
Exact Processing of Uncertain Top-k Queries in
Multi-criteria Settings

Kyriakos Mouratidis
School of Information Systems

Singapore Management University
kyriakos@smu.edu.sg

Bo Tang
Shenzhen Key Lab of Computational Intelligence
Southern University of Science and Technology

tangb3@sustc.edu.cn

ABSTRACT
Traditional rank-aware processing assumes a dataset that
contains available options to cover a specific need (e.g.,
restaurants, hotels, etc) and users who browse that dataset
via top-k queries with linear scoring functions, i.e., by rank-
ing the options according to the weighted sum of their at-
tributes, for a set of given weights. In practice, however, user
preferences (weights) may only be estimated with bounded
accuracy, or may be inherently uncertain due to the inability
of a human user to specify exact weight values with abso-
lute accuracy. Motivated by this, we introduce the uncertain
top-k query (UTK). Given uncertain preferences, that is,
an approximate description of the weight values, the UTK
query reports all options that may belong to the top-k set.
A second version of the problem additionally reports the ex-
act top-k set for each of the possible weight settings. We
develop a scalable processing framework for both UTK ver-
sions, and demonstrate its efficiency using standard bench-
mark datasets.

PVLDB Reference Format:
Kyriakos Mouratidis and Bo Tang. Exact Processing of Uncertain
Top-k Queries in Multi-criteria Settings. PVLDB, 11 (8): 866-
879, 2018.
DOI: https://doi.org/10.14778/3204028.3204031

1. INTRODUCTION
The top-k query has been studied extensively, and is con-

sidered the norm for multi-criteria decision making [25].
The traditional top-k query receives as input a dataset with
d-dimensional records (options), and a vector w of d weights
that specify the relative significance of each dimension (data
attribute) for the user. The score of a record is defined as the
weighted sum of its attribute values. The k highest-scoring
records form the output of the top-k query. The weight vec-
tor w represents the user’s preferences, and thus is key in
producing useful recommendations. Usually, it is assumed
to be input directly by the user. Alternatively, it may be
mined from the user’s past choices/behavior [28, 9, 27, 33],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 8
Copyright 2018 VLDB Endowment 2150-8097/18/4.
DOI: https://doi.org/10.14778/3204028.3204031

estimated by having the user make pairwise comparisons for
a number of testing pairs of alternatives [26, 41], etc.

Our work is motivated by the crucial role of weight accu-
racy in the practicality and usefulness of the top-k query.
We argue that, although convenient in terms of query pro-
cessing, the assumption/requirement that the exact weight
vector is known is hardly realistic. Be it specified directly
by the user or by a preference learning algorithm, it is in-
herently inaccurate.

Consider a user who manually indicates weights for at-
tributes Service, Cleanliness, and Location, when looking
for a hotel on a hospitality portal. Based on pure intuition,
she specifies weights 0.3, 0.5, and 0.2, respectively. While
this setting makes top-k processing easy, it is an unfair and
impractical request from the user to specify weights with
absolute accuracy (and bear the consequences of a poor rec-
ommendation) when a minor change in a weight (e.g., from
0.3 to 0.29) could significantly alter the top-k set. Instead, it
would be wiser if user inputs were dealt with as mere indica-
tions, and a leeway were given for inaccuracies in weight set-
ting. Similarly, in preference learning techniques, the com-
puted weight vector should only be used as a rough guide,
rather than taken as an exact representation of user pref-
erences. A natural way to deal with this issue, and offer a
more user-centric and practical design, is to expand the (ex-
plicitly input or computationally learned) weight vector into
a region1, and report all possible top-k sets to the user. This
task is accomplished by the uncertain top-k query (UTK).

The usability of UTK extends further. After reviewing
the result of a regular top-k query, the user may wish to
explore other similar options. E.g., on our hospitality portal,
the user may ask for additional hotel recommendations, on
top of the top-k already received. To offer alternatives of
possible interest, we may expand the weight vector into a
region, and report the additional options identified by UTK.
Practically, that is equivalent to providing the user with
top-k results for similar preference profiles.

Consider Figure 1, where each hotel’s attributes are its
average guest ratings on Service, Cleanliness, and Location,
on a scale of 0 to 10. On the right, we illustrate the pref-
erence domain, i.e., the domain of the weight vector2. The
axes correspond to w1 and w2, i.e., to the weights for Ser-
vice and Cleanliness, on a scale of 0 to 1. The UTK input
includes value k and the region of interest R. The latter is a

1Several preference learning techniques, like [41], already
produce such a region, instead of a specific weight vector.
2As we will explain in Section 3.1, for 3-dimensional data,
the preference domain is practically 2-dimensional.

866

Hotel Svc. Cln. Loc.
p1 8.3 9.1 7.2
p2 2.4 9.6 8.6
p3 5.4 1.6 4.1
p4 2.6 6.9 9.4
p5 7.3 3.1 2.4
p6 7.9 6.4 6.6
p7 8.6 7.1 4.3

w1

0.05 0.45

0.05

0.25

p2, p4

p1, p4

p1, p2

p1, p6

w2

.

Region R

(a) Data records (b) Pref. domain and UTK result

Figure 1: Test data and UTK result for k = 2

convex polygon in the preference domain, representing the
approximated or expanded user preferences. Here, k = 2
and R is the axis-parallel rectangle [0.05, 0.45]× [0.05, 0.25].

We distinguish two UTK versions. The first reports all
the hotels that may belong to the top-2 set if w is free to lie
anywhere in R. Importantly, the result must be minimal,
i.e., for every hotel p in the UTK output, there should be at
least one weight vector in R for which p is in the top-2 set.
On our test data, the output is {p1,p2,p4,p6}. The second
UTK version provides more detail; it reports the specific
top-2 set for any possible positioning of w in R. Its output
in our example is the partitioning of R shown on the right,
where each partition is associated with the top-2 set when
w falls in it. E.g., for any weight vector in the leftmost
partition in R, the top-2 hotels are {p2,p4}.

Previous research on top-k processing has only considered
uncertainty in the data (e.g., [43, 6]), but not in the weight
vector. The data uncertainty typically assumed is at the
record or at the attribute level [19]. In the former case, each
record may exist in the dataset with a certain probability.
In the latter, the score of every record is a random variable
that follows a given distribution. In both cases, there is no
uncertainty in the weight vector, and the top-k answer is
probabilistic (e.g., the top-3 set is {p2,p4,p5} with proba-
bility 43%). Also, the records’ scores are independent. In
contrast, there is nothing probabilistic in UTK (e.g., the
output is exact) and, importantly, the records’ scores are
necessarily correlated (since they all depend on w), and vary
together as w is freely positioned inside R.

Our contribution is twofold. First, we define a novel prob-
lem of practical significance, as it enables a more flexible
way to express user preferences in top-k queries, by taking
into account inherent inaccuracies in weight specification.
Second, we propose a suite of comprehensive algorithms for
it. Using standard benchmarks, we demonstrate that (i)
our techniques offer practical response times for voluminous
datasets, and (ii) they outperform by one to two orders of
magnitude baselines constructed from previous work.

2. RELATED WORK
In the last decade there have been several studies on top-k

queries in uncertain databases. Uncertainty in these studies
pertains to the data, not to the weight vector. In a type
of considered uncertainty, each record is associated with an
existence probability, i.e., it may or may not be valid [43,
49, 24, 21, 31]. In the multitude of possible worlds implied
(i.e., possible dataset versions), top-k semantics are unclear,
giving rise to several formulations, e.g., to compute the most
probable top-k set, the record most likely to rank i-th, the
records that have a probability greater than a cutoff to be
among the top-k, etc. In another type of uncertainty, pos-
sibly coexistent with the previous type, the score of each

record is a (discrete or continuous) random variable, with
a known probability distribution [6, 19, 42, 30]. E.g., a
record’s score could be 1.2 with probability 30% or 1.8 with
probability 70%, or it could follow a continuous probability
distribution. All these methods deal with uncertain data,
rather than uncertain queries. This is crucial, since record
scores are independent from each other, while in UTK the
scores of all records are correlated. Also, UTK has no prob-
abilities associated with, or affecting, its output.

Soliman et al. [44], on the assumption that the weight
vector is equally likely to be anywhere in the preference do-
main, compute the most likely top-k result, as well as the
ranking of the dataset that is the most representative of all
possible score-wise rankings. Note that they report a sin-
gle top-k result or a single ordering of the dataset, which
is fundamentally different from UTK. They also define two
sensitivity measures for top-k queries. On result sensitivity,
for a given w, Zhang et al. [52] compute the maximal region
around w where the top-k result remains the same.

Specified the probability distribution of w, Peng and
Wong [40] identify a subset of m records from the dataset,
so that the top-1 record for a random w has the largest
probability to be in the subset. Related is also the compu-
tation of k-regret sets [37, 39, 17, 12], where a subset of m
records is chosen, such that the top-1 record in that subset
does not score much lower than the k-th record in the en-
tire dataset for any weight vector. Methods on this topic
report a requested number of records as representatives of
the dataset, in contrast to UTK, which reports all records
that may belong to the top-k set (or all possible top-k sets)
when w is in R.

Ciaccia and Martinenghi [18] consider weighted Lp norms,
i.e., a family of scoring functions that is a superset of linear
ones. Given a set of linear conditions on the weights, they
report all records in a dataset that could rank as the top-1
for any permissible weight combination. Their work is tai-
lored strictly to k = 1. For linear scoring functions, their
problem is equivalent to computing a part of the convex hull,
a standard notion discussed later in this section.

