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ABSTRACT
We present the KOKO system that takes declarative information ex-
traction to a new level by incorporating advances in natural lan-
guage processing techniques in its extraction language. KOKO is
novel in that its extraction language simultaneously supports con-
ditions on the surface of the text and on the structure of the depen-
dency parse tree of sentences, thereby allowing for more refined
extractions. KOKO also supports conditions that are forgiving to
linguistic variation of expressing concepts and allows to aggregate
evidence from the entire document in order to filter extractions.

To scale up, KOKO exploits a multi-indexing scheme and heuris-
tics for efficient extractions. We extensively evaluate KOKO over
publicly available text corpora. We show that KOKO indices take up
the smallest amount of space, are notably faster and more effective
than a number of prior indexing schemes. Finally, we demonstrate
KOKO’s scalability on a corpus of 5 million Wikipedia articles.
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1. INTRODUCTION
Information extraction is the task of extracting structured data

from text. Information extraction systems typically try to extract
named entities (e.g., business or people names) or facts in the form
of triples (e.g., (FRANCE, CAPITAL, PARIS)). Systems for infor-
mation extraction fall into two main categories. The first category
is machine-learning based systems, where a significant amount of
training data is required to train a good model for performing a spe-
cific extraction task, such as extracting company names or company
CEOs. The second category consists of rule-based systems which
employ a declarative language for specifying patterns that identify
the desired data in the text. Despite advances in machine learning,
rule-based systems are still a popular choice for information ex-
traction among companies [13]. This is because machine-learning
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models tend to be opaque, while rules/queries of rule-based sys-
tems can be analyzed and used to explain the results obtained. For
many machine learning models, preparing an annotated corpus is
typically the most expensive and time consuming process [33]. Be-
cause rule-based systems do not require training data, they are ap-
plicable more broadly and can also be used as a tool for obtaining
an initial annotated corpus for weak supervision.

We describe the KOKO system that provides a language for query-
ing data and for rule-based extraction of structured information (a
relation of text and different entity types) from text. KOKO takes
declarative information extraction to a new level by incorporating
advances in natural language processing techniques into the extrac-
tion language. KOKO supports the new features with efficient and
scalable database-style querying and can be used for quickly ob-
taining insights to a corpus.

We illustrate the features of KOKO with examples. The main
construct used in extraction languages and supported also in KOKO
is regular expressions over the surface text of a sentence with con-
ditions on the POS (part of speech) tags [32] of the words. For
example, suppose we want to extract foods that were mentioned
as delicious in text. For the sentence “I ate delicious cheese cake”,
it would suffice to specify an extraction pattern that looks for the
word “delicious” preceding a noun that is known to be in the cate-
gory of foods. However, specifying a regular expression that would
extract correctly from the sentence “I ate a delicious and salty pie
with peanuts” is trickier because the word “delicious” does not im-
mediately precede the word “pie”, and it also precedes the word
“peanuts” which were not deemed delicious. In the sentence “I ate
a chocolate ice cream, which was delicious, and also ate a pie” the word
“delicious” comes after “ice cream” which makes the extraction even
more challenging.

To address such challenges, KOKO supports patterns that exploit
the semantic structure of text sentences. This structure is repre-
sented as dependency parse trees (or dependency trees in short).
In recent years, it has become possible to efficiently create depen-
dency trees for large corpora [11, 22, 39]. The dependency tree of
our last example is shown in Figure 1. The dependency tree shows
that the word “delicious” is in the subtree of the direct object of the
verb “ate”, which is the “chocolate ice cream”. As we explain later,
this intuitively means that “delicious” refers to “chocolate ice cream”.
Hence, a pattern over the dependency tree that looks for the word
“delicious” in the subtree of a noun in the food category could pro-
vide the correct extractions.

While the idea of specifying extractions by leveraging depen-
dency trees has been explored in the past [37, 43], KOKO is novel
in that it provides a single declarative language that combines the
surface-level patterns with the tree patterns and uses novel indexing
techniques to scale to large corpora.
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Dependencies 

Parse labels 
Tokens 
POS tags 

nsubj root det nn nn dobj p nsubj rcmod acomp p cc advmod conj det dobj p 
I ate a chocolate ice cream , which was delicious , and also ate a pie . 

PRON VERB DET NOUN NOUN NOUN PUNCT DET VERB ADJ PUNCT CONJ ADV VERB DET NOUN PUNCT 

Entity type: OTHER Entity type: OTHER 

Figure 1: A sentence and its dependency tree annotated with parse labels [27], tokens, POS tags [32], and entity types. This dependency tree is
generated from Google Cloud NL API [22].

The final element of the KOKO language allows for extractions
that accommodate variation in linguistic expression and aggrega-
tion of evidence. Consider the task of extracting cafe names from
blog posts. Cafe names vary quite a bit, and it is nearly impossible
to write rules that would extract them accurately. On the other hand,
it may be possible to combine evidence from multiple mentions in
the text to extract cafe names with high confidence. For example,
if we see that an entity employs baristas and serves espresso, we
might infer that it is a cafe. However, there are many linguistic
variations on how these properties are expressed, such as serves up
delicious cappuccinos, or hired the star barista. KOKO includes a
semantic similarity operator that retrieves phrases that are linguis-
tically similar to the one specified in the rule. Semantic similar-
ity can be determined using paraphrase-based word embeddings.
KOKO attaches a confidence value to the phrases matched by the
similarity operator, and these confidence values can be aggregated
from multiple pieces of evidence in a document. For example, if
we see that an entity serves great macchiatos and recently hired a
barista we may have enough evidence that it is a cafe.

In summary, our contributions are the following.
• We present the KOKO query/extraction language that combines

patterns on the text surface, patterns on the semantic structure of
sentences, a phrase similarity operator that accounts for linguis-
tic variation in text, and the ability to aggregate evidence from
different parts of the text.
• We describe heuristics and a novel multi-indexing scheme for

quickly pruning irrelevant sentences therefore enabling KOKO
to support extraction at scale. Our multi-indexing scheme com-
prises of a word index, and indices of different metadata of de-
pendency trees.
• We have open-sourced part of KOKO’s code and we plan to make

the full KOKO code available.
• We demonstrate KOKOs efficiency and effectiveness through a

suite of experiments on public text corpora. We show that KOKO
indices take up the least amount of space, are at least 7 times
faster and 1.7 times more effective than some prior indexing
techniques. Moreover, through its collective evidence-based ex-
traction method, KOKO is up to 3 times better in terms of preci-
sion and recall than other techniques for extracting cafe names.
Finally, we demonstrate that KOKO scales up with experiments
on 5 million Wikipedia articles and KOKO’s performance is lin-
ear in the number of articles.

Outline of paper We overview the KOKO language in Section 2
before we describe the indices we built in Section 3 and show how
we evaluate a KOKO query in Section 4. We describe related work
in Section 5, demonstrate the efficiency and scalability of KOKO in
Section 6 before we conclude and discuss future work in Section 7.

2. THE KOKO LANGUAGE
The KOKO language supports three kinds of constructs: (1) con-

ditions on the surface text with regular expressions, (2) conditions

on the hierarchical structure of the dependency tree, and (3) linguis-
tic similarity conditions whose results can be aggregated across the
entire document. We describe the first two constructs in Section 2.1
and the third in Section 2.2.

Preprocessing the input: The input to a KOKO query is a text
document. We first process the document with a natural language
parser (e.g., spaCy [39] or Google NL API [22]). The preprocess-
ing transforms the document into a sequence of sentences, each of
which consists of a sequence of tokens. Each token carries a num-
ber of annotations, such as the POS tag, parse label, and a reference
to the parent in the dependency tree. We refer to a sequence of con-
secutive tokens in a sentence as a span.

2.1 Surface and hierarchy conditions
To support conditions on the surface text and the dependency

tree, variables in a KOKO expression can be bound to two kinds
of terms. Node terms refer to the nodes in the dependency tree of
the sentence, and span terms refer to spans of text. Given a node
x, x.subtree refers to the span that includes all the words in the
subtree of x. Given a node x, we also use x to refer to the span that
includes only the text of the word x.

The output of a KOKO expression is a bag of tuples. The values
in the tuples can be either nodes or spans. The tuples to be returned
are defined by the extract clauses (that correspond roughly to the
select and where clauses in SQL). We now describe how to con-
struct terms and specify conditions on terms and variables.

Node terms: Node terms are defined using XPath [46]-like syn-
tax. A path is defined with the “/” (child) or “//” (descendant) axes
and each axis is followed by a label (a parse label, POS tag, token,
wildcard (*), or an already defined node variable). The expression
a = //verb binds the node variable a to verb nodes which may oc-
cur arbitrarily deep under the root node. The node variable b =
a/dobj binds dobj nodes directly under nodes of a to b. The path
b//“delicious” binds a node with token “delicious” that may occur
arbitrarily deep under b to variable c. Observe that the condition
touches upon different annotations: verb is a POS tag, dobj is a
parse label, while “delicious” is a word.

Each label can be associated with conditions, which are specified
in [...], such as a regular expression [@regex = 〈regular expression〉]
or [@pos=“noun”], which states that the POS tag of the current
node must be equal to noun. Hence, writing /root//noun is the
same as writing /root//*[@pos=“noun”], where ∗ denotes an ar-
bitrary label and the POS tag of the label must be noun. Multiple
conditions stated within [...] are separated by “,”. For example,
[@pos=“noun”, etype=“Person”] states that the POS tag is noun
and the entity type is Person.

