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ABSTRACT
Nearest neighbor searching of large databases in high-dimensional
spaces is inherently difficult due to the curse of dimensionality. A
flavor of approximation is, therefore, necessary to practically solve
the problem of nearest neighbor search. In this paper, we propose
a novel yet simple indexing scheme, HD-Index, to solve the prob-
lem of approximate k-nearest neighbor queries in massive high-
dimensional databases. HD-Index consists of a set of novel hierar-
chical structures called RDB-trees built on Hilbert keys of database
objects. The leaves of the RDB-trees store distances of database
objects to reference objects, thereby allowing efficient pruning us-
ing distance filters. In addition to triangular inequality, we also use
Ptolemaic inequality to produce better lower bounds. Experiments
on massive (up to billion scale) high-dimensional (up to 1000+)
datasets show that HD-Index is effective, efficient, and scalable.
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1. MOTIVATION
Nearest neighbor (NN) search is a fundamental problem with

applications in information retrieval, data mining, multimedia and
scientific databases, social networks, to name a few. Given a query
point q, the NN problem is to identify an object o from a dataset
of objects D such that q is closest to o than any other object. A
useful extension is to identify k-nearest neighbours (kNN), i.e., an
ordered set of top-k closest objects {o1, . . . , ok} to q.

While there exist a host of scalable methods to efficiently answer
NN queries in low- and medium-dimensional spaces [10–13, 15,
21, 22, 29, 56, 62], they do not scale gracefully with the increase in
dimensionality of the dataset. Under the strict requirement that the
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answer set returned should be completely accurate, the problem of
high dimensionality in similarity searches, commonly dreaded as
the “curse of dimensionality” [15], renders these methods useless
in comparison to a simple linear scan of the entire database [72].

In many practical applications, however, such a strict correctness
requirement can be sacrificed to mitigate the dimensionality curse
and achieve practical running times [27,65,67]. A web-scale search
for similar images, e.g., Google Images (www.google.com/imghp),
Tineye (www.tineye.com), RevIMG (www.revimg.com), perhaps
best exemplifies such an application. Moreover, a single query
is often just an intermediate step and aggregations of results over
many such queries is required for the overall retrieval process. For
example, in image searching, generally multiple image keypoints
are searched. The strict accuracy of a single image keypoint search
is, therefore, not so critical since the overall aggregation can gener-
ally tolerate small errors.

With this relaxation, the NN and kNN problems are transformed
into ANN (approximate nearest neighbors) and kANN problems re-
spectively, where an error, controlled by a parameter c that defines
the approximation ratio (defined formally in Def. 1), is allowed.
The retrieved object(s) o′ = {o′1, . . . , o′k} is such that their dis-
tance from q is at most c times the distance of the actual nearest
object(s) o = {o1, . . . , ok} respectively.

The locality sensitive hashing (LSH) family [35] is one of the
most popular methods capable of efficiently answering kANN que-
ries in sub-linear time. However, these methods are not scalable
owing to the requirement of large space for constructing the index
that is super-linear in the size of the dataset [25]. While there have
been many recent improvements [27, 45, 66] in the original LSH
method with the aim of reducing the indexing space, asymptoti-
cally they still require super-linear space and, thus, do not scale to
very large datasets. A recent proposition, SRS [65], addresses this
problem by introducing a linear sized index while retaining high
efficiency and is the state-of-the-art in this class of techniques.

A notable practical limitation of these techniques with theoreti-
cal guarantees is that the error is measured using the approximation
ratio c. Given that the task is to identify an ordered set of k nearest
objects to a query point q, the rank at which an object is retrieved
is significant. Since c is characterized by the properties of the ratio
of distances between points in a vector space, a low (close to 1)
approximation ratio does not always guarantee similar relative or-
dering of the retrieved objects. This problem worsens with increase
in dimensionality ν, as the distances tend to lose their meaning, and
become more and more similar to each other [15]. Mathematically,
lim
ν→∞

dmax
dmin

= 1 where dmax and dmin are the maximum and min-

imum pairwise distances between a finite set of n points. Hence,
it is not surprising that c rapidly approaches 1 for extremely high-
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(a) Dataset: SIFT10K
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(b) Dataset: Audio
Figure 1: Comparing MAP with approximation ratio (k = 10).

dimensional spaces (dimensionality ≥ 100). Thus, while c might
be a good metric in low- and medium-dimensional spaces (. 20),
it loses its effectiveness with increasing number of dimensions.

Thus, for assessing the quality of kANN search, especially in
high-dimensional spaces, a metric that gives importance to the re-
trieval rank is warranted. Mean Average Precision (MAP), which
is widely used and accepted by the information retrieval commu-
nity [50] for evaluation of ranked retrieval tasks, fits perfectly.
MAP@k (defined formally in Def. 3) takes into account the relative
ordering of the retrieved objects by imparting higher weights to ob-
jects returned at ranks closer to their original rank. Additionally, it
has been shown to possess good discrimination and stability [50].
Thus, MAP should be the target for evaluating the quality.

To highlight the empirical difference between the two metrics,
we plot both MAP@10 and approximation ratio (for k = 10) for
different techniques and real datasets (details in Sec. 5) in Fig. 1
(these and other figures look better in color). It is clear that good
approximation ratios can lead to poor MAP values (e.g., in Fig. 1a,
C2LSH and SRS have ratios 1.24 and 1.31 respectively with MAP
values of 0.18 and 0.10 respectively). Moreover, the relative orders
may be flipped (such as in Fig. 1b where C2LSH offers better ratio
but poorer MAP than SRS). On the whole, this shows that MAP
cannot be improved by just having better approximation ratios.

To the best of our knowledge, there is no method that can guaran-
tee a bound on the MAP. Thus, the existing techniques that provide
bounds on approximation ratio cannot be deemed to be advanta-
geous in practice for the task of kANN in high-dimensional spaces.

We next analyze another class of techniques that rely on the use
of space-filling curves (such as Hilbert or Z-order) [60] for index-
ing high-dimensional spaces [41, 43, 47, 52, 67]. Although devoid
of theoretical guarantees, these methods portray good retrieval ef-
ficiency and quality. The main idea is to construct single/multiple
single-dimensional ordering(s) of the high-dimensional points, wh-
ich are then indexed using a standard structure such as B+-tree for
efficient querying. These structures are based on the guarantee that
points closer in the transformed space are necessarily close in the
original space as well. The vice versa, however, is not true and
serves as the source of inaccuracy.

The leaf node of a B+-tree can either store the entire object which
improves efficiency while hampering scalability, or store a pointer
to the database object which improves scalability at the cost of ef-
ficiency. Hence, these methods do not scale gracefully to high-
dimensional datasets due to their large space requirements as only
a few objects can fit in a node.

In light of the above discussion, the need is to design a scheme
that congregates the best of both the worlds (one-dimensional rep-
resentation of space-filling curves with hierarchical pruning of B+-
trees with leaves modified as explained later) to ensure both effi-
ciency and scalability.

To this end, in this paper, we propose a hybrid index structure,
HD-INDEX (HIGH-DIMENSIONAL INDEX). We focus on solv-
ing the kANN query for large disk-resident datasets residing in ex-
tremely high-dimensional spaces.

We first divide the ν-dimensional space into disjoint partitions.
For each lower-dimensional partitioned space, we construct a hier-
archical tree structure using the Hilbert space-filling curve order-
ings. We then propose a novel design called RDB-TREES (REF-
ERENCE DISTANCE B+-TREES), where instead of object descrip-
tors or pointers, the distances to a fixed set of reference objects
are stored in the leaves. While querying, in addition to distance
approximation using triangular inequality, we incorporate the use
of a more involved lower bounding filter known as the Ptolemaic
inequality [31]. Instead of using a single reference object, it ap-
proximates the distance using a pair of reference objects. Although
costlier to compute, it yields tighter lower bounds. The novel de-
sign of RDB-tree leaves allows application of these filtering tech-
niques using the reference objects easily.
Contributions. In sum, our contributions in this paper are:
• We propose a novel, scalable, practical, and yet simple indexing

scheme for large extremely high-dimensional Euclidean spaces,
called HD-Index (Sec. 3).
• We design a novel structure called RDB-tree with leaves de-

signed to store distances to reference objects for catering to ex-
tremely high-dimensional spaces (Sec. 3.2).
• We devise an efficient and effective querying algorithm (Sec. 4)

that leverages lower-bounding filters to prune the search space.
• We advocate the use of mean average precision or MAP (Def. 3)

as a better metric to benchmark techniques in terms of quality
of the retrieved top-k objects, instead of the approximation ratio,
especially in high-dimensional spaces. We motivate the need of
MAP in real-world applications through an actual information
retrieval application, that of image search (Sec. 5.5).
• Through an in-depth empirical analysis (Sec. 5), we show that

HD-Index scales gracefully to massive high-dimensional datasets
on commodity hardware, and provides speed-ups in running time
of up to orders of magnitude, while providing significantly better
quality results than the state-of-the-art techniques.