Vlachou et al. [48] study reverse top-k queries, among
which the monochromatic version is related to UTK. It de-
termines all regions in the preference domain where a record
p ranks among the top-k. [48] provides an algorithm specif-
ically for 2-dimensional data. Tang et al. [45] propose the
kSPR methodology to answer that query for d ≥ 2. Each
competitor of p is mapped into a half-space in preference
domain, where it scores higher than p. In the resulting half-
space arrangement, the cells that are inside fewer than k
half-spaces form the output. kSPR employs several types
of pruning to reduce the number of considered competitors.
Although designed for a different problem, we use kSPR as
a building block for a baseline UTK approach.

Mouratidis et al. [35] compute the highest rank that a
given record could attain in a dataset of alternatives, for any
weight vector. They also identify the regions of the prefer-
ence domain which correspond to this rank. The problem is
intrinsically different from UTK, and the techniques inap-
plicable to our case.

Application-wise, UTK is related to the skyline, and more
so to its generalization, the k-skyband. A record dominates
another if it has no smaller value in any dimension, and the
records do not coincide [11]. The skyline of a dataset com-
prises those records that are not dominated by any other.

867

The k-skyband contains those records that are dominated by
fewer than k others [38]. The k-skyband is proven to be a su-
perset of all records that could appear in the top-k result for
any weight vector. The standard algorithm for k-skyband
computation, called BBS [38], utilizes a spatial index on the
dataset, and follows the branch-and-bound paradigm [29].
Using a min-heap, it visits index nodes and data records in
increasing distance from the top corner of the data domain
(i.e., the point with maximum value in all dimensions); each
index node is represented by the top corner of its minimum
bounding box (MBB). BBS maintains an (initially empty)
k-skyband set. When an index node is popped from the
heap, if its top corner is dominated by fewer than k records
in the k-skyband set, its children are pushed into the heap.
When a record p is popped, if dominated by fewer than
k records in the k-skyband set, it is inserted into the set.
Instead of distance to top corner, BBS can use any mono-
tone metric to determine the popping order; correctness is
ensured as long as the metric guarantees that any record
popped after p cannot dominate p.

In group-based skyline formulations, each skyline member
is a group of k records. E.g., in [32] a group dominates
another if there are permutations of the two groups such
that for every position i ∈ [1, k] the i-th record in the first
group either dominates or coincides with the i-th record in
the second (and in at least one position the records do not
coincide). Observe that no preferences are input by the user,
unlike UTK where the output depends on the (approximate)
preferences specified via region R. E.g, in Figure 1, p7 is not
dominated by any other hotel, and will thus appear in at
least one skyline group reported by [32]. In contrast, p7 does
not appear in the UTK result, because it cannot make it in
the top-2 hotels anywhere in R. This also demonstrates an
additional fundamental difference. Dominance between two
groups boils down to a number of per-record (i.e., standard)
dominance tests. In UTK dominance tests do not suffice,
e.g., two or more records that do not dominate p, may still
collaboratively disqualify p if they score higher than it at
different parts of R, collectively preventing it from entering
the top-k set at any position in R.

Hidden or unknown preferences have been considered in
the context of skylines. E.g., specified a set of desirable
and a set of undesirable records by the user, Mindolin and
Chomicki [34] determine whether some criteria (dimensions)
are more important than others. I.e., based on user exam-
ples on what should and what should not be in the skyline,
they extract the underlying importance relations among cri-
teria. Conceptually, that is inverse to UTK, where user pref-
erences are explicitly given (by means of R), and preferred
records (in top-k sets) are unknown/to be computed.

There is a relation between UTK and the convex hull. The
convex hull is the smallest convex polytope that encloses all
records in a dataset [8]. The top-1 record for any weight
vector w is guaranteed to be on the convex hull. Chang et
al. [13] utilize this in the onion technique. The first layer of
the “onion” comprises the records that belong to the convex
hull. Generally, the i-th layer comprises the convex hull
records when the first i−1 layers are ignored. With k layers
pre-computed, onion answers top-k queries by looking only
across these k layers. We stress that k-skyband and onion do
not compute minimal subsets, i.e., they retain some records
that cannot be in the top-k set for any w. Also, they are
unable to cater for the constraint expressed by R.

Finally, there is a parallel with spatial queries when the lo-
cation of the query point is uncertain. For example, [47] and
[46] compute all the k nearest neighbors and k reverse near-
est neighbors, respectively, when the query point could be
anywhere on a line segment. For uncertain points a, b, and r
that may lie anywhere in axis-parallel hyper-rectanglesA, B,
and R, respectively, Emrich et al. [20] determine whether r
is definitely closer to a than to b. Techniques in that sphere
do not apply to our problem, since they consider spatial
proximity, as opposed to score-based ranking.

3. PRELIMINARIES

3.1 Problem Definition
The input of UTK comprises a dataset D, a positive inte-

ger k, and a region R. Each record p ∈ D includes d values,
i.e., p = (x1, x2, ..., xd). We assume that higher values are
preferable for every attribute. Effectively, the attributes de-
fine a d-dimensional data domain, where records can be seen
as vectors. To cope with datasets of large scale, we assume
that D is organized by a spatial index, such as an R-tree [23].

In plain top-k queries, the score of p is derived by an input
weight vector w = (w1, w2, ..., wd) as S(p) =

∑d
i=1 wi · xi.

The k records with the highest scores form the top-k result.
Without loss of generality, we assume that wi ∈ (0, 1) for

each i ∈ [1, d] and that
∑d

i=1 wi = 1. These conditions
do not constrain user preferences, because record ranking
does not depend on the magnitude of w but only on its
direction [13]. However, they enable dropping one weight.

That is, from
∑d

i=1 wi = 1 we derive wd = 1 −
∑d−1

i=1 wi,
and thus reduce the domain of w to a (d − 1)-dimensional
space, called the preference domain3. Henceforth, by w we
refer to the (d− 1)-dimensional form of the weight vector.

The third input to UTK is a region R in preference do-
main. For ease of presentation, we assume that it is an axis-
parallel hyper-rectangle, yet our techniques apply directly
to general convex polytopes.

We distinguish two UTK versions. UTK1 reports the set
of exactly those records that may rank among the top-k
when the weight vector lies inside R. “Exactly” here means
that the reported set is minimal, i.e., for every record p in it,
there is at least one weight vector in R for which p belongs to
the top-k set. The second version, UTK2, reports the exact
top-k set for every possible weight vector in R. While there
are infinite possible vectors in R, the output is a partitioning
of R, where each partition is associated with the exact top-k
set when w lies anywhere inside that partition.

The distinguishing power of score-based ranking dimin-
ishes with d [35, 51]. Specifically, as d grows, the scores of
all records quickly converge, which renders rank-aware pro-
cessing (including the standard top-k query) meaningless for
more than a handful of dimensions. Therefore, we focus on
low-dimensional settings.

3.2 Example and Connection to ≤ k-level
Consider a 2-dimensional D. As discussed above, the pref-

erence domain is 1-dimensional, since w2 = 1 − w1. If we
plot the scores of records pi ∈ D as functions of w1, they are

3If a vector needs to be mapped from/to the full-dimensional
domain, this can be done using the aforementioned equation
for wd. Mapping a convex polytope is performed similarly,
by applying the same process to its defining vertices.

868

w1

p2*

p3*

S
(p

)

p1*

p4*

p5*

w

(a) Dual space

w1

p2*

p3*

S
(p

)

p1*

p4*

p5*

R

(b) ≤ 2-level

Figure 2: Dual space and ≤ k-level for d = 2

each mapped into a line p∗i . Figure 2(a) demonstrates that
dual representation for n = 5 records. Our (1-dimensional)
weight vector w corresponds to a position on the horizontal
axis. If we shoot a vertical ray from that position upwards,
the ray meets the lines p∗i in ascending order of S(pi). I.e.,
the top-k set for w comprises those records that correspond
to the k lines that are met last by the ray. In Figure 2(a),
w corresponds to the dashed ray that meets lines p∗2 and p∗5
last, i.e., the top-2 set for w includes p2 and p5.

Effectively, the dual representation maps the dataset into
an arrangement of lines. To identify all possible top-k sets
(for any w in the preference domain) is equivalent to com-
puting all points that lie on one of the lines and have fewer
than k other lines above them. E.g., in Figure 2(b), the blue
piecewise linear curve indicates the record that ranks 1-st for
any possible w (i.e., for any position of w on the horizon-
tal axis), while the red curve captures the record that ranks
2-nd. The blue curve is called the 1-level of the arrange-
ment, the red is called the 2-level, while together they form
the ≤ 2-level [5]. In general, the ≤ k-level captures the top-k
set for any w. Thus, UTK is dual to a constrained version
of ≤ k-level, where w is bounded in a specific region R of the
preference domain. In Figure 2(b), if R is the shown inter-
val, the UTK result for k = 2 corresponds to the part of the
≤ 2-level that is between the dashed lines. Although we used
a 2-dimensional example, the same parallel holds for any d,
with records mapped into hyperplanes. Vector w still pro-
duces a ray, shot upwards from point (w1, w2, ..., wd−1, 0).

The reduction to a constrained version of ≤ k-level, al-
though conceptually interesting, is not useful in terms of
algorithmic design. As elaborated in [4], efficiently comput-
ing the ≤ k-level has not been resolved completely. Specif-
ically, the best known algorithm has a time complexity of
O(nbd/2ckdd/2e) and is purely of theoretical interest [36]. In
the context of large datasets, the only≤ k-level solutions [16,
15] are explicitly for d = 2, which is a degenerate case, be-
cause the preference domain becomes 1-dimensional.

