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ABSTRACT
Data analysts often need to transform an existing dataset,
such as with filtering, into a new dataset for downstream
analysis. Even the most trivial of mistakes in this phase can
introduce bias and lead to the formation of invalid conclu-
sions. For example, consider a researcher identifying sub-
jects for trials of a new statin drug. She might identify
patients with a high dietary cholesterol intake as a pop-
ulation likely to benefit from the drug, however, selection
of these individuals could bias the test population to those
with a generally unhealthy lifestyle, thereby compromising
the analysis. Reducing the potential for bias in the dataset
transformation process can minimize the need to later en-
gage in the tedious, time-consuming process of trying to
eliminate bias while preserving the target dataset.

We propose a novel interaction model for explain-and-
repair data transformation systems, in which users inter-
actively define constraints for transformation code and the
resultant data. The system satisfies these constraints as far
as possible, and provides an explanation for any problems
encountered. We present an algorithm that yields filter-
based transformation code satisfying user constraints. We
implemented and evaluated a prototype of this architec-
ture, Emeril, using both synthetic and real-world datasets.
Our approach finds solutions 34% more often and 77% more
quickly than the previous state-of-the-art solution.
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1. INTRODUCTION
A common task in data analysis pipelines is to transform

an existing dataset into a new dataset for downstream anal-
ysis. Such transformations may include filtering, aggrega-
tions, and data wrangling. Much effort has gone into im-
proving this process for users via interactive interfaces [17,
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Figure 1: An illustration of Example 1, showing the time-
consuming and tedious process of repairing data transformations.

28], transformations by example [23, 25, 43, 44, 45], and
more [13, 15, 48].

Even the most trivial of transformations can introduce
undesirable bias and invalidate conclusions. For example,
a medical researcher testing a new statin drug might filter
a patient database in an effort to identify people likely to
benefit from the test drug. Filtering for subjects with high
dietary cholesterol intake may seem reasonable, but it may
bias the test population to those with a generally unhealthy
lifestyle, compromising the analysis. While an analyst with
a functional knowledge of statistics would likely identify this
bias, similar mistakes still appear in the literature [7, 18, 37].

Eliminating any bias identified in the dataset can be time-
consuming and tedious. The best transformation code does
not introduce any undesirable bias and adheres closely to
the analyst’s original plan. Consider the following example,
illustrated in Figure 1:

Example 1. Janet is a researcher who is identifying sub-
jects for a study of a new diabetes medication. She believes
the medication will be most effective for type 2 diabetics,
so she adds a filter for type2 = True. In the past, she
had problems with follow-up in middle-aged participants, so
she filters for age > 65. After discussing the plan with
her colleague, she realizes that older people have worse car-
diovascular health than is typical, thereby giving a mislead-
ing picture of the drug’s effectiveness, so she filters for
cholesterol < 300. The resulting set of patients is too
small for her study, so she removes age > 65. The new
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result still has issues with the distribution of cardiovascu-
lar health, so she removes cholesterol < 300 and adds
exercises = True. The result of these changes yields too
few patients again, so she removes type2 = True and adds
diabetic = True. The results are closer to what she wants,
so she re-adds age > 65. Now the patient counts are again
too low, so she relaxes the age filter to age > 50.

Janet had to perform six rounds of filtering and time-
consuming data analysis to obtain her desired dataset.

In an ideal environment, Janet would describe her tar-
get dataset, and an external system would find a dataset
that most closely matches her goal—while helping her avoid
any undesirable bias. Consider Janet using an explain-and-
repair data transformation system:

Example 2. Once again, Janet is identifying subjects for
a study. She describes her ideal dataset to the system (type2

= True, age > 65, COUNT(subjects) > 500), and the sys-
tem responds with a transformed dataset and a list of columns
whose distributions have changed (e.g., prevalence of cardio-
vascular disease is skewed). Janet clicks “Do Not Allow”
for the cardiovascular disease bias warning, and the system
responds with a new dataset, updated transformation code,
and a new list of column distribution changes. Janet sees no
undesirable bias in the new list of distribution changes and
happily accepts the system’s result.

System Goals — We propose an explain-and-repair data
transformation system. The system takes the following in-
put: (1) An existing dataset to transform; (2) User-provided
signal-based constraints that indicate the desired character-
istics of the transformed dataset; (3) User-provided code-
based constraints that indicate the desired characteristics of
the transformation code; and (4) User-provided aggregate-
based constraints that indicate the desired aggregate condi-
tions on the transformed dataset.

The system has the following desiderata: (1) Finds a set
of transformations and the data that the code produces,
which best match the user’s constraints; (2) Explains po-
tentially undesirable bias to the user, requests feedback, and
uses this to create a new result; and (3) Responds with a
result within a reasonable timeframe (i.e., several minutes).

For the current work, we assume all transformations are
in the form of filters (i.e., relational selections); thus, some
transformations are not possible (e.g., folding or extrac-
tion), but for many applications—such as research in eco-
nomics [31, 33, 36, 46, 49] and medicine [16, 19, 30, 40, 41]
that use curated datasets (several of which we test in our
experiments)—filters are the only transformations needed.

Technical Challenge — Using a large pool of candidate
transformations, the explain-and-repair system must find
the set of transformations that best match the user’s con-
straints. This amounts to a combinatorial search problem,
but one with a costly objective function: the code must be
evaluated with any code-based constraints, the transforma-
tions must be applied to the input dataset, and the resulting
dataset must be evaluated with any signal-based constraints.

A somewhat similar challenge is faced in how-to query-
ing [35], in which the goal is to find the dataset that best sat-
isfies a set of constraints, but this goal does not include de-
termining what transformation code to use. Extending how-
to querying work in a straightforward manner, so that the

Table 1: Notation used to describe our user model.

Description

D Raw input dataset
T Desired output dataset
C Set of candidate transformations
O∗ The ideal transformation program that yields T
Ui User constraints at query cycle i
Wi User preference weights for Ui
Ri Generated output dataset that best matches Ui
Oi Transformation program that yields Ri

Pi Set of system-identified problems for Ri

resulting dataset and the transformation code are both con-
sidered, causes the problem to quickly become intractable,
even for very small datasets (as detailed in Section 3).

Our Approach — Inspired by integer programming solu-
tions to combinatorial optimization [39], we represent the
problem as that of constrained optimization, which we solve
using nonlinear programming. In our optimization model,
we create binary variables for each transformation, which are
then used to estimate a column distribution for each signal-
based constraint. The model’s objective function sets the bi-
nary variables to minimize the sum of squared differences be-
tween the estimated signals and their associated constraints,
and maximizes code-similarity between the code-based con-
straints and the chosen transformations.

Contributions — Our contributions are as follows:

• We propose a novel interaction model for constraint-
based explanation and repair of data transformations,
finding data that best matches user constraints without
any surprise issues (Section 2).

• We present an algorithm for finding transformations
that closely match a set of constraints. The algorithm
models this as a constrained-optimization problem, which
it solves using nonlinear programming (Section 4).

• We built a prototype system, Emeril, and evaluated
it with synthetic and real-world data, showing that our
approach is 77% faster and finds 34% more solutions
than the previous state-of-the-art solution (Section 6).

2. USER MODEL
In this section, we present a user model for explain-and-

repair data transformation systems. The terminology intro-
duced in this section is summarized in Table 1.