Span terms: A span term x is constructed with the syntax x =
〈atom〉1+. . .+〈atom〉k, where k ≥ 1 and 〈atom〉i is one of the
following: a path expression as described above, a node variable, a
sequence of tokens, x.subtree, or an elastic span ∧ (which denotes
zero or more tokens) or with conditions ∧[...]. For ∧, KOKO also
allows the specification of regular expression over the span or the
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minimum and/or maximum number of tokens for the span. For
example, x= //verb + a + b.subtree + ∧[etype=“Entity”] defines x to
bind to a span that must begin with //verb, followed immediately by
the span of a, the span given by b.subtree, and the span that defines
an entity in this order. A span term has type Str (String). The output
of a Koko query also serializes all entity types into strings.
The Extract clause: The extract clause is where variables are de-
fined. The defined variables also need to satisfy certain conditions:
typed conditions, hierarchical structural conditions over the depen-
dency tree and/or horizontally over the sequence of tokens. Users
can specify constraints among the variables outside a block using
the in or eq constructs. For example, “x in y” requires that the to-
kens of x are among the tokens of y, while “x eq y” requires that
the two spans given by x and y are identical.

EXAMPLE 2.1. The small example query below extracts pairs
(e,d) where e is an entity type and d is a string type. The variables
a, b, c, and d are defined within the block /ROOT:{ ...} where the
paths are defined w.r.t. the root of the dependency tree. The vari-
ables a, b, and c are node terms while d and e (defined in the first
line) are span terms. Outside the block, “(b) in (e)” is a constraint
between b and e which asserts that the dobj token must be among
the tokens that make up entity e.

extract e:Entity, d:Str from input.txt if
(/ROOT:{

a = //verb, b = a/dobj,
c = b//“delicious”, d = (b.subtree)

} (b) in (e))
For the sentence in Figure 1, there is only one possible set of

bindings for the variables in this query: a = “ate”, b = “cream”, c =
“delicious”, d = “a chocolate ice cream, which was delicious”, and e =
“chocolate ice cream”. The query returns the pair (e,d). 2

2.2 Similarity and aggregation conditions
In the satisfying clause, we specify additional constraints on the

variables. Some of these constraints are boolean and some are ap-
proximate and return a confidence value. We use an example of
extracting cafe names from authoritative blog posts in this section.

The satisfying clause contains a disjunction of boolean or de-
scriptor conditions. Boolean conditions, which include conditions
specified with regular expressions, evaluate to true or false. For ex-
ample, x “, a cafe” requires that x is immediately followed by the
string “, a cafe”, and is a sufficient condition for determining that x
is the name of a cafe. Other types of conditions using matches or
contains are also allowed (see Section 4.4.1).
Descriptors A descriptor condition evaluates to a confidence value.
There are two types of descriptor conditions. The first is of the
form str(x) similarTo 〈descriptor〉which returns how similar x is to
〈descriptor〉. The second form is x [[descriptor]] (or [[descriptor]]
x) which returns how similar descriptor is to the span after x (or
before x). Note that the distance between x and the terms similar
to descriptor affects the confidence returned for the similarity.

Every condition is associated with a weight between 0 and 1,
which specifies how much emphasis to place on the condition when
a match occurs. Upon receiving the query, each descriptor is ex-
panded to words semantically close to it using a paraphrase embed-
ding model. In our example, entities that serve coffee could also be
considered cafes. However, instead of specifying all different ways
to capture the meaning that a cafe sells coffee, the user can spec-
ify the condition (x [[“serves coffee”]]). The expansion will yield
similar phrases such as “sells espresso” and “sells coffee”. Although
the expansion is not always perfect, descriptors enable users to be
agnostic to linguistic variations to a large extent.1

1One can also supply a dictionary of different types of coffee to
KOKO to guide the expansion.

Aggregation For every sentence where the extract clause is sat-
isfied, KOKO will search the text corpus to compute a score for
every satisfying clause. It does so by computing, for every sen-
tence, a score that reflects the degree of match according to the
conditions and weights in the satisfying clause and then aggre-
gating the scores of the sentences. For every variable, if the ag-
gregated score of the satisfying clause for that variable from the
collective evidence passes the threshold stated, then the result is re-
turned. We give a detailed description of the aggregation semantics
in Section 4.4.

EXAMPLE 2.2. The query below has an elaborate satisfying
clause (with empty extract clause). The intent of the query is to ex-
tract cafe names and considers all entities as candidate cafe names.
However, only those that pass the satisfying x clause will be re-
turned as answers.

extract x:Entity from “input.txt” if ()
satisfying x

(str(x) contains “Cafe” {1}) or
(x “, a cafe” {1}) or
(x [[“serves coffee”]] {0.5})

with threshold 0.8
excluding (str(x) matches “[Ll]a Marzocco”)

The first boolean condition checks whether the name of the entity
contains “Cafe”. It also looks for evidence in input.txt that the name
is followed by the string “, a cafe”. In addition, it will search the text
for evidence that the name is followed by a phrase that is similar
to “serves coffee”. Such descriptor condition is crucial for matching
text that may not strictly be written as “serves coffee”. The first 2
conditions have equal weights of 1, and the last one 0.5. As long
as the confidence of x passes the threshold 0.8 and does not match
the string “La (or la) Marzocco” (in the excluding condition), which
refers to an espresso machine manufacturer, x will be returned. 2

To summarize, a basic KOKO query has the form, where there
can be up to one satisfying clause for each output variable.

extract 〈output tuple〉 from 〈input.txt〉 if
〈variable declarations, conditions, and constraints〉

[satisfying〈output variable〉
〈conditions for aggregating evidence〉

with threshold α]
[excluding 〈conditions〉]

Note that KOKO can distinguish sentences with the same syn-
tax but different semantics by writing constraints in the satisfying
clause. Please refer to our technical report [44] for details.

3. INDEXING THE TEXT
To process queries efficiently, it is crucial that KOKO maintain

several indexes on the text. We describe the indices below and our
experiments will demonstrate that they enable us to speed up query
processing by at least a factor of 7. The indices are built offline or
created when the input text is first read. Indices can be persisted for
subsequent use.

KOKO has two types of indices: inverted index and hierarchy
index. We create inverted indices for words and entities and hier-
archy indices for parse labels and POS tags. Unlike indices of [7,
20] our hierarchy index is a compressed representation over depen-
dency structure for parse labels and POS tags. By merging identical
nodes, our hierarchy index reduces more than 99.7% of the nodes
for both parse labels and POS tags. Hierarchy indices are therefore
highly space efficient and enables fast searching.

EXAMPLE 3.1. The sentence in Figure 1 has the following sen-
tence ids and token ids, which are written above the tokens.

sid: 0
0
I

1
ate

2
a

3
chocolate

4
ice

5
cream 6,

7
which

8
was

9
delicious 10,

11
and

12
also

13
ate

14
a

15
pie 16.
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Another example sentence is shown below. The sentence id and
token ids are depicted after the sentence.

nsubj root det amond dobj dobj nsubj rcmod prep det nn pobj p 
Anna ate some delicious cheesecake that she bought at a grocery store . 
NOUN VERB DET ADJ NOUN DET PRON VERB ADP DET NOUN NOUN PUNCT 

Dependencies 

Parse labels 
Tokens 
POS tags 

Entity type: OTHER Entity type: LOCATION Entity type: PERSON 

sid: 1
0

Anna
1

ate
2

some
3

delicious
4

cheesecake
5

that
6

she
7

bought
8
at

9
a

10
grocery

11
store 12.

3.1 Inverted indices
KOKO has two inverted indices: word index and entity index.

One can also have more refined entity indices, such as Person index,
Organization index and so on but we do not describe them here.

A word index maps words to sentences that contain them along
with relevant metadata. Specifically, every word in the index points
to a list of quintuples (x,y,u-v,d): the sentence id (x) and token
id (y) of the word of interest in the sentence, the first (u) and last
(v) token id of the subtree rooted at the current token based on the
dependency tree, and the depth (d) of the token in the dependency
tree. An entity index is defined similarly. Here, we track the sen-
tence id and the leftmost and rightmost token ids, corresponding
to the span of the entity name in the sentence. Like the word in-
dex, the entity index facilitates quick access to the locations of all
sentences where this entity occurs.

EXAMPLE 3.2. Part of the word index and entity index based
on the sentences in Figure 1 and Example 3.1 are shown below.

word list of quintuples
I (0,0,0-0,1)
ate (1,1,0-12,0), (0,1,0-16,0)
delicious (1,3,3-3,2), (0,9,9-9,3)
cream (0,5,2-9,1)

entity list of
triples

cheesecake (1,4-4)
grocery store (1,10-11)

choc. ice cream (0,3-5)

Since “ate” (sid=1, tid=1) is the root of the dependency tree of
the second sentence, the left and right reachable token ids corre-
spond to the first and last token of the sentence, which are 0 and 12
respectively, and the depth of this token is 0. The word index facil-
itates quick access to the locations of all sentences where this word
occurs and allows one to check for parent-child relationship. For
example, if two tokens tp and tc satisfy the following condition:
tp.x = tc.x ∧ tp.u ≤ tc.u ∧ tp.v ≥ tc.v ∧ tp.d = tc.d + 1, then
we know that tp is the parent of tc. Existing indexing techniques
such as [7, 20] for the constituency-based parse trees also contain
a similar set of information to index parse labels. 2

3.2 Hierarchy indices
A hierarchy index is a compact representation of all dependency

trees, which provides fast access to the dependency structure of all
sentences. A hierarchy index is constructed by merging identical
nodes of dependency trees of all sentences together. Starting at the
root of all dependency trees, children nodes with the same label are
merged, and then for each child node, all children nodes with the
same labels are merged and so on. Hence, by construction, every
node in a hierarchy index has a set children nodes with distinct
labels. Consequently, every node of the index can be identified
through a unique path given by the sequence of labels from the
root node to that node. Every node is annotated with a posting list,
which tracks tokens of sentences that have the given path.