2. BACKGROUND

2.1 Preliminaries
We consider a dataset D with n = |D| ν-dimensional points

spanning a vector space. Given a query q = (q1, . . . , qν), and the
Euclidean distance function d (L2 norm), the k-nearest neighbor
(kNN) query is to retrieve the set T ⊂ D, |T | = k of k nearest
neighbors of q from D such that ∀oi ∈ T,∀oj /∈ T, d(q, oi) <
d(q, oj). The approximate k-nearest neighbor (kANN) problem re-
laxes the strict requirement and aims to retrieve a set A of size k
that contains close neighbors of q.

We next describe two quality metrics to assess the quality of the
retrieved kANN answer set. Suppose the true k nearest neighbors
of q are Tk = {o1, . . . , ok} in order, i.e., o1 is closest to q, then
o2, and so on. Assume that the approximate k nearest neighbors
returned are Ak = {o′1, . . . , o′k}, again, in order.

DEFINITION 1 (APPROXIMATION RATIO). The approximation
ratio c ≥ 1 is simply the average of the ratio of the distances:

c =
1

k
.
k∑
i=1

d(q, o′i)

d(q, oi)
(1)

DEFINITION 2 (AVERAGE PRECISION). Consider the ith re-
turned item o′i. If o′i is not relevant, i.e., it does not figure in the true
set at all in any rank, its precision is 0. Otherwise, the recall at po-
sition i is captured. If out of i items o′1, . . . , o

′
i, j of them figure in
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the true set, then the recall is (j/i). The average of these values
for ranks 1 to k is the average precision at k, denoted by AP@k:

AP@k =
1

k
.

k∑
i=1

[
Io′i∈Tk · (j/i)

]
(2)

I is the indicator function: I = 1 if o′i ∈ Tk; and 0 otherwise.

The AP function, thus, prefers correct answers at higher ranks.

DEFINITION 3 (MEAN AVERAGE PRECISION). The mean av-
erage precision, denoted by MAP@k, is the mean over AP@k
values for Q queries:

MAP@k =
1

Q
.

Q∑
∀i=1

AP@k(qi) (3)

AP and, thus, MAP lie in the range [0, 1].

EXAMPLE 1. Suppose the true ranked order for a query is {o1,
o2, o3}. Consider A1 = {o4, o3, o2}. Since o4 is not relevant,
its precision is 0. Next, for rank 2, only o3 is relevant. Thus, the
precision is 1/2. Similarly, the precision at o2 is 2/3. The AP,
therefore, is (0 + 1/2 + 2/3)/3 = 0.39.

The AP for the same set of returned elements but in a different
ranked order, A2 = {o3, o2, o4}, is (1 + 1 + 0)/3 = 0.67.

Hence, the MAP for A1 and A2 is (0.39 + 0.67)/2 = 0.53.

2.2 Related Work
The problem of nearest neighbor searches, more popularly known

as the kNN query, has been investigated by the database community
for decades. The basic technique of scanning the entire data does
not scale for large disk-resident databases and, consequently, a host
of indexing techniques (e.g., R-tree [29] and M-tree families [22])
have been designed to efficiently perform the kNN query [15, 62].

2.2.1 Hierarchical Structures
The R-tree family of structures builds a hierarchy of data objects

with the leaf pages containing the actual data points. In each level,
the MBR (minimum bounding rectangle) corresponding to the in-
ternal node covers all its children nodes. The branching factor indi-
cates how many children nodes can be packed within one disk page.
The MBRs can be hyper-rectangular (R-tree [29], R*-tree [10]) or
hyper-spherical (SS-tree [73]) or mixed (SR-tree [39]).

Unfortunately enough, for datasets having a large dimensional-
ity, the infamous “curse of dimensionality” [15] renders almost all
these hierarchical indexing techniques inefficient and linear scan
becomes the only feasible solution [72]. Structures such as the VA-
file [72] have, therefore, been designed to compress the data and
perform the unavoidable linear scan faster. Techniques to partic-
ularly handle the problem of high dimensionality have also been
proposed (e.g., the pyramid technique [12], iMinMax [56], iDis-
tance [74], etc.). These structures map a high-dimensional point
to a single number and then index that using a B+-tree [23]. A
specialized hierarchical structure X-tree [13], on the other hand,
adjusts itself with growing dimensionality. In the extreme case, it
resembles a simple flat file and the searching degrades to that of
a linear scan. To beat the curse of dimensionality, compression
through quantization has also been employed. A-tree [61] uses a
fixed number of bits per dimension to quantize the data, thereby
enabling packing of more children nodes in an internal node. IQ-
tree [11] uses different number of quantization bits depending on
the number of points in a data MBR and is restricted to only two
levels of hierarchy before it indexes the leaf pages directly. Both of

them in the end, however, produce the exact correct answer. A sur-
vey of such high-dimensional techniques, especially in the context
of multimedia databases, is available at [16].

Hierarchical index structures of the M-tree family [22] exploit
the property of triangular inequality of metric distances. These
structures do not need the vector space representation of points and
work directly with the distance between two points. Nevertheless,
at high dimensions, the Euclidean distance itself tends to lose its
meaning [15] and these structures fail as well.

2.2.2 Reference Object-Based Structures
Instead of hierarchical tree-based structures, another important

line of research has been the use of reference objects or landmarks
or pivots [19, 57]. Certain database points are marked as reference
objects and distance of all other points from one or more of these
reference objects are pre-computed and stored. Once the query ar-
rives, its distance to the reference objects are computed. Using the
triangular inequality (based on the assumption that the underlying
distance measure is a metric), certain points can be pruned off with-
out actually computing their distance to the query. AESA [59, 69]
and LAESA [53] use the above generic scheme.

Marin et al. [51] employed clustering and the cluster representa-
tives were used as reference objects. Amato et al. [7] proposed in-
verted distance mappings from a set of representative points based
on the premise that in a metric space, if two objects are close to
each other, then the relative ordering of the data points from these
two objects would also be similar. Chen et al. [21] used represen-
tative objects to obtain a vector of distances. The one-dimensional
ordering of these vectors were then indexed using a B+-tree.

The choice of representative points has been governed by var-
ious factors such as maximizing distance to the already chosen
set [17, 19], maximizing the minimum distance among themselves
[24], location on the boundary of the dataset [37], whether they are
outliers [18], using a nearest neighbor distance loss function [30],
minimizing the correlation among themselves [42], or through a
sample of queries [68]. Chen et al. [21] included a nice survey of
methods to choose representative objects.

2.2.3 Space-Filling Curves
Space-filling curves [15, 60] provide an intuitive way of approx-

imating the underlying data space by partitioning it into grid cells.
A one-dimensional ordering is then imposed on the grid cells such
that the resultant curve covers each and every grid cell exactly once.
The sequence of an occupied grid cell according to the curve is its
one-dimensional index. The multi-dimensional points are indexed
by the one-dimensional index of the grid cell it occupies. The basic
property of these curves ensure that when two points are close in
the one-dimensional ordering, they are necessarily close in the orig-
inal high-dimensional space. The reverse may not be true, though,
due to the “boundary” effects where the curve visits a neighboring
cell after a long time. Among the different types of space-filling
curves, the Hilbert curve is considered to be the most appropriate
for indexing purposes [38].