2.1 Overview
When formulating a transformation program , an ana-

lyst has a raw input dataset that she wants to transform
into a desired output dataset . She has an initial set of
goals for her desired output dataset, which may include:

• Which items it should contain (e.g., type 2 diabetics);

• The distribution of particular items (e.g., a Gaussian-
distributed prevalence of cardiovascular disease);

• The number of data items (e.g., at least 500 subjects);

• Which transformations to use or avoid (e.g., no gender
filtering).

948



This information, or set of user constraints, drives the
creation of the transformation program, which yields a gen-
erated output dataset . Unfortunately, finding a transfor-
mation program that satisfies all of the constraints can be
a challenge for an analyst, so she will likely revise her goals
at least once. Even after several revisions, without careful
inspection or foresight, the generated output dataset can
unknowingly differ from the analyst’s desired result.

Figure 2 summarizes how a user can build a transforma-
tion program in conjunction with an explain-and-repair sys-
tem. Janet (from Example 2) starts by providing her raw
dataset and initial constraints to the explain-and-repair sys-
tem (Step 1). The system responds with a generated out-
put dataset, transformation program, and a warning that
the distribution for cardiovascular disease prevalence has
changed (Step 2). Since the system treats the constraints
as soft constraints, they may be violated or imperfectly true
in the output data. Janet responds with a constraint that
indicates the cardiovascular distribution should be Gaussian
(Step 3), and the system responds with a new transforma-
tion program and generated dataset (Step 4). These query
cycles, in which the user specifies constraints and receives
a result, continue until the user is happy with her result.

Background — For our user model, we drew inspiration
from a common formula for research in the social and life
science domains: some process—often orchestrated by a gov-
ernment agency—collects and updates a well-curated dataset
that captures some general observations (e.g., health details
of citizens, or economic statistics), and a researcher uses a
subset of the data to draw conclusions. Examples of this
can be found throughout economics [31, 33, 36, 46, 49],
medicine [16, 19, 30, 40, 41], and more. Since our current
work focuses on filter-based transformations, there are some
use cases we do not support, such as grouping-based trans-
formations [26, 27] and non-declarative, or ordered, trans-
formations [26], which we leave for future work.

In Section 2.3, we introduce the different constraint types
a user can provide. We selected these constraints with ref-
erence to our past work in economics [11], and to our review
of publications matching our target use cases, which allowed
us to anticipate where problems are likely to arise. For in-
stance, a TargetDistrib constraint would help an economist
ensure an unbiased range of ages when filtering for certain
transactions to evaluate the response of spending to income
changes [21]. Likewise, a TargetCount constraint could en-
sure that a minimum number of consumers are represented
to avoid sampling bias.

2.2 Data Transformation Primitives
Raw Input Dataset — This is the dataset that the user
wants to transform into a desired output dataset, both of
which we assume are relational datasets:

Definition 1 (Raw input dataset). An input dataset
is a set D, where each d ∈ D is a tuple of values (v1, v2, ..., vk)
with an associated tuple of column names (c1, c2, ..., ck).

Definition 2 (Desired output dataset). Dataset T
is the output dataset a user desires from applying a trans-
formation program O∗ to raw input dataset D.

Transformation Program — This is the means of pro-
ducing a generated output dataset. We limit this paper’s
focus to only filter-based transformations, or predicates:

Explain-
and-

Repair 
System

User

D: patient records
U0: {type 2, age > 65, |R| > 500}

P0: distrib changes (heart, etc)
O0 , R0: generated code/dataset

U1: {heart: normal distrib, ...}

P1: no new problems
O1 , R1: generated code/dataset

D: patient records3

4

2

1

Figure 2: The user model for an explain-and-repair data trans-
formation system, showing Janet’s usage in Example 2.

Definition 3 (Predicate). Predicate p = (c, o, v) is
a tuple representing a filter-based transformation such that
operator o and value v form a binary test on column c in D,
indicating the included rows in a generated output Ri.

Definition 4 (Candidate Transformations). C is
the set of all potential predicates applicable to D.

Definition 5 (Transformation program). The set
Oi ⊆ C is a set of transformations. The conjunction of Oi

applied to D produces a generated output dataset Ri.

Definition 6 (Ideal transformation program). The
set O∗ ⊆ C is the transformation program that produces the
desired output dataset T .

Generated Output Dataset — This is the result of ap-
plying a transformation program to a raw input dataset:

Definition 7 (Generated output dataset). Data-
set Ri is the generated output dataset from applying trans-
formation program Oi to D.

Given dataset and transformation program similarity func-
tions Sd() and Sc(), we can now formalize the data trans-
formation problem :

Problem 1. Given raw input dataset D and a set of can-
didate transformations C, find a transformation program Oi ⊆
C that maximizes Sd(R, T ) and Sc(Oi, O

∗).

The similarity functions Sd() and Sc() can be defined in
a number of ways, and Sections 4.2 and 4.5 explain how our
algorithm defines them.

2.3 System Input
When using an explain-and-repair system, users provide

an input dataset D and a set of user constraints.

User Constraints — This is a collection of constraints that
define the user’s desired output dataset at query cycle i:

Definition 8 (User Constraints). Ui is a set of
user constraints Ui = {Ua, Us, Ux, Ut}, such that:

1. Ua is a set of TargetDistrib constraints.
2. Us is a set of DesiredPred constraints.
3. Ux is a set of NoPred constraints.
4. Ut is a set of TupleCount constraints.

TargetDistrib Constraints — These constraints are used
to indicate a desired distribution for a column in the out-
put dataset (e.g., Janet would specify that the prevalence of
cardiovascular disease should have a Gaussian distribution).
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Definition 9 (TargetDistrib constraint). A Tar-
getDistrib constraint is a tuple u = (c, s) such that:

1. Column name c indicates the name of a column in D.
2. Density estimation signal s indicates the desired distri-

bution of column c.
3. For probability density function f , f(Ri[c]) ' s.

When specifying density estimation signal s, users have
two options: for continuous values, users provide a signal.
In past work [9], we provided a web-based tool for “drawing”
signals; something similar could be used to assist users. For
multinomial values, users provide a set of desired counts or
percentages (e.g., gender : 60% male, 40% female).

Users can also provide code-based constraints, which indicate
desired characteristics of the resulting transformation code.
These can also be inferred from a user’s initial transforma-
tion code, which the explain-and-repair system repairs by
adjusting or removing predicates to best satisfy the entire
set of constraints.

DesiredPred Constraints — These constraints are used to
indicate when a predicate should be used to generate a re-
sult. For example, Janet may require that her study include
only females, thus (gender = ’female’) would be used.

Definition 10 (DesiredPred constraint). Predicate
u is a DesiredPred constraint indicating ∃ p ∈ Oi s.t. p ' u.

NoPred Constraints — These constraints are used to indi-
cate when a particular column should not be used to gener-
ate a result. For instance, Janet may require that all levels
of patient income be included in her study, so she would
specify income level as a NoPred constraint.

Definition 11 (NoPred constraint). Column name
u is a NoPred constraint indicating a column in D, where
∀p = (c, o, v) ∈ Oi, c 6= u.

TupleCount Constraints — These constraints indicate a
required minimum or maximum number of data items in
the generated output dataset. For instance, Janet would
specify that she wants a minimum of 500 study subjects.

Definition 12 (TupleCount constraints). Tuple u
= (m,n) is a TupleCount constraint, where m = min |max
and |Ri| ≤ n if m = min, otherwise, |Ri| ≥ n.