KOKO has two hierarchy indices: the hierarchy index for parse
labels (PL index) and the hierarchy index for POS tags (POS index),
which are constructed by merging dependency trees based on parse
labels and, respectively, POS tags.

Indices, parse 
trees, text 
corpus on 

DBMS

Koko query: <extract ... from … if …satisfying…>

Results

Normalize Query

Koko Query Evaluation Engine

 Decompose Paths &
Lookup Indices

root

pobj prep

prep dobj … 

… 

Generate Skip Plan

“my”

“happy”

… … 

“today”

… 

Normalized paths, 
constraints between variables

Bindings for variables

Aggregate

Skip lists

Executed once 
for every relevant 
sentence

On disk versionText corpus

Parse text &
 build indices

Parsed trees/indices

Preprocessing

Figure 2: Overview of KOKO system.

EXAMPLE 3.3. The table below shows part of the posting list
for the PL index where each node is identified by its unique path
from the root to that node. A posting list is a list of quintuples,
identical to what was stored in the word index. For readability, we
have also annotated each quintuple with the word it represents.

Observe that both nn nodes directly under the dobj node of the
sentence in Figure 1 have been merged. Hence the posting list asso-
ciated with /root/dobj/nn contains both “chocolate” and “ice”. Since
the root of every dependency tree has parse label root, there is a sin-
gle PL index for all dependency trees based on parse labels starting
from the root label. However, this is not the case for POS tags. We
assume there is a dummy node with the same dummy label above
the root of every dependency tree in this case to merge all depen-
dency trees based on POS tags into one POS index.

node posting list
/root ate(1,1,0-12,0), ate(0,1,0-16,0)
/root/nsubj Anna(1,0,0-0,1), I(0,0,0-0,1)
/root/dobj cheesecake(1,4,2-11,1), cream(0,5,2-9,1)
/root/dobj/det some(1,2,2-2,2), a(0,2,2-2,2)

A hierarchy index is similar to a strong dataguide [21], which is
a structural summary of semistructured data. As already pointed
out in [21], a strong dataguide can be used as a path index for fast
access to elements of that path. To the best of our knowledge, how-
ever, this is the first use of different hierarchy indices as a compact
representation of dependency trees to speed up query processing
over text data. It is also the first application that involves simul-
taneous access to hierarchy indices and inverted indices to process
queries that involve different types of conditions.

4. EVALUATING KOKO QUERIES
The basic workflow of the KOKO system is depicted in Figure 2.

The input to the KOKO engine is a query and a text corpus. Initially,
we parse the text corpus to obtain the dependency trees and create
the PL index, POS index, word index, and entity index. We use
a relational database management system (PostgresSQL), to store
the parsed text and the constructed indices. The inverted indices
have flat structure and therefore, can be directly stored in relational
tables. We use Closure tables [25] to represent the hierarchy index
which we will describe in more detail in Section 6.

Next, we describe the workflow of KOKO system for evaluating
a given query, and in particular, how the indices and heuristics are
exploited to achieve efficiency. There are 4 main processing steps:

1. Normalize query. The path expressions in the extract clause
are first normalized and conditions among variables are explicitly
stated in preparation for subsequent steps.

2. Decompose paths and lookup indices. Every path expression
from above is decomposed into one or more paths so that each de-
composed path can be used to access an index. The results from
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all accesses to indices are then joined, as needed, to obtain a can-
didate set of sentences that should be considered next.

3. Generate skip plan. This module applies a heuristic on “hor-
izontal” conditions to identify a set of variables whose evaluation
can be first skipped. The bindings for the skipped variables are
then derived and constraints are checked.

4. Aggregate. The conditions of satisfying clauses are evaluated
across the text to obtain the final result.

4.1 Normalize query
The path expressions in the extract clause are first expanded

into their absolute form and constraints among variables are ex-
plicitly stated. For example, the path expressions of node variables
a, b, c, d in Example 2.1 will be expanded as follows:

a = //verb, b = a/dobj 7−→ b = //verb/dobj, d = b.subtree
c = b//“delicious” 7−→ c = //verb/dobj//“delicious”
In addition, two constraints (a parentOf b) and (b ancestorOf c)

will be added.

EXAMPLE 4.1. To exemplify further, consider the KOKO query,
the corresponding variables and path expressions, and the derived
constraints shown below:

Query: extract a:Str,b:Str,c:Str from input.txt if (
/ROOT:{

a = Entity, b = //verb[text=“ate”],
c = b/dobj, d = c//“delicious”,
e = a + ∧ + b + ∧ + c })

Variables & path expressions: Constraints:
a=Entity, b=//verb[text=“ate”] b parentOf c, c ancestorOf d,
c=//verb[text=“ate”]/dobj a leftOf v1, v1 leftOf b,
d=//verb[text=“ate”]/dobj//“delicious” b leftOf v2, v2 leftOf c.
v1 = ∧, v2 = ∧

The last condition in the query states that the span consisting
of a, b, and c must occur in this order in the sentence and there
can be zero or more tokens between a and b and between b and c.
After normalizing the query, variables v1 and v2 are automatically
assigned for tracking the respective ∧, and associated adjacency
constraints are also derived. 2

4.2 Decompose path and lookup indices
This module (DPLI for short) decomposes paths from the previ-

ous step to access the indices (see Algorithm 1). DPLI first looks
for variables defined as entities and returns the posting list by look-
ing up the entity index. For example, variable a from Example 4.1
will bind to the union of all posting lists of all entities in the index.

4.2.1 Decompose paths
Next, among the variables defined by paths, DPLI looks for paths

that are not dominated by other paths and only decomposes undom-
inated paths to access the indices.

A path p is dominated by a path q if (1) p without conditions is a
prefix of q without conditions, and (2) every condition of a label in
p is identical to the condition of the corresponding label in q mod-
ulo order of conjunction. A path is dominant if it is not dominated
by any other path. In Example 4.1, d is the only dominant path.

We decompose only dominant paths for index lookup. This is
because by definition, for any given path r along a dominant path
p, the nodes with path r which have descendants among the nodes
of p are a subset of the nodes of r. Hence, the nodes of the dom-
inant path can be used to find the ancestor nodes that satisfy the
conditions for all of its dominated paths.

For every dominant path, we decompose it into one or more paths
so that each decomposed path can be used to access a specific type

Algorithm 1: Decompose paths and lookup indices
Input : normalized query, indices
Output: candidate bindings for each variable
bindings = empty;
foreach variable x defined as entities do

bindings[x] = union of posting lists from accessing entity index;

dom paths = set of dominant paths in query;
pbindings = empty;
foreach p in dom paths do

Decompose p into parse label path p1, POS tag path p2, and word
path w if possible (details in text).
P1 = lookup PL index with p1; union the resulting posting lists;
P2 = lookup POS index with p2; union the resulting posting lists;
Q = lookup word index with words in w and join results;
pbindings[p] = join P1, P2, and Q;

foreach variable x defined as a path do
Let p be the dominant path of x;
bindings[x] = pbindings[p];

return bindings;

of index. Every dominant path p is decomposed into up to 3 paths:
(1) a parse label path, (2) a POS tag path, and (3) a word path.
Paths from (1), (2), and (3) are used to access the PL index, the
POS index, and the word index respectively before the results are
“joined” to obtain a set of candidate bindings for further processing.
Parse label, POS tag, and word paths Assume a path p has the
form #l1#...#lm, where “#” denotes the axis “/” or “//”. A parse
label path p1 (resp. POS tag path p2; word path w) is extracted
from p by replacing every li, where 1 ≤ i ≤ m, with ∗ if li is not
a parse label (resp. not a POS tag; not a word).

EXAMPLE 4.2. Consider the normalized variable path
d = //verb[text=“ate”]/dobj//“delicious” in Example 4.1, we derive
the following parse label, POS tag, and word paths:

Parse label path (p1): //*/dobj//*
POS tag path (p2): //verb/*//*
Word path (w): //“ate”/*//“delicious” 2

4.2.2 Lookup indices and join
Lookup PL/POS index and union posting list With the parse la-
bel path p1 and POS tag path p2, we lookup the PL index and POS
tag index with p1 and p2 respectively. The resulting posting lists
are unioned in each case and we denote the unioned results by P1

and P2 respectively. For each word along the word path w (from
left to right), we access the word index and join the posting lists
obtained as we traverse the words on the word path to ensure the
ancestor-descendant relationships among the words are enforced.

EXAMPLE 4.3. Continuing with Example 4.2, the PL index of
Section 3.2 is accessed with p1 to obtain the following set P1 of
posting lists (only partially shown). The result P2 of accessing the
POS index is not shown.