To diminish the boundary effects, the use of multiple space-
filling curves have been incorporated. Deterministic translation
vectors were used by [43] whereas [63] used random transforma-
tion or scaling of data points. Valle et al. [67] proposed an alterna-
tive way where different subsets of the dimensions are responsible
for each curve. This helps to reduce the dimensionality of the space
handled by each curve. Different B+-trees, each corresponding to
a particular Hilbert curve, were built. When a query point arrives,
the nearest neighbor searches in the different B+-trees aggregate
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Figure 2: Overview of our approach.

Symbol Definition
D Database

n = |D| Size of database
o Database object
ν Dimensionality of each object
P Partition of dimensions

τ = |P| Total number of partitions
H Set of Hilbert curves corresponding to P

η = ν/τ Dimensionality of each Hilbert curve
ω Order of Hilbert curve
B RDB-trees corresponding toH
Ω Order of RDB-tree leaf
B Disk page size
R Set of reference objects

m = |R| Number of reference objects
q Query object
α Number of candidates after RDB-tree search
β Number of candidates after triangular inequality
γ Number of candidates after Ptolemaic inequality
C Final candidate set

κ = |C| Size of final candidate set
A Final answer set

k = |A| Number of nearest neighbors returned

Table 1: Symbols used in this paper.

the points. Finally, the approximate nearest neighbors are chosen
from this aggregated set.

2.2.4 Locality-Sensitive Hashing
The locality-sensitive hashing (LSH) family [35] of randomized

algorithms adopt a completely different approach. The database
points are probabilistically hashed to multiple hash tables. The
hash functions follow two crucial properties: (1) if two points are
close enough, they are very likely to fall in the same hash bucket,
and (2) if two points are far-off, they are quite unlikely to fall in
the same hash bucket. At run time, the query point is also hashed,
and the points falling in the same hash buckets corresponding to
each hash table form the candidates. The final approximate nearest
neighbor set is chosen from these candidates.

The basic LSH scheme [35] was extended for use in Euclidean
spaces by E2LSH [25]. C2LSH [27] was specifically designed on
top of E2LSH to work with high-dimensional spaces. LSB-forest
[66] builds multiple trees to adjust to the NN distance. Sun et al.
devised SRS [65] to have a small index footprint so that the entire
index structure can fit in the main memory.

Recently, a query-aware data-dependent LSH scheme, QALSH,
has been proposed [34]. The bucket boundaries are not decided
apriori, but only after the query arrives in relation to the position of
the query. As a result, accuracy improves.

Although the LSH family [35] provides nice theoretical guaran-
tees in terms of running time, space and approximation ratio, how-
ever, importantly enough, they provide no guarantees on MAP.

2.2.5 In-memory Indexing Techniques
Flann [54] uses an ensemble of randomized KD-forests [64] and

priority K-means trees to perform fast approximate nearest neigh-
bor search. Its key novelty lies in the automatic selection of the best

Algorithm 1 HD-Index Construction
Input: Dataset D of size n and dimensionality ν
Output: Index HD-Index
1: R ← set of reference objects .Sec. 3.3
2: rdist← dist(∀Ri, ∀Dj )
3: P ← partition of dimensions .equal and contiguous
4: τ = |P|; η = ν/τ
5: for i← 1 to τ do
6: Pi ← dimensions i.η to (i+ 1).η − 1
7: Hi ← Hilbert(Pi, ω) .Sec. 3.1
8: InsertDj with keyHK(Dj) into RDB-tree Bi .Sec. 3.2
9: for ∀Dj in each leaf of Bi do

10: Store rdist(Dj , ∀Ri)

method in the ensemble, and allowing identification of optimal pa-
rameters for a given dataset. Recently, Houle et al. [32] proposed
a probabilistic index structure called the Rank Cover tree (RCT)
that entirely avoids the use of numerical pruning techniques like
triangle inequality etc., and instead uses rank-based pruning. This
alleviates the curse of dimensionality to a large extent.

Proximity graph-based kANN methods [8,48,70,71] have gained
popularity, out of which, the hierarchical level based navigable
small world method HNSW [49] has been particularly successful.

Quantization based methods aim at significantly reducing the
size of the index structure, thereby facilitating in-memory query-
ing of approximate k-nearest neighbors. The product quantiza-
tion (PQ) method [36] divides the feature space into disjoint sub-
spaces and quantize them independently. Each high-dimensional
data point is represented using just a short code composed of the
subspace quantization indices. This facilitates efficient distance es-
timation. The Cartesian K-means (CK-Means) [55] and optimized
product quantization (OPQ) [28] methods were proposed later as
improvements and a generalization of PQ respectively.

Despite their attempt to reduce the index structure size, the tech-
niques discussed above find difficulty in scaling to massive high-
dimensional databases on commodity hardware, and instead re-
quire machines possessing a humongous amount of main memory.

There have been many other indexing schemes built specifically
for ANN queries [14, 26, 33, 40, 44–46].

2.2.6 Representative Methods
For comparison, we choose the following representative meth-

ods: iDistance [74] (as an exact searching technique), Multicurves
[67] (hierarchical index using space-filling curves), SRS [65] (low
memory footprint), C2LSH [27] (low running time), QALSH [34]
(data-dependent hashing with high quality), OPQ [28] (product quan-
tization), and HNSW [49] (graph-based method) since they claim
to outperform the other competing methods in terms of either run-
ning time, or space overhead, or quality.

3. HD-INDEX CONSTRUCTION
In this section, we describe in detail the construction of our index

structure, HD-Index (Algo. 1). Fig. 2 shows the overall scheme of
our method. We use the terminology listed in Table 1.
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(c) Modified RDB-trees.
Figure 3: Hilbert keys and resulting RDB-trees for the example in Table 2.

Object Dim 1 Dim 2 Dim 3 Dim 4 HK 1 HK 2
O1 0.20 0.74 0.68 0.73 3 5
O2 0.84 0.34 0.49 0.81 6 5
O3 0.97 0.64 0.32 0.93 5 3
O4 0.42 0.86 0.12 0.82 4 2
O5 0.62 0.09 0.56 0.07 7 7
O6 0.84 0.59 0.49 0.73 5 4
O7 0.05 0.43 0.52 0.82 2 6
O8 0.40 0.24 0.10 0.64 1 1
Q 0.18 0.87 0.76 0.23 - -

Table 2: Running example (O3, O7 are reference objects).

Since we are specifically targeting datasets in high-dimensional
vector spaces, we first divide the entire dimensionality into smaller
partitions. A Hilbert curve is then passed through each partition.
The resultant one-dimensional values are indexed using a novel
structure called RDB-tree. While the upper levels of a RDB-tree
resembles that of a B+-tree, the leaves are modified.

We next explain each of the fundamental steps in detail.

3.1 Space-Filling Curves
The total number of dimensions ν is first divided into τ disjoint

and equal partitions. Although the partitioning can be non-equal
and/or overlapping as well, we choose an equal and contiguous par-
titioning scheme due to two reasons: (1) it is simpler, and (2) the
other partitioning schemes do not give any tangible benefit since
we assume that the dimensions are independent. The claim is em-
pirically verified in Sec. 5.2.1.

For each partition, a Hilbert curve, catering to η = ν/τ dimen-
sions, is constructed using the Butz algorithm [20]. The order of
a Hilbert curve specifies the number of bits used to describe every
dimension. Thus, if the order is ω, each dimension is divided into
2ω equal grid partitions. The single-dimensional value of an object
in the Hilbert curve ordering is called its Hilbert key.

As an example, consider the 4-dimensional dataset of 8 objects
shown in Table 2. The dimensions are broken into two partitions,
1-2 and 3-4. The Hilbert curve for each of these partitions is shown
in Fig. 3a and Fig. 3b. The Hilbert keys for the objects are obtained
by considering the sorted order along the curve, and are shown in
the last two columns of Table 2.

Multiple Hilbert curves are beneficial in not only reducing the di-
mensionality but also tackling the “boundary” effect. It is unlikely
that nearby objects will have far-off Hilbert keys in all the parti-
tions. For example, in Fig. 3a, O7 and O1 having adjacent Hilbert
keys are nearby in space, while objects O8 and O4, despite being
close in space, have far-off Hilbert keys. However, in Fig. 3b, O8

and O4 have adjacent Hilbert keys. Objects O7 and O1 continue
to be close in both the cases. It is enough for an object that is a
nearest neighbor to have a close Hilbert key in only one partition to
be chosen as a candidate.