Constraint Preference Weights — It is often impossible
to satisfy all of the user constraints simultaneously, so the
explain-and-repair system treats them as soft constraints.
To help the system prioritize which to relax first, users can
specify a set of preference weights for their constraints (If
not provided, uniform weighting is assumed):

Definition 13 (Preference Weights). Set Wi is a
set of sets, where Wij ∈ Wi defines the preference weights
for one of the user constraint types in Ui, and

∑
Wi = 1.

2.4 System Output and Evaluating Results
The explain-and-repair system output at a given query

cycle i includes generated output datasetRi, transformation
program Oi, and a set Pi of system-identified problems.

System-Identified Problems — For a given result, the
system identifies any distribution changes amongst columns
in Ri, notifying the user that these may be potential prob-
lems. For instance, Janet is notified that the distribution of
cardiovascular disease prevalence has changed.

Algorithm 1 Tiresias-based approach to our problem

Input: D, C,U
Result: constrained-optimization problem formulation

1: binTuples = {b1 : (...), ...}; tuplePreds = {t1 : (...), ...}
2: tuples = {0, 0, ...}; preds = {0, 0, ...}
3: ti = (!p1 ∨ tp[i, 1]) ∧ (!p2 ∨ tp[i, 2]) ∧ ... ∧ (!pk ∨ tp[i, k])

where ti = tuples[i], pk = preds[k], tp = tuplePreds
4: binCounts[b] =

∑
t∈binTuples[b] tuples[t]

5: minimize
∑

b∈binIds abs(binCounts[b]− targetCounts[b])

Definition 14 (System-identified problem). Tuple
p = (c, s1, s2) is a system-identified problem, where c is the
name of a column in D, and for a density estimation func-
tion f , s1 = f(D[c]), s2 = f(Ri[c]), and s1 6= s2.

Evaluating Results — When evaluating Pi, a user will
indicate if any distribution changes are undesired by provid-
ing a TargetDistrib signal-based constraint for each problem.
Similarly, if the transformation program Oi has any issues,
the user will provide a DesiredPred or NoPred code-based
constraint for each problem. If output dataset Ri has too
many or too few records, the user can provide a TupleCount
aggregate-based constraint.

3. REVERSE DATA MANAGEMENT
Finding a transformation program that best matches a set

of user constraints is an example of a reverse data manage-
ment problem [34]. The most similar area of research from
this domain is how-to querying, which aims to modify an ex-
isting dataset to satisfy select constraints. Meliou and Suciu
developed Tiresias [35], which solves general how-to queries
using linear programming; Users describe with a declarative
query language their data, constraints, and desired actions
(modify a row value, add tuples, etc.), and Tiresias finds the
best set of actions that creates the desired dataset.

Tiresias works well for how-to querying, but it does not
solve our particular problem. Both Tiresias and an explain-
and-repair system aim to produce a dataset that matches a
set of constraints. However, an explain-and-repair system
must also find a transformation program that produces the
dataset, while Tiresias does not. With a few alterations, we
can adapt Tiresias for application to our problem. Consider
Algorithm 1, whose inputs are a raw input dataset D, a set
of candidate transformations C, and user constraints U . We
first create mappings between tuples, bins (bins are from
a histogram on the user constraint signal), and predicates
(line 1). Then we create binary variables to indicate if a
tuple or predicate is used in a solution (line 2). Next we
create constraints that define whether each tuple is used in
a solution (line 3) and what the estimated counts are for
each bin (line 4). Finally, we define the objective function
for the constrained-optimization solver (line 5).

Unfortunately, representing just one of the logical state-
ments in line 8 as a constraint in the optimization problem
actually requires several constraints and variables. For n
tuples and p predicates, the number of constraints and vari-
ables are each O(np). While these grow linearly with the
input size, constrained-optimization solvers can only handle
a finite number of constraints and variables. For this partic-
ular approach, we found that with any more than 500 tuples
and 100 predicates, the solver Tiresias uses (GLPK [32]) was
unable to find a solution after three hours, at which point
we terminated the program.
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4. FINDING DATA TRANSFORMATIONS
In this section, we propose a novel algorithm for finding

a data transformation program that best matches a user’s
constraints. Unlike a Tiresias-based solution, our approach
scales well with the number of tuples in a dataset.

4.1 Overview
The core idea of our approach is to represent our problem

as that of constrained-optimization, in which we model the
impact each candidate transformation has on matching the
user’s constraints and use a constrained-optimization solver
to find the set of transformations that maximize this match.

Algorithm 2 shows the steps that are needed. The user
provides raw input dataset D, user constraints Ui, and an
optional preference weights Wi. The first step is to analyze
the input dataset to generate candidate predicates and pre-
compute some information used in the problem formulation
(line 1). This work can be done offline, as we discuss in
Section 5. We then formulate the problem as a constrained-
optimization problem (line 2), find a solution using nonlin-
ear programming (lines 3 – 4), and analyze the result for
potential problems (line 5). This is the core of our paper’s
contribution, and we discuss it in detail below.

Before we discuss our approach, readers will benefit from
a basic understanding of constrained optimization: the op-
timization solvers take as input a set of constants, variables,
and constraints, along with an objective function. The con-
stants dictate the initial conditions, and the solver finds val-
ues for the variables that maximize the objective function,
subject to the provided constraints.

4.2 Modeling as an Optimization Problem
To start, we will assume that predicates are independent

of each other and that we are matching a single TargetDis-
trib constraint (e.g., Janet specifying that the distribution
of cardiovascular disease prevalence should be Gaussian and
centered on an average level). If two predicates are indepen-
dent, then the probability of a row being included when both
predicates are applied to a dataset is the same as the product
of their marginal probabilities (i.e., P (A,B) = P (A)P (B)).
Later we will relax these two assumptions.

Target Bounds — For a TargetDistrib constraint with col-
umn c and signal s, the goal is to maximize the similarity
between s and the distribution of c in the generated output
dataset Ri. In order to avoid having the solver calculate
probability densities for every candidate solution (or having
to perform time-consuming signal comparisons), our algo-
rithm discretizes s into bins to create a target histogram.
This allows for faster distribution matching with only min-
imal impact on accuracy.

Our algorithm then discretizes the original distribution
of c in D as a set of percentages and finds the maximum
number of data items in each bin that satisfies the target
histogram. This defines the target counts. For example, if
cardiovascular disease prevalence originally has a uniform
distribution of (200, 200, 200), then histogram (b1, b2, b3) =
(25%, 50%, 25%) would yield target counts of (100, 200, 100)
(dividing the histogram values by the largest bin (b2), thus
taking 25/50 of b1 and b3, and 50/50 of b2). Lastly, our algo-
rithm converts the target counts into target bounds by cre-
ating an interval around the counts with a slack parameter
ε, allowing for an ε margin of error when finding solutions.

Algorithm 2 Overview of our algorithm’s solution finding

Input: D,Ui,Wi

1: C, pp = analyzeDataset(D)
2: model = formulateProblem(D,Ui, C, pp)
3: solverResult = runOpSolver(model)
4: Oi,Ri = processSolverResult(solverResult)
5: Pi = identifyProblems(Ri,Ui,Wi)
6: return Oi,Ri,Pi

Model Variables — When formulating the optimization
problem, our algorithm creates a set of binary variables,
preds, with one for each predicate p ∈ C. These are used to
indicate whether a predicate is included in the transforma-
tion program. An additional set of variables, bc, is created
to store the estimated bin counts from applying a candidate
solution to D. The constants defined by our algorithm in-
clude the precomputed bin probabilities for each predicate
(see Section 5), the target counts, the target bounds, and
the probabilities for each bin in the target histogram.