/root/dobj/det some(1,2,2-2,2), a(0,2,2-2,2)
/root/dobj/amod delicious(1,3,3-3,2)
/root/dobj/nn chocolate(0,3,3-3,2), ice(0,4,4-4,2)

Lookup word index and join posting list This description refers
to the computation of Q in the 2nd for loop of Algorithm 1. We
join Q1 with Q2 as follows. For every (x1,y1,u1-vl,l1) ∈ Q1 and
(x2,y2,u2-v2,l2) ∈ Q2, we return (x2,y2,u2-v2,l2) as the join of
Q1 with Q2 if x1 = x2, u1 ≤ u2, v1 ≥ v2, and l2 ≥ l1 + 2.
The condition x1 = x2 ensures that the words are from the same
sentence. The second and third conditions ensure that the former
word is an ancestor of the latter in the dependency tree.

If there are more words along the word path, the current post-
ing list will be joined with the next posting list, which is obtained
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by accessing the word index with the next word along the word
path. This process repeats until every word along the path has been
considered. The final result is a set of quintuples that respect the
ancestor-descendant relationship as specified in the word path.

EXAMPLE 4.4. For the word path //“ate”/*//“delicious”, the
word index is first accessed with “ate” (the leftmost word of w)
to obtain Q1 = {(1,1,0-12,0), (0,1,0-16,0)} and then accessed with
“delicious” to obtain Q2 = {(1,3,3-3,2), (0,9,9-9,3)}. After this, we
join Q1 with Q2. The word path allows us to conclude that “deli-
cious” is at least at depth 2 higher than “ate”, and so we have the
condition l2 ≥ l1 + 2. The join of Q1 and Q2 for this word path is
{(1,3,3-3,2), (0,9,9-9,3)}. This posting list will later be joined with
the posting lists from PL index and POS tag index respectively. 2

Join of posting lists from all indices This description refers to the
computation of pbindings in the 2nd for loop of Algorithm 1. After
we obtain P1, P2, and Q, we first join P1 with P2 to obtain a single
list P , which is computed as follows. For every (x1,y1,u1-v1,l1)
∈ P1 and (x2,y2,u2-v2,l2) ∈ P2, the quintuple (x2,y2,u2-v2) is
returned if x1 = x2 and y1 = y2. In other words, we look for
quintuples that refer to the same token in this join.

Finally, we join P and Q. The join of P and Q depends on two
cases. In our running example, the last element of the word path
is a word token (i.e., “delicious”). So we look for quintuples in P
and Q that refer to the same token of the same sentence. In other
words, we return (x1,y1,u1-v1,l1) if x1 = x2 and y1 = y2. If the
last element is not a word token (e.g., //“ate”/*/*) then we ensure
that the quintuple of Q an ancestor of the quintuple of P with the
appropriate depth requirements and the quintuple of P is returned
as a binding for the path p. The join condition for this example is
expressed as x1 = x2 and u2 ≤ u1 and v2 ≥ v1 and l2 + 2 = l1
and we return (x1,y1,u1-v1,l1) if the conditions are satisfied.

After the join is completed, the final result returned defines the
candidate bindings for each variable according the bindings of its
dominant path. (See last for loop of Algorithm 1.)
Discussion One case that is not described in the algorithm is what
happens when the path used to access an index does not exist in
the index. If this happens, the evaluation immediately ceases and
returns with an empty answer.

Otherwise, the final join result is a set of quintuples that refers to
tokens whose paths satisfy every decomposed path of p. Observe
that if a token of a sentence has a path p′ in the dependency tree
that satisfies p, then p′ must satisfy every decomposed path of p.
However, the converse may not always hold. In general, there may
be tokens of sentences whose path p′ satisfy every decomposed
path of p but p′ does not satisfy p. Hence, the resulting set of
bindings for each path p that are returned are complete but it may
still contain results that are not part of the answers. The Generate
Skip Plan will include a validation step to ensure that the wrong
answers are not returned.

4.3 Generate skip plan
With the candidate bindings for every variable, we are now ready

to generate a plan to compute candidate output tuples. For every
sentence where there are candidate bindings, a plan is generated
and executed (see the green box in Figure 2).

By now, the set of sentences that are considered are narrowed
down to only the sentences of quintuples that are bound to some
variables in the previous step. If the extract clause is empty, then
all sentences will be considered.

The main idea behind this step is to avoid iterating over variables
that have many bindings and instead, rely on the bindings of other
variables to determine possible bindings for those variables. This

Algorithm 2: Generate Skip Plan
Input : normalized query, bindings, sid s
Output: a list of variables to skip for each horizontal condition
skip lists = empty;
t = number of tokens in sentence s;
foreach horizontal condition c in query do

cost = empty;
foreach variable v in condition c do

cost[v] = t(t+ 1)/2 if v is ∧. Otherwise,
cost[v] = |bindings[v][sid = s]|

sorted cost = sort cost in descending order;
foreach v in sorted cost do

vl = left variable of v in c;
vr = right variable of v in c;
if vl and vr are not in skip lists[c] then

skip lists[c].append(v)

return skip lists

way, the overall number of iterations over all variables is likely to
be reduced. For example, a naive implementation of the query in
Example 4.1 will require at least 6 nested loops, one for each vari-
able a, b, c, d, v1, and v2. where the last two variables were used
to represent the respective ∧ in the last condition. Some variables
such as v1 is expensive to iterate over as we need to consider all
possible spans. Instead, v1 can be easily determined once a and b
are determined. Hence, v1 can be skipped initially.

This module (GSP) selects variables to be skipped based on an
estimate on the number of bindings they have. To decide which
variables to skip initially, GSP exploits the existence of horizontal
conditions, which are conditions in the extract clause of the form x
= e1 + e2 + ... + em or a condition of the form (e1+...+em) eq (x).
Here, x is a variable, m ≥ 1, and ei is a variable reference, or the
subtree of a previously defined variable or ∧, or a path expression.
For example, e = a + ∧ + b + ∧ + c of the query in Example 4.1 is
a horizontal condition.
Cost model We adopt a simple cost model where the cost of eval-
uating a variable is proportional to the number of bindings for that
variable. We estimate the cost of a variable x as the number of
bindings in bindings[x]. The cost of x w.r.t. a sentence with sid
s is denoted as |bindings[x][sid = s]|, the number of bindings in
|bindings[x]| with sentence id equal s.

EXAMPLE 4.5. For example, suppose the DPLI module returns
the bindings (0,3,-), (1,9,-), (23,5,-), (23,10,-), (35,3,-), ... for the
dominant path //verb/dobj//“delicious” of Example 4.1 (we show
only the first two components of the quintuples). The estimated
cost of evaluating the variable d = c/“delicious” for the sentence
with sentence id 23 is 2 while the estimated cost for sentence with
sentence id 0 is 1. On the other hand, the variable v1 which rep-
resents ∧ will have an estimated t(t + 1)/2 number of spans to
consider where t is the number of tokens in the current sentence. 2
A greedy algorithm As described in Algorithm 2, GSP goes over
each horizontal condition of the query to generate a skip plan w.r.t.
the current sentence. Based on the estimated cost of each vari-
able, it will greedily select the variable v with the highest cost to be
skipped if possible. If the left variable vl (resp. right variable vr)
of v does not exist, then vl (resp. vr) is assumed not to be in the
list of variables to be skipped. A subsequent nested loop over the
remaining variables aligns the variables according to the horizontal
conditions and evaluates the final results of the query.

Observe that by our definition, ∧ are the costliest variables if they
exist. We have simplified our analysis of the cost of ∧ here but a
more refined analysis based on the limits of neighboring tokens of
variables can be computed.
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EXAMPLE 4.6. For our query in Example 4.1, if the number of
tokens in the sentence is sufficiently large, then v1 and v2 will be
skipped. So, instead of 6 loops, there will be 4 loops for variables
a, b, c, and d. The binding for v1 and v2 will be computed based
on the values of a, b, c, and d. 2

Align skipped variables and check constraints For a given com-
bination of bindings for variables that are not skipped, we proceed
to compute the possible bindings for skipped variables by aligning
them to the bindings of the unskipped variables.

EXAMPLE 4.7. We have selected to skip v1 and v2 in Exam-
ple 4.6. So for each combination of a, b, c, and d values, we
compute the bindings for v1 and v2 based on the existing bind-
ings. Since v1 is a span between a and b and v2 is a span between
b and c, the spans are well-defined by the bindings of a, b, and c
(which is a much easier task than to consider all possible spans for
v1 and v2 naively). Finally, we check that the path expressions and
constraints among variables, which are generated in Example 4.1,
are valid. In other words, we check that a is indeed an entity, b
satisfies the path //verb[text=“ate”] etc. and we check the six con-
straints b parentOf c, c ancestorOf d, a leftOf v1, v1 leftOf b, b
leftOf v2, v2 leftOf c, are satisfied before returning the result as
an answer (there is no need to consider satisfying clause for this
query). These checks are necessary since, as mentioned earlier,
the bindings obtained by evaluating the indices with decomposed
paths may still contain false answers. In the event that there are
satisfying clauses, such as the query in Example 2.1, the algorithm
proceeds to evaluate each clause with the current bindings (see next
section). If there is sufficient evidence for every clause, the output
tuple is added to the set of results. The next section describes how
aggregation is performed. 2

4.4 Aggregate
For every combination of bindings for all variables, the output

tuple is returned if the if and satisfying clauses are satisfied, and
the excluding clause is not satisfied.