3.2 RDB-trees
Corresponding to the τ Hilbert curves, τ RDB-trees are next con-

structed using the Hilbert keys of the objects.
The reasons for not adapting the standard B+-tree leaf structure

are as follows. If only the pointers to the actual objects are stored in

Dataset Dimen- Hilbert Dimensions Reference RDB-tree
sions, ν order, ω per curve, η objects, m leaf order, Ω

SIFTn 128 8 16 10 63
Yorck 128 32 16 10 36
SUN 512 32 64 10 13

Audio 192 32 24 10 28
Enron 1369 16 37 10 18
Glove 100 32 10 10 40

Table 3: RDB-tree leaf order (page size = 4 KB).

the leaf, then accessing α objects require α random disk accesses.
The number of such random disk accesses can be reduced by stor-
ing the entire object descriptor (and not a pointer to it) in the leaf
itself. However, in high dimensions, the number of objects that can
be stored in the leaf is extremely low. For example, assuming a
page size of 4 KB, only 4 objects of dimensionality 128 can fit in
a page, where each dimension is of 8 bytes. Hence, none of these
designs is suitable for high-dimensional spaces.

We, therefore, modify the leaves to store distances to reference
objects. Reference objects are specially designated objects from
the dataset that are used to quickly obtain approximate distances to
the query. We explain the querying process using reference objects
in Sec. 4 and how they are chosen in Sec. 3.3. In this section, we
assume that the set of reference objectsR of size m is known.

For each object, the distance to all the m reference objects are
stored as part of its description. Hence, as long as m < ν, where ν
is the dimensionality of the object, more number of objects can fit
in a page of RDB-tree than a B+-tree (assuming that the storage re-
quirement for a distance value is the same as that for a dimension).

In Sec. 5, we show that even for extremely large datasets, a ref-
erence set size of 10 suffices. Thus, the reduction in number of
random disk accesses required to retrieve the same number of can-
didate objects for a 128-dimensional space is almost 13 times.

The order of the RDB-tree leaves is computed as follows. Stor-
ing the Hilbert key of an object requires η.(ω/8) bytes since for
each of the η dimensions, ω/8 bytes describe the key. The distances
to m reference objects requires 4.m bytes of storage. The pointer
to the complete object descriptor consumes a further 8 bytes. Thus,
if there are Ω objects in a RDB-tree, its storage requirement is
(η.(ω/8) + 4.m + 8).Ω bytes. Adding the overheads of left and
right pointers (8 bytes each) to the sibling leaves and an indicator
byte to indicate that it is a leaf, if the page size is B bytes,

(η · (ω/8) + 4 ·m+ 8) · Ω + 16 + 1 ≤ B (4)
The order Ω is the largest integer that satisfies Eq. (4). Table 3 lists
the RDB-tree leaf orders for the datasets we use.

Assuming that the reference objects chosen are O3 and O7, the
RDB-trees constructed using the Hilbert keys are shown in Fig. 3c.
The leaves contain actual distances to O3 and O7 respectively.

3.3 Reference Object Selection
In order to avoid the actual distance computation between an ob-

ject and the query at run time, reference objects are used to approx-
imate the distance and quickly filter out objects. We describe the
details of how the distance is approximated later in Sec 4. In this
section, we describe the desirable properties of the set of reference
objectsR and how they are chosen.
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The nature of the distance approximation is such that the closer
a reference object is to the query, the better is the approximation.
Hence, the set of reference objects should be well spread in the
data space. This ensures that no matter where the query is located,
there is at least one reference object that is not too far away from
it and, hence, the approximation of distances to other objects using
this reference object is good. The above objective assumes that any
reference object can be used to approximate the distance for any
other object. In other words, the purview of every reference object
is the entire dataset. Thus, the distance from an object to all the
reference objects must be pre-computed and stored.

Considering the above issues, a good choice for reference object
selection is the sparse spatial selection (SSS) algorithm [57]. The
method first estimates the largest distance, dmax, between any two
objects in the database using the following heuristic. A random
object is selected and its farthest neighbor is found. This neigh-
bor is then selected and the process of finding the farthest object
is repeated. The process continues till convergence or for a fixed
number of iterations.

Once dmax is estimated, an object is chosen randomly as the
first reference object. In every iteration, the dataset is scanned till
an object whose distance to all the previously selected reference
objects is greater than a fraction f of dmax is found. This object is
added to the setR. The process is continued till |R| = m.

The SSS dynamic (SSS-Dyn) [19] method extends the above by
continuing the process beyond the first m iterations. For every new
object that satisfies the fraction f condition, it chooses a victim
from the current set. The victim is the one that contributes the least
towards approximating the distance between a set of (pre-selected
and fixed) object pairs. If the contribution of the new object is better
than the victim, it replaces the victim as a reference object. This
goes on till there are no more objects that satisfy the f condition.
The choice of the method is discussed in Sec. 5.2.2.

The number of reference objects, m, determines the amount of
pre-processing and storage required for each database object. More
importantly, since the RDB-tree leaves store the distances to these
m reference objects, it determines the order of the RDB-trees at
the leaf level as shown in Eq. (4).

The offline index building phase is completed with the construc-
tion of the τ RDB-trees. We refer to this union of the τ RDB-trees,
each storing n Hilbert key values of the database points from η-
dimensional sub-spaces, with the leaves storing the distances to m
reference objects, as the HD-Index (High-Dimensional Index).

3.4 Tuning of Parameters
The order ω of the Hilbert curve should be such that there is

no large loss in the representation after the quantization using ω
bits. Therefore, it depends on the domain from which the individual
dimensions of the descriptors draw their value. Table 4 shows the
details of the datasets including their domain sizes while Table 3
lists the Hilbert curve orders and other parameters.

If the number of partitions τ is more, then the larger number of
Hilbert curves increases the number of RDB-tree searches, thereby
increasing the overall searching time. However, simultaneously,
η decreases which results in better approximation by the Hilbert
curve, thereby increasing the accuracy. Hence, the value of τ (or
equivalently, η) provides a handle to balance the trade-off between
running time and accuracy. We discuss the tuning of these parame-
ters experimentally in Sec. 5.

From our experiments, we observed that the effect of varying f
on the overall quality and efficiency of the reference object selec-
tion method is minimal. Hence, we chose f = 0.3.

3.5 Analysis

3.5.1 Time and Space Complexities
We first analyze the index construction time of HD-Index.
Estimating dmax for reference object selection requires O(n)

time since the iterations are continued for at most a (constant) thresh-
old number of times. In each iteration, a potential reference object
is checked against all theO(m) existing reference objects. Assum-
ing a worst case of O(n) potential reference objects, the total time
for m iterations is O(m2.n).

Computing the distances between the objects and the references
having dimensionality ν consumes O(m.n.ν) time.

Mapping a single point to a Hilbert key of order ω catering to a
dimensionality of η requiresO(ω.η) time. Thus, the time for n ob-
jects isO(ω.η.n). The RDB-tree construction requiresO(n. logθ n)
time where θ is the branching factor of the internal nodes. Since
there are τ = ν/η RDB-trees, the total time for this phase is
O((ω.η.n+ n. logθ n).τ) = O(ν.ω.n+ τ.n. logθ n).

The total construction time of HD-Index is, therefore,O(m2.n+
m.n.ν + ν.ω.n+ τ.n. logθ n).

We next analyze the space requirements for HD-Index. The orig-
inal data objects require O(n.ν) storage. In each of the τ RDB-
trees and for each of the database objects, the following are stored:
(1) Hilbert key composed from η dimensions, (2) pointer to the
original object, and (3) distances to m reference objects. This re-
quires a total ofO(τ.n.(η+O(1)+m)) = O(n.ν+τ.n.m) space.
The rest of the RDB-tree requires O(n.η) space to store the O(n)
internal nodes consisting of Hilbert keys. Hence, the total space
requirement of HD-Index is O(n.ν + n.m.τ).

