
List Intersection for Web Search:
Algorithms, Cost Models, and Optimizations

Sunghwan Kim
POSTECH

sunghwan08@gmail.com

Taesung Lee
IBM Research AI

Taesung.Lee@ibm.com

Seung-won Hwang
∗

Yonsei University

seungwonh@yonsei.ac.kr
Sameh Elnikety
Microsoft Research

samehe@microsoft.com

ABSTRACT
This paper studies the optimization of list intersection, es-
pecially in the context of the matching phase of search en-
gines. Given a user query, we intersect the postings lists
corresponding to the query keywords to generate the list of
documents matching all keywords. Since the speed of list in-
tersection depends the algorithm, hardware, and list lengths
and their correlations, none the existing intersection algo-
rithms outperforms the others in every scenario. Therefore,
we develop a cost-based approach in which we identify a
search space, spanning existing algorithms and their combi-
nations. We propose a cost model to estimate the cost of the
algorithms with their combinations, and use the cost model
to search for the lowest-cost algorithm. The resulting plan
is usually a combination of 2-way algorithms, outperforming
conventional 2-way and k-way algorithms. The proposed ap-
proach is more general than designing a specific algorithm,
as the cost models can be adapted to different hardware.
We validate the cost model experimentally on two differ-
ent CPUs, and show that the cost model closely estimates
the actual cost. Using both real and synthetic datasets, we
show that the proposed cost-based optimizer outperforms
the state-of-the-art alternatives.

PVLDB Reference Format:
Sunghwan Kim, Taesung Lee, Seung-won Hwang, Sameh Elnikety.
List Intersection for Web Search: Algorithms, Cost Models, and
Optimizations. PVLDB, 12(1): 1-13, 2018.
DOI: https://doi.org/10.14778/3275536.3275537

Keywords
list intersection, cost-based query optimization, statistical
analysis, top-down analysis

∗corresponding author

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 1
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3275536.3275537

c. probabilistic analysis

cost parameters

Frontend Backend

Alg #1

a. top-down analysis

...

for i = 1 to |L1|
 for j = 1 to |L2|
 if
 ...
 else
 ...
 x = array[y]

e. cost optimizer

d. cost model

 Case #1 Case #2

Alg #1 0.2 ms 1.2 ms

Alg #2 0.05 ms 0.1 ms

...

Alg #5 0.03 ms 0.5 ms

Suggestion Alg #5 Alg #2

$est. *
event counts

=
b. translation

γ1β1α1 Oγ1Oβ1Oα1

Figure 1: Overview of cost-based optimizer. We build a
cost model with following two steps: (1) translate the cost
factors of the top-down cycle accounting method into cost
parameters, and (2) translate an intersection process into

event counts through probabilistic analysis. The cost-based
optimizer searches for the optimal plan.

1. INTRODUCTION
List intersection is a fundamental operation that is widely

used in data processing and serving platforms, such as web
search engines and databases. In web search engines, a multi-
word query goes through a “matching phase”, which is es-
sentially an intersection of sorted lists corresponding to the
query keywords. Each list (also called inverted or postings
list) contains the IDs of web documents matching the key-
word [11]. For example, a query with (e.g., “VLDB 2019
Research Papers”) is dispatched to the servers managing
the web corpus inverted index, and each server intersects the
corresponding postings lists and returns its intersection out-
come as a result. Due to this significance, many algorithms
have been proposed to execute this operation, but no list

1

intersection algorithm is cost-optimal in all scenarios. For
example, merge-based algorithms are effective when the lists
are of similar lengths and are accessed sequentially. Mean-
while, search-based algorithms perform better when one list
is significantly shorter than others, as items in the shortest
list work as pivots to skip accessing on non-matching items
in long lists.

A cost-based approach aims at having an accurate cost
model, so to generate the optimal query plan for the given
scenario, as commonly used in the database systems [9, 20].
However, the existing list intersection cost models estimate
the cost using a number of comparisons [2, 4, 5], which does
not reflect the execution time on modern processors that
support out-of-order execution, predictive speculation, and
hardware prefetching [29]. For this reason, we develop a cost
model that uses several hardware parameters rather than
inventing new specialized intersection algorithms.