3.3 Baseline Algorithm
We construct a baseline UTK algorithm using existing

methods. As elaborated in Section 2, the k-skyband and
the k onion layers are supersets of all possible top-k results.
Actually, since weights are positive, in each onion layer it
suffices to keep records that define convex hull facets with
norm in the first quadrant. Assuming that k = 2, Fig-
ure 3(a) illustrates the 2-skyband in a dataset of 10 records.
The outer staircase line passes through records that are not
dominated by any other, and the inner line via those domi-
nated by exactly one. The 2-skyband is their union, i.e., set
{p1,p2, ...,p8}. Figure 3(b) shows the first k = 2 onion lay-
ers. They include the same records as the 2-skyband except
p7. The k layers are always a subset of the k-skyband [38].

p4

p1

p2

p3

p6

p5

x2

0 x1

p8

p7

p9

p10

(a) 2-skyband

p4

p1

p2

p3

p6

p5

x2

0 x1

p8

p7

p9

p10

(b) 2 onion layers

Figure 3: k-skyband and onion layers for d = 2

Generally, both the k-skyband and onion retain some
records that cannot be in any top-k set [25]. For instance,
record p3 in Figure 3 is in the 2-skyband and in the 2 onion
layers, but it cannot be in the top-2 set for any w. More so
in UTK, where w is further bounded by R, the k-skyband
and onion layers become even looser supersets of the records
that could appear in the top-k set.

The baseline uses either the k-skyband or the k onion lay-
ers as a filtering step, and then determines for each retained
candidate p whether it is part of the UTK result. The latter
task can be accomplished by a monochromatic reverse top-k
query at p; we use the kSPR methodology [45], constrained
to consider only region R. If kSPR reports an empty set,
p is disqualified. Otherwise, it is part of the UTK result.
In UTK1, we may terminate kSPR as soon as the first sub-
region of R is found where p is in the top-k set. In UTK2,
however, kSPR is left to terminate regularly, so as to pro-
duce all sub-regions of R where p belongs to the top-k set
(note that for this problem variant the baseline’s output
will have a different, yet semantically equivalent form to the
UTK2 output described in Section 3.1).

We evaluate the k-skyband and the onion variants of the
baseline in the experiments. Implementation-wise, to com-
pute onion layers, it is beneficial [10, 52] to first compute
the k-skyband (e.g., by BBS) and then iteratively run quick-
hull [7] to derive onion layers off the k-skyband one by one.

4. R-SKYBAND ALGORITHM
In this section, we present the r-skyband algorithm (RSA)

for the UTK1 problem. A key notion is r-dominance.
The intuition is that, in traditional dominance, the domi-
nator is preferable to the dominee for any weight vector w ;
r-dominance, instead, is specific to weight vectors in R. Al-
though a record may not dominate another in the traditional
sense, it might always score higher when w is bounded in R.

Definition 1. Given a region R in the preference domain,
we say that record p r-dominates another record p′ when
S(p) ≥ S(p′) for any weight vector in R, and there is at
least a weight vector in R for which S(p) > S(p′).

Consider two records, p and p′, which are incompara-
ble in terms of traditional dominance, i.e., none dominates
the other. The equality S(p) = S(p′) corresponds to a
hyperplane in the preference domain, while the inequal-
ity S(p) ≥ S(p′) corresponds to a half-space. We distin-
guish 3 cases regarding the positioning of that half-space
w.r.t. R, shown in Figure 4. In the first case (Figure 4(a)),
p r-dominates p′ because R is fully covered by half-space
H : S(p) ≥ S(p′), i.e., p scores higher for any w ∈ R. In the
second case (Figure 4(b)), there is a part of R where p scores
higher than p′ and another where it is the other way around.

869

w1

w
2

R

(a) p r-dominates

w1

w
2

R

(b) r-incomparable

w1

w
2

R

(c) p r-dominated

Figure 4: r-dominance cases for records p and p′

In this case, none of the records r-dominates the other, and
we call them r-incomparable. The third case (Figure 4(c)) is
symmetric to the first, with p being r-dominated by p′, i.e.,
scoring lower than p′ anywhere in R.

Observe that in the above investigation we considered
two incomparable records, i.e., records for which traditional
dominance could not make safe conclusions about which
ranks higher. In the first and in the third case, however, the
notion of r-dominance allowed such conclusions to be safely
made. Unlike traditional dominance, it is not straightfor-
ward to determine whether a record p r-dominates another
record p′. We test them by checking whether all vertices
that define R are inside or outside H : S(p) ≥ S(p′). If they
are all inside (outside), p r-dominates (is r-dominated by)
p′. Otherwise, the records are r-incomparable. The contain-
ment test for each vertex takes O(d) time, thus a total of
O(md) for the r-dominance test, where m is the number of
vertices that define R.

4.1 Filtering Step (r-Skyband)
The r-dominance concept is fundamental to several as-

pects of RSA. The first is that, from Definition 1, we in-
fer that any record that is r-dominated by k or more other
records cannot be in the UTK1 result, and can thus be elim-
inated from consideration. Formally, the only records that
could be in the UTK1 result must belong to the r-skyband :

Definition 2. The r-skyband of a dataset includes only
those records that are r-dominated by fewer than k others.

The r-skyband is a subset of the traditional k-skyband.
To see this, recall that a record may r-dominate another
even if they are incomparable in the traditional sense.

Another important fact is that the r-skyband is still a
superset of the UTK1 result. The reason is that it relies
on pairwise r-dominance, and is unable to capture the com-
bined effect of multiple competitors on the ability of a spe-
cific record to enter the top-k set. To exemplify, consider
record p and two of its competitors, p1 and p2, in a UTK1

scenario where k = 1. Assume that half-spaces H1 and H2 in
Figure 5(a) correspond to S(p1) ≥ S(p) and S(p2) ≥ S(p),
respectively. None of the half-spaces covers the entire R,
thus p is not r-dominated by p1 or p2. However, there is no
part of R that is not covered by any of the two half-spaces.
In other words, although p is a member of the r-skyband, it
does not belong to the UTK1 result. Thus, the r-skyband
can only be used as a filtering tool for UTK1 processing.

The computation of r-skyband (using the index on D)
is similar to k-skyband computation, and follows the BBS
paradigm, with a few important differences. First, instead of
traditional dominance, we use r-dominance; the r-dominance
test described previously applies both for record-to-record

w1

w
2

R

(a) r-skyband issue

p1 p2

p5

p6

p10

p3

p7

p11

p8

p12

p9

p4

(b) r-dominance graph

Figure 5: r-dominance, r-skyband and r-dominance graph

and for record-to-MBB dominance testing (by representing
the MBB by its top corner, as per normal). Second, we use
a different visiting order for R-tree nodes and records, i.e.,
a different sorting key for the search heap. We exploit the
fact that w is bounded in R to determine a more effective
order, i.e., to expedite the search by guiding it first to the
most likely members of the r-skyband.

Specifically, our adapted BBS uses a max-heap, where the
sorting key is the score (of records or of the top corner of
node MBBs) according to the pivot vector of R. The pivot’s
value in each dimension is the average value of R’s vertices
in that dimension. Due to the convexity of R, the pivot is
guaranteed to lie in R [8]. Other than that, the BBS process
is the same as described in Section 2, by simply replacing
traditional dominance with r-dominance tests.

Recall that BBS can use any monotone metric as key for
its search heap (instead of distance to the top corner of
the data domain), as long as the metric guarantees that any
record p′ popped from the heap (i.e., considered for inclusion
into the k-skyband) after a record p cannot dominate p.
That requirement is upheld in our adaptation. In particular,
since records are popped from the search heap in decreasing
score order according to the pivot, any record p′ popped
after p has smaller score according to at least one weight
vector in R (i.e., the pivot), and thus cannot r-dominate p.

In addition to filtering (by means of the r-skyband),
r-dominance is also useful in the refinement step, as we will
see in Section 4.2. Thus, we record all pair-wise r-dominance
relationships between members of the r-skyband. The data-
structure to store these relationships is a directed acyclic
graph (DAG), called the r-dominance graph G. Using a DAG
to maintain dominance relationships is common in the sky-
line literature (e.g., [54, 32]). Figure 5(b) illustrates G in
an example where k = 4. An arc from node (record) p to
p′ encodes the fact that p r-dominates p′. Note that an arc
from p1 to p6 or to p9 is not needed, because this is already
implied by the transitivity of the r-dominance relationship.

Building G does not require any r-dominance tests, other
than those already performed for r-skyband computation.
In particular, prior to inserting any new record p into
the r-skyband, BBS anyway needs to identify all existing
r-skyband members that r-dominate it. Also, due to pivot-
based sorting, these are the only records that could pos-
sibly r-dominate p. Thus, at the time of inclusion to the
r-skyband, we know already all the records that r-dominate
p. Their number is called the r-dominance count of p.

4.2 Refinement Step
Compared to the baseline approach in Section 3.3, we have

established that RSA considers a subset of its candidates.

870

However, the most major performance improvements are
achieved by its refinement process. RSA considers candi-
dates one by one, in decreasing order of their r-dominance
counts. The reason behind this order is that if a candidate
(node of G) is confirmed to be part of the UTK1 result, by
Definition 1, so do all its ancestors in G, thus reducing the
number of candidates to be verified.

