!$

!"

!&

("

5

3

3

7

(b) The bigraph of KM

!$ !" !&

35 7
13 17

(c) The order graph in PBM

($!$

!",& ("

5

17

(d) The bigraph with packs in
PBM

Figure 4: An example of matching methods.

such virtual vehicles, the order packing stage aims to maximize the
overall profit of dispatching all orders. Two orders o1 and o2 are
connected in the order graph, if they can be combined without vio-
lation of constraints I ∼ III (in Definition 8). There are four pos-
sible plans to combine o1 and o2: os1os2oe1oe2, os1os2oe2oe1, os2os1oe1oe2
and os2os1oe2oe1. For plans starting from os1 (os2), the virtual vehicle
created at os1 (os2) would be the one to conduct the travel. A plan is
valid if it does not violate the constraints. o1 and o2 are connected
in the graph if at least one valid plan yields positive profit. The
edge weight is set to the maximum among the profits of the valid
plans. By traversing all order pairs, we obtain a general graph (not
bipartite), where an edge represents a feasible pack and its weight
represents the profit of the pack. One easy follow-up is to com-
pute a maximum weighted matching on the graph, which yields a
packing solution where the total profit of the packs is maximized.
However, this method fails to consider the profits of the un-packed
orders. Maximization of the profit of order packs does not guar-
antee the maximization of profit of all orders. Remember that the
order packing step is to achieve the largest amount of profit from
dispatching all orders, assuming enough transportation capability.
Nevertheless, in the following, we would show that the aforemen-
tioned order packing problem can be solved by weighted matching
algorithms with a reduction.

Lemma 4.1. The order packing problem can be reduced to the
maximum weighted matching problem.

Proof. Given an order graph in the packing stage, we augment the
graph by additionally creating a dummy node for each order node.
Each dummy node is connected to its corresponding order node
with the edge weight equal to the order profit. With respect to this
augmented graph, each order packing solution leads to a matching
solution, and vice versa.
=⇒: Given an order packing solution, we can construct a matching
solution by matching the un-packed orders to their dummy nodes.

⇐=: Given a matching solution, we can obtain a packing solution
by only packing nodes which are not matched to dummy nodes.

Regarding the toy example in Figure 4(a), 4(c) and 4(d) present
the corresponding order graph and the bigraph with packs. In Fig-
ure 4(c), the dummy nodes are represented by the edges linking
nodes to themselves. Numbers on the edges represent the profits of
the corresponding packs. The maximum weighted matching of this
graph should be (o1, o1), (o2, o3), indicating packing o2 and o3
only. Subsequently we obtain the order-vehicle bigraph as shown
in Figure 4(d), by considering the actual vehicles v1 and v2. The
maximum weighted matching on this bigraph is (o1, v1), (o2,3, v2).
Time complexity. In the graph construction stage, the order pack-
ing and edge calculation costs O(|O|2ĉ2q) and O(|O||V |ĉ2q) re-
spectively. In the order packing stage, we adopt the matching algo-
rithm described by Galil [11], whose time complexity is O(|O|3).
The time complexity of the Kuhn-Munkres algorithm [21] for
weighted bipartite matching is O

(
(max{|V |, |O|})3

)
→ O(|O|3

+ |V |3). Summing up these costs, the time complexity of the pack-
ing based matching method isO(ĉ2q|O|(|O|+|V |)+|O|3+|V |3).

5. OPTIMIZATIONS
Algorithms of real-time ridesharing are required to be rather ef-

ficient. In this section, we propose some optimization techniques
to improve the dispatch efficiency. Section 5.1 describes a prun-
ing strategy to avoid unnecessary distance queries, and Section 5.2
describes a node clustering method to approximate shortest-path
distances with bounded errors.

5.1 Vehicle Pruning
When computing the profit of a dispatch (oi, vj), Pi,j , we need

to invoke the route planning algorithm (see Section 2.3) to insert
oi into vj’s plan. The planning algorithm returns the optimal inser-
tion, or nothing if all insertions fail to meet the constraints. When
real road networks are used, queries of shortest-path distance would
be issued frequently during route planning. In our experiments
with the Beijing road network, we found that even the state-of-
art shortest-path algorithm, Contraction Hierarchy (CH) [12], still
takes some milliseconds per query. No matter which dispatch al-
gorithm is used, for each order, we need to traverse all vehicles to
evaluate the dispatch feasibility and profits. This leads to a large
amount of shortest path queries, whose time cost is unbearable.

Our observation from the real ridesharing data indicates that for
an order, due to the waiting-time constraint, only its nearby vehi-
cles can be dispatched. Most vehicles turn out infeasible because
they are too far away from the order’s origin. To save the route
planning cost from these infeasible vehicles, we calculate the geo-
graphical distance to prune most of the infeasible vehicles. Given
the longitude and latitude of two locations, we can calculate their
geographical distance according to the Haversine formula4.