Next, we elaborate on how evidence is aggregated from the text
corpus when the satisfying clause is evaluated. While there are
several optimizations that can also be performed on this part of the
evaluation, we do not elaborate on the optimizations here.

4.4.1 Aggregate evidence
Recall that the satisfying clause consists of a set of conditions

each with a weight and there is up to one satisfying clause for
each output variable. The ith condition has weight wi which cor-
responds to how important the condition is to determining whether
the value in question should be extracted. The score of a value e
for the variable under consideration is the weighted sum of confi-
dences, computed as follows:

score(e) = w1 ∗m1(e) + . . .+ wn ∗mn(e)

where wi denotes the weight of the ith condition and mi(e) de-
notes the degree of confidence for e based on condition i. There
are different kinds of conditions that KOKO supports to aggregate
evidence. The confidence for e is computed for each sentence in
the text and aggregated together.
Boolean conditions KOKO supports boolean conditions. The first
three clauses of the query in Example 2.2 are boolean conditions.
The first two conditions can be checked without the text corpus.
The condition str(x) contains 〈string〉 requires that the string of
x contains 〈string〉, and the condition str(x) mentions 〈string〉 re-
quires that 〈string〉 be a substring of x. For example, the string
“chocolate ice cream” contains “ice”, mentions “choc” but does not
contain “choc”.

A condition x 〈string〉 (resp. 〈string〉 x) requires that x is strictly
followed by (resp. preceded by) 〈string〉 (e.g., x “, a cafe”). In
general, regular expressions are supported with the condition “x
matches 〈pattern〉” where 〈pattern〉 is a regular expression.

For boolean conditions, the degree of confidence mi(x) is either
0 or 1. Hence, for the query in Example 2.2, as long as x contains
“Cafe” (resp. “Roasters”), we have m1(x) = 1 (resp. m2(x) = 1)
regardless of how many times those conditions are satisfied in the
text. Similarly, m3(x) = 1 as long as there is a sentence in the
corpus where x is followed by “, a cafe”.

KOKO also supports a more general (and non-Boolean) prox-
imity clause of the form “x near 〈string〉”. For example, for the
condition x near “coffee”, if x = “Cafe Benz”, then x will score well
in the statement “Cafe Benz serves great coffee”.

A near pattern will generate a matching score inversely propor-
tional to the distance between the mention and the context tokens
using the following formula score = 1/(1 + distance), where dis-
tance denotes the number of tokens separating the 〈string〉 from
the candidate x.

The excluding clause filters results based on the conditions spec-
ified. It supports all of the conditions described above.

Descriptors: non-Boolean conditions Descriptor conditions are
of the form x [[descriptor]] (similarly for left-sided conditions). A
descriptor condition “x [[descriptor]]” is satisfied if the text after
the candidate value provides sufficient evidence of the descriptor.
Intuitively, we determine a score for a candidate value w.r.t. a sen-
tence in 3 steps:

(a) Descriptor expansion A simple expansion strategy is to deter-
mine different ways of expressing parts of the descriptor by utiliz-
ing word embeddings to replace verb/noun words (e.g., “serves”,
“coffee”) by similar terms. Using this, we will obtain phrases such
as “sells coffee”, “host coffee”, etc. However, conventional word em-
beddings train parameters by optimizing word co-occurrence-based
objective functions. Therefore, these embeddings are not directly
tuned to represent the semantic relationship between words, such as
synonym, hyponym, or hypernym. As a result, this approach could
also generate phrases such as “serves tea” from the phrase “serves
coffee”, which is not implied by the original descriptor.

KOKO utilizes two techniques to address this issue. First, we em-
ploy paraphrase-based word embeddings (e.g., https://github.

com/nmrksic/counter-fitting), which uses a paraphrase database
as an additional resource to train embeddings. The result is that
the embeddings are more likely to express a semantic relationship.
Second, we can also employ a simple domain ontology that con-
tains sets of related words (e.g., different coffee drinks such as
cappuccino, macchiato). The ontological knowledge allows us to
safely replace “coffee” by these different coffee drinks.

(b) Sentence decomposition A sentence can be long and complex,
describing several different aspects simultaneously. As a conse-
quence, even though a sentence may describe the property speci-
fied in a descriptor, the descriptor may not match well to the over-
all sentence due to extraneous noise. To alleviate this problem, we
decompose each sentence into a set of canonical sentences, where
each canonical sentence is implied by the original sentence.

The work of [2] applies a sentence decomposition technique to
generate several canonical clause fragments from each sentence.
This decomposition procedure consists of two stages: 1) segment
a sentence into canonical clauses, 2) generate shorter fragments
by deleting words from each clause. In KOKO, we perform only
(1) since our goal is to sum the signals of patterns over individ-
ual clauses. Specifically, we applied the sentence decomposition
component from the relation triplet extraction systems [41].
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(c) Aggregating the similarity scores between expanded descriptors
and decomposed sentences Let E(d) be the result of expanding
the descriptor d in the query. Specifically, let E(d) = {(d1, k1), ...,
(dm, km)} where di is an alternate form of d and ki is a score
between 0 and 1 that represents how close is di is to d.

Let C = {(c1, l1), ..., (cn, ln)} be the set of canonical sentences
derived from the original sentence s (ci is the canonical sentence
and li is a score). We compute the measure of confidence for the
clause x [[d]] as the maximum over the aggregate of how well each
expanded descriptor matches against each canonical sentence.

conf(x [[d]]) w.r.t. sentence s = Maxi∈{1,m}(match(di, s)):

match(di, s) = Σj∈{1,n}(match(di, cj))
match(di, cj) = 0 if the word seq. di does not occur in cj
match(di, cj) = ki ∗ lj otherwise
Recall that the descriptor d is semantically close to phrases d1, ...,

dm. Hence, the degree by which d matches s is given by the best
match, among the expanded descriptors, to s. Since s is decom-
posed into canonical sentences c1, ..., cn, the extent to which a de-
scriptor di matches s is given by the sum of the matches between
di and each canonical sentence. The overall confidence score of
x [[d]] w.r.t the entire document is the sum of confidence scores of
x [[d]] w.r.t every sentence in the document. It remains to describe
what is match(di, cj).

The term match(di, cj) is 0 if the word sequence of di does not
occur in cj . A word sequence y1, ..., yq occurs in a sentence c if
c contains the words y1, ..., yq in this order and each consecutive
pair of words yi, yi+1 may be separated by 0 or more words. If di
occurs in cj , then the confidence score is computed as the product
of the respective weights (i.e., ki and lj). Naturally, other scoring
schemes are possible, such as one that takes into account how well a
word sequence matches a sentence, preferring contiguous matches
over matches with larger gaps between words.

5. RELATED WORK
Several information extraction systems are based on training ma-

chine learning models or deep learning models to recognize occur-
rences of typed entities in text (e.g., [16, 29]). However, learning
models are typically specific to a particular domain and do not gen-
eralize to other domains (e.g., to extract restaurant names instead of
cafe names). In addition, learning methods usually require signifi-
cant annotated training corpus for obtaining a model with sufficient
precision and recall. In contrast, KOKO does not require training
data and relies on user-defined conditions instead. For many learn-
ing models, preparing an annotated corpus is typically the most ex-
pensive and time consuming process. Additionally, KOKO is also
debuggable where users can discover the reasons that led to an ex-
traction, which is important for certain applications [13].

Rule-based systems have traditionally used cascades of finite
state automatas (e.g., [1, 3, 17]) and systems have been devel-
oped using the Common Pattern Specification Language (CPSL)
(e.g., [10, 42]). Odin [43] also uses CPSL style grammar and
allows one to specify patterns over dependency trees. However,
it inherits the issues that were described in [12], including lossy
sequencing and rigid matching priority. Semgrex [37] also sup-
ports querying over dependency trees. However, 1) Semgrex is
not declarative and works only in the procedural environment of
Java, 2) Semgrex neither supports surface-level patterns nor aggre-
gation over evidences, and 3) Semgrex does not exploit any index-
ing techniques. Xlog [38] developed a datalog-like language for in-
formation extraction, where users can define extraction predicates
to be “plugged in” the datalog-style rules. Xlog includes a num-
ber of query optimization techniques centered around how to exe-
cute thousands of such rules over a document. SystemT/AQL [12]

is a powerful commercial rule-based language that allows users
to specify SQL-like views over text through extraction statements
that use regular expressions and built-in predicates. Such views
can be composed to form a powerful mechanism for writing mod-
ular and composable extraction tasks. IKE [18] is another sys-
tem that extracts entities from text via a language based on pat-
terns over the syntax and POS tags of sentences. In addition, IKE
supports distributional similarity based search. For example, “dog
∼ 20” would find 20 words similar to “dog” and match based on
“dog” and the similar words. Hence, a KOKO descriptor such as
“x [[serves coffee]]”, where x is an entity, has a similar effect to
writing “NP ([[serves coffee]] ∼ 20)” in IKE, where NP refers to
a noun phrase. (KOKO descriptors now default to a fixed number
of expanded terms. We plan to allow the user to select among the
expansions in future.) However, all systems (Xlog, SystemT/AQL,
IKE) do not support querying over dependency structures. While
there are other differences across all these systems, KOKO differ-
entiates itself from existing systems in its ability to combine condi-
tions on the surface text, conditions on the dependency trees and to
support conditions that are robust to linguistic variations.