The verification of individual candidates may further ben-
efit from the r-dominance relationships stored in G. Consider
Figure 5(b), where k = 4. The first candidates to verify are
p9,p10,p11,p12, with r-dominance count 3. Ties are resolved
arbitrarily. Assume that p11 is chosen to be verified first.
Any of its ancestors in G is known to r-dominate it. Thus,
p11’s verification may ignore p2,p3,p7, and simply reduce
its rank quota to k − 3 = 1; that is, with 3 ancestors ig-
nored, it is as if p11 is to be verified for a UTK1 query with
parameter k reduced by 3. All remaining competitors are
r-incomparable to p11.

With ancestors ignored, the verification of a candidate p
entails partitioning R by half-spaces Hi : S(pi) ≥ S(p), each
corresponding to one of the (remaining) competitors pi. For-
mally, the supporting hyperplanes of these half-spaces define
an arrangement bounded by R. Every cell (i.e., partition)
in that arrangement lies inside a set of half-spaces. The
competitors that correspond to these half-spaces are exactly
those that rank higher than p if w lies in that partition. If
any of the partitions in R is inside fewer half-spaces than
the candidate’s rank quota, then the candidate (and, conse-
quently, each of its ancestors in G) is verified. Otherwise, it
is not part of the UTK1 result.

The problem with this approach is that computing the
arrangement of all half-spaces Hi in R is a costly process
(requiring O(nd) time [5], where n is the number of competi-
tors). Instead, we initialize an empty arrangement in R, and
insert into it half-spaces for just a small, carefully selected
subset of competitors, hoping to (safely) verify or disqualify
the candidate p without having to consider the rest. The
competitors chosen are those with the smallest r-dominance
count. The rationale is that these competitors are intuitively
the strongest, and in turn, the most likely to help disqual-
ify the candidate. Note that the r-dominance counts here
should ignore the candidate’s ancestors (because, as stated
before, they are disregarded during the verification of p).

In our running example on the verification of p11, the
competitors with the smallest r-dominance count (of 0) are
p1 and p4. Their respective half-spaces, H1 and H4, are in-
serted into the arrangement. Assume that Figure 6(a) shows
the resulting arrangement. The count in each partition in-
dicates how many of the inserted half-spaces cover that par-
tition. Since all partitions in R meet or exceed p11’s rank
quota (i.e., 1), the candidate is disqualified without a need
to consider any other competitor. Observe that we consider
only the arrangement within R. The rest of the preference
domain is irrelevant to UTK1 processing (and so is the small
triangular area bounded downwards by the w1 axis, whose
count would have been 0 if it were inside R). Note also that
when a candidate is disqualified, it is directly removed from
G in order to avoid waste of computations when other can-
didates are considered; the actual UTK1 records are enough
to disqualify any non-UTK1 candidate.

Figure 6(b) illustrates an alternative scenario where the
arrangement produced by H1 and H4 includes a promis-
ing partition, i.e., a partition with count smaller than the

w1

w
2

R

1

21

(a) Counts 1, 2, 1

w1

w
2

R 2

1

1

0

(b) Counts 0, 1, 1, 2

Figure 6: Arrangement and partitions in R

rank quota of the candidate. The promising partition in our
case has count 0 (recall that p11’s rank quota are 1). This
partition could render p11 a member of the UTK1 result.
The question is whether any of the remaining competitors
could produce a half-space that covers or overlaps with the
promising partition. Lemma 1 provides the answer.

Lemma 1. Let pi be a competitor of the candidate p,
whose half-space Hi has already been inserted into the ar-
rangement. Let also pj be a record that is r-dominated by
pi, and ρ be a partition in the arrangement that is not cov-
ered by Hi. The candidate p is guaranteed to r-dominate pj

in partition ρ.

Proof. First, by the definition of half-space Hi, any-
where outside Hi it holds that S(pi) < S(p). Second, from
the definition of r-dominance, anywhere inside R it holds
that S(pj) ≤ S(pi). Combining the two facts, we deduce
that S(pj) < S(p) for every partition ρ of the arrangement
that is outside Hi, i.e., p r-dominates pj in ρ.

Returning to our example, the answer to whether the half-
space of any of the remaining competitors could cover or
overlap with the promising partition in Figure 6(b) is neg-
ative. The reason is that the promising partition lies out-
side both H1 and H4, while all remaining competitors are
r-dominated by p1 or p4. By Lemma 1, we are certain that
the count in that partition could not increase further and,
hence, we are able to confirm p11 (and all its ancestors in
G) as part of the UTK1 result.

In both previous examples, no additional competitors (i.e.,
other than p1 and p4) needed to be examined to decide on
the candidate. To generalize, take Figure 6(a) as an ex-
ample, but assume that the rank quota of the candidate
p11 are 2. In this case, there are two promising partitions,
both with count 1. Consider, for instance, the bottom-right
promising partition. Although it lies outside H4 (and thus
all competitors r-dominated by p4 cannot increase the parti-
tion’s count), it is inside H1. I.e., Lemma 1 cannot disregard
the competitors that are r-dominated by p1. To formalize,
the examination of a promising partition needs to consider
those of the remaining competitors that are not disregarded
by Lemma 1. In our example, these are p5,p6,p9,p10.

Observe that the examination of the promising partition
is effectively the original problem we started with, where:
(i) instead of R, the region of interest is now the promising
partition at hand; (ii) the rank quota of the candidate are
reduced by the count of the partition (e.g., in the revised ex-
ample in Figure 6(a), where we started off with rank quota
of 2 for the candidate p11, they are now reduced by the count
of the promising partition (i.e., 1) to 2-1 = 1); (iii) the com-
petitors to consider are those that are not ancestors of the

871

1
0

1

(a) Counts 1, 0, 1

1
2

1

(b) Counts 1, 2, 1

Figure 7: Local arrangement in promising partition

candidate and are not disregarded by Lemma 1. Therefore,
we recursively apply the same process as we did for R.

That is, among the remaining competitors (i.e.,
p5,p6,p9,p10), we choose those with the smallest
r-dominance count, and insert their half-spaces into a newly
initialized, local arrangement, specific to the promising par-
tition. Note that the r-dominance count now ignores any
competitor that is either disregarded or has already been
considered. For instance, this means that the r-dominance
of p10 by p2,p3 (disregarded) and by p1 (already considered
in the original arrangement in R) should be ignored, ren-
dering an r-dominance count of 0 for p10. The r-dominance
counts of p5,p6,p9 are 0, 1, 2, respectively. Among the 4
competitors, p10 and p5 (with r-dominance count 0) are in-
serted into a local arrangement for the bottom-right promis-
ing partition in Figure 6(a).

Figures 7(a) and 7(b) provide two alternative scenarios af-
ter the insertion of H10 and H5 into the local arrangement.
In Figure 7(a), there is a promising partition, which is out-
side both H10 and H5 (recall that the rank quota of p11 were
reduced to 1 in the shaded partition). From Lemma 1 we
infer that no remaining competitor could increase its count.
We therefore confirm p11 as a member of the UTK1 result,
and terminate the verification process for it.

On the contrary, in the scenario of Figure 7(b), there
is no promising partition, so there is no further recursion
within the current local arrangement, i.e., search within the
shaded triangular region is unfruitful. This however does
not necessarily mean that the candidate p11 is disqualified,
because the recursion in the other promising partition (i.e.,
the top-left partition in Figure 6(a)) could possibly discover
a sub-partition where p11 does not exceed its rank quota
and qualifies for the UTK1 result.

An optimization here is that when there are multiple
promising partitions, we apply the recursive process to them
in decreasing order of their counts, so that the most promis-
ing partitions are considered first.

4.3 Drill Optimization
The verification process could be enhanced by a simple,

yet effective optimization, called drill. The optimization ap-
plies to the verification of an individual candidate p. When
region R is examined (in the initial call of the recursive ver-
ification process described previously), or when a promising
partition is examined (in any of the following calls of the re-
cursive process), before we consider the half-space arrange-
ment at all, we perform a regular top-k query for a drill
vector, i.e., a vector inside R or inside the partition, respec-
tively. If the candidate p is in the top-k set, it is directly
verified as a member of the UTK1 result.

The drill vector should be chosen such that (i) it falls
within the region/partition at hand, and (ii) the candidate p
is likely to rank high for it. An intuitive strategy to achieve
this twofold objective is to choose the vector that maxi-

mizes the score of p (i.e., a linear expression), subject to
the (also linear) constraints imposed by the (convex) region
or partition. This can be done using linear programming in
O(cdd!n) time for a constant c, where n is the number of
constraints that define the region/partition [8].

Importantly, when we make a drill, i.e., execute a top-k
query for the drill vector, we do not refer at all to the dataset
D or its index. Instead, our top-k search runs purely on
graph G, in order to utilize directly the r-dominance infor-
mation it holds. The search follows the branch-and-bound
paradigm [29]. We say that we evaluate a node of G when
we compute its score (according to the drill vector). We
first evaluate the nodes with r-dominance count 0, and push
them into a max-heap that uses score as the key. Then,
we iteratively pop nodes from the heap. If the score of the
popped node p is among the top-k we have popped so far,
we update the temporary top-k set, evaluate p’s children in
G, and push them into the max-heap4. Otherwise, we disre-
gard p. The temporary top-k set is finalized when the k-th
smallest score in it is no smaller than the score of the last
node popped from the heap (or the heap becomes empty).

4.4 Pseudo-code, Correctness, and Analysis
We present the pseudo-code for RSA in Algorithm 1,

which invokes the recursive Verify procedure (Algorithm 2),
i.e., the verification process for a given candidate p in a
specified region/partition ρ. The last input of Verify, i.e.,
ignore set I, contains records to be ignored by the verifica-
tion process. These records are also ignored in r-dominance
counting in Line 3.