Suppose the waiting-time constraint indicates a pick-up distance
threshold as dpt, we have:

Lemma 5.1. An order-vehicle pair can be safely pruned if their
geographical distance is larger than dpt.

The proof is straightforward: the geographical distance between
two locations is a lower bound of their distance on any road net-
work. The computation of the Haversine formula takes only some
microseconds, which is much faster than the shortest path compu-
tation.
4https://en.wikipedia.org/wiki/Haversine_
formula#cite_note-Inman_1835-4
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Figure 5: PMF of network edge length.

5.2 Node Clustering and Distance Approxi-
mation

In our experiment, we obtain the city road network from the
Open Street Map (OSM)5. In the urban area of Beijing city (i.e.,
within the 5th Ring Road of Beijing), there are 35692 road nodes
and 48192 edges. On such a road network, one shortest-path com-
putation with CH [12] costs some milliseconds. The dispatch algo-
rithms would issue a vast amount of distance queries, leading to an
unbearable amount of time cost for real-time ridesharing.

The probability mass distribution of the edge length in the road
network is shown in Figure 5. It can be observed that most of the
edges are less than 500 m (meter), and nearly half of the edges
are within 100 m. This observation inspires us to cluster the road
nodes, and approximates the distance of a node pair using the dis-
tance between their cluster centers. In the following, we first de-
scribe our node clustering algorithm (in Section 5.2.1), based on
which we describe the distance approximation procedure (in Sec-
tion 5.2.2).

5.2.1 The Node Clustering Algorithm
Since our purpose is to approximate the distance of two nodes by

their centers’ distance, the node clustering algorithm should con-
trol the distance between nodes and their centers to prevent large
approximation errors.

To bound the distance among road nodes inside a cluster, the hi-
erarchical clustering with complete linkage6, can be an alternative.
In complete linkage, the distance between two clusters is defined as
the maximum distance between their nodes. Hierarchical clustering
greedily combines two clusters with the minimum cluster distance,
with space complexity equal to O(|N |2), where |N | is the size of
the node set,N . The employed road network in our experiment has
35692 nodes. This disables using hierarchical clustering due to its
great memory requirement.

Observing that the network is sparse, we devise a method named
Neighbor-Growing Clustering (NGC), which proceeds by operat-
ing the edge set. Subsequently its space complexity is O(|E|),
where |E| is the size of the edge set. This would not cause a
problem of memory. The idea of NGC is to keep picking the least
weighted edge and merging its incident nodes, until the edge weight
exceeds a given threshold, θd. The threshold θd is the maximum
allowed distance between a node and its cluster center, and is spec-
ified in the input. To make it easier for understanding, we give a
running example of NGC here. Its formal algorithmic description
can be found in our technical report.

5http://download.geofabrik.de/
6https://en.wikipedia.org/wiki/Hierarchical_
clustering
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Figure 6: Example of node clustering.

We demonstrate the algorithm with the example in Figure 6.
There are nine nodes in the network, A ∼ I . Besides, the thresh-
old θd, is set to 7 in the input. Before the algorithm starts, we first
remove edges whose lengths are larger than θd, because they can-
not be used to merge nodes subjecting to θd. The survived edges
and their lengths are presented in Column ‘e’ and ‘w’ of Table T0

respectively. Note that length and weight are used interchangeably
for this example.

In the first merging operation, the least weighted edge, (A,B),
is picked, shaded in red in Table T0. Since A and B are both sin-
gle nodes, we build a cluster containing these two nodes, with ar-
bitrarily one of them as the center. Suppose A is chosen as the
center. Then, we need to grow new edges of A bypassing B.
Except (A,B), (B,C) is the only incident edge of B, shaded
in blue. We delete it, and grow a new edge (A,C), with length
equal to w(A,B) + w(B,C). The updated edge set thereafter
is shown in Table T1, according to which we perform the next
merge. (A,C) and (D,E) have the least weight, and we suppose
(A,C) is picked. Note that ties are broken arbitrarily. Since A
is already the center of {A,B}, the single node C is merged into
A. No new edge is grown from A because C has no other edges.
In Table T2, (D,E) is the next picked edge, and we suppose D
is chosen as the center. (E, I) and (E,H) would be removed,
but only (D, I) is grown and added to Table T3. This is because
w(D,H) = w(D,E) + w(E,H) = 8, is greater than θd (= 7).
In the 4th merge, single nodes F and G are clustered with F as the
center.