A related approach is to use patterns [6, 24] to perform informa-
tion extraction. Some techniques seed and learn patterns to extract
the desired information (e.g., [15, 23, 34, 35] to name a few). For
this method to work well, the seed words must typically be “rep-
resentative” of the desired set of words to be extracted. A notable
system in this general category is NELL, which is a system that
constantly extracts structured information from the Web, and uses
its acquired knowledge to find new rules for extracting new infor-
mation [8, 28]. NELL is able to learn the relationship between
entities as well as the categories each entity belongs to (e.g., “Star-
bucks” is a cafe). Thus, it can potentially be used to find entities
of a certain type (e.g., cafes). However, there are two fundamental
differences between how NELL and KOKO perform extraction: (1)
NELL requires a few seed examples to learn about a new category,
while KOKO relies on the human intelligence that is embedded in
the query it runs, and (2) KOKO queries are tailored to deal with
a specific corpus while NELL reads the Web. In other words, a
KOKO query that performs well on one type of corpus may not per-
form as well on random documents from the web. On the other
hand, NELL is more conservative and only relies on patterns that
are robust. Consequently, the results from NELL generally have a
high precision but lower recall (compared to other systems that are
tailored for specific extraction tasks). Our experiments with NELL
(see section 6.1) further confirms this observation.

Another line of work on querying text queries over constituency-
based parse trees [26] and is targeted at extracting a single span
of tokens as opposed to a tuple of spans of different types. We
choose to design KOKO over dependency trees instead due to the
availability of fast and accurate dependency parsers today, some of
which are open-source [11, 22, 39].

In the next section, we discuss more related work on indexing
schemes that have been developed to query linguistic parse trees
which we used for comparison in our experimental evaluation.

6. EXPERIMENTS
We evaluate KOKO with both real-word and synthetic queries

on publicly available text corpora. Our examples throughout the
paper (and additional ones in Section 6.3) demonstrate the power
of querying both the surface text and dependency tree. Here we
experimentally evaluate the usefulness of KOKO’s ability to aggre-
gate evidence from different parts of the text in order to capture the
right results. We also show that the KOKO engine is efficient and

968



0.25 0.50 0.75 1.00
0

0.2

0.4
Pr

ec
isi

on

Barista Magazine

0.25 0.50 0.75 1.00

Sprudge

0.25 0.50 0.75 1.00

0.2

0.4

0.6

Re
ca

ll

Barista Magazine

0.25 0.50 0.75 1.00

Sprudge

0.25 0.50 0.75 1.00

0.1
0.2
0.3
0.4

F1
-s

co
re

Barista Magazine

0.25 0.50 0.75 1.00

Method:

Sprudge

CRFsuite IKE Koko

Threshold
Figure 3: Extracting cafe names with IKE, CRFsuite and KOKO

scalable in evaluating KOKO queries. It outperforms alternative in-
dexing techniques and the baseline evaluation algorithm.

KOKO is implemented in Python with spaCy [39] as our depen-
dency parser. We use PostgreSQL as our backend to store our in-
dices and text corpora. Our experiments were executed on a 64-
bit machine with 122GB RAM and a 2.3 GHz processor. We use
122GB RAM only to speed up the index creation time for all meth-
ods we compare. Our index construction also works with a smaller
amount of memory (e.g., 16GB).

6.1 Usefulness and quality of extraction
In this section, we demonstrate the usefulness of the KOKO lan-

guage and the quality of its extraction with the task of extracting
entities with relatively rare mentions.

Specifically, we focus on using the conditions supported in the
satisfying clause to aggregate evidence and extract the names of
new and upcoming cafes from blog posts which we scraped from
two well-known cafe websites, BARISTAMAG [5] and SPRUDGE [40].
We built a ground-truth for the BARISTAMAG and SPRUDGE datasets
by crowdsourcing the task of annotating cafes in the corpus on
CrowdFlower. Each cafe blog was shown to five workers and we
selected any entity with 3 or more votes as part of the ground
truth. We ended up with 84 articles and 137 labeled cafe names in
the BARISTAMAG dataset and 1645 articles and 671 cafe names in
SPRUDGE. We compare the performance of KOKO against IKE [18],
CRFsuite [30], and NELL [8, 28]. We compare to IKE because IKE
supports distributional similarity based search which is similar to
KOKO descriptors as we described in Section 5. The other base-
line, CRFSuite, is an open-source implementation of Conditional
Random Fields (CRF) – a popular machine-learning technique for
the Named Entity Recognition (NER) task. We used the averaged
perceptron algorithm to train a first order Markov CRF. The fea-
tures used in the CRF model include the tokens along with their
preceding and following tokens, prefix and suffix of each token up
to 3 characters, and set of binary features that test if token matches
a few regular expressions (mostly to test if it has digits, or if the to-
ken is all digits and so on). Note that the CRF baseline is included
as a representative of machine learning techniques to demonstrate
that such techniques require a considerable amount of training data
to achieve reasonable performance. Of course, more complex mod-
els such as neural networks can be used but they require even more
training data. Finally, we compare KOKO with NELL.
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Figure 4: KOKO with/without descriptors

Writing queries: We followed a simple approach to write a query
for extracting cafe names. (1) examine a few positive examples
from the corpora and studying the frequent patterns, (2) write con-
ditions that capture both the observed patterns as well as our back-
ground knowledge on the entities, and (3) examine the results ob-
tained by the written query and adding conditions to exclude the
frequent mistakes. We divided the patterns in the satisfying clause
into 3 categories: high, medium and low confidence, and gave
weights of 1.0, 0.2, and 0.15 respectively. It is important to note
that the patterns we learn from step (1) are independent of the sys-
tem we use to discover the entities. Thus, our goal in steps (2)
and (3) is to capture these patterns to the extent possible using the
features of KOKO or IKE.

Extraction results: Figure 3 shows the precision, recall and F1-
score achieved by the three systems on the task of extracting cafe
names. The x-axis shows the threshold value used in the satisfying
clause of the KOKO query. The values reported for IKE and CRF-
suite appear as horizontal lines as they do not depend on the thresh-
olds used in the KOKO query. KOKO performs better than IKE and
CRFsuite (in terms of F1-score) for all thresholds for both datasets
with its best performance achieved at 0.6. The main reason is due
to KOKO’s ability to aggregate partial evidence from multiple men-
tions in the document. In contrast, IKE only considers single sen-
tences and cannot aggregate partial evidence. Similarly, CRFsuite,
by design, focuses on single mentions of an entity and judges if it
should be extracted regardless of other mentions. Note that we used
50% of the available data to train the CRFsuite algorithm. Our ex-
periments show that our results with KOKO outperform CRFsuite
even when up to 90% of the data is used for training.

Capturing linguistic variations: We also studied how much the
descriptor operator contributes to the extraction of desired entities.
To do so, we executed our KOKO query for extracting cafe names
with and without descriptor expansions. The use of descriptors in
BARISTAMAG yields better results while no improvement can be ob-
served for SPRUDGE. See Figure 4. This is mainly because the
BARISTAMAG articles are generally shorter than SPRUDGE articles
(480 vs. 760 words per article). For shorter articles, KOKO needs
to rely on weak signals obtained from descriptors, but in the pres-
ence of longer text using descriptors are not as effective.

NELL for entity extraction [8, 28]: Nell is a system for extracting
structured information from the Web. The creators of NELL kindly
accepted our request and added “cafes” as a new category in NELL
(on Feb. 1, 2017) with 17 seed instances. Within a month NELL
discovered 72 patterns for extracting cafe names.

BARISTAMAG: precision=0.7, recall=0.05, F1=0.1
SPRUDGE: precision=0.27, recall=0.04, F1=0.06

The reason for the low recall is that NELL works well on cafes
(or entities, in general) that are mentioned frequently on the Web,
while the cafes we extract occur only a few times.

More results of KOKO on other entity types (e.g., sports teams)
can be found in our technical report [44].
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6.2 Performance of KOKO modules
Our performance experiments make use of two text corpora:

corpus #sentences size notes
HappyDB [4] 140K 13MB ∼ 100K happy moments

Wikipedia [45] 110M 8.9GB ∼ 5M articles

6.2.1 Index construction time and size
We compare the construction time of KOKO’s indices with one

baseline algorithm and two prior indexing techniques. We also use
these methods to compare the performance of our DPIL module
before we evaluate the effectiveness of our ability to aggregate ev-
idence and KOKO’s overall performance. For each of the indexing
techniques, we create the necessary indices (B-tree) in PostgreSQL.
INVERTED: This is our baseline indexing technique where the in-
dex maps each label to the sentence id and token id pairs that con-
tain that label. We store this index as a table with the following
schema: P(label, sentence id, token id). Given a KOKO query, we
retrieve from the table all sentences that contain all labels in the
query with one nested-SQL query.

ADVINVERTED [7, 20]: Bird et al. developed an advanced inverted
indexing technique to query the constituency-based linguistic parse
trees with their LPath queries. This indexing technique depends
on a labeled form of linguistic trees that is stored in a database
with the schema: P(label, sentence id, token id, left, right, depth,
pid), where pid is the id of the parent node in the tree. This schema
allows us to express various relationships between nodes in lin-
guistic trees. For example, to specify that c is a child of p, we
write: c.sentence id = p.sentence id and c.pid = p.token id. Com-
pared to INVERTED, ADVINVERTED allows more precise expres-
sion over KOKO queries. Given a KOKO query, we also translate
the path expressions into a nested-SQL query to retrieve, from the
table, all sentences that passed the conditions of the extract clause
of the KOKO query.