Algorithm 1 RSA(dataset D, region R, value k)

1: UTK1 result set T ← ∅
2: Compute the r-skyband of D
3: G← build r-dominance graph
4: for each unverified p ∈ G in desc. order of r-dom. count do
5: I ← ancestors of p in G
6: if Verify(p, R, k − |I|, I) == True then
7: Insert into T candidate p and all its ancestors in G
8: else
9: Remove p from G

10: Return T

Algorithm 2 Verify(p, ρ, rank quota r, ignore set I)

1: Perform drill for p; if successful, return True
2: A ← empty arrangement in ρ
3: Insert into A a h/space ∀ competitor with r-dom. count= 0
4: for each promising partition ρi in A do
5: if Lemma 1 confirms the count of ρi then
6: Return True
7: else
8: S ← competitors with h/spaces inserted in A
9: I′ ← competitors that cannot affect ρi by Lemma 1

10: r′ ← count of ρi in A
11: Verify(p, ρi, r − r′, I ∪ S ∪ I′)
12: Return False

Lemmas 2 and 3 regard RSA’s correctness and complexity.

4Since nodes in G may have multiple parents (like p10 in
Figure 5(b)), some children of p may already be in the heap
via another parent. Only children that are not already in
the heap are evaluated/pushed into it.

872

Lemma 2. RSA reports the correct result, i.e., exactly
those records that may appear in the top-k set when the
weight vector lies inside R.

Proof. Records r-dominated by k or more others cannot
belong to the UTK1 result, thus filtering via the r-skyband
is safe. Refinement considers all candidates individually, ex-
cept those that can be safely verified when one of their de-
scendants in G is confirmed to be in the UTK1 result (which
is safe by Definition 1). For each considered candidate, RSA
constructs an arrangement according to its r-incomparable
competitors5. If any partition in that arrangement has count
smaller than its rank quota, by the definition of half-spaces
Hi, it means that fewer than k competitors score higher
than the candidate in that partition, hence, it is correctly
reported in the UTK1 result. Unless such a partition is dis-
covered, the candidate is disqualified, i.e., RSA reports a
tight UTK1 result (not a superset of it). Our arrangement
computation (and thus the verification process) for a given
candidate p is correct, because the only competitors it ig-
nores are (i) p’s ancestors in G, which are already taken
into account by appropriate reduction of its rank quota, (ii)
those safely disregarded by Lemma 1, and (iii) those whose
verification has previously failed.

Lemma 3. The time complexity of RSA is O(n′d+1),
where n′ is the number of candidates received from the fil-
tering step.

Proof. The major determinant of RSA’s time require-
ments is the construction of arrangements in its refinement
step. In the worst case, the verification process for a candi-
date p will need to consider all competitors, i.e., it will need
to construct the complete arrangement of n′ half-spaces, in
O(n′d) time [5]. Since there are n′ candidates, the time
complexity of RSA is O(n′d+1).

The number of candidates received from the filtering step
(i.e., n′) is no greater than the number of records in the
k-skyband of D. There are several analyses on the cardinal-
ity of the k-skyband [22, 14, 53], which is generally much
smaller than dataset cardinality n (i.e., n′ � n).

4.5 Implementation: Arrangement Indexing
Our discussion so far used half-space arrangements and

operations on them as building blocks, abstracting their
maintenance and management. In recent database literature
there are two approaches to index/maintain a half-space ar-
rangement. One is to index the preference domain using a
space-partitioning method, like a Quad-tree [50, 35]. This
approach computes the exact geometry of each arrangement
cell (i.e., partition, in our UTK1 terminology) and records
it inside all the quads that it overlaps with. Another ap-
proach is to use an implicit representation of the partitions
by indicating only the half-spaces that define them (rather
than computing and storing their explicit geometric rep-
resentation) and to organize the partitions using a binary
tree [45]. The leaves of the binary tree are divided when a
new half-space is inserted, increasing the tree height by 1.
Both approaches support the incremental insertion of half-
spaces into the arrangement, as well as the counting and
the identification of half-spaces that cover a partition. Our

5Local arrangements at the leaves of the recursion tree of
Verify, together form an implicit arrangement in entire R.

methodology can be implemented using either of the two
approaches, but we adopt the latter as it performs better.

An important remark is that in all aforementioned stud-
ies (using either the Quad-tree or the binary tree approach)
a single arrangement and a single index were maintained
while a query executed. In our case, there are multiple in-
dices built and disposed during execution. Specifically, an
index is built for every local arrangement considered, i.e.,
for every call of the recursive process Verify (Algorithm 2).
This much smaller index is discarded when the recursion
proceeds to the promising sub-partitions of the local ar-
rangement (if any). The smaller index size implies smaller
computation cost for operations on the local arrangement
(e.g., half-space insertion, coverage counting, etc), while its
prompt discarding reduces memory consumption. Note that
this is not only an implementation detail, but an optimiza-
tion made possible by our algorithmic design, which pro-
cesses each partition irrelevantly from others, thus allowing
a focusing only on those select half-spaces that may affect
the local arrangement. That flexibility is not possible in the
single arrangement, single index approach of previous stud-
ies. Furthermore, many complex index optimizations used
in both the Quad-tree and the binary-tree approaches (e.g.,
pertaining to reduction of space requirements) are no longer
necessary with our multiple, small, and disposable indices.

5. JOINT ARRANGEMENT ALGORITHM
In this section, we present the Joint Arrangement Algo-

rithm (JAA) for the UTK2 problem. Its filtering step is the
same as RSA’s, but refinement is fundamentally different.
The output of JAA is a single partitioning of R, where each
partition is associated with the respective top-k set. Note
that UTK2 has a more explicit/detailed output than UTK1.

The key idea is that JAA works on a common global ar-
rangement (i.e., partitioning of R) for all candidates re-
ceived from the filtering step, as opposed to verifying or dis-
qualifying individual candidates via independent, candidate-
specific arrangements. When JAA terminates, the common
global arrangement is returned as output. A central element
in JAA is the choice of an anchor record among the candi-
dates. At first, the partitioning of R is performed according
to that anchor, yet the anchor for some partitions (in the
common global arrangement) may change to another candi-
date in some cases, which may also recursively re-occur for
their own sub-partitions.

Refinement in JAA commences by choosing as anchor
record p one of the candidates received from the filtering
step. The anchor choosing strategy is essential and will be
elaborated in Section 5.1. Using the anchor in a role similar
to that of a candidate for verification, we apply the same ver-
ification process as in Section 4.2. Importantly, however, we
disable early termination and the drill optimization. That
is, we do not halt the process when p is found to be part of
the top-k set for some partition of R. Instead, we proceed
until each partition ρ in R is safely classified as either an
equal-to, a less-than, or a greater-than partition.

In the verification-like process for the anchor p, the equal-
to and less-than partitions are guaranteed by Lemma 1 to
have no overlap with any of the half-spaces induced by the
remaining competitors of p. That is, the rank k′ of p in any
equal-to or less-than partition ρ is confirmed, and it is equal
to the number of already inserted half-spaces that cover ρ,
plus 1. In equal-to partitions k′ = k, that is, we know exactly

873

ρ1: 1

ρ2: 2
ρ3: 3

ρ4: 4

(a) Partitioning R; anchor p

ρ2: 2
ρ3: 3

ρ4: 4
2

3

3

1

2 3

2

3
4

(b) Partitioning ρ1; anchor p′

Figure 8: Common global arrangement in JAA (k = 2)

the top-k set; recall from Section 4.5 that the arrangement
index maintains not only the number, but also the identity
of the half-spaces Hi that cover each partition, and thus
the specific candidates pi that contribute to k′. No further
processing is required for equal-to partitions, and they are
already finalized in JAA’s common global arrangement. On
the other hand, in less-than partitions, k′ is smaller than
k. That is, we know the k′-member prefix of the top-k set
(which includes the anchor p) but not its last k−k′ members.

The third type of partitions are greater-than. The number
of half-spaces that cover such partitions is k′ > k. That is,
we are certain that the anchor p does not belong to the
top-k set for them. Note that in the case of greater-than
partitions, k′ does not need to be confirmed by Lemma 1,
meaning that as long as k half-spaces are found to cover a
partition, we are certain that k′ > k, and may safely classify
the partition as greater-than.

To exemplify, assume that refinement commences using
as the initial anchor a record p, which has 3 competitors
with dominance count 0. The half-spaces that correspond
to these competitors produce the arrangement (partitioning
of R) shown in Figure 8(a). The number in each partition
corresponds to k′, i.e., the number of half-spaces that cover
the partition plus 1. Assume that k = 2, and that Lemma 1
guarantees that k′ is confirmed for ρ1 and ρ2, i.e., none
of the remaining competitors of p could induce half-spaces
that have any overlap with these partitions. ρ2 is an equal-to
partition, where we know the entire top-k set. ρ1 is a less-
than partition, where we know that p is the top-1 record,
but do not know the other member of the top-k set. Value
k′ for ρ3 and ρ4 is already greater than k, thus they are
greater-than partitions (regardless of whether k′ is confirmed
by Lemma 1), and we know that the anchor p is not part of
the top-k set. The verification-like process for the current
anchor p culminates at that point, since all partitions are
successfully classified as equal-to, less-than, or greater-than.