In the 5th merge, the picked edge, (D,F ) connects two existing
clusters, i.e., {D,E} and {F,G}. To merge two clusters, we try
by setting the new center to one of the existing centers, i.e., D and
F . If D is selected as the new center, its distance to G, which
is w(D,F ) + w(F,G) = 8, would be larger than θd. We then
try F . Since w(F,E) = w(D,E) + w(D,F ) = 7 is no larger
than θd, F is chosen as the new center. The only existing edge
of D, (D, I) is removed, but no new edge can be grown within
distance of θd. Note that the two clusters would not be merged
and it would directly jump to the next merge if neither of D and
F can be the new center. H and I are merged in the final step.
The clustering result is : {A, B,C}, {D,E,F, G}, {H, I}, where
centers are marked in bold.

The difference between NGC and hierarchical clustering lies in:
I . NGC acts on the evolutional edge set while hierarchical cluster-
ing acts on the pairwise distances among nodes; II . NGC bounds
the distance between a node and its center, while hierarchical clus-
tering bounds the pairwise distances among nodes in the same clus-
ter.
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The space complexity of NGC is O(|E|). There are at most |N |
merges, and the time cost of one merge is O(|E|). Therefore, the
time complexity of NGC is O(|E||N |).

5.2.2 Shortest-path Distance Approximation
By using NGC to cluster nodes, for a shortest-path query of

(n1, n2), we can approximate their shortest-path distance with the
distance between their corresponding cluster centers. We set θd =
500 m for NGC. In this way, the resultant number of clusters is
5971, which is small enough, and, as we would show later, the
approximation error would not be large. Because the number of
centers is small enough, we can compute their pairwise shortest-
path distances on the original network a priori, and cache these
distances in main memory during runtime. Therefore, using cen-
ters’ distance for approximation is very fast. In addition, the fol-
lowing lemma guarantees that the distance error brought by using
centers’ distance is bounded.

Lemma 5.2.

∀n1, n2, |d(n1, n2)−d(c1, c2)| ≤ w(en1,c1) +w(en2,c2) ≤ 2θd

where c1, c2 are the centers of n1 and n2 respectively, w(en1,c1)
and w(en2,c2) are their distances in the clustering result of NGC.

Proof. We need to show that:

−w(en1,c1)− w(en2,c2) ≤ d(n1, n2)− d(c1, c2) and

d(n1, n2)− d(c1, c2) ≤ w(en1,c1) + w(en2,c2)

Since there exists a path n1c1c2n2, we know that d(n1, n2) ≤
w(en1,c1) + w(en2,c2) + d(c1, c2). This proves the second in-
equality. In the following, we demonstrate the first inequality.

Suppose d(n1, n2) − d(c1, c2) < −w(en1,c1) − w(en2,c2).
Then, d(c1, c2) > d(n1, n2) + w(en1,c1) + w(en2,c2). Since
d(c1, c2) is the shortest-path distance and there is a path c1n1n2c2,
we have d(n1, n2) + w(en1,c1) + w(en2,c2) ≥ d(c1, c2). Subse-
quently,

d(c1, c2) > d(n1, n2) + w(en1,c1) + w(en2,c2) ≥ d(c1, c2)

This makes a contradiction.

Since we set θ = 500 m, this guarantees that distance error is
at most 1 km (kilometer). If the speed of a vehicle is 60 km per
hour, 1 km error corresponds to a time deviation of 1 minute, which
does not make big difference to most of the travels. If one insists
on using the exact shortest-path distance, we can use d(c1, c2) −
w(en1,c1)−w(en2,c2) as a lower bound of d(n1, n2). Then, it can
be used to prune the vehicles as stated in Lemma 5.1.

6. SIMULATION SETUP
We develop a simulation framework to evaluate the performance

of the proposed methods. It is devised based on the real data re-
trieved from the ridesharing business of Didi Chuxing. The exper-
iments in Section 7 are run under this simulation framework.
Vehicle simulation. We retrieve the status change records of the
vehicles, where each record indicates that a vehicle goes either on-
line or offline. In our simulation, a vehicle is available from when
it goes online to when it goes offline. Note that there may be more
than one online record of a vehicle in a day, and each of them in-
dicates an availability time span of the vehicle. Each online record
also reports the initial geographical location of the corresponding
vehicle. We further map this location to the nearest node in the road
network.

The speed of the vehicles is set to 60 km/h. An idle vehicle
walks randomly along the road network. In contrast, a vehicle with
unfinished orders moves according to its plan. In our implementa-
tion, if the expected finish time of a busy vehicle exceeds its online
time span after a dispatch, it would become unavailable for subse-
quent dispatch rounds.
Order simulation. Each ridesharing order record is associated
with an origin, a destination, a price and a request time. The ori-
gin and destination are mapped to their nearest nodes in the road
network. In our simulation, we create the orders according to their
request times. Remember that the dispatcher assigns orders round
by round. In each round, an order would be either dispatched or
pended to next round. In practice, an order may be cancelled by
the requester if not dispatched for a long time. As mentioned be-
fore, the percentage of cancelled orders in Didi Chuxing is above
20% [30]. Therefore, it is important to model order cancellation to
coincide with the practice.