3.5.2 Discussion
In practice, ω, τ , the height of the RDB-tree (logθ n), and m�

n are small constants (as verified experimentally in Sec. 5 as well).
Hence, the construction time and space complexities of HD-Index
are essentially O(n.ν), which is the size of the input. This lin-
ear scaling factor allows HD-Index to scale gracefully to extremely
large datasets and high dimensionality.

3.6 Handling Updates
In this section, we describe how updates are handled. We only

discuss insertions since deletions can be handled by simply mark-
ing the object as “deleted” and not returning it as an answer. Since
B+-trees are naturally update-friendly, inserting new points in a
RDB-tree requires a very small amount of computation: the Hilbert
key of the new object and its distances to reference objects.

Although the set of reference objects may change with inser-
tions, since the performance with even random reference objects
are quite close in quality to a carefully chosen set (Sec. 5.2.2), we
do not re-compute the set R with every new insertion. Also, the
number of updates, if any, are generally insignificant with respect
to the total number of objects and, hence, there is little merit in
updating the reference set.

4. QUERYING
We next describe the kNN search procedure for a query object q

residing in the same ν-dimensional Euclidean space (Algo. 2).
The querying process follows three broad steps: (i) retrieving

candidate objects from the RDB-trees using the Hilbert keys, (ii) re-
fining the candidate set by applying distance approximation in-
equalities, and (iii) retrieving the k approximate nearest neighbors
by computing the actual distances from the candidates.

We next describe each of them in detail.
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Algorithm 2 kNN Query using HD-Index
Input: Query q, Number of nearest neighbors k
Output: Approximate kNN A
1: for i← 1 to τ do
2: qi ← dimensions of q according to Pi
3: ki ← Hilbert key of qi
4: C1

i ← α nearest objects of ki from Bi
5: for j ← 1 to α do
6: Compute d̃4(q, C1

i (j)) using Eq. (5)
7: C2

i ← β nearest objects from d̃4(q, C1
i (j))

8: for j ← 1 to β do
9: Compute d̃�(q, C2

i (j)) using Eq. (6)
10: C2

i ← γ nearest objects from d̃�(q, C2
i (j))

11: C ← ∪τi=1C
2
i

12: for j ← 1 to κ = |C| do
13: Access object C(j)
14: Compute actual distance d(q, C(j))
15: A ← k nearest objects from d(q, C(j))
16: return A

4.1 Retrieving Candidates from RDB-trees
The ν dimensions of the query q are divided into τ groups ac-

cording to the same partitioning scheme P as the dataset.
For each of these τ partitions, the corresponding RDB-tree Bi is

searched with the Hilbert key of q associated with the dimensions
Pi. The nearest α candidate objects are returned. These objects
are close in the space represented by Pi and, therefore, have the
potential to be close in the entire ν-dimensional space as well.

Returning to our example in Fig. 3, assuming α = 2, the first
RDB-tree returns O1, O4 while the second one returns O5, O7.

4.2 Refining Candidates using Approximation
The α objects are then successively refined by applying two

distance approximation schemes—triangular inequality and Ptole-
maic inequality—using the reference objects. As a pre-requisite,
the distance of query q to all them reference objects are computed.

The triangular inequality using the ith reference objectRi lower
bounds the distance between the query q and an object o as follows:

d(q, o) ≥ d̃4(q, o)i = |d(q,Ri)− d(o,Ri)|
Using m reference objects produces m lower bounds for an ob-

ject o. The best lower bound is the one that is maximal and is,
therefore, considered as the approximate distance of o from q:

d̃4(q, o) = max
∀Ri∈R

d̃4(q, o)i (5)

Using this approximate distance, the α candidates are sorted and
the β nearest ones to q are chosen as the next set of candidates for
the application of the next distance approximation, the Ptolemaic
inequality [31], which is respected by the Euclidean distance.

The Ptolemaic inequality uses two reference objects Ri and Rj
to lower bound the distance:

d(q, o) ≥ d̃�(q, o)i,j =
|d(q,Ri).d(o,Rj)− d(q,Rj).d(o,Ri)|

d(Ri,Rj)
The best (i.e., maximal) lower bound among the

(
m
2

)
possibilities

is considered as the approximate distance:
d̃�(q, o) = max

∀Ri,Rj∈R
d̃�(q, o)i,j (6)

The nearest γ candidates, chosen from the β candidates using
Eq. (6), forms the final candidate set from the RDB-tree Bi.

The order of applying the inequalities is important as the ap-
proximation using Ptolemaic inequality is costlier but better than
the triangular inequality.

The γ candidates from each Bi are merged to form the final can-
didate set C. The size of C, denoted by κ, is at least γ (when all the
partitions produce the same set) and at most τ.γ (when the parti-
tions produce completely disjoint sets). Thus, γ ≤ κ ≤ τ.γ.

4.3 Retrieving k Nearest Neighbors
Finally, the complete descriptions of the candidate objects in
C are accessed using the corresponding object pointers from the
RDB-trees, and the actual distances from q are computed. The k
nearest objects from C are returned as the kANN answer set A.

4.4 Analysis

4.4.1 Time and Space Complexities
We first analyze the time complexity of the querying phase.
The cost of distance computation from q to all the m reference

objects is O(m.ν).
For each of the τ partitions, the following costs are paid. Re-

trieval of α candidates from a RDB-tree requires O(logθ n + α)
time where θ is the branching factor of the RDB-tree internal nodes.
Computing the triangular inequalities for α candidates using m
reference objects takes O(α.m) time due to pre-processing. By
using a heap, the nearest β candidates are chosen in O(α. log β)
time. Subjecting the β candidates to Ptolemaic inequalities requires
O(β.m2) time. Finally, γ candidates are extracted using a heap
in O(β. log γ) time. The total cost over τ partitions is, therefore,
O(τ.(logθ n+ α+ α.m+ α. log β + β.m2 + β. log γ)).

Computing the actual distances for κ candidates requiresO(κ.ν)
time. Since κ is at most τ.γ, this phase runs in O(τ.γ.ν) time.

Adding up the costs of each phase gives the total time.
The extra space overhead is that of α candidates. Since the RDB-

trees are processed sequentially, the extra space overhead remains
O(α) which is essentially a constant.

Since HD-Index is a disk-based structure, we next analyze the
number of random disk accesses needed for a kANN query. The
computation ofm distances from the query to the reference objects
requireO(m) disk accesses. However, sincem� n, the reference
object set can be assumed to fit in memory and, therefore, no I/O
cost is incurred. Assuming the order of a RDB-tree leaf to be Ω,
retrievingα objects requiresO(logθ n+(α/Ω)) disk accesses. The
computation of the distance inequalities do not require any more
disk access since the distances to the reference objects are stored
in the leaves themselves. Computing κ exact distances from the
candidates require κ = O(τ.γ) disk accesses. Hence, the total
number of disk accesses is O(τ.(logθ n+ (α/Ω) + γ)).

4.4.2 Discussion
As shown in Sec. 5, it suffices to have α� n for even extremely

large datasets. Consequently, α, β and γ are essentially constants
in the overall analysis. Since ω and m � n are also small con-
stants, the running time of a kANN query can be summarized as
O(τ.(logθ n + ν)), i.e., it is linear on the number of RDB-tree
searches, the height of a RDB-tree, and the dimensionality. The
extra space consumed during the search is O(α), which is negligi-
ble. The number of disk accesses is linear in the number of trees,
the height of the trees, and candidate size, thus allowing HD-Index
to scale gracefully to large datasets and high-dimensional spaces.

5. EXPERIMENTS
All the experiments were done using codes written in C++ on

an Intel(R) Core(TM) i7-4770 machine with 3.4 GHz CPU, 32 GB
RAM, and 2 TB external disk space running Linux Ubuntu 12.04.
The results are summarized in Sec. 5.6. The reader is referred to
the extended version [9] of this paper for additional results.
Datasets: We present results on large-scale high-dimensional real-
world and benchmark datasets, taken from various publicly avail-
able sources [1–6], as described in Table 4. Our datasets constitute
a judicious mix of scale, dimensionality, and domain types.
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Dataset Type Dimen- # Objects Domain # Queriessionality of values
SIFT10K Tiny 128 10,000 [0,255] 100
Audio Small 192 54,287 [-1,1] 10,000
SUN Small 512 80,006 [0,1] 100
SIFT1M Medium 128 1,000,000 [0,255] 10,000
SIFT10M Medium 128 10,000,000 [0,255] 10,000
Yorck Medium 128 15,120,935 [-1,1] 1,254
SIFT100M Large 128 100,000,000 [0,255] 10,000
SIFT1B Large 128 999,494,170 [0,255] 10,000
Enron Small 1369 93,986 [0,252429] 1,000
Glove Medium 100 1,183,514 [-10,10] 10,000

Table 4: Datasets.