Further processing is required in less-than and greater-
than partitions. Consider the former case first. For each
less-than partition ρ, we know only the k′ top-scoring mem-
bers of the top-k set (where k′ < k) and we need to compute
the next k − k′. That is, we need to recursively solve an
instance of the UTK2 problem, using k − k′ instead of k,
using ρ instead of R, and ignoring the k′ candidates known
already to be the top-scorers anywhere inside ρ. Since the
initial anchor p is among the k′ ignored candidates, the
verification-like process in ρ should use a different anchor
record p′ (using the strategy described in Section 5.1). In
turn, the verification-like process for p′ in ρ culminates when
all the sub-partitions of ρ are successfully classified as equal-
to, less-than, or greater-than, with further recursive process-
ing required for the latter two types.

Continuing the example in Figure 8(a), to deal with the
less-than partition ρ1, we select a new anchor p′ for it, and
execute a verification-like process for p′ in ρ1. The known
prefix of the top-k set includes the former anchor p, thus
the rank quota of p′ are k − 1 = 1. Figure 8(b) demon-
strates the produced partitioning of ρ1 (shown shaded), and
its place in the common global arrangement of JAA. Since
the rank quota of p′ are 1, among the sub-partitions of ρ1,
one is equal-to (thus finalized in JAA’s common global ar-
rangement) and all the rest are greater-than.

Having elaborated on less-than partitions, we next focus
on the greater-than type. For each greater-than partition ρ,
we know only that the initial anchor p cannot be part of
the top-k set. Therefore, we choose a new anchor p′ for ρ,
and apply recursively the verification-like process for p′ in
ρ. To accelerate this process, however, we ignore the initial
anchor p, and all its descendants in G, because (they are
guaranteed to rank even lower than p, and hence) they too
cannot belong to the top-k set anywhere in ρ. In Figure 8(b),
for instance, we choose a new anchor for each of the greater-
than partitions ρ3 and ρ4, and partition them independently,
ignoring p and all its descendants in G.

JAA terminates when all partitions in the common global
arrangement are equal-to (for some anchor). The common
global arrangement is then reported as the UTK2 solution.

5.1 Anchor Choosing Strategy
The performance of JAA depends on the anchor choosing

strategy. Consider, for example, the handling of less-than
partition ρ1 in Figure 8(a). If the new anchor chosen for
ρ1 is not among the top-k for any weight vector in ρ1, the
verification-like process is bound to produce only greater-
than sub-partitions. That is, the partitioning of ρ1 will fail
to finalize any sub-partition in the common global arrange-
ment, and instead will leave us with multiple greater-than
sub-partitions, each requiring further processing. In other
words, a poorly chosen anchor not only fails to facilitate the
JAA process, but is actually detrimental to it.

To avoid this, when we choose the anchor for a partition ρ,
we need to ensure that it belongs to the top-k set for at least
one weight vector in ρ. Furthermore, among the members of
the top-k set for that vector, intuitively, we want to choose
the k-th (i.e., the lowest-scoring). This way we guarantee
that at least one of the resulting sub-partitions of ρ will
be equal-to and will be directly finalized in JAA’s common
global arrangement. To compute a weight vector that falls
in ρ, and in turn select as anchor the k-th scoring record
for that vector, we use the drill operation from Section 4.36.
Note that we apply the same anchor selection strategy when
choosing the initial anchor for region R (in the beginning of
the refinement step), using R’s pivot as the drill vector.

5.2 Pseudo-code, Correctness, and Analysis
Algorithm 3 summarizes JAA, which in turn relies on

the recursive verification-like procedure Partition in Algo-
rithm 4. The first input to Partition is the anchor record
p. A note on Partition is that, in Lines 4 and 12, the rank
r′ of p is the count of ρi in the local arrangement A plus 1,
i.e., r′ is the rank of p in ρi if only the half-spaces that were
inserted in Line 2 are considered. Moreover, in Line 12 that

6The linear programming formulation to compute the drill
vector inside ρ, can use an arbitrary optimization function.

874

rank needs not be confirmed by Lemma 1, meaning that if
r′ > r, we may safely classify ρi as a greater-than partition.

Algorithm 3 JAA(dataset D, region R, value k)

1: Compute the r-skyband of D
2: G← build r-dominance graph
3: Common global arrangement Aglobal ← empty arr/ment in R
4: Anchor p← k-th scoring candidate according to pivot of R
5: Ianc ← ancestors of p in G
6: Idesc ← descendants of p in G
7: Partition(p, R, k − |Ianc|, Ianc ∪ Idesc)
8: Return Aglobal

Algorithm 4 Partition(p, ρ, rank quota r, ignore set I)

1: A ← empty arrangement in ρ . Local arrangement in ρ
2: Insert intoA a h/space ∀ comp/tor of p with r-dom. count= 0
3: for each partition ρi in A do
4: if rank r′ of p is confirmed by Lemma 1 then
5: if r′ = r then . equal-to partition
6: Finalize ρi in Aglobal

7: else if r′ < r then . less-than partition
8: Itop ← the known top-k′ set in ρi (note: k′ < k)
9: Choose new anchor p′ in ρi . Section 5.1

10: Idesc ← descendants of p′ in G
11: Partition(p′, ρi, k − k′, Itop ∪ Idesc)

12: else if rank r′ of p is > r then . greater-than partition
13: I′ ← p and all its descendants in G
14: Choose new anchor p′ in ρi . Section 5.1
15: Ianc ← ancestors of p′ in G
16: Idesc ← descendants of p′ in G
17: Partition(p′, ρi, k − |Ianc|, I′ ∪ Ianc ∪ Idesc)
18: else . ρi cannot be classified
19: S ← competitors with h/spaces inserted in A
20: I′ ← competitors that cannot affect ρi by Lemma 1
21: r′ ← count of ρi in A
22: Partition(p, ρi, r − r′, I ∪ S ∪ I′)

Lemmas 4 and 5 regard JAA’s correctness and complexity.

Lemma 4. JAA reports the correct result, i.e., every par-
tition in the produced common global arrangement is asso-
ciated with the actual top-k set when the weight vector falls
anywhere in that partition.

Proof. The correctness proof for the verification-like
process (for an anchor in a given region/partition ρ) fol-
lows the same lines as Lemma 2, and relies on the fact
that no candidate that could score higher than the anchor
in ρ is ignored by the process. Since (i) each partition in
the final common global arrangement is produced by the
verification-like process for some anchor record, (ii) JAA
terminates when there are only equal-to partitions in the
common global arrangement (i.e., partitions where we know
exactly the k top-scoring candidates), and (iii) the candi-
dates received from the filtering step are a superset of the
data records that could appear in any top-k set in R, we
deduce that each partition in the reported common global
arrangement is associated with the correct top-k set.

Lemma 5. The time complexity of JAA is
O(n′bd/2ckdd/2e), where n′ is the number of candidates
received from the filtering step.

Proof. The key factor that determines JAA’s complex-
ity is the number of (and the time to compute) partitions
in the common global arrangement. If all pruning fails, the

common global arrangement includes as many partitions as
facets in the ≤ k-level of the dual hyperplanes for the n′ can-
didates (see Section 3.2), i.e., O(n′bd/2ckdd/2e) [36], which
defines JAA’s time complexity.

6. DISCUSSION
So far we have assumed the most common type of top-k

query, where the score of record p = (x1, x2, ..., xd) for a
weight vector w = (w1, w2, ..., wd) is defined as S(p) =∑d

i=1 wi · xi. Our methods, however, apply directly to a
more general class of scoring functions. The only require-
ment is that S(p) is (i) monotone7 to the attributes of p,
and (ii) linear to the weights in w. Monotonicity to the data
attributes is required by the BBS paradigm for r-skyband
computation (as explained in Section 4.1). Linearity to the
weights is required so that equality S(p) = S(p′) corre-
sponds to a hyperplane in the preference domain, and in-
equality S(p) ≥ S(p′) corresponds to a half-space. The
latter is central to all half-space oriented techniques in the
refinement steps of RSA and JAA. Examples of applicable
scoring functions include

∑d
i=1 wi · xpi for p > 0 (which ef-

fectively also covers all weighted Lp norms), and the even

more general
∑d

i=1 wi · fi(p) for monotone fi(p) functions
defined only on data attributes (i.e., independent to w).

7. EXPERIMENTS
We evaluate our techniques using synthetic and real

datasets. The synthetic are standard benchmarks for pref-
erence queries [11], i.e., Independent (IND), Correlated
(COR), and Anticorrelated (ANTI). The real ones are HO-
TEL (418,843 records, 4D) [1], HOUSE (315,265 records,
6D) [2], and NBA (21,960 records, 8D) [3]. All datasets are
indexed by R-trees in main memory. The primary perfor-
mance metric is computation time, but we also report on
space overhead. Table 1 presents the experiment param-
eters, along with tested and default values (in bold). In
each experiment, we vary one parameter and keep the rest
at their defaults. Every reported measurement is the av-
erage of 50 UTK queries, for axis-parallel hyper-cubes R
randomly generated in the preference domain. The side-
length of R is expressed as a percentage σ of the axis length.
All methods were implemented in C++. SK and ON de-
note the k-skyband and the onion variants of the baseline in
Section 3.3. For their kSPR component, we used the most
efficient algorithm (LP-CTA) in [45]. All experiments run
on a PC with Intel i7-4770 3.4GHZ CPU and 16GB RAM.