Model Constraints — Our algorithm creates a constraint
that estimates the bin counts from applying a candidate
solution on D. The intuition underlying this procedure is
that the probability of a row being included by a set of
predicates equals the probability of the bin multiplied by
the product of the predicates conditioned on the bin. Thus,
the estimated count for a particular bin is the product of this
joint probability and the size of the dataset. For example, if
there are 200 records in D, bin b1 contains 25% of them, and
two predicates are applied with b1 probabilities of 0.1 and
0.6, then the estimated count for b1 = 200∗0.25∗0.1∗0.6, or
3 records. This probabilistic approach allows the solver to
estimate the result of applying a set of predicates without
having to decide whether particular tuples are included in a
resulting dataset as a Tiresias-based approach would.

Equation 1 displays how the count is calculated for bin
b, where bc[b] is the estimated bin count, bp[b] is the bin
probability (or percentage of D in bin b), bpp[i, b] is the bin
probability for predicate variable preds[i], and c is a small
constant (e.g., 1× 10−6) used to avoid a log of zero. To clar-
ify this with an example, consider a dataset separated into
two bins with probabilities bp = (0.8, 0.2) and with one can-
didate predicate with bin probabilities bpp[1] = (0.3, 0.05).
The counts for the first bin bc[1] = |D| ∗ 0.8 ∗ 0.3.

bc[b] = |D|∗bp[b]∗exp(

|preds|∑
i=1

preds[i]∗ log(bpp[i, b]+ c)) (1)

Our algorithm also adds constraints that limit the esti-
mated counts to within the target bounds and ensure that
at least one predicate is chosen.

Objective Function — Since our goal is to maximize simi-
larity between the desired output dataset and the generated
output dataset, our algorithm adds the following objective
function to our optimization model, which finds the set of
predicates that minimizes the sum of differences between the
target and estimated bin counts:

minimize

|bins|∑
b=1

abs(tc[b]− bc[b]) (2)

This approach fixes the core problem with a Tiresias-
based approach, but its assumption of independent predi-

951



Algorithm 3 Prioritizing of dependence information

Input: D,Ui, pp, pdp, ε, randExplore

1: depScores = getDepScores(pp)
2: binCounts = getBinCounts(D,Ui)
3: T = getTargetBounds(D,Ui)
4: for all pids, s ∈ depScores do
5: estCounts = (

∏
p∈pids pp[p]) ∗ binCounts

6: if withinBounds(T , estCounts) then
7: delete depScores[(p1 , p2 )]
8: end if
9: end for

10: numRand = randExplore ∗ pdp ∗ |depScores|
11: numDep = (1− randExplore) ∗ pdp ∗ |depScores|
12: finalDepScores = depScores[0 : numDep]
13: delete depScores[0 : numDep]
14: finalDepScores += randomSample(depScores,numRand)
15: return finalDepScores

cates is a key weakness that makes it unsuitable for many
datasets. In the next section, we remove this assumption.

4.3 Adding Dependence Information
In the previous section, we describe how our algorithm

uses a probabilistic approach to estimating the impact of
including a predicate in a candidate solution. However, if
two predicates are included in a candidate solution that have
some dependency between them (i.e., their matching rows
overlap more often than would be expected by chance), then
the estimated bin counts (Equation 1) will be incorrect.

To remedy this problem, our algorithm includes depen-
dence information of the form D = {d1, . . . ,dm}, where
di = {p1, p2, . . . , pq | 0 < pj ≤ |C|}. It then uses D to
create additional constants, variables, and constraints in its
optimization problem, which allows the solver to correctly
estimate the bin counts for a candidate transformation pro-
gram that has dependent predicates.

Additional Variables — For each di ∈ D, our algorithm
creates a binary variable in the optimization model, which,
if true, causes bin counts to be estimated as if ∀p ∈ di are
included in a candidate solution. These binary variables
are combined with the previously created preds variables,
creating preds ′, which has |C|+|D| binary variables for which
the solver is finding values.

Our algorithm creates additional constants for the bin
probabilities of each dependent predicates set, similar to
those added for the individual predicates. Additionally, a set
of constants, pred sets, is added to the optimization model,
where each pred set ∈ pred sets links a synthetic predicate
variable with its associated predicates.

Additional Constraints — Our algorithm imposes the
following restriction in order to avoid misestimations of the
bin counts for a candidate solution with dependent predi-
cates: If the synthetic variable for a dependent predicates
set di is true, then ∀p ∈ di : preds′[p] = false. Likewise,
if ∃p ∈ di : preds′[p] = true, then the synthetic variable
for dependent predicates set di must be false. Equation 3
summarizes this constraint:

∀pred set ∈ pred sets :
∑

i∈pred set

preds ′[i] ≤ 1 (3)

For example, assume that p1001 is a synthetic predicate
that represents the set of dependent predicates (p1, p2). Our
constraint uses pred set = (p1, p2, p1001) to enforce that only
one of these predicates can be used in a candidate solution
(otherwise their preds ′[i] sum is larger than one).

Algorithm 4 Predicate similarity function

Input: p1, p2
1: score = 0.0
2: if p1 == p2 then
3: score = 1.0
4: else if p1.column == p2.column then
5: score += 0.5
6: if (isRange(p1)∨ isRange(p1))∧ hasOverlap(p1, p2) then
7: score += 0.25
8: end if
9: end if

10: return score

4.4 Prioritizing Dependence Information
Our approach to including dependence information fixes

the problem of inaccurate estimates from dependent pred-
icates, but another problem remains: adding dependence
information to the optimization model leads to more con-
straints, and finding solutions becomes more difficult.

Our algorithm addresses this problem by using a filtering
with exploration policy for limiting dependence information
in a model (Algorithm 3). Using precomputed dependence
scores for each dependent predicates set (described in Sec-
tion 5), each set is tested to determine whether its estimated
counts are within a margin of error (ε) of being indepen-
dent, and, if so, the dependency set is excluded (lines 4 –
9). Next, the top pdp percent of the remaining dependency
sets are chosen as the final output, with a randExplore per-
cent of those replaced by a random selection of dependency
sets (lines 10 – 14). This random exploration of predicate
dependency helps find solutions that are more common but
have predicates with relatively low dependency.

4.5 Adding Code-Based Constraints
In addition to signal-based constraints, users can provide

code-based DesiredPred or NoPred constraints, where the ob-
jective is to include (or exclude) predicates that are similar
(or dissimilar) to the constraint. For instance, Janet in Ex-
ample 2 provides DesiredPred constraints of (type2 = True)

and (age > 65), indicating that her ideal transformation
program would have predicates similar to these. Thus, a
transformation program with (age > 50) is preferred over
one with no age filter, or one that has (age < 65).

To model this, our algorithm creates additional constants,
variables, and constraints, along with an updated objective
function, so that the solver prefers solutions that match well
on both signal- and code-based constraints.

Additional Variables — Our algorithm adds a set to the
model to hold the code-distance calculations, which are used
in the objective function. Additionally, a constant is added
that defines a similarity matrix between the code-based con-
straints and each of the predicates. This is generated us-
ing a simple code-similarity function that rewards match-
ing columns, operators, and similar ranges of values (Algo-
rithm 4).