• The Audio dataset comprises of audio features extracted using
Marsyas library from the DARPA TIMIT speech database [2].
• The SUN dataset comprises of extremely high-dimensional GIST

features of images [5].
• The SIFT datasets comprise of SIFT features [1] at varying scale.
• The Yorck dataset comprises of SURF features extracted from

images in the Yorck project [6].
• The Enron dataset comprises of feature vectors of bi-grams of

collection of emails [3].
• The Glove dataset comprises of word feature vectors extracted

from Tweets [4].
Note that SIFT and Enron features are integers, while all other

datasets possess floating point feature values. The Hilbert curve
and RDB-tree orders are shown in Table 3.

Next, we state the methods, their parameters and the evaluation
metrics used for obtaining the results.
Methods: We compare HD-Index for effectiveness, efficiency and
scalability against a number of representative state-of-the-art meth-
ods, namely, Multicurves, C2LSH, SRS, QALSH, OPQ, and HNSW
[27,28,34,49,65,67]. In addition, we also consider iDistance [74],
which is an exact method for kNN queries and will, therefore, al-
ways exhibit perfect quality. For all these techniques, we adopt the
C++ implementations made available by their authors.
Parameters: The disk page size for the machine on which the ex-
periments were run is B = 4096 bytes. We set the number of
nearest neighbors k = 100. The parameters for the competing
techniques were set as follows: iDistance: initial radius r = 0.01,
∆r = 0.01; Multicurves: τ = 8, α = 4096; C2LSH: approxi-
mation ratio c = 2, interval size w = 1, false-positive percentage
βC2LSH = 100/n, error probability δ = 1/e; QALSH: approxi-
mation ratio c = 2, false-positive percentage βQALSH = 100/n,
error probability δ = 1/e; SRS: algorithm SRS-12, approximation
ratio c = 2, number of 2-stable random projections mSRS = 6,
early termination threshold τSRS = 0.1809, maximum percent-
age of examined points t = 0.00242; OPQ: number of subspaces
M = 8; HNSW: number of nearest neighborsM = 10. The search
parameters of OPQ and HNSW were set such that their MAP val-
ues were close to those of HD-Index. Note that most of these pa-
rameters have been set according to the recommendations by their
respective authors.
Evaluation Metrics: We consider the following metrics:
• Quality: We adopt approximation ratio (Def. 1) and MAP@k

(Def. 3) to evaluate the quality of the discussed methods.
• Efficiency: We evaluate the efficiency of the methods using the

running time of the queries. For fairness, we turn off buffering
and caching effects in all the experiments.
• Scalability: To evaluate the scalability, we measure (1) the size

and (2) construction time of the index structures, and main mem-
ory consumption during (3) index construction and (4) querying.
All the reported values are averages over the entire query set.

5.1 Comments
All the datasets are pre-processed to remove the duplicate points,

if any. We used the set of queries provided with the Audio and the
SIFT datasets for our experiments. For the datasets where query
sets were not provided, namely, SUN, Yorck, Enron, and Glove,
we reserved 100, 1254, 1000, and 10000 random data points re-
spectively as queries. Since the implementations of some of the
techniques do not support floating point data, to enable them to run
on datasets with floating point feature values, the values are scaled
by a sufficiently large number. This is as suggested by the corre-
sponding authors of C2LSH and SRS.

Although it is not a requirement of the algorithms, the publicly
available implementations of C2LSH, QALSH, and iDistance load
the entire dataset into main memory during the index construction
step. Thus, it crashed on our machine for the two largest datasets,
SIFT100M and SIFT1B, that require∼52GB and∼520GB of RAM
to be loaded respectively. Further, the underlying implementation
of R-trees used by SRS suffers from memory leaks. Hence, to
enable SRS run on SIFT100M and SIFT1B, as suggested by the
authors, these datasets were divided into chunks, indexed sepa-
rately and then combined together into a single index for the whole
dataset. This discussion highlights the importance of purely disk-
based methods, as even with today’s hardware, methods using very
large amounts of main memory in a single machine to build and
load the index structure may not be deemed as scalable.

5.2 Internal Parameter Tuning
Since the HD-Index structure and its querying mechanism uses

some parameters, the first set of experiments is performed to deter-
mine a good range of their values. This is a critical step. The pa-
rameter tuning process follows an order such that the most general
parameter, i.e., the one which is independent of other parameters,
is tuned first and so on. In general, we follow the intuitive order of
first tuning the parameters specific to HD-Index construction fol-
lowed by those used during querying.

5.2.1 Indexing: Subspace Partitioning Scheme
During the index construction step, HD-Index requires data to be

partitioned into different lower dimensional sub-spaces. For ease
of use, we sequentially partition the feature space. However, that
is not necessary, since HD-Index is not dependent upon a partic-
ular partitioning scheme. To substantiate this claim, we perform
querying on 100 indices constructed by randomly partitioning the
full space into multiple sub-spaces. The MAP@10 values over the
100 indices for the different datasets are as follows: (a) SIFT10K:
0.974±0.002, (b) Audio: 0.934±0.013, (c) SUN: 0.750±0.010,
(d) SIFT1M: 0.660 ± 0.010. Considering the small standard de-
viations and comparable results of MAP@10 for contiguous parti-
tioning (as shown later in Fig. 5e-Fig. 5h), we conclude that quality
does not depend significantly on the choice of partitioning scheme.

5.2.2 Indexing: Reference Object Selection Method
As mentioned earlier in Sec. 2.2, there are multiple methods of

choosing the reference objects. We have experimented with three
algorithms: the random method, where m random objects are cho-
sen as reference objects, SSS and SSS-Dyn. Compared to the other
sophisticated methods, even the random reference object selection
has comparable accuracy levels. (The MAP values are within 90%
of those of SSS). The figures are shown in Appendix A in the ex-
tended version [9].

This indicates that the design of HD-Index by itself is good enough
to achieve a high accuracy, and the choice of reference objects is
not very critical. The SSS method is faster and has similar MAP
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Figure 4: Effect of varying number of reference objects, m, on (a) Query time, (b) Index size, (c) MAP@10, and (d) Ratio (k = 10).
Effect of varying number of RDB-trees, τ , on (e) Query time, (f) Index size, (g) MAP@10, and (h) Ratio (k = 10).
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Figure 5: Effect of the filtering mechanism (either triangular inequality alone or a combination of triangular and Ptolemaic inequal-
ities) on query time (a-d) and MAP@10 (e-h) with α = 4096.

values as SSS-Dyn. Also, the larger the dataset, the lesser the dif-
ference between the methods. Consequently, we recommend the
SSS method as the reference object selection algorithm.

5.2.3 Indexing: Number of Reference Objects
The first important parameter is the number of reference objects,

m. To effectively tune m, we consider the top 6 datasets of up
to medium size from Table 4. Fig. 4a shows that the query time
increases in a sub-linear fashion withm. The size of the final index
(Fig. 4b) grows linearly with m (y-axis in log scale). However, for
all the datasets, the quality metrics saturate after m = 10, with
little or no further changes (Fig. 4c and Fig. 4d). Thus, we choose
m = 10 as the recommended number of reference objects. For the
rest of the experiments, we use this value.