Table 1: Experiment parameters

Parameter Tested values
Dataset cardinality n 100K, 200K, 400K, 800K, 1600K
Data dimensionality d 2, 3, 4, 5, 6, 7

Value k 1, 5, 10, 20, 50, 100
R’s side-length σ 0.1%, 0.5%, 1%, 5%, 10%

7.1 Case Studies and Qualitative Evaluation
We first conduct a couple of UTK case studies using real

data, and then we present a qualitative comparison, in mea-
surable terms, with traditional operators, like k-skyband,
onion, and regular top-k queries.

7Formally, S(p) is monotone if for any pair of records p,p′,
where xi ≥ x′i for each i ∈ [1, d], it holds that S(p) ≥ S(p′).

875

In Figure 9, we use actual NBA statistics for the season
2016-2017. On the left (Figure 9(a)), we use d = 2 data
dimensions, namely, average Rebounds and Points for each
player. The preference domain is 1-dimensional, and cor-
responds to the weight for Rebounds, denoted by wr. We
set k = 3 and R = [0.64, 0.74]. In the figure, we represent
the data domain, and show as red points the players output
by UTK1, i.e., Russell Westbrook, Anthony Davis, Hassan
Whiteside, and Andre Drummond. The UTK2 output (not
shown) indicates that the top-3 players are the first 3 of
them when wr is in [0.64, 0.72), and the last 3 when wr is in
[0.72, 0.74]. For comparison, in Figure 9(a) we also illustrate
the first k = 3 layers of onion, which include the 4 players
in the UTK1 result plus another 7, shown as solid squares.
The k-skyband (k = 3), which is always a superset of the
k onion layers, contains the onion players plus another 2
shown as crosses, i.e., 13 players in total.

0

8

16

24

32

0 4 8 12 16

P
o
in

ts

Rebounds

Russell Westbrook

Hassan Whiteside

Anthony Davis

Andre Drummond

(a) 2D case study (data domain)
0.2 0.3

0.5

0.6

Russell Westbrook

James Harden

LeBron James

Russell Westbrook

James Harden

DeMarcus Cousins

Russell Westbrook

James Harden

Anthony Davis

R

(b) 3D case study

Figure 9: Case studies on NBA data for season 2016-2017

In Figure 9(b), we use the same NBA data, with an
extra dimension, Assists. That is, d = 3. The prefer-
ence domain is now 2-dimensional, with axes wr and wp

(where wp is the weight for Points). We set k = 3 and
R = [0.2, 0.3]× [0.5, 0.6], and visualize the UTK2 output (in
the preference domain), i.e., the top-3 set per partition of
R. A total of 5 players appear in the UTK result, while
onion layers and k-skyband contain, respectively, 21 and 25
players (not shown).

In Figure 10, we look deeper into the relationship between
UTK and traditional operators. We use the complete NBA
dataset, set σ to its default, and vary k, following the stan-
dard setup in Table 1. In Figure 10(a), we compare the
number of records in the UTK result with that in the first
k onion layers and in the k-skyband. UTK reports 30 to
100 times fewer records than onion and k-skyband. The
main reason is that these traditional operators are insensi-
tive to the preferences of the user expressed via region R.
Furthermore, even if the R constraint were dropped, onion
and k-skyband would still not be minimal, i.e., they gener-
ally contain some records that cannot belong to the top-k
set for any weight vector [25].

Next, using the same data and experiment settings, we ex-
amine whether a regular top-k query could simulate UTK1,
i.e., whether a top-k query for a slightly larger k can pro-
duce all UTK1 records. In particular, for each tested value
of k, we first processed UTK1, and then executed an incre-
mental top-k query using for weight vector w the pivot of
R (as the most representative vector therein). We probed
the top-k query iteratively until it output all records in the
UTK1 result, and we recorded how many records it had to
output in total. We plot that number in Figure 10(b) (la-
beled as TK), together with the number of records in UTK1

result, and the original value of k for reference. We observe

 1

 10

 100

 1000

 10000

1 10 20 50 100

N
o.

 o
f r

ec
or

ds

k

k-skyband
onion
UTK

(a) No. of records

 1

 10

 100

 1000

1 10 20 50 100

N
o.

 o
f r

ec
or

ds

k

TK
UTK

k

(b) Required k

Figure 10: Comparison with traditional operators (NBA)

 10

 100

 1000

 10000

1 10 20 50 100

R
es

po
ns

e
tim

e
(s

)

k

SK
ON

RSA

(a) UTK1

 10

 100

 1000

 10000

1 10 20 50 100

R
es

po
ns

e
tim

e
(s

)

k

SK
ON

JAA

(b) UTK2

Figure 11: Effect of k (IND)

that the top-k approach practically required to increase pa-
rameter k by 40 to 460 times, and output 30 to 230 times
more records than UTK1 in order to cover its result. These
facts confirm that the regular top-k query cannot effectively
simulate UTK1, and that simply increasing k (in a standard
top-k query) is not equivalent to UTK1 processing.

7.2 Performance Evaluation
In the remaining experiments, we focus on performance.

In Figure 11, we use IND and study the effect of k on the
processing time for UTK1 and UTK2. For UTK1 (in Fig-
ure 11(a)), we compare RSA with the baselines SK and
ON. For UTK2 (in Figure 11(b)), we compare JAA with
the UTK2 versions of the baselines. As k increases, more
records and more possible top-k sets belong to the UTK
result. Thus, the processing cost increases too, for all meth-
ods. The main observations are:

i) Our algorithms (RSA and JAA) outperform the base-
lines by one to two orders of magnitude, and the difference
grows with k. The reason is twofold; the baselines consider
more candidates than our algorithms, and they make nu-
merous calls to their costly kSPR building block.

ii) ON performs better than SK for both problem ver-
sions, because of its tighter, convex-hull-based filtering. In
UTK2 the baselines take almost double the time than in
UTK1, because (in UTK2) no early termination is possible
for their kSPR calls.

Having established that the baselines are impractical for
UTK queries, we henceforth exclude them from the exper-
iments. In Figure 12, we apply RSA and JAA to three
different data distributions, as we vary the dataset cardi-
nality n. We report on response time, and on output size,
i.e., the number of records in the UTK1 output and the
number of different top-k sets (equivalently, partitions) in
UTK2. There is a clear correlation between the process-
ing time and the output size in all cases. As expected, the
smallest output sizes are observed for COR data (because
records that are good in one dimension, tend to be good in
all dimensions, i.e., r-dominate almost the entire dataset),
and the largest for ANTI (because records that are good in

876

 1

 10

 100

 1000

100K 200K 400K 800K 1600K

R
es

po
ns

e
tim

e
(s

)

n

COR IND ANTI

(a) RSA: Response time

 5

 35

 65

 95

100K 200K 400K 800K 1600K

N
o.

 o
f r

es
ul

t r
ec

or
ds

n

COR
IND

ANTI

(b) UTK1: # result records

 1

 10

 100

 1000

100K 200K 400K 800K 1600K

R
es

po
ns

e
tim

e
(s

)

n

COR IND ANTI

(c) JAA: Response time

 0

 100

 200

 300

 400

100K 200K 400K 800K 1600K

N
o.

 o
f t

op
-k

 s
et

s

n

COR
IND

ANTI

(d) UTK2: # top-k sets

Figure 12: Effect of n and data distribution

 0

 60

 120

 180

2 3 4 5 6 7

R
es

po
ns

e
tim

e
(s

)

d

RSA
JAA

(a) Response time

 5

 15

 25

 35

2 3 4 5 6 7

S
pa

ce
 r

eq
ui

re
m

en
ts

 (
M

B
)

d

RSA
JAA

(b) Space requirements

Figure 13: Effect of data dimensionality d (IND)

one dimension, are poor in the others, thus leading to less
effective filtering, and more diversity in the possible top-k
sets). With regards to n, the response time of our algo-
rithms increases sub-linearly, and remains practical even for
the largest datasets (e.g., less than 30s for 1.6M records in
IND). The sub-linear increase is in line with the fact that the
cardinality of the k-skyband (and therefore of the r-skyband
too) is sub-linear to n [22], linking directly to the number of
candidates produced by the filtering step.

In Figure 13, we vary the data dimensionality d in IND,
and plot the response time and memory requirements of
RSA and JAA. Due to its computational geometric nature,
the toughness of the UTK problem rises with d. Nonethe-
less, our algorithms offer practical response times in all
cases, taking respectively 149s and 164s in the largest tested
dimensionality (d = 7). Regarding space requirements, they
are in the order of a few MBytes. To substantiate our claims
on memory utilization and arrangement indexing in Sec-
tion 4.5, we mention that for the default d = 4, baselines
SK and ON need around 10 times more space than our al-
gorithms, primarily due to the single arrangement, single
index approach in each of their kSPR calls.

In Figure 14, we vary σ (which determines the size of
region R) and present the processing time and result size
for RSA and JAA. Result size in RSA refers to number of
records in the UTK1 output, while in JAA to number of par-
titions (i.e., top-k sets) in the UTK2 output. As expected,
larger R implies larger output, and thus more computations.