Additional Constraints — Our algorithm adds one addi-
tional constraint, which uses the code-similarity matrix to
define the code distances for any predicate variables that
are true. Equation 4 defines this constraint, where Uc is the
set of DesiredPred constraints, Dc is array of code distances
being estimated, and S is the code-similarity matrix:

∀u ∈ Uc : Dc[u] =
∑

p∈preds

(p ∗ (1− S [i , u])) (4)
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Updated Objective Function — The updated objective
function, which supports both signal- and code-based con-
straints, is defined in Equation 5, where Ds is an array of
signal distances (i.e., the objective function in Equation 2),
Dc is the array of code distances from Equation 4, and W
is the user’s constraint preference weights:

minimize

|Us|∑
i=1

W[Us, i] ∗Ds[i] +

|Uc|∑
i=1

W[Uc, i] ∗Dc[i] (5)

Adding Semantic Information — There are a variety of
cases in which users would want to include richer informa-
tion about the input dataset. For instance, an ontology of
the dataset’s values could indicate that type 2 diabetes is
a class of diabetes. Including this external semantic infor-
mation is beyond the scope of this project, but one possible
way would be to redefine our distance metric in Algorithm 4
to reward a higher similarity score to predicates with asso-
ciated fields. If a user initially filters for type 2 diabetics,
our algorithm would then prefer a filter for all diabetics over
one for patients with cancer.

4.6 Optimization Solver
Our algorithm assumes that an off-the-shelf constrained-

optimization solver is used to process its formulated opti-
mization problem; however, these solvers often have several
internal parameters that control their success at finding solu-
tions, which can be an issue. For many problems the default
settings work adequately, but for others the solver can reach
a local minimum prematurely and conclude that a problem is
infeasible or that a solution cannot be found. Our algorithm
offers dynamic configuration changing, so that multiple con-
figurations can be used as a workaround.

4.7 Result Generation
After the optimization solver produces a result, our algo-

rithm processes it into a transformation program and gener-
ated output dataset, and then checks for potential problems.

Processing the Solver Output — If the solver finds a
solution, it returns the chosen predicates to our algorithm,
which replaces any synthetic predicates (i.e., each di ∈ D)
with the associated set of predicates and adds them with the
other predicates to the transformation program Oi. Our
algorithm then determines the validity of the solution by
applying Oi to input dataset D to generate output dataset
Ri, which is then compared with the user’s constraints. For
invalid answers, our algorithm first tries to adjust the config-
uration of the solver (as described in Section 4.6). Second,
the slack parameter ε is relaxed, changing what defines a
valid solution. Finally, the amount of dependence informa-
tion included in the model can be increased.

Identifying Potential Problems — For a given result,
our algorithm iterates through the different columns to com-
pare their distributions before and after applying a transfor-
mation program. Pearson correlation is used for this com-
parison, where any columns with at least a δ percentage
change are added to the system-identified problem set Pi.

4.8 Greedy-Hybrid Approach
For certain problems, a greedy heuristic can replace the

constrained-optimization solver in our algorithm; Our al-
gorithm has an optional greedy-hybrid approach, in which

Algorithm 5 Full algorithm for finding solutions

Input: D,Ui,Wi, pdp, ε, randExplore

1: C, pp = analyzeDataset(D)
2: S = getFilteredDepSets(D,Ui, pp, pdp, randExplore, ε)
3: T = getTargetBounds(Ui, ε)
4: Oi,Ri = greedySearch(D,Ui,W, C, ε)
5: if not isValid(Oi,Ri,Ui) then
6: preds′ = getModelPreds(D, pp, C)
7: config, ε′ = getSolverConfig(D,Ui)
8: model = formulateProblem(D,Ui, pp, T, S, preds′, ε′)
9: solverResult = runOpSolver(model , config)

10: Oi,Ri = processSolverResult(solverResult)
11: end if
12: Pi = identifyProblems(Ri,Ui,Wi)
13: return Oi,Ri,Pi

it uses a greedy heuristic to search for a valid solution. If
none is found, our algorithm proceeds with the constrained-
optimization solver.

The greedy heuristic works as follows: First, it defines a
threshold k to control the maximum number of predicates
in a solution. It then finds the single predicate that best
matches the target counts. Next, it pairs this predicate with
all remaining predicates, finding the set of predicates that
best match the target counts. This process repeats until k
candidate solutions are determined, and then it selects the
best of them as the final answer.

The advantage of the greedy heuristic is its relatively quick
search for solutions (with O(k|C|) time complexity), but it
requires the best single predicate (found in its first step) to
be part of a valid solution. For this reason, the heuristic on
its own is not as generalizable as a greedy-hybrid approach
(as we show in our experiments in Section 6).

4.9 Full Algorithm for Solution Finding
Algorithm 5 summarizes our full algorithm for finding so-

lutions. In line 1, the raw input dataset is analyzed. Next,
in lines 2 – 3, the dependent predicate sets are filtered using
the method in Algorithm 3 and the target bounds are deter-
mined. In lines 4 – 5, the greedy-hybrid approach is used,
and if a valid solution is found, the optimization problem is
skipped. Otherwise, the optimization problem is formulated
(lines 6 – 8), and the optimization solver is used to find a so-
lution (line 9). In line 10, the solver result is processed into
the transformation program and generated output dataset.
Lastly, the transformed dataset is evaluated for potential
problems (line 12), and the result is returned to the user.

4.10 Time Complexity
Our algorithm has two main components that affect its

runtime: problem formulation and solving the constrained
optimization problem.

Problem Formulation — The main bottleneck in problem
formulation is scoring and sorting the dependent predicate
sets. Since sets can be up to k in size, for p predicates,
roughly pk sets can exist, so if scoring a single set has O(s)
time complexity, the total scoring has O(s ∗ pk) time com-
plexity. When we include score sorting, time complexity
increases to O(s ∗ pk + pk log(pk)). However, we have found
that k = 2 is good enough for most datasets, so this simpli-
fies to O(s ∗ p2 + p2 log(p2)).

Optimization Solver — The solvers we use employ active
set methods for solving constrained-optimization problems.
These approaches can have exponential time complexity in
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the worse-case input instance, but, in practice, are gener-
ally recognized as much better: O(n3) for dense problems.
However, the cost of nonlinear functions and gradients en-
ters into this complexity. Our problem grows primarily as
the quantity of dependent predicate sets increases, because
a new model constraint is created for each added set. Gener-
ally, any more than a few million sets will result in a runtime
of over an hour, and that without guarantee of a potential
solution.

5. PROTOTYPE SYSTEM
We embody our algorithm in a prototype software sys-

tem, Emeril, which was written in over 6,800 lines of pre-
dominately Python source code. Emeril also makes a few
decisions regarding data-specific policies, described below.

Emeril Interaction Model — Users interact with Emeril
by either explicitly declaring their constraints, or by provid-
ing an SQL query, from which the constraints are inferred.
Our current software is a prototype system, so any revisions
to queries or rollbacks to previous ones require a full round of
solution-finding. Additionally, while some real-world appli-
cations may benefit from distinguishing soft and hard con-
straints, we assume all constraints are soft. Both of these
limitations can be addressed in a production system.

Data-Specific Policies — Emeril uses the constrained-
optimization solvers MINOS [38] and SNOPT [22], where
SNOPT is preferred for larger datasets. We use AMPL [20],
an algebraic modeling library, to interface with these solvers.
As discussed in Section 4.6, our algorithm allows for dy-
namic solver configurations, so we performed a grid search
on several test datasets to define a few configurations for
each solver.