To simulate orders’ cancellation, we first perform equal width
bucketing over their waiting times, where the bucket width is set to
five seconds. For an order oi currently with waiting time wti, its
corresponding bucket index is bidx(oi) = dwti

5
e.

We collect a set of cancelled orders from historical data of Didi
Chuxing. Then, for each bucket b, we retrieve the number of can-
celled orders in this bucket, and denote it as #cancel(b). After a
waiting time of wti, order oi would either be cancelled and stop at
bi or keep waiting and move to subsequent buckets. Then, the prob-
ability that an order is cancelled in bucket b is equal to: #cancel(b)
divided by the sum of #cancel(b) and the number of cancelled or-
ders fallen into buckets after b. That is,

Pr(oi cancelled at bidx(oi)) =
#cancel(bidx(oi))∑

b∈[bidx(oi),bmax] #cancel(b)
(3)

For an undispatched order, before we start next round’s order dis-
patch, we first update its waiting time by adding the time duration
between two rounds. Then, with respect to its old and new waiting
time, we obtain its last and current bucket index. We go through
the buckets between these two indices, and check whether it would
be cancelled in these buckets according to Equation (3). Only or-
ders which survive from all passed buckets would be kept to next
round’s dispatch.

For instance, suppose in a dispatch round, order o1, which has
already been pended for 17 s, is still not dispatched. It has to wait
for next round’s dispatch, and until then its waiting time would be
increased to 32 s, assuming the time window length of a round as
15 s. Subsequently its passed buckets would be b4, b5 and b6. Let
pr4, pr5 and pr6 denote the cancellation probability (Equation (3))
of these buckets. Then, the probability that o1 is not cancelled by
next round is:

(1− pr4) ∗ (1− pr5) ∗ (1− pr6)

Payment mechanism. The profit of the platform is equal to the
price sum of dispatched orders minus the payment to the drivers.
In Didi Chuxing, the price of a ridesharing order is displayed to the
requesters after the inputs of origin and destination, and is fixed re-
gardless of the order dispatch results. We obtain directly the order
prices from the historical records. The payment to drivers includes
the base fare and the charge of travel distances. Following the com-
mon practice in China, the base fare is 10 yuan by default. Besides,
the payment to vehicles’ traveling per kilometer is set to 2 yuan.

7. EXPERIMENT
In this section, we run experiments to evaluate the proposed

methods. We first describe our experimental settings in Section
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Table 3: Experimental settings
Variables Values
θdr 1.2, 1.5, 1.8, 2.1, 2.4
θpt 300, 600, 900, 1200
trnd 5, 10, 15, 20
bcost 7, 10, 13

7.1. Then, we validate the effectiveness of the order cancellation
model and the optimization techniques in Section 7.2.1 and Sec-
tion 7.2.2 respectively. Besides, we report the evaluation results of
our proposed methods in Section 7.2.3. Finally, we compare them
with the online method in Section 7.2.4.

7.1 Experimental Setting
The simulation experiment is run in the urban area of Beijing,

i.e., the region bounded by the 5th Ring Road, with longitude from
116.1996◦ to 116.5457◦ and latitude from 39.7558◦ to 40.0229◦.
Only vehicles and orders inside this area are considered. The data
is retrieved from the time period between 7 : 00 am and 7 : 30 am
in a normal weekday. Note that 7 : 00 ∼ 7 : 30 am is one of the
peak ordering periods in a day. There are totally 4907 orders in this
period, and 2.73 new orders come per second on average. The road
network is obtained from Open Street Map7.
Control variables. Remember that the proposed order dispatch al-
gorithms are round-based, and each round is associated with a time
window to batch the new orders. Let trnd denote the time window
of one round, and we vary trnd from 5 s to 20 s to examine its
effects. Besides, in Definition 8, we have three optimization con-
straints, regarding the detour ratio θdr (Definition 4), pick-up time
θpt (Definition 5) and the base fare bcost (Definition 6). The detour
ratio θdr and pick-up time θpt are varied in {1.2, 1.5, 1.8, 2.1, 2.4}
and {300, 600, 900, 1200} (in seconds) respectively. Besides, we
vary the base fare bcost from 7 to 13. Finally, to coincide with the
current ridesharing practice of Didi Chuxing, the vehicle capacity
is fixed at 3. Table 3 summarizes the experimental setting of the
control variables, where the default values are marked in bold.
Comparison among proposed methods. We examine the effec-
tiveness and efficiency of the proposed methods, including Greedy
(in Section 3), BM (bipartite matching in Section 4.1) and PBM
(packing based matching in Section 4.2). The amount of attained
profit and the running time per round are reported.
Comparison with the state-of-art method. For online methods
[20, 15], they immediately dispatch an order on its arrival. Their
difference lies in two aspects. Firstly, in terms of searching inser-
tions on a vehicle’s travel plan, [15] enumerates all possible re-
orderings while [20] respects the original ordering of existing or-
ders. For example, suppose the travel plan of a vehicle v is voe1oe2.
To add a new order o3, let us assume the optimal new plan is
vos3o