Next, we experiment on real data. In the interest of space,
we omit the figures for RSA. In Figures 15 and 16, we vary

 0

 20

 40

 60

 80

0.1% 1% 5% 10%

R
es

po
ns

e
tim

e
(s

)

σ

RSA
JAA

(a) Response time

 1

 10

 100

 1000

0.1% 0.5% 1% 5% 10%

R
es

ul
t s

iz
e

σ

RSA
JAA

(b) Result size

Figure 14: Effect of R size (IND)

 1

 10

 100

 1000

1 10 20 50 100

R
es

po
ns

e
tim

e
(s

)

k

NBA
HOUSE
HOTEL

(a) JAA: Response time

 1

 10

 100

 1000

1 5 10 20 50 100

N
o.

 o
f t

op
-k

 s
et

s

k

NBA
HOUSE
HOTEL

(b) UTK2: # top-k sets

Figure 15: Effect of k (real datasets)

k and σ, respectively, using HOTEL, HOUSE, and NBA,
and measure the response time and output size of JAA. The
trends are similar to the synthetic data. Moreover, they es-
tablish the correlation between running time and the num-
ber of output partitions/possible top-k sets in R. Processing
in HOUSE is slower than HOTEL, despite similar cardinal-
ity, because the former has more attributes (6D versus 4D).
Processing in NBA is slower than HOTEL because, although
smaller, it has twice as many attributes (8D versus 4D).

8. CONCLUSION
In this paper we study UTK, a novel query that accounts

for the inherent inaccuracy in weight specification for top-k
processing. With a preference region as input, UTK re-
ports all possible top-k sets when the weight vector may
lie anywhere in that region. We formalize the UTK query;
draw links to a known problem in computational geometry;
distinguish two UTK versions; develop algorithms for their
processing; and demonstrate the practicality and scalability
of our algorithms using real and benchmark datasets.

9. ACKNOWLEDGMENTS
Kyriakos Mouratidis was supported by the Singapore

Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 1 grant. Bo Tang was supported by the Sci-
ence and Technology Innovation Committee Foundation of
Shenzhen (Grant No. ZDSYS201703031748284).

 10

 100

 1000

0.1%1% 5% 10%

R
es

po
ns

e
tim

e
(s

)

σ

NBA
HOUSE
HOTEL

(a) JAA: Response time

 1

 10

 100

 1000

0.1% 0.5% 1% 5% 10%

N
o.

 o
f t

op
-k

 s
et

s

σ

NBA
HOUSE
HOTEL

(b) UTK2: # top-k sets

Figure 16: Effect of R size (real datasets)

877

10. REFERENCES
[1] Hotel dataset, 2017. www.hotels-base.com/.

[2] House dataset, 2017. www.ipums.org/.

[3] NBA dataset, 2017. www.basketball-reference.com/.

[4] P. K. Agarwal, M. de Berg, J. Matoušek, and
O. Schwarzkopf. Constructing levels in arrangements
and higher order voronoi diagrams. SIAM J. Comput.,
27(3):654–667, 1998.

[5] P. K. Agarwal and M. Sharir. Arrangements and their
applications. Handbook of computational geometry,
pages 49–119, 2000.

[6] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast
and simple relational processing of uncertain data. In
ICDE, pages 983–992, 2008.

[7] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The
quickhull algorithm for convex hulls. ACM Trans.
Math. Softw., 22(4):469–483, 1996.

[8] M. D. Berg, O. Cheong, M. V. Kreveld, and
M. Overmars. Computational geometry: algorithms
and applications. Springer, 2008.

[9] A. Blum, J. C. Jackson, T. Sandholm, and
M. Zinkevich. Preference elicitation and query
learning. Journal of Machine Learning Research,
5:649–667, 2004.

[10] C. Böhm and H.-P. Kriegel. Determining the convex
hull in large multidimensional databases. In DaWaK,
pages 294–306, 2001.

[11] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, pages 421–430, 2001.

[12] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. C.
Wong, and W. Zhan. k-regret minimizing set: Efficient
algorithms and hardness. In ICDT, pages 11:1–11:19,
2017.

[13] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L.
Lo, and J. R. Smith. The onion technique: Indexing
for linear optimization queries. In SIGMOD
Conference, pages 391–402, 2000.

[14] S. Chaudhuri, N. N. Dalvi, and R. Kaushik. Robust
cardinality and cost estimation for skyline operator. In
ICDE, page 64, 2006.

[15] M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A
unified framework for efficiently processing ranking
related queries. In EDBT, pages 427–438, 2014.

[16] S. Chester, A. Thomo, S. Venkatesh, and
S. Whitesides. Indexing reverse top-k queries in two
dimensions. In DASFAA, pages 201–208, 2012.

[17] S. Chester, A. Thomo, S. Venkatesh, and
S. Whitesides. Computing k-regret minimizing sets.
PVLDB, 7(5):389–400, 2014.

[18] P. Ciaccia and D. Martinenghi. Reconciling skyline
and ranking queries. PVLDB, 10(11):1454–1465, 2017.

[19] G. Cormode, F. Li, and K. Yi. Semantics of ranking
queries for probabilistic data and expected ranks. In
ICDE, pages 305–316, 2009.

[20] T. Emrich, H. Kriegel, P. Kröger, M. Renz, and
A. Züfle. Boosting spatial pruning: on optimal pruning
of mbrs. In SIGMOD Conference, pages 39–50, 2010.

[21] T. Ge, S. B. Zdonik, and S. Madden. Top-k queries on
uncertain data: on score distribution and typical
answers. In SIGMOD Conference, pages 375–388,
2009.

[22] P. Godfrey. Skyline cardinality for relational
processing. In FoIKS, pages 78–97, 2004.

[23] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD Conference, pages
47–57, 1984.

[24] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking
queries on uncertain data: a probabilistic threshold
approach. In SIGMOD Conference, pages 673–686,
2008.

[25] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Comp. Surveys, 40(4), 2008.

[26] K. G. Jamieson and R. D. Nowak. Active ranking
using pairwise comparisons. In NIPS, pages
2240–2248, 2011.

[27] B. Jiang, J. Pei, X. Lin, D. W. Cheung, and J. Han.
Mining preferences from superior and inferior
examples. In KDD, pages 390–398. ACM, 2008.

[28] T. Joachims. Optimizing search engines using
clickthrough data. In KDD, pages 133–142, 2002.

[29] A. H. Land and A. G. Doig. An automatic method of
solving discrete programming problems. Econometrica,
28(3):497–520, 1960.

[30] J. Li and A. Deshpande. Ranking continuous
probabilistic datasets. PVLDB, 3(1):638–649, 2010.

[31] J. Li, B. Saha, and A. Deshpande. A unified approach
to ranking in probabilistic databases. PVLDB,
2(1):502–513, 2009.

[32] J. Liu, L. Xiong, J. Pei, J. Luo, and H. Zhang.
Finding pareto optimal groups: Group-based skyline.
PVLDB, 8(13):2086–2097, 2015.

[33] T. Liu. Learning to Rank for Information Retrieval.
Springer, 2011.

[34] D. Mindolin and J. Chomicki. Discovering relative
importance of skyline attributes. PVLDB,
2(1):610–621, 2009.

[35] K. Mouratidis, J. Zhang, and H. Pang. Maximum
rank query. PVLDB, 8(12):1554–1565, 2015.

[36] K. Mulmuley. On levels in arrangement and voronoi
diagrams. Discrete & Computational Geometry,
6:307–338, 1991.

[37] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and
J. J. Xu. Regret-minimizing representative databases.
PVLDB, 3(1):1114–1124, 2010.

[38] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
ACM Trans. Database Syst., 30(1):41–82, 2005.

[39] P. Peng and R. C. Wong. Geometry approach for
k-regret query. In ICDE, pages 772–783, 2014.

[40] P. Peng and R. C. Wong. k-hit query: Top-k query
with probabilistic utility function. In SIGMOD
Conference, pages 577–592, 2015.

[41] L. Qian, J. Gao, and H. V. Jagadish. Learning user
preferences by adaptive pairwise comparison. PVLDB,
8(11):1322–1333, 2015.

[42] M. A. Soliman and I. F. Ilyas. Ranking with uncertain
scores. In ICDE, pages 317–328, 2009.

[43] M. A. Soliman, I. F. Ilyas, and K. C. Chang. Top-k
query processing in uncertain databases. In ICDE,
pages 896–905, 2007.

878

[44] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and
M. Tagliasacchi. Ranking with uncertain scoring
functions: semantics and sensitivity measures. In
SIGMOD Conference, pages 805–816, 2011.

[45] B. Tang, K. Mouratidis, and M. L. Yiu. Determining
the impact regions of competing options in preference
space. In SIGMOD Conference, pages 805–820, 2017.

[46] Y. Tao, D. Papadias, X. Lian, and X. Xiao.
Multidimensional reverse k NN search. VLDB J.,
16(3):293–316, 2007.

[47] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest
neighbor search. In VLDB, pages 287–298, 2002.

[48] A. Vlachou, C. Doulkeridis, Y. Kotidis, and
K. Nørv̊ag. Monochromatic and bichromatic reverse
top-k queries. IEEE Trans. Knowl. Data Eng.,
23(8):1215–1229, 2011.

[49] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient
processing of top-k queries in uncertain databases. In
ICDE, pages 1406–1408, 2008.

[50] A. Yu, P. K. Agarwal, and J. Yang. Processing a large
number of continuous preference top-k queries. In
SIGMOD Conference, pages 397–408, 2012.

[51] A. Yu, P. K. Agarwal, and J. Yang. Top-k preferences
in high dimensions. IEEE Trans. Knowl. Data Eng.,
28(2):311–325, 2016.

[52] J. Zhang, K. Mouratidis, and H. Pang. Global
immutable region computation. In SIGMOD
Conference, pages 1151–1162, 2014.

[53] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H.
Tung. Kernel-based skyline cardinality estimation. In
SIGMOD Conference, pages 509–522, 2009.

[54] L. Zou and L. Chen. Pareto-based dominant graph:
An efficient indexing structure to answer top-k queries.

IEEE Trans. Knowl. Data Eng., 23(5):727–741, 2011.

879