Emeril defaults to the following approach for generating
candidate predicates: equality predicates are generated for
each value in any categorical columns. Then, for numerical
columns, a histogram is generated with the column’s values,
with three predicates generated for each bin edge: a range
predicate between it and the next edge, and greater-than
and less-than inequality predicates. This yields the set of
candidate transformations C.

Since our algorithm uses predicate dependence informa-
tion to improve its accuracy, Emeril precomputes this in-
formation before processing queries. Using the formula for
independence (P (A,B) = P (A)P (B)), we measure depen-
dence between two predicates using d = abs(P (A,B) −
P (A)P (B)). Emeril parallelizes this step to quickly cre-
ate the dependence information. This yields the depScores
variable in Algorithm 3 from Section 4.4.

As part of the dataset analysis, Emeril precomputes prob-
ability distributions for all predicates and sets of dependent
predicates: Emeril first determines the data items that each
predicate or set of predicates matches. It then calculates a
density estimation signal for each column in input dataset
D to produce the probability distributions. This yields the
pp variable in Algorithm 5 from Section 4.9.

6. EXPERIMENTS
In this section, we evaluate our three claims about Emeril:

1. Emeril performs better than competing methods at
finding high-quality data transformation programs. We
evaluated this on synthetic datasets with varying levels

complexity (Section 6.2), as well as on several popular
real-world datasets (Section 6.3).

2. Emeril performs well at finding solutions when code-
based user constraints are specified, all with no mean-
ingful impact on runtime (Section 6.4).

3. Each individual component of Emeril contributes mean-
ingfully to Emeril’s ability to find transformation pro-
grams that best satisfy user constraints (Section 6.5).

6.1 Experimental Setting
In this section, we describe our baseline methods, evalua-

tion metrics, and our experimental configuration.

Baseline Methods — We evaluated Emeril against three
baseline methods:

• Tiresias — For this approach, we use the adaption of
Tiresias we describe in Section 3. We expect this ap-
proach to scale poorly with increasing dataset size.

• NChooseK — For this approach, we test all combi-
nations of up to k predicates (k = 2), using the set of
predicates with the best score as the final answer. We
expect this approach to work well for smaller problems
but to be prohibitively time-consuming for larger prob-
lems.

• Greedy — For this approach, we use the greedy search
algorithm described in Section 4.8, with k = 2. We ex-
pect Greedy to perform well only on problems in which
the first selected predicate is part of a valid solution.

Evaluation Metrics — Our synthetic datasets and an-
swers have some randomness associated with their genera-
tion, so we repeated each experiment for all variations of the
datasets. From this, we measured the percentage of times
a solution is found and the average runtime. Runtimes
for all systems do not include offline analysis or pre-loading
of data from disk. A production system can always pre-load
data to improve query times.

Experimental Configuration — We ran our experiments
on a 32-core 2.8GHz Opteron 6110 server with 512 GB RAM.
We imposed a one hour time limit on the different methods
for finding a solution. While users will have different wait
time preferences, we feel this is a reasonable timeframe. For
NChooseK, if the time limit expired, the best answer found
up to that point was used as the final answer.

6.2 Evaluating on Synthetic Data
In this set of experiments, we tested Emeril and our base-

line methods using synthetic datasets with varying size, cor-
relation, and input data complexity. Emeril used the top
10% of dependency sets (with a 50% randExplore setting)
for these experiments.

6.2.1 Synthetic Datasets
We generated our synthetic datasets to control for the

following properties, which impact discovery of high-quality
transformation programs:

• Input data complexity — We varied the number of
candidate transformations (a rough proxy for input data
complexity, since a more varied dataset will yield more
candidates) from 1,000 to 5,000, in increments of 1,000.

• Number of rows — We varied the number of rows
from 100,000 to 1 million, in increments of 100,000.
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Figure 3: Percent of solutions found and runtime (log scale) for
Emeril and our baselines with a varied number of predicates.

• Level of data correlation — We varied the correla-
tion level between columns from 0.0 to 1.0, in increments
of 0.1.

Dataset Generation — We repeated the following pro-
cess with different random seeds to generate 30 synthetic
datasets for each property configuration described above:

1. We chose a target number of rows, columns, and data
correlation. When varying a property, we used one of
the variations listed above; otherwise, we used 50,000
rows, 100 columns, 2,000 candidate predicates, and an
average correlation of 0.2.

2. We generated a relational dataset with the target num-
ber of rows and columns by sampling values from a
Gaussian distribution. To control the level of correla-
tion between columns, the distribution was defined with
a covariance matrix that achieved the target correlation.

3. For candidate predicates, we generated inequality pred-
icates for each unique column value, and then randomly
sampled our target number.

Synthetic Answer Generation — The primary use case
of Emeril is to match signal-based constraints, so to test
this in our experiments without entangling our results with
user behavior, we mimicked a user providing a TargetDis-
trib constraint that specifies a desired parabolic-shaped dis-
tribution on a column with a Gaussian distribution. This
constraint was chosen to support operations like those we
described in Section 1. For example, Janet may see that age
in her input dataset follows a Gaussian distribution, but
wants no middle-aged patients for her experiment.

Since the Greedy baseline success is heavily dependent on
the kind of synthetic answer we generate, we want to ensure
that some of our synthetic answers are Greedy-compatible
and others are not. As a result, we added a “honeypot”
column, which serves as a local maximum for Greedy to
choose. It is only the true global maximum roughly 50% of
the time, so in these cases, Greedy will fail to find a valid
answer.

6.2.2 Varied Input Data Complexity
Summary: Emeril found a valid solution 34% more often
than our best baseline (NChooseK), in 77% less time, while
Tiresias failed to find a valid solution.

0

50

100

%
S
o
l.

F
o
u
n
d

Tiresias NChooseK Greedy Emeril

200 400 600 800 1,000

101

103

Number of Rows (thousands)

R
u
n
ti

m
e

(s
)

Figure 4: Percent of solutions found and runtime (log scale) for
Emeril and our baselines with a varied number of data items.

Overview — In this experiment, we vary the number of
candidate predicates (a rough proxy for input data com-
plexity) from which a solution is selected, which is the most
important factor in problem difficulty.

Results — Figure 3 summarizes the results, which show
that Emeril was able to find answers at significantly greater
frequency than our baseline methods, and with a reasonable
runtime—finding a solution 91% of the time, averaging 14
minutes per run. By contrast, our baseline methods pro-
duced mixed results. Tiresias was unable to find any so-
lutions in the allotted time, as predicted for the reasons
described in Section 3. Greedy found answers 43% of the
time, averaging 1 minute per run. NChooseK found answers
68% of the time, but generally used the full hour to do so—
with the notable exception of instances with 1000 predicates,
since NChooseK was able to exhaustively search in the hour
provided, finding valid solutions 100% of the time. It is
worth noting that for small datasets, NChooseK can be an
reasonable option: in some earlier experiments, which we did
not include due to space limitations, we had 100 candidate
predicates and 50,000 rows, and Emeril and NChooseK
both found valid solutions 100% of the time (averaging 4
seconds and 77 seconds respectively). While the combinato-
rial methods produce some promising results, they are not a
comprehensive solution for our problem, because they func-
tion in limited cases.