SUBTREE [14]: Instead of individual labels, Chubak and Rafiei’s
SUBTREE index stores every unique subtree, up to a maximum
size, as index keys. Given a tree-structured query, they decom-
pose the query into multiple subtrees that are all no larger than
the maximum size, and then search through the index to find sen-
tences that contain all the decomposed subtrees and furthermore,
contain the same structure as the query. This indexing technique
is primarily designed for indexing the linguistic parse trees, which
tend to have a reasonably small number of subtrees because of
their small branching factor.

For our experiments, we implemented [14] with mss = 3 (mss is
the maximum subtree size for indexing) and the root-split coding
schema. Note that a fundamental difference between KOKO and
SUBTREE index is that the latter focuses on indexing constituency-
based parse trees which has only a single type of labels. Hence, for
our experiments, we have to create two SUBTREE indices, one for
parse labels and one for POS tags. We join the root nodes of sub-
trees returned from the two indices when needed. However, this
operation may hurt the index effectiveness (defined later), which
corresponds to how precise the index is in returning the sentences
that will pass the conditions of the extract clause, since joining
the root nodes does not guarantee that the two subtrees are re-
ferring to the same set of tokens. In addition, SUBTREE index
with root-split coding schema does not support wildcards. With
this implementation, SUBTREE index supports 125 queries (out of
350) in our Synthetic Tree benchmark (to be described shortly).

KOKO: As described earlier, we use a multi-indexing scheme: in-
verted word (W) and entity (E) indices, hierarchy PL and POS
indices. W and E are stored as follows:
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Figure 5: Index construction with increasing size of input text corpus.
KOKO takes longer time to build than INVERTED and ADVINVERTED,
but has the smallest footprint.

W(word, x, y, u, v, d, plid, posid), E(entity, x, u, v)
In table W , the underlined x, y, u, v, d attributes correspond to the
quintuple (x,y,u-v,d). In addition to the quintuple, we also store
the node id (plid) of the word in the parse label (PL) index and
node id (posid) of the word in the Part-Of-Speech (POS) index.
As we shall describe shortly, the ids (plid and posid) are used to
access the posting lists of the PL and POS index. In table E, the
underlined x, u, v attributes map to the triple (x, u, v).

We use two additional tables, PL and POS, with the same schema
to store the Closure Table [25] of the nodes in the hierarchy index
for parse labels and POS tags respectively:

PL/POS(id, label, depth, aid, alabel, adepth)
where id, label, and depth represent the current node id, node la-
bel, and node depth respectively and aid, alabel, and adepth stand
for the ancestor node id, label, and depth respectively. We retrieve
the posting list of the PL index (resp. POS index) by joining PL
table (resp. POS table) with table W over attribute PL.id (resp.
POS.id) and attribute W.plid (resp. W.posid). Given a KOKO
query, we translate it into a nested-SQL query composed by sub-
queries that search for the matching nodes from the PL and POS
tables [9, 25], and conditions that joins with the W and E tables.

Performance Figure 5(a) shows the index construction time for
the Wikipedia dataset as we vary the number of articles using the
four indexing techniques described above. INVERTED and ADVIN-
VERTED require similar but less time to construct than KOKO since
they need not construct and store the hierarchy index for parse la-
bels and POS tags as in KOKO. KOKO is more than 2× faster
compared to SUBTREE, where significant amount of time is spent
on enumerating every unique subtree (with at most 3 labels) for
sentences in the input text corpus. In contrast, KOKO enumerates
over the parse tree only once for each sentence and for each type of
label. Since the HappyDB corpus is smaller, it requires about 10+
minutes to construct for ADVINVERTED, INVERTED, and KOKO.
For SUBTREE, the construction time is about 30+ minutes.

Figure 5(b) shows the amount of disk space, including the post-
ing list and all necessary indices in PostgresSQL, used by the four
indexing techniques for the Wikipedia corpus. KOKO uses the least
space due to the compact nature of hierarchy indices in merging
parse trees of different sentences. INVERTED uses a slightly less
space than ADVINVERTED since it does not store the leftmost,
rightmost, and parent information for each label. On the other hand,
SUBTREE uses the most space as it stores all the unique subtrees in
the text corpus, which adds up to a few times more than the size of
the original corpus. For HappyDB, a similar phenomenon occurs.
KOKO requires the least space, using 0.67GB. Both INVERTED and
ADVINVERTED use 1.1GB and SUBTREE uses 3.2GB of space.

6.2.2 Performance of DPLI module
We evaluate the performance of the indexing techniques on Hap-

pyDB and Wikipedia with two metrics: (1) The index lookup time
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Figure 6: Index performance on HappyDB dataset. KOKO is more
efficient and effective than the other techniques. Note that SUBTREE

only supports queries without word attribute and wildcards.

(or lookup time for short); and (2) the index effectiveness score,
which is the ratio of the number of sentences that contain the bind-
ings for all variables in the given query to the number of sentences
returned by the index.

Synthetic Tree benchmark To thoroughly evaluate the perfor-
mance of the indexing technique in our DPLI module, we generate
a benchmark with 350 synthetic queries with node variables that is
defined to form paths or tree patterns. We first generate a set of
queries with a single node variable that is defined by a path. We
then create other queries by modifying the length of the path from
2 to 5, the attribute types along the path (parse labels, parse labels
+ POS tags, parse labels + POS tags + text), whether the query con-
tains a wildcard or not, and whether it starts from the root level or
not. For example, the variable definition, v = /root/punct/advmod,
defines a variable v with 3 levels. It contains only “parse label”
type, has no wildcard, and starts from the root level. Under each
setting, we generate 5 random queries with different selectivity. We
then generate queries with multiple node variables that form a tree
and we vary the number of labels in the tree pattern from 3 to 10.
For example, variables, x = /root/punct/advmod, c1 = x/advmod,
and c2 = x/det, form a tree pattern with 5 labels. For each set-
ting, we generate 5 random queries with different selectivity. The
benchmark can be downloaded2.

Performance Figure 6(a) (resp. Figure 7(a)) shows the index
lookup time with increasing number of sentences (resp. number of
articles) in the text corpus: KOKO and SUBTREE are much faster
than INVERTED and ADVINVERTED because the indices of the for-
mer directly accounts for the hierarchical structure of the parse
trees while the latter considers only the labels and is largely ag-
nostic to the structure. Even though ADVINVERTED uses addi-
tional attributes (left, right, depth, and parent) to store structural
information, validation over the hierarchical conditions requires
additional computation and takes longer time to execute in gen-
eral. INVERTED does not consider any hierarchical conditions in
the queries and thus often results in significantly larger intermedi-
ate results. It requires significantly longer time to execute in general
and fails to scale over 5000 articles on Wikipedia text corpora. Fig-
ure 6(c) and Figure 7(c) show index lookup time over queries with
increasing number of extractions (i.e., tuples returned). This is ex-
pected since the sizes the intermediate results tend to be higher for
2SyntheticTree and SyntheticSpan (Section 6.2.3) benchmarks can
be downloaded at: https://github.com/rit-git/koko benchmark.
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Figure 7: Index performance on Wikipedia dataset. KOKO remains
highly efficient and effective over large-text corpora, e.g., 100K articles
with 2.2M sentences. INVERTED does not scale over 5K articles and
performs badly even for small-text corpora.

queries with larger number of extractions. Consequently, the cost
of joining over these intermediate results will be larger. Among all
techniques, KOKO scales the best over the number of matches. This
is because by leveraging the hierarchy index, KOKO is able to find
the matching nodes for parse labels and POS tags without joining
over the post list. SUBTREE performs better than ADVINVERTED
as it contains less number of joins over the post lists in general.

Figure 6(b) and (d) and similarly Figure 7(b) and (d) demon-
strate the effectiveness of the indexing techniques on HappyDB and
Wikipedia. As shown, KOKO and ADVINVERTED perform much
better than the other two techniques, obtaining near perfect effec-
tiveness rate over all different settings. SUBTREE achieves above
0.6 effective rate, however, due to the limited information (only the
root node) that it stores, it performs less accurately for queries with
more than one output attribute. INVERTED dismisses the hierarchi-
cal conditions in the queries, and thus performs badly (with less
than 0.5 effectiveness rate) over all settings on both text corpora.

6.2.3 Performance of GSP module
Synthetic Span benchmark We generated another benchmark,
Synthetic Span, to evaluate KOKO’s Generate Skip Plan (GSP) mod-
ule. Recall that GSP is designed to improve the performance of
KOKO while evaluating variables with multiple atoms in a horizon-
tal condition, e.g., x = e1 + e2 + e3. Therefore, in our Synthetic
Span benchmark, we included span variables defined with 1, 3, and
5 atoms with at most 0, 1, and 2 atoms to skip (at most) respec-
tively. For example, the span variable, v = //verb + ∧ + /root/xcomp
+ ∧ + “happy”, consists of 5 atoms: //verb as a verb, ∧ as a span of
arbitrary length, /root/xcomp as a token where root and xcomp are
parse labels, and “happy” as single word. Under each setting, we
randomly generate 100 queries with varying selectivity. In total,
SyntheticSpan benchmark contains 300 queries.