e
2o

e
1o

e
3, which would be found by [15]. In contrast, the new

plan obtained by [20] may be voe1os3oe2oe3 to respect that oe1 is orig-
inally ahead of oe2. [15] opts to pursue a better dispatch result with
more time complexities. However, by using kinetic trees to store
the plans, [15] shows that the dispatch of an order can finish within
dozens of milliseconds.

Secondly, in terms of the optimization objective, when dispatch-
ing an order to a vehicle, [20] minimizes the additional incurred
travel distance, while [15] minimizes the travel distance of the aug-
mented plan. For example, let the travel distance of the plan of
v1 be D1, and it would be increased to D′1 if dispatched with a
new order o1. Then, the additional incurred travel distance refers
to D′1 − D1, and the travel distance of the augmented plan refers
7https://www.openstreetmap.org

Table 4: Pruning success rate
θpt (in seconds) 300 600 900 1200

Pruning success rate 80.35% 57.03% 33.43% 32.48%

to D′1. Suppose there is another vehicle v2 with travel distance D2

and D′2 corresponding to before and after insertion of o1 respec-
tively. Besides, let D′1 < D′2 and D′2 − D2 < D′1 − D1. Then,
[20] would dispatch o1 to v2 while [15] would dispatch o1 to v1.

To evaluate [15] under our simulation, we offer the streaming
order requests according to their creation times. To adapt [15] to
solve our problem, on arrival of oi, [15] would need to find the
optimal vehicle which yields the maximum profit. That is,

arg max
vj

revi − αd ∗∆d(planj)

where ∆d(planj) is the distance increase of vj’s plan from serving
the new order oi, and αd is the charge per unit distance. Since revi
is fixed, to maximize the profit is to minimize ∆d(planj), i.e., the
additional incurred distance, which is exactly the objective in [20].

Therefore, we build an online baseline to minimize the additional
incurred travel distance like [20]. However, the kinetic-tree-based
order insertion method of [15], which enumerates re-orderings, is
adopted to make the dispatch more effective. In other words, we
adapt the order insertion method in [15] to optimize the objective
in [20].

Besides, in [15], an order would be notified about its dispatch
result right after its arrival. If there is no feasible dispatch, the riders
can re-submit the requests. Therefore, in our experiment, we let an
order request again after some seconds if it cannot be dispatched.
An order would keep requesting until it is dispatched or its number
of requests exceeds the a pre-defined limit.

Note that we do not compare with existing works of DARP, be-
cause they [8, 10, 5, 16] assume all orders are served, which cannot
be true in real-time ridesharing under constraints of waiting time
and detour distance. For works without such an assumption [1],
it is unclear on how to regularize the penalty term in its objective
function.

7.2 Experimental results
7.2.1 Effectiveness of order cancellation model

We first examine the order cancellation model presented in Sec-
tion 6. We obtain the bucketing results of the collected cancelled
orders (from real data). Then, we create a set of simulated orders,
whose size equals that of the real cancelled order set. The simu-
lated orders are then cancelled according to Equation (3) as time
goes by. Note that we do not dispatch these orders as we are only
interested in their cancellation time distribution. Finally, we calcu-
late the number of cancelled simulated orders of each bucket.

The cancellation bucket indices of the real and simulated orders
form two samples. We examine whether these two samples follow
the same distribution using the two-sample Kolmogorov-Smirnov
test8. The null hypothesis is that the two samples are from the
same continuous distribution. The calculated p-value is equal to
0.9872, which is larger than 0.05. Therefore, it does not reject the
null hypothesis at the 5% significance level.

7.2.2 Effectiveness of Optimization techniques
Effectiveness of vehicle pruning. As presented in Section 5.1,
we prune infeasible vehicles for orders by comparing their geo-
graphical distance to θpt ∗ speed. On our machine, it only takes
8https://en.wikipedia.org/wiki/Kolmogorov%
E2%80%93Smirnov_test
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Table 5: Profit evaluation time cost per round.
trnd 5 s 10 s 15 s 20 s

Time cost 0.950 s 1.317 s 1.071 s 1.538 s

some microseconds to compute the geographical distance using the
Haversine formula. The pruning success rate under different θpt’s
is shown in Table 4. When θpt ≤ 600 s, the pruning success
rate is larger than 50%, which means that more than half of the
vehicles can be successfully pruned for each order. Even when
θpt = 1200 s, the pruning success rate is still around 1

3
.