5.2.4 Indexing: Number of RDB-trees
Next, we analyze the effect of the number of RDB-trees τ on the

different evaluation metrics. We use the top 4 datasets from Ta-
ble 4. Figs. 4e and 4f show that, as expected, the running time and
the size of the final index grow linearly with increasing τ , for all the
datasets. However, Figs. 4g and 4h portray that quality saturates af-
ter a while. The MAP@10 values for all the datasets, except SUN,
saturates after τ = 8. A similar effect is observed for the approxi-
mation ratio as well. Thus, we choose τ = 8 as the recommended
number of RDB-trees. However, for the SUN dataset, which has a
very high dimensionality of ν = 512, choosing τ = 8 makes each

Hilbert curve cater to a dimensionality of η = 512/8 = 64. Con-
sequently, for such a high dimensionality, the MAP performance
suffers. The MAP performance increases significantly by using
double the number of trees, i.e., τ = 16. Hence, while the default
value is τ = 8, for extremely high dimensional datasets (500+),
we recommend τ = 16. For datasets where the dimensionality is
not a power of 2, we choose parameters that are as close as possi-
ble to the recommended values. Thus, for Enron, we use τ = 37
trees, each catering to η = 37 dimensions, while for Glove, we use
τ = 10 trees, each handling η = 10 dimensions.

5.2.5 Querying: Importance of Ptolemaic Inequality
Having tuned the parameters specific to HD-Index, we next an-

alyze the effect of parameters associated with the querying mech-
anism. We first evaluate the effect of the lower bounding filters –
triangular and Ptolemaic inequalities. Fig. 5 presents a detailed
analysis of using (1) just the triangular inequality, i.e., β = γ
(as explained in Sec. 4.2), and (2) a combination of both triangu-
lar and Ptolemaic inequalities, for an initial candidate set size of
α = 4096 on different datasets. While it is clear from Figs. 5e-
5h that MAP@10 obtained using a combination of triangular and
Ptolemaic inequality filters is always better when compared to us-
ing the triangular inequality alone, the gain is not significant un-
der all scenarios. Notable gains are observed only when we use
α/β = 1 and β/γ = 4 for the combined filtering process, and
α/γ = 4 for triangular inequality alone. This is because tighter
lower bounds using Ptolemaic inequality are more robust to large
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Figure 7: Comparison of MAP@10 and approximation ratio for k = 10 on different datasets.

reductions during the filtering process. On the other hand, it is ev-
ident from Figs. 5a- 5d that the running times obtained using the
combined filters are consistently 1.5–2 times slower when com-
pared to using the triangular inequality alone. A similar pattern is
followed for different α values as well (additional results are shown
in Appendix B in the extended version [9]).

In sum, although the use of Ptolemaic inequality results in better
MAP, the gain in quality is not significant in majority of the cases
when compared to the increase in query time, which almost dou-
bles. Therefore, it is more prudent to use the triangular inequality
alone to trade a little amount of quality (loss in MAP) for a much
higher query efficiency. Thus, we henceforth choose triangular in-
equality alone as the recommended choice of lower bounding filter.

As an alternate analysis, although the application of Ptolemaic
inequality is slower, importantly, it does not affect the number of
disk I/Os. Since all the α candidates are processed in main mem-
ory without the need to access the disk, Ptolemaic inequality only
requires more CPU time. Thus, if the performance metric of an ap-
plication is the number of disk I/Os (instead of the wall clock run-
ning time), it is better to use Ptolemaic inequality since it produces
better quality results using the same number of disk accesses.

5.2.6 Querying: Filter Parameters
Since we do not use the Ptolemaic inequality, the intermediate

filter parameter β is not needed any further. We next fine tune the
other filter parameters α and γ by plotting (Fig. 6) MAP@10 and
running time for the top 5 datasets from Table 4. Figs. 6a, 6c and 6e
show that, as expected, the running time scales linearly with in-
crease in α. However, Figs. 6b, 6d and 6f portray that the qual-
ity saturates after a while (after α = 4096). Thus, we choose
α = 4096 as the recommended value.

However, for SIFT1M and Yorck, α = 4096 is not sufficient
since these datasets are extremely large. MAP improves when dou-
ble the value, i.e., α = 8192 is used and saturates beyond that.
Hence, for very large datasets, we recommend α = 8192.

Having fixed α, we analyze the MAP@10 and running times for
all the datasets with varying γ. Fig. 6g shows that the running time

scales linearly with increase in γ. However, once again, MAP@10
saturates after γ = 1024 for all the datasets. Thus, we choose
γ = 1024, and α/γ = 4, as the recommended values.

5.2.7 Robustness with Number of Nearest Neighbors
We also evaluate MAP@k and running times of the techniques

with varying k on the tiny, small and medium datasets (results in
Appendix C in the extended version [9]). While the running times
of the other techniques increase with k, it remains almost constant
for HD-Index and Multicurves. This is mainly due to the design of
these structures where α candidates are selected and then refined to
return k answers in the end. Since α > k, the running times are
not affected by k.

5.2.8 Limitations
It needs to be noted that the current parameter tuning of HD-

Index is almost purely empirical. In future, we would like to ana-
lyze the parameters from a theoretical stand-point and understand
what values can be reasonable for a given dataset.

Also, if the dataset really exhibits ultra-high dimensionality (in
order of hundreds of thousands), then HD-Index is unable to pro-
cess the queries efficiently since there are too many B+-trees. How-
ever, on that note, we would also like to clarify that to the best of
our knowledge, there is no disk-based database indexing method
that can really handle such ultra-high dimensionality. However, our
method can be easily parallelized and/or distributed with little syn-
chronization steps due to its nature of building and querying using
multiple independent RDB-trees.

For small datasets, HD-Index is not as efficient as some of the
other techniques (as explained in more detail in Sec. 5.4). However,
as the dataset size increases, it scales better.

5.3 Quality Metrics
With the HD-Index parameters fine-tuned, we evaluate the two

quality metrics, MAP@k and approximation ratio vis-à-vis the other
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Figure 8: Comparison on different parameters for k = 100 using small datasets (a-e), larger datasets (f-j), and text datasets (k-o).

methods. It is evident from Fig. 7a-7e that even for good approxi-
mation ratios (c ≤ 1.5), MAP values can be surprisingly and sig-
nificantly low (MAP ≤ 0.15). Moreover, with increase in dimen-
sionality ν, this effect becomes more and more prominent. For
instance, in Fig. 7c, c = 1.15 and 1.39 for C2LSH and SRS re-
spectively, while MAP are 0.04 and 0.01 respectively.

This analysis highlights a notable limitation of the techniques
that possess theoretical guarantees on the approximation ratio as it
empirically proves that the ratio loses its significance. Thus, hence-
forth, we use only MAP@k.

5.4 Comparative Study
In this section, we perform an in-depth comparison of the dif-

ferent methods with respect to three aspects: (a) quality of results,
(b) efficiency of retrieval in terms of running time, and (c) scalabil-
ity in terms of space usage for both main memory and on disk.

5.4.1 Quality
Figs. 8a, 8f, 8k show a comparison of MAP@100 of the different

techniques. Being an exact technique, iDistance possesses the best
quality, with a MAP of 1. However, it is neither efficient nor scal-
able. Table 5 shows that HD-Index significantly outperforms all
the other techniques except HNSW and OPQ in terms of quality.
The empty bars in the figures indicate that the methods could not
be run for the corresponding datasets (e.g., in Fig. 8a, Multicurves
was unable to run on SUN).

5.4.2 Efficiency
Figs. 8b, 8g, 8l show a comparison of the running times of HD-

Index with the different methods. iDistance possesses the highest
running times and was almost as slow as the linear scan method and
is, therefore, not efficient at all. OPQ and HNSW, being memory-
based techniques, run extremely fast. As indicated later, this is
possible since they consume and utilize a large amount of main
memory. Compared to purely disk-based methods that aim to scale
for large datasets, these methods enjoy an unfair advantage in terms
of running time efficiency. C2LSH is the most efficient disk-based
technique; it, however, crashed on SIFT100M. HD-Index is com-
paratively not very efficient for smaller datasets, as is clear from

Fig. 8b. However, its running time scales gracefully with dataset
size and it becomes increasingly efficient with larger data sizes.