Considering the dependency on hardware parameters, a
desirable cost model should estimate the cost of a given al-
gorithm with a set of raw parameters, rather than with a
single scalar parameter, such as the number of comparisons.
We use profiling to measure the hardware parameters and
develop cost models for several intersection algorithms. We
build on related efforts that use hardware parameters, such
as cycle accounting (CA) [29] which targets analyzing the
bottleneck for given CPU architecture and algorithm. We
use the hardware parameters to estimate the cost of execut-
ing the intersection algorithm rather than identifying bottle-
neck. We compute the total execution cost using three sets
of hardware parameters reflecting (1) instruction execution,
(2) branch misprediction, and (3) memory references.

We address several challenges to develop a principled cost-
based approach for list intersection. The first challenge is
hardware cost parameterization, by overcoming taxon-
omy mismatch. The state-of-the-art top-down method (Fig-
ure 1a) for CA divides architecture into two major parts,
backend and frontend, and analyzes the cost with respect to
three types of overhead—backend, frontend, and between.
This does not map well with the causes we want to identify,
for which we propose to translate the cost factors of top-
down method into the unit cost parameters (Figure 1b).

The second is probabilistic counting. How many ele-
ments in a list are accessed (or skipped) is specific to the in-
tersection algorithm and the data distributions. We propose
a probabilistic model (Figure 1c), translating cost factors
into the an expected total cost (Figure 1d).

Last challenge is search space reduction, to reduce
search overhead without compromising the optimality of the
algorithm found. In addition, we show that considering 2-
way algorithms is often sufficient, which reduces the search
overhead of the proposed approach. This finding promotes
nonblocking pipelined implementation scenarios when some
of the required information on input lists are not available
at query time.

We demonstrate that the proposed model performs well
in two CPUs on both synthetic and real-world datasets, and
show that our cost-based optimizer (Figure 1e) outperforms
the existing list intersection approaches.

Our main contributions are the following:

• We parameterize intersection scenarios to reflect the ar-
chitecture and input characteristics, and build cost mod-
els for major intersection algorithms.

Algorithm 1 2-Gallop

Input: L1, L2: Two lists to intersect
Output: R = L1 ∩ L2: intersection of two lists
1: R = φ
2: c1 = i = 0, c2 = j = 0
3: for i = 0 to |L1| − 1 do
4: δ = GallopSearch(L2, j, L1[i])
5: j = j + δ
6: if L1[i] = L2[j] then
7: R = R ∪ {L1[i]}, L1[i] = φ
8: return R

Algorithm 2 2-Merge

Input: L1, L2: Two lists to intersect
Output: R = L1 ∩ L2: intersection of two lists
1: c1 = i = 0, c2 = j = 0
2: u = L1[i], v = L2[j]
3: while i < |L1| and j < |L2| do
4: if u < v then // <
5: i+ +, u = L1[i] // SB<

6: else if u > v then // >
7: j + +, v = L2[j] // SB>

8: else // =
9: // SB=

10: R = R ∪ {u}
11: i+ +, j + +
12: u = L1[i], v = L2[j]
13: return R

Algorithm 3 2-SIMD

Input: L1, L2: Two lists to intersect
Output: R = L1 ∩ L2: intersection of two lists
1: i = 0(= c1), j = 0(= c2)
2: u = L1[i], v = L2[j]
3: while i < |L1| and j < |L2| do
4: d1 = (L1[i], L1[i+ 1], · · · , L1[i+ ∆− 1])
5: d2 = (L2[j], L2[j + 1], · · · , L2[j + ∆− 1])
6: R = R ∪ (d1 ∩ d2)
7: i = i+ ∆ · (L1[i+ ∆− 1] ≤ L2[j + ∆− 1])
8: j = j + ∆ · (L1[i+ ∆− 1] ≥ L2[j + ∆− 1])
9: return R

• We build a cost-based optimizer that suggests the opti-
mal intersection plan for intersecting two or more lists.
• We analytically show that the proposed cost models are

precise in a wide range of scenarios.
• We empirically demonstrate the proposed cost models

and the cost-based optimizer perform well in a wide
range of scenarios.