6.2.3 Varied Number of Rows
Summary: Emeril found valid solutions 103% more than
our best baseline (Greedy), while Tiresias fails to produce a
valid solution.

Overview — In this experiment, we varied the number of
rows in each dataset. For most methods, this number im-
pacts how quickly a candidate answer can be evaluated.

Results — As shown in Figure 4, Emeril found valid solu-
tions 97% of the time and had great runtimes, averaging 8
minutes per run. We designed our algorithm in Section 4 to
have a time complexity independent of the number of rows
in a dataset, but when using the Greedy-hybrid search (as
these results are), the runtime of a Greedy search is added
to Emeril’s total runtime. The Greedy search on its own
averaged 7.8 minutes per run, but found valid solutions just
48% of the time. Tiresias was unable to find a solution for
any of the experiment runs, reaching the one hour time limit

955



0

50

100

%
S
o
l.

F
o
u
n
d

Tiresias NChooseK Greedy Emeril

0 0.2 0.4 0.6 0.8 1

101

103

Correlation

R
u
n
ti

m
e

(s
)

Figure 5: Percent of solutions found and runtime (log scale) for
Emeril and our baselines with a varied level of correlation.

Table 2: Real-world datasets used in our experiments.

Dataset Rows Cols Preds Corr

ATUS [1] 68,077 374 3,363 0.05
Food Facts [5] 65,503 159 1,103 0.18
GTD [2] 170,350 135 1,262 0.02
NFL Play Data [4] 46,129 66 535 0.02
NHANES [3] 9,813 693 9,618 0.13
WDI [6] 409,992 62 1,712 0.78

in all cases. NChooseK struggled with the large number of
candidate predicates and increasing number of rows, thus
exhausting the one-hour time limit on all runs and finding
valid solutions only 10% of the time.

6.2.4 Varied Level of Data Correlation
Summary: Emeril found valid solutions 59% more than
our best baseline (Greedy), while Tiresias fails to produce a
valid solution.

Overview — In this experiment, we varied the level of cor-
relation between columns in the datasets. As this num-
ber increases, candidate predicates become more correlated,
and since Emeril’s constrained optimization model assumes
predicate independence when no other information is pro-
vided, we expect valid solutions to be more challenging to
find as the correlation level increases.

Results — Figure 5 summarizes the results. Across all
datasets, Emeril found valid solutions 85% of the time, with
a runtime of around 6 minutes per run. For datasets with
correlation of 0.5 or below, Emeril found valid solutions
94% of the time, but for those with correlation above 0.5,
Emeril found solutions 73% of the time. This lower success
rate is because Emeril has a small budget of dependence
information in its constrained optimization model (to help
keep runtimes low), and when data correlation levels get
too high, the synthetic answer’s dependence information is
generally not included, even though it is needed. While
Emeril may struggle with highly correlated datasets, we
have found the incidence of highly-correlated datasets to
be relatively infrequent in real-world datasets. For instance,
only one of the six real-world datasets discussed in this paper
has an average correlation above 0.18 (see Table 2).

For our baselines, Tiresias reached the time limit before
finding any solutions. Even with the relatively small dataset
used in these experiments, the required model becomes too
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Figure 6: Percent of solutions found and runtime (log scale) for
Emeril and our baselines evaluated using real-world datasets.

complex for an optimization solver to solve in the time allot-
ted. Greedy was able to find valid solutions 53% of the time,
averaging 53 seconds of runtime. NChooseK again struggled
with the large number of candidate predicates, exhausting
the one-hour time limit on all runs, and only finding valid
solutions 23% of the time.

6.3 Evaluating with Real-World Data
Summary: Emeril finds solutions 44% more often than the
best baseline (Greedy), increasing average runtime from 3
minutes to only 14 minutes. Tiresias never finds a solution.

Overview — In these experiments, we evaluated Emeril
and our baseline methods using real-world datasets (sum-
marized in Table 2), many of which are used extensively
in research (e.g., ATUS and NHANES are US government
health surveys, and WDI is the World Bank’s Development
Indicators). The candidate predicates were created using
the method described in Section 5. Emeril used the top
1% of dependency sets (with a 0% randExplore setting) for
these experiments. We chose slightly different values from
the synthetic dataset experiments to account for the larger
dataset sizes and less common target answers.

We defined a TargetDistrib constraint for a column in each
dataset (e.g., carbohydrates was used for Food Facts), which
the competing systems try to match. In order to ensure
that there was a valid answer to evaluate against, we in-
serted a synthetic answer using a similar approach to that
of our previous experiments: two columns in the data were
replaced with synthetic values that match with two pred-
icates we created, so that, when applied together on the
dataset, the result matches the signal of the TargetDistrib
constraint. While using a synthetic answer does not fully
capture a real-world scenario, it allowed us to evaluate our
systems on data that has lots of real-life dataset character-
istics without adding the additional complexity of arbitrary
user preferences.

Results — As shown in Figure 6, Emeril found solutions
71% of the time, averaging 15 minutes per run. For our
baseline methods, Tiresias was unable to find any solutions
during the allotted time; NChooseK found a valid solution
38% of the time, averaging 54 minutes per run; and Greedy
quickly found valid solutions 42% of the time, averaging just
2 minutes per run.

Emeril also has comparatively poor performance on the
NFL and NHANES datasets (finding 57% and 63% of the
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Figure 7: Percent of solutions found by Emeril when matching
code-based constraints (i.e., repairing) versus matching just one
signal-based constraint.

solutions respectively), but for different reasons: NHANES
has the largest number of predicates of any test set, so the
1% limit added a very large amount of dependence informa-
tion to our algorithm; this caused Emeril to exhaust the
1-hour time limit before finding a solution.

For NFL, by pure chance, the target answers in the datasets
have predicates that are almost—but not entirely—independent.
That means our näıve approach from Section 4.2, which as-
sumes total independence, would not find the answer, nor
does our standard algorithm, which does not rank the rele-
vant predicates very highly; We will have to include a much
larger percent of the dependence information in order to
find the correct answer. Indeed, we found that when in-
creasing the percentage of dependency sets included in the
optimization model from 1% to 20%, the percentage of solu-
tions found for NFL increases from 57% to 67%. Somewhat
ironically, NChooseK does very well on the NFL dataset,
as it is small enough to exhaustively search all predicate
sets—suggesting a potential front-end to our system that
runs NChooseK when the input data is sufficiently spare.
Emeril also performs relatively poorly on the WDI dataset,

and this can be attributed to its high level of correlation. As
we describe in 6.2.4, Emeril will often struggle with highly-
correlated datasets.

6.4 Evaluating with Code-Based Constraints
Summary: When the user provides a code-based constraint,
and there are multiple solutions that match identically on
a signal-based constraint, Emeril prefers the solution with
better code similarity 100% of the time, with no meaningful
impact on runtime.

Overview — In this experiment, we tested how well Emeril
performs when matching both signal- and code-based con-
straints. As described in Section 2.3, a user may provide
an initial transformation program (or explicitly provide a
predicate that should be in the answer). The system then
tries to repair this initial program to satisfy the signal-based
constraints, while making minimal changes to the initial pro-
gram. For example (age > 30) would have a decent match
with the initial code of (age ≥ 40), but a poor match with
(gender = “female”), thus the former would be preferred if
all else is equal.