5.4.3 Scalability
The final set of results deal with the scalability of the various

techniques. Figs. 8c, 8h, 8m show a comparison of the index sizes
of the different techniques. Multicurves possesses the largest sized
index and consumes up to 1.2TB of disk-space for the SIFT100M
dataset. Owing to this, it is unable to scale to the SIFT1B dataset
on our machine, as its projected index size in this case is ≈12TB.
HNSW, although extremely fast and fairly accurate, requires a very
large amount of main memory. For SIFT1M, it consumes 1.43GB
of main memory. Hence, its projected main memory requirement
for SIFT100M is beyond the 32GB capacity of our machine. Not
surprisingly, it also crashes for this dataset. iDistance possesses the
smallest index size. However, in addition to index size, the memory
consumption during the index construction step is also significant.
iDistance consumes a lot of main memory (RAM) during the in-
dex construction step as shown in Figs. 8d, 8i, and 8n. Thus, it
crashed for SIFT100M during the index construction step. C2LSH,
QALSH, and OPQ also suffer from the same problem and, thus,
they also crashed on SIFT100M.

With this, the only two scalable techniques left are HD-Index
and SRS, with the index size of SRS being 2-3 times smaller when
compared to that of HD-Index. The implementation of SRS pos-
sesses a memory leak, which is evident from the increasing RAM
consumption with dataset sizes. To enable SRS to run on larger
datasets, as mentioned in Sec. 5.1, the memory leak was solved us-
ing chunking of the large datasets. Due to this chunking effect, SRS
exhibits a stable memory consumption of 2GB for Yorck and larger
datasets. The results depict that HD-Index possesses the smallest
memory-footprint during the index construction step, and is as low
as 100MB across the different datasets. This establishes the fact
that HD-Index is the most scalable technique.

We also analyze the main memory consumption during the query-
ing stage. Figs. 8e, 8j, 8o show that apart from HD-Index, Multic-
urves and QALSH (each consuming less than 40MB), all the other
techniques consume a significant amount of RAM. Utilizing a large
amount of RAM during the querying phase puts these methods at an
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Dataset Query Gain of HD-Index in Query Time over MAP Gain of HD-Index in MAP@100 over
Time (ms) C2LSH SRS Multicurves QALSH OPQ HNSW @100 C2LSH SRS Multicurves QALSH OPQ HNSW

SIFT10K 19.46 0.06x 0.17x 2.88x 0.20x 0.10x 0.004x 0.98 2.44x 4.45x 0.98x 1.81x 0.99x 0.98x
Audio 44.18 0.02x 0.88x 2.44x 0.21x 0.02x 0.0007x 0.86 14.33x 6.61x 3.05x 1.28x 0.98x 0.99x
SUN 105.78 0.12x 0.22x NP 0.15x 0.02x 0.007x 0.69 3.83x 23.00x NP 1.72x 1.00x 0.88x
SIFT1M 25.10 5.30x 1.56x 22.98x 11.27x 0.05x 0.002x 0.56 2.80x 28.00x 0.97x 1.19x 1.00x 0.92x
Yorck 262.29 0.27x 27.56x 2.21x 33.54x 0.01x 0.002x 0.39 1542.51x 39.18x 1.24x 1.01x 1.00x 1.02x
SIFT100M 732.04 CR 2.17x 1.73x CR CR CR 0.40 CR 75.72x 1.13x CR CR CR
SIFT1B 4855.20 CR DNF CR CR CR CR 0.25 CR DNF CR CR CR CR
Enron 242.69 0.02x 0.06x NP NP 0.06x 0.002x 0.92 5.12x 12.07x NP NP 0.99x 0.99x
Glove 85.20 0.75x 0.06x 2.6x 2.28x 0.05x 0.0003x 0.24 8.87x 80.00x 1.26x 1.43x 0.99x 0.31x

Table 5: Comparison of HD-Index with other techniques. DNF indicates that index construction did not terminate even after running
for 20 times the duration of the slowest among the other techniques. CR indicates that index construction crashed due to running
out of resources. NP indicates that index construction is not at all possible due to an inherent limitation of the technique.

unfair advantageous position vis-à-vis the strictly disk-based meth-
ods when running times are concerned.

5.4.4 Billion Scale Dataset
We could not compare the results for the largest SIFT1B dataset

with any other technique, as none of them were able to run on it.
Since C2LSH, iDistance, QALSH, OPQ and HNSW crashed on
SIFT100M (we use a commodity machine with 32GB of RAM and
2TB of HDD), they could not be run. Multicurves consumed 1.2TB
of disk space on SIFT100M and, hence, could not scale to the 10
times larger SIFT1B dataset on our machine. Although the mem-
ory leak in the index construction step of SRS was solved using
chunking of the datasets, even after running for more than 25 days,
it was unable to complete the index construction for SIFT1B.

HD-Index required around 10 days and 1.2TB of space to con-
struct the index. Querying produced a MAP@100 of 0.25 in 4.8s
per query by consuming 30MB of main memory.

5.5 Real-World Application: Image Search
We finally highlight the importance of kANN searches and the

MAP measure through an actual image retrieval application. We
use the Yorck dataset [6] that consists of SURF descriptors from
10,000 art images. We mention only the quality results here and do
not repeat the running times.

All the descriptors from the query image are searched for 100
nearest neighbors. The retrieved results, i.e., the database descrip-
tors are then aggregated using the Borda count [58]. In Borda
count, a score is given to each image i based on their depth in the
kANN result of each of the Q descriptors in the query image q (de-
tails are in Appendix D in the extended version [9]). The k images
with the highest Borda counts are retrieved as the top-k similar
images to the query image. The top-k image results for a represen-
tative query for the different methods are shown in Appendix E in
the extended version [9].

In general, HD-Index, QALSH, OPQ and HNSW possess the
highest overlap with the ground truth produced by the linear scan
method. While linear scan has impractical running times, HD-
Index, OPQ, HNSW and C2LSH have better running times than
SRS and QALSH. However, C2LSH has a poor image retrieval
quality, while SRS exhibits moderate quality.

HD-Index is faster than QALSH but slower than both OPQ and
HNSW. However, it has a much smaller memory footprint when
compared to OPQ and HNSW while both indexing and querying.

5.6 Summary
A good indexing technique for approximate nearest neighbor

search stands on three pillars: quality of retrieved objects, running
time efficiency, and memory footprint (both external memory while
storing the index and main memory while querying). Our exper-
imental analyses compared HD-Index with 6 state-of-the-art tech-

Quality 
(MAP)

EfficiencyMemory 
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Multicurves, 
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HD-Index

QME

SRS C2LSH

QALSH
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Figure 9: Summarizing the spectrum of approximate nearest
neighbor search techniques.

niques across all of these features. A quantitative summary of the
results is presented in Table 5 while a broad qualitative summary is
depicted in Fig. 9.

QALSH [34], SRS [65] and C2LSH [27] are the state-of-the-art
techniques with respect to quality, memory footprint and running
time efficiency respectively. However, just optimizing one cate-
gory is not sufficient. For instance, it is useless to produce spurious
results extremely fast with a high memory overhead. Therefore, for
a technique to be useful, it should be classified at the intersection
of at least two classes, that too preferably “QE” or “QM”, since
poor quality results is of no importance. If quality is sacrificed,
even a technique producing random results without any computa-
tion would fall in the class “ME”. To this end, Multicurves [67],
HNSW [49] and OPQ [28] (classified as “QE”) are useful; how-
ever, they possess several disadvantages. First, owing to its large
index space requirements, Multicurves finds difficulty in scaling to
massive datasets. Next, due to its inherent design, it cannot scale to
extremely high-dimensional datasets such as the 512-dimensional
SUN dataset. HNSW and OPQ, being memory-based techniques,
are quite fast and fairly accurate; however, their memory require-
ments are impractically large. They, therefore, fail to run on large
datasets. Thus, as verified empirically, none of these methods could
run on the billion-scale dataset.

In sum, HD-Index (classified as “QME”) stands strong on all the
three pillars, and is an effective, efficient and scalable index struc-
ture which scales gracefully to massive high-dimensional datasets
even on commodity hardware.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of approximate near-

est neighbor searching in massive high-dimensional datasets within
practical compute times while simultaneously exhibiting high qual-
ity. We designed an efficient indexing scheme, HD-Index, based on
a novel index structure, RDB-tree. Experiments portrayed the ef-
fectiveness, efficiency and scalability of HD-Index.

In future, we would like to attempt a parallel implementation
to cater to higher dimensional datasets. Also, we would like to
analyze the effect of parameters from a theoretical point of view.
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