Effectiveness of distance approximation. In Section 5.2, we pro-
pose a node clustering algorithm so that the vast amount of shortest-
path queries can be answered in real-time using the cluster centers.
We set θd = 500 m for NGC to cluster the nodes, which leads
to 5971 clusters. We show in Figure 7 the probability mass dis-
tribution of the distances between road nodes in the original net-
work and their centers in the clustering result. It can be found
that more than half of the nodes are within 200 m away from their
centers, though the threshold is set to 500 m. We further calcu-
late the average distance between nodes and their centers, which
is 175.6 m. Therefore, according to Lemma 5.2, the mean error
of the proposed distance approximation technique is no larger than
2 ∗ 175.6 m = 351.2 m, which is quite small for a normal vehicle
travel.

7.2.3 Comparison among the proposed methods
We report the comparison results of our methods in this section,

including the achieved profits (yuan) and the running times (sec-
onds). We report the running times which exclude the cost of eval-
uating the profits of the order-vehicle pairs (i.e., Pij’s). This is
because we do these computations on arrival of each order. For
example, let th and th+1 be two adjacent time epochs when the
dispatcher functions, as shown in the figure below. For each dy-
namically arrived order (o1 ∼ o4), its feasible vehicles and the
corresponding profits are evaluated at its arrival time (to1 ∼ to4).

𝒕𝒉#𝟏𝒕𝒐𝟏𝒕𝒉 𝒕𝒐𝟐 𝒕𝒐𝟑 𝒕𝒐𝟒

In our experiment, the profit evaluation time cost per order is
0.0139 seconds. As mentioned before, the number of new orders
coming per second is 2.73, so there is no problem in evaluating
the profits when orders arrive. Note that our experimental period,
7 : 00 ∼ 7 : 30 am, is already the ordering peak in a day.

If we do not conduct the evaluation on orders’ arrival as de-
scribed above, we report the corresponding profit evaluation time
cost per round in Table 5, which are roughly same for the proposed
algorithms.

Effect of trnd. The experimental results of varying trnd are shown
in Figure 8(a) and 8(b). In terms of profit, PBM performs the best
overall. Its profit ranks second when trnd = 5, and ranks top in all
other cases. The reason why BM is better when trnd = 5 is that
fewer orders are batched in the input. This makes it hard for PBM
to obtain good shared rides.

However, from Figure 8(b) we can observe that the average run-
ning times of BM and PBM are around 5 s and 6 s respectively.
Note that the length of time window in a round is the maximum al-
lowed running time for the dispatch algorithms. It is inappropriate
to adopt BM and PBM when trnd ≤ 5, as their running times can
exceed the time limit. Greedy is efficient throughout all values of
trnd. Therefore, when trnd ≤ 5, efficient algorithms like Greedy
would be the choice.

Another interesting finding is that PBM is actually slightly more
efficient than BM, though it additionally has an order packing step.
The reason may be that after packing orders, the number of nodes
in the order-vehicle graph becomes smaller, which accelerates the
matching computation. Besides, the process of packing orders is in
fact efficient because the order graph is sparse.
Effect of θpt. The experimental results of varying θpt are shown
in Figure 8(c) and 8(d). In Figure 8(c), Greedy and PBM achieve
the highest profit when θpt ≤ 600 and θpt ≥ 900 respectively. Be-
sides, their profits drop after θpt = 600 and θpt = 900 respectively.
The reason is that a larger amount of waiting time means a larger
driving distance during pick-up, which leads to more payments to
vehicles.

The running times of both BM and PBM increase when θpt in-
creases. This is because when θpt is large, the number of non-zero
edges in the order-vehicle graph becomes large, which leads to the
increased time cost of running the matching algorithm.
Effect of θdr. Figure 9(a) and 9(b) show the experimental results
of varying θdr . In terms of profit, PBM performs best when θdr is
large (1.8 and 2.1), while Greedy and BM are better when it is small
(1.2 and 1.5). This is because a large θdr corresponds to a relaxed
detour constraint, which brings more space to pack the orders. In
this case, the packing-based algorithm, PBM, behaves better.

It can also be found that the profit does not always improve when
θdr is increased. As shown in Figure 9(a), BM peaks at θdr = 1.5,
and Greedy & PBM peak at θdr = 1.8. The profits of all methods
go down when θdr = 2.1. The reason is that a large θdr may result
in combination of orders which not really share a long ride. The
incurred large amount of detour distance leads to large payment to
the vehicles. Subsequently, the achieved profit gets smaller.