We assumed the user provided both code- and signal-
based constraints. We used the same datasets as in our
varied schema complexity experiments (Section 6.2.2), ex-
cept that we duplicated the synthetic answer with new col-
umn names. Thus, two synthetic answers exist, each equally
match the signal-based constraint, but one better matches
the code-based constraint.
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Figure 8: Percent of time a solution found when varying the
number of predicates and using either Emeril or NChooseK with
varied max runtimes of 1, 15, 30, and 60 minutes.

Results — As Figure 7 shows, including a code-based con-
straint makes finding solutions slightly more difficult, find-
ing valid solutions 85% of the time instead of 91% when
matching just the signal-based constraint. Of the valid so-
lutions found when matching multiple constraints, Emeril
preferred the solution with the better code similarity 100%
of the time. Finally, total runtime of Emeril was unaffected
by adding the additional code-based constraint, as both sets
of experiments averaged 14 minutes per run.

6.5 Evaluating Algorithm Components
In this set of experiments, we tested whether each of the

various components of Emeril is essential.

6.5.1 Optimization Solver
Summary: Using the constrained optimization solver al-
lowed Emeril to perform better than any competing method.

Overview — Using the optimization solver is core to Emeril,
and the alternative to using it is to simply use one of our
baseline methods (e.g., Greedy or NChooseK). In Section 6.2,
we show that these baseline methods did not perform as well
as Emeril; however, we can also evaluate a few variations
of NChooseK, where the allowed runtime is decreased, thus
the best answer within that time limit is used. We tried
four variations of NChooseK, allowing time limits of 1, 15,
30, and 60 minutes.

Results — As Figure 8 shows, Emeril found valid solutions
91% of the time (averaging 14 minutes per run). The best
version of NChooseK, which used 60 minutes per run, only
found valid solutions 68% of the time. Given enough time,
NChooseK would find solutions 100% of the time, but as the
number of predicates grows (N), or the maximum number
of predicates in an answer grows (K), an exhaustive combi-
natorial search becomes prohibitively slow.

6.5.2 Using Dependence Information
Summary: When Emeril used dependence information, it
found valid solutions 4x more often than Emeril without it.

Overview — The next component we tested was the use of
predicate dependence information in our optimization prob-
lem. As described in Section 4.3, this information is needed
for most real-world datasets that have some dependencies
amongst its data; If the data are completely independent,
then no dependence information is needed.

Results — Table 3 shows the results from using Emeril
with dependence information (Emeril, 10% Dep Info) and
without it (NoDep) on all of our synthetic datasets. When
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Table 3: Ratio of solutions found for Emeril with and without
prioritized dependence information (greedy search disabled).

5% Dep Info 10 % Dep Info

Experiment NoDep Rand Emeril Rand Emeril

Predicates (1k – 5k) 0.00 0.70 0.77 0.72 0.82
Rows (100k – 1m) 0.00 0.14 0.85 0.27 0.95
Corr. (0.0 – 1.0) 0.38 0.30 0.56 0.24 0.62

including dependence information, Emeril found valid so-
lutions 79% of the time, whereas NoDep only found 16%
of valid solutions—a 4x improvement when including de-
pendence information. NoDep is unable to find any valid
solutions for the varied-predicates datasets nor the varied-
rows datasets. With the varied-correlation datasets, NoDep
does great with lower levels of correlation, finding solutions
70% of the time for correlations from 0.0 – 0.5. This is due
to the independence assumption holding, at least within our
target bounds’ margin of error.

6.5.3 Prioritizing of Dependence Information
Summary: Emeril used with prioritization of dependence
information found valid solutions much more often than
Emeril used without it.

Overview — In this experiment, we tested the benefit of
Emeril’s prioritization of predicate dependence information
in our optimization model. We tested this by disabling our
Greedy-hybrid search and replacing Emeril’s method for
including dependence information with a process that ran-
domly selected 5% and 10% of the unordered dependence
information (Rand, 5% and 10% Dep Info respectively).
We compared this with Emeril using the top 5% and 10%
of dependence information.

Results — Table 3 summarizes these results. When com-
paring each method using 5% of the dependence informa-
tion, Emeril found solutions much more often than Rand
on each of the varied data experiments. Rand still per-
formed relatively well on some experiments; In the predicate-
based experiment, as the number of predicates grow, there
is a greater chance of a valid answer being included by ran-
dom, especially if there are multiple valid solutions in a
dataset. This is why Emeril includes a small percentage
of randomly-sampled dependence information in its model.
In the correlation-based experiment, the independence as-
sumption again allows Emeril to find some valid solutions
without prioritized dependence information. When compar-
ing the two methods using 10% of the dependence informa-
tion, we see similar results: Emeril found valid solutions
much more often than Emeril used without it.

7. RELATED WORK
There are several areas of research that are related to our

work, which we discuss below.

Data Preparation — Much research has been done on im-
proving the ease of data preparation, or transforming data
for some downstream analysis, for users. This includes help-
ing users with data extraction [48, 13, 15], wrangling [43, 44,
45, 23, 25]; and interactive systems [28, 17]. Our work is a
subtype of automatic program generation like Trifacta [17]
or Foofah [25], but in our case, the user guides program
generation by providing constraints around desired outputs,
instead of with programming-by-demonstration or concrete
output tuples.

Reverse Data Management — In reverse data manage-
ment [34], an action is taken on an input dataset to achieve
a certain effect, such as in how-to querying [35], where the
goal is to produce an output that satisfies one or more con-
straints. Tiresias [35] similarly uses constrained optimiza-
tion, but, as we show in Section 3, applying their approach to
our problem becomes impractical with the growth of dataset
size or candidate transformation space.

Why-Not Provenance — In why-so and why-not query-
ing, users want to understand why query results are as they
are, such as why particular tuples are included or miss-
ing from a result. Methods include finding hypothetical
database modifications that yield a desired result [24], ex-
amining the query execution graph for a problematic ma-
nipulation [14], and modifying the original query to include
a desired result [42]. Our work is similar to ConQueR [42]
in that we suggest query modifications, but our goal is to
alter the distribution of a particular column, which likely
requires removing tuples in addition to adding them. Fur-
ther, ConQueR assumes inequality predicates when determin-
ing how to include why-not tuples, which would further limit
its ability to help with our problem.

Query Formulation and Refinement — Query formu-
lation is a well-studied problem in database literature, in
which the goal is to help users formulate or revise queries
so that generated results better match users’ desired re-
sults. Past work has used query logs [29] and the data being
queried [47] to aid with this formulation. Our work has the
similar goal of aiding users with query refinement, except
we ask the users for explicit constraints, which we use to
formulate a transformation program.

Constraint-Based Querying — Constraint-based query-
ing systems, such as ConQueSt [12] and our work with
RaccoonDB [8, 9, 10], provide custom query languages for
defining constraints, which are used to find relevant results.
Our work and RaccoonDB both use code- and signal-based
constraints to find a small subset of items in a large pool of
candidates. However, RaccoonDB’s constraints are less
expressive than Emeril and assume a PCA-based pipeline
that makes transformation program generation substantially
easier than in the explain-and-repair task.

8. CONCLUSION AND FUTURE WORK
In this work, we present a novel interaction model and

algorithm for explain-and-repair data transformation sys-
tems, in which users provide constraints on their desired
transformation program and the data it produces, and the
system finds the best match for both. We show that our
constrained-optimization-based algorithm for matching user
constraints outperforms the previous state-of-the-art solu-
tion. Future work includes expanding beyond filter-based
transformations and allowing for near real-time interactive
exploration of the tradeoff between different constraints.
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