Performance We further evaluate the GSP module and demon-
strate that the GSP module is effective in enhancing the perfor-
mance of KOKO. Here, we compare KOKO with GSP (KOKO&GSP)
with a baseline approach (KOKO&NOGSP), which uses nested-loops
to evaluate every variable in a query according the order of their
definitions. We use HappyDB and the Wikipedia dataset and our
Synthetic Span benchmark for the evaluation.

As shown in Table 1, KOKO&NOGSP performs slightly better
than KOKO&GSP when there is only one atom in the span variable.
This is because the cost of skip plan generation outweighs the cost
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Table 1: Average evaluation time (ms/per sentence) over extract clause
on sentences in HappyDB and Wikipedia.

HappyDB Wikipedia
# of atoms 1 3 5 1 3 5

KOKO&GSP 0.28 0.35 0.37 0.19 0.28 0.36
KOKO&NOGSP 0.19 1.27 290.42 0.17 5.76 607.48

of savings obtained by skipping some of the variables. However,
when there are more atoms, KOKO&GSP is more than three orders
of magnitude faster than KOKO&NOGSP.

6.3 Scalability and overall performance
We now evaluate how KOKO performs when given a large input

text corpus. The selectivity of a query is the ratio of the number
of articles that contain one or more extractions to the total number
of articles. Queries with more variables tend to be more selective.
The DateOfBirth query has only 3 variables so that it will match
with a high percentage of sentences. The first two queries have 4
and 5 variables respectively and their selectivities are, respectively,
low (< 1%), medium (∼ 10%), and high (> 70%).

Chocolate (Low): extract c:Entity from wiki.article if (
A heuristic query /ROOT:{
for chocolate types v = //verb, o = v/pobj[text=“chocolate”],

s = v/nsubj } (s) in (c))
satisfying v

(str(v) similarTo “is” {1})
E.g., Baking chocolate (c) is a type of chocolate that is prepared or

manufactured for baking.

Title (Medium) extract a:Person, b:Str from wiki.article if (
A heuristic query /ROOT:{
for people’s titles v = //“called”, p = v/propn, b = p.subtree,

c = a + ∧ + v + ∧ + b})
E.g., Cyd Charisse (a) had been called Sid (b) for years.

DateOfBirth (High) extract a:Person, b:Date from wiki.article if (
A heuristic query for /ROOT:{v = verb})
people and their DOB satisfying v

(str(v) similarTo “born” {1})
E.g., He was married to Alys Adle Thomas on 1 December 1900 in Lon-

don, and the couple had a daughter Vera Alys (a) born in 1911 (b).

Koko Table 2 shows the execution time of KOKO as we increase
the number of articles of Wikipedia, from 5K to 5M . The total
execution time of KOKO is linear in the number of articles in the
text corpora and queries with higher selectivity often require longer
time to evaluate as there are larger number of extractions.

We further analyze the breakdown of time KOKO spends on dif-
ferent components for each of the queries. Note that this distribu-
tion is highly dependent on the complexity and selectivity of the
query. As shown, among all queries on different text corpora sizes,
KOKO spends less than 2% of its total execution time for normal-
izing the query (Normalize) and generating the Skip Plan (GSP).
The ratio of time KOKO spends on index lookup (DPLI) heavily
depends on the selectivity of the queries: queries with higher selec-
tivity requires less percentage of time for index lookup. For exam-
ple, the “DateOfBirth” query requires only 2% of the time for index
lookup whereas “Chocolate” query requires 20%−40%. Note that
the actual time queries spent on index lookup is different with this
percentage: queries with higher complexity, e.g., more variables,
and higher selectivity often require longer index lookup time. Be-
fore evaluating the extract clause and satisfying clause, KOKO will
load the parsed articles (LoadArticle) that contain the sentences of
interest, as returned by the index lookup, from DBMS into mem-
ory. Loading such articles requires a more than 50% of the time
for all example queries. The percentage of time KOKO spends for
evaluating extract clause and satisfying clause also depends on the

Table 2: KOKO execution time (sec) for three example queries with
increasing text corpora. Size† is the # of articles in the text corpora;
LoadArticle is the time for loading the candidate articles returned by
KOKO index from the DBMS.

Size† Normalize DPLI LoadArticle GSP extract satisfying

C
5K 0.05 0.79 2.67 0.00 0.04 0.15

50K 0.05 5.58 5.71 0.00 0.16 0.86
500K 0.05 58.62 72.24 0.07 1.89 9.72
5M 0.05 518.13 486.31 0.48 11.50 64.46

T
5K 0.015 1.54 42.51 0.02 0.65 0

50K 0.015 12.33 279.31 0.19 5.33 0
500K 0.015 127.41 3018.52 2.05 61.49 0
5M 0.015 1350.77 15325.64 22.77 489.28 0

D
5K 0.028 0.61 117.21 0.60 25.09 32.36

50K 0.028 4.38 984.38 5.30 227.17 322.72
500K 0.028 45.33 10843.30 55.92 3054.06 3324.68
5M 0.028 411.69 68945.81 328.25 17949.82 24526.23

complexity of the query and the selectivity of the query: queries
with fewer constraints in the extract clause and satisfying clause
require less percentage of time to evaluate, e.g., the “Title” query
with no constraints in satisfying clause only requires 2% for eval-
uating the two clauses; In addition, queries with lower selectivity
normally require less percentage of time than queries with higher
selectivity, e.g., the “Chocolate” query requires ∼ 6% of the time
for evaluating the extract and satisfying clauses whereas the “Da-
teOfBirth” query requires more than 30%.
Odin [43] We also ran Odin (see Section 5) by translating the
three queries above to Odin’s syntax to the extent possible. Since
Odin does not aggregate evidence, our translated queries contain
only extract clauses. Furthermore, since Odin iteratively evaluates
all patterns until no further matches are found, we helped Odin
by specifying the priorities of the patterns which speeds up the
execution. We compared the execution time of KOKO (which in-
cludes the time to execute the satisfying clause) and Odin for all
three queries using 5000 documents from Wikipedia. Odin is 40x,
23x, and 1.3x slower for “Chocolate”, “Title”, and “DateOfBirth”
queries respectively. On 50000 documents, Odin took more than 2
days to complete the annotation and execution of all queries.

7. CONCLUSION AND FUTURE WORK
We described KOKO, a query system that leverages new NLP

techniques and scales nicely with novel indexing and query pro-
cessing techniques.

KOKO has some limitations. Since KOKO may use dependency
trees, the quality of the dependency parsers directly impacts the
quality of the results. However, since patterns are typically writ-
ten over specific portions (not over the entire sentence), the quality
of the parse tends to be better. It will be interesting to examine
this issue in more detail. KOKO now relies on the user to spec-
ify the dependency patterns, conditions, and weights of queries.
A challenge is to design an effective user interface for KOKO to
alleviate the burden of specifying a query from the user and ex-
ploit machine-learning models to automatically suggest patterns
and weights based on examples. There are further optimization
opportunities for KOKO, including adding optimizations steps and
parallelizing the evaluation of satisfying clauses, developing tech-
niques (like in [38]) centered around executing a large number of
queries/patterns over a document. One can also add to the expres-
siveness of KOKO. For example, by not limiting to only disjunc-
tions of conditions in the satisfying clauses but also allowing con-
junctions of conditions. More interestingly, we would like to add
to KOKO the capability to query over frames or predicates [19, 31,
36] that are evoked by sentences, thus adding yet another layer of
semantic-based querying on top of its existing capabilities.
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programming: Creating large training sets, quickly. In NIPS,
pages 3567–3575, 2016.

[34] E. Riloff. Automatically generating extraction patterns from
untagged text. In AAAI, pages 1044–1049, 1996.

[35] E. Riloff and J. Shepherd. A corpus-based bootstrapping
algorithm for semi-automated semantic lexicon construction.
Natural Language Engineering, 5(2):147–156, 1999.

[36] M. Ringgaard, R. Gupta, and F. C. N. Pereira. SLING: A
framework for frame semantic parsing. CoRR, 2017.

[37] Tregex, tsurgeon, semgrex.
http://nlp.stanford.edu/software/tregex.html,.

[38] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan.
Declarative information extraction using datalog with
embedded extraction predicates. In VLDB, pages 1033–1044,
2007.

[39] spaCy: Industrial-Strength Natural Language Processing in
Python. https://spacy.io/,.

[40] Sprudge — Coffee News and Culture.
http://sprudge.com/category/places/page,.

[41] Stanford NLP Group Software - OpenIE.
http://nlp.stanford.edu/software/openie,.

[42] D. Thakkar, T. Osman, and P. Lakin. Gate jape grammar
tutorial. In version 1, 2009.

973



[43] M. A. Valenzuela-Escárcega, G. Hahn-Powell, and
M. Surdeanu. Odin’s runes: A rule language for information
extraction. In LREC, 2016.

[44] X. Wang, A. Feng, B. Golshan, A. Halevy, G. Mihaila,
H. Oiwa, and W.-C. Tan. Scalable semantic querying of text.

CoRR, abs/1805.01083, 2018.
[45] wikipedia. Wikipedia: Database download.

https://en.wikipedia.org/wiki/Wikipedia:Database download.
[46] XML Path Language (XPath). Xml path language.

https://www.w3.org/TR/xpath/.

974