The running times of all three methods are stable. They do not
change significantly over different θdr’s.
Effect of bcost. The base fare, bcost, is varied from 7 to 13.
In Figure 9(c), PBM and Greedy achieve the highest profit when
bcost = 13 and bcost = 7 respectively. The reason may be that
when bcost is large, the benefit of packing orders gets larger, be-
cause it employs less vehicles. Therefore, PBM behaves better. For
the running times (in Figure 9(d)), there is no significant variation
over different bcost’s.
Comparison to Optimal solution. We propose approximation
methods because the MPPR problem is NP-hard. It remains a ques-
tion how far are these approximation solutions away from the op-
timum. Due to the great computational complexity of finding OPT
(the optimal dispatch solution) on the large-scale real data, we opt
to compare our methods with OPT in a small scenario.

To run a small-scale experiment, we randomly pick 8 orders and
8 vehicles from the historical vehicles and orders in the Dongcheng
District of Beijing, and compare the achieved profits of our meth-
ods and OPT. As shown in Table 6, the profits are all 0 when
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Table 6: Comparison with OPT.

bcost
Profits

Greedy KM PBM OPT
3 34.78 13.47 15.06 44.71
5 24.16 8.91 17.48 24.16
7 13.89 8.13 17.72 20.61

10 0 0 0 0

Table 7: Result summary.

Setting trnd θpt
≤ 5 > 5 < 900 ≥ 900

Preferred Greedy PBM Greedy PBM

Setting θdr bcost
< 1.8 ≥ 1.8 < 10 ≥ 10

Preferred KM PBM Greedy PBM

bcost = 10, which indicates that no orders can be dispatched. This
is because in the input, the vehicles are sparse and the order prices
are not large compared with the base fee (bcost = 10 by default).
Thus, we set lower base fares (from 3 to 7) and present the results
in Table 6. It can be found that the profits of our proposed methods
are at the same scale as that of OPT. Besides, even for the worst
algorithm KM, its profit is at least around 1

3
of that of OPT. For the

running times, our proposed methods can finish within some mil-
liseconds, while the brute-force OPT takes thousands of seconds to
finish.
Summary of the experimental results. Overall, in terms of the
achieved profit, PBM and Greedy perform more robustly than BM.
We summarize the comparison results among our methods in Table
7. Note that when trnd ≤ 5 s, only Greedy can satisfy the time
requirement. When trnd > 5 s (6 s), PBM (BM) can finish the
dispatch safely within the time window.
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Figure 10: Results of online method [15].

Besides, through comparison with OPT in a small scenario, we
show that the achieved profits of our methods are competitive.

7.2.4 Comparison with Online Method
In Section 7.1, we discuss how to adapt the online dispatch

method [15] to maximize the profit. We now conduct evaluation
of this approach under the simulation. We vary the maximum al-
lowed number of repeated requests of an order from 2 to 10 to see
the effect. Besides, we also examine the effect of the time gap be-
tween two adjacent requests of an order, by varying it from 5 s to
25 s.

The results are shown in Figure 10(a) and 10(b). In Figure 10(a),
the achieved profit generally goes up when the maximum number
of requests per order is increased. However, even with 10 requests
per order, the profit is still less than 750. This is far less than the
profits of our round-based methods. Similarly, when we increase
the time gap between two adjacent requests, the achieved profit
generally increases, but remains below 750.

To explain the profit gap between our round-based methods and
the online method [15], we calculate the amount of profit per or-
der in results of PBM and [15], which are 11.16 and 4.90 yuan
respectively. This indicates that [15] makes distinctly worse dis-
patches compared to PBM. Its short-sight view of the orders may
account for this. That is, it optimizes the current order without con-
sideration of subsequent orders. This prevents it from making good
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Table 8: A toy example
Pi,j v1 v2
o1 4 5
o2 2 10

dispatches from a global view. We give a simple example to help
understand this. Suppose there are two manned vehicles v1 and v2,
both with one remaining seat. Two orders o1 and o2 come one after
another, and the dispatch profits are shown in Table 8. Since o1
comes ahead of o2, [15] would make the dispatch (o1, v2) and (o2,
v1), whose profit is only half of that of {(o1, v1), (o2, v2)}.

8. RELATED WORK
The car-hailing problem. Under the round-based setting, order
dispatch in unshared car-hailing degenerates to the bipartite match-
ing problem [17], which can be solved in polynomial time. In con-
trast, car-hailing under the online setting has drawn increasing at-
tention [26, 24, 29, 18], which is also named as the Online Maxi-
mum Weighted Bipartite Matching (OMWBM) problem. The goal
is to maximize the utility sum of the matching, where the utilities
can be defined according to the distances between vehicles and or-
ders. [24, 29] and [18, 26] devise randomized algorithms with ap-
proximation ratios under the adversarial model and the random or-
der model respectively. In the adversarial model, the approximation
solutions are compared with the optimal solution in the worst case
of tasks’ arriving orders. In contrast, in the random order model,
they are compared with the optimum under the average case of ar-
riving orders. In addition to matching workers with tasks, Tong et
al. [27] also utilize the guidance on workers’ movement to further
optimize the online task assignment.
The dial-a-ride problem. The typical formulation of a dial-a-ride
problem (DARP) is to design travel routes for a given set of vehicles
to pick up and drop off a set of customers w.r.t. their time require-
ments. It can treated as a constrained vehicle routing problem [19],
and is NP-hard as well. The main difference between DARP and
real-time ridesharing lies in that DARP commonly assumes all or-
ders can be served. This cannot be true in real-time ridesharing due
to the limited transportation capacity. The common objective in
DARP is to minimize the overall travel distance. Integer program-
ming formulations are widely adopted to find the optimal solution
[8, 16]. However, only very small instances can be solved opti-
mally within bearable amount of time costs. Therefore, heuristics
have been proposed to find approximation solutions [10, 5]. These
heuristics proceed in two stages. In the first stage, they cluster the
orders and dispatch the clusters to vehicles. Then, in the second
stage, they improve the dispatch by swapping the orders among ve-
hicles. As summarized in [9], however, only small instances with
up to hundreds of vehicles and orders have been tested on these
algorithms.

The dynamic dial-a-ride problem [3, 7, 14] processes the orders
in a stream. This is similar to the online ridesharing [20, 15]. How-
ever, [3, 7, 14] allow the dispatcher to exchange the dispatched
orders among vehicles. This operation is clearly not supported in
real-time ridesharing. In the current practice, an executed dispatch
keeps intact unless the order is cancelled by the rider.
Ridesharing. [20, 15] study the real-time ridesharing under the
online setting. In this setting, the streaming orders are processed
by the dispatcher one by one, in the first-come-first-serve manner.
A careful discussion of these two works is presented in Section
7.1. Another related online ridesharing work is [2], which also tar-
gets at maximizing the platform’s profit, jointly considering orders’
price and drivers’ cost. In [2], on arrival of an order, each vehicle

computes the profit of platform if it serves this order. The profits
are reported to the platform as a bid, and the largest one would be
picked. The key difference between [2] and our work is that the
order price is upfront in our setting, and serves as an input of the
dispatch process. In contrast, in [2], the price of an order is affected
by the final dispatch result. A rider would pay less for a longer de-
tour. One way to adapt [2] to solve our problem is to fix the order
price, making it irrelevant to the detours. Then, the method in [2]
would degenerate to minimizing the travel cost increase of drivers.
This is similar to [20, 15], comparisons with which have been car-
ried out in our experiments.

Alonsomora et al. [1] study the real-time ridesharing problem
in the round-based setting. They optimize an objective function
which linearly combines the the travel time delays (caused by shar-
ing the ride), and the number of un-served orders. They construct
a RTV graph which considers all potential packings of the orders,
and solve the problem by integer programming methods. The prob-
lem is too complex to be solved optimally in real time, and the so-
lution in [1] is to set timeouts to trade optimality for tractability.
However, since the two penalty terms, time delays and the number
of un-served orders, have different measures, it is unclear how to
set the regularization terms. Cheng et al. [6] study the ridesharing
problem with social affinity concerns. Their goal is to let riders
with high social affinity take the same vehicle, to better their ride
experience.

Gidofalvi et al. [13] propose efficient order packing algorithms
for the real-time ridesharing problem, targeting at large-scale in-
puts. Their goal is to maximize riders’ overall savings. They pack
all order requests, which indicates that all orders would be served
in their setting. In [22], each driver has its own travel plan, and
would accept an order request if their shared travel distance is large
enough. They formulate the problem as the maximum weighted bi-
partite graph matching problem, and propose techniques to acceler-
ate the edge weight calculation process. [22] differs from our work
in that their drivers have pre-defined travels and thus they do not
consider packing orders. Wang et al. [28] study the activity-based
ridesharing problem. Assuming the availability of users’ daily ac-
tivities, they allow more than one destinations for the activities as
longs as they are functionally similar.

9. CONCLUSION
In this paper, we study the order dispatch problem in price-aware

ridesharing. We formulate the problem of profit maximization with
constraints on detour ratios and waiting times. To the best of our
knowledge, this is the first work that has taken order prices into con-
cern during order dispatch. We show that the problem is NP-hard,
thus, we propose approximation methods, including the Greedy
method, the bigraph matching method, and the packing based match-
ing method. We develop a simulation framework using real rideshar-
ing data, and evaluate the effectiveness and efficiency of the pro-
posed methods with this simulation. Through comparison with
the state-of-art method and the optimal solution, we show that our
methods are competitive and effective.
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