2. LIST INTERSECTION ALGORITHMS
This section describes existing representative 2-way and k-

way intersection algorithms, as preliminaries to model their
behaviors in our cost models.

2.1 2-way algorithms
2-way algorithms accept two lists L1 and L2 as inputs,

and return its intersection L1 ∩ L2.

2.1.1 2-Gallop
In our application scenario of search, input lists are or-

dered, which enables a search algorithm, skipping some ele-
ments, instead of incrementing the cursor one step at a time.
2-Gallop (Algorithm 1) is a representative 2-way search-
based algorithm that uses each element of the shorter list
L1 as a pivot and searches for the match in another list L2.

2

In particular, for a search, [6] implements an exponential
search of looking for the first exponent, j, where the 2j-th
value in L2 is greater than the search key. This step lim-
its the range where the match exists, from which a binary
search follows. Because we may expect that the pivot ele-
ment resides not far from the cursor, gallop search is more
efficient than directly applying a binary search in the entire
range. We denote this procedure as GallopSearch.

2.1.2 2-Merge
2-Merge (Algorithm 2) adopts a sequential scan for search-

ing of an element. This method compares two values pointed
by cursor i and j from the two lists L1 and L2. Once the
identical pair is found, the method advances both cursors.
Otherwise, the method moves the cursor with smaller value
forward. The method repeats comparison until either cursor
i or j reach to the end of list.

This algorithm takes a different form according to the
hardware changes. For example, SIMD instructions (Algo-
rithm 3) [17, 21] support operations on 128- or 256-bit vector
registers, for which set elements are packed (Line 4, 5). For
this scenario, vector intersections are replaced by arithmetic
operations (Line 6). This implementation compresses multi-
ple instructions on elements, into few SIMD instructions on
larger vectors.

2.2 k-way algorithms
k-way algorithms [3] accept k lists L1, L2, . . . , Lk then re-

turn their intersection.

2.2.1 Skeleton of k-way algorithm
Most k-way algorithms are abstracted as three steps (Al-

gorithm 4) including Pivot, Search and Output.
Pivot (Line 2, 10) chooses a pivot from a given list, ini-

tialized as the first element in all lists. Once the pivot is
selected, in the Search step (Line 4), the pivot element is
tested with elements in all other lists. Depending on base
algorithms, either Gallop or Merge, this implementation
can differ, which we later present as GallopSearch and
MergeScan respectively. In either case, this test moves the
cursors by displacement δ to reduce the search space until
it reaches the last element, where displacement δ is the dis-
tance between current cursor and the index of lowest value
matching or exceeding pivot.

In the Output step (Line 6-9), we add the pivot element
into the result, if the pivot is found in all k list. Otherwise,
move on to the Pivot step until any cursor reaches to the
end of list.

2.2.2 k-Gallop
We denote by k-Gallop the k-way intersection algorithm

with GallopSearch procedure. Given a list Li, a cursor c
and a pivot element p, k-Gallop performs GallopSearch
(Algorithm 5) as Search for finding pivot element p from
the list Li.

2.2.3 k-Merge
k-Merge (Algorithm 6) adopts a merge-based scan for

Search. Specifically, for given Li, c, and the pivot value p,
MergeScan increases δ one by one until the element under
c+ δ is equal or greater than p. We denote by k-Merge the
k-way intersection algorithm with MergeScan procedure.

Algorithm 4 General k-way intersection

Input: L
Output: R =

⋂
1≤i≤k Li

1: R = φ,C = {ci = 0|∀i, 1 ≤ i ≤ k)}
2: pivot = L1[c1], j = 2
3: while ci < |Li|(∀i, 1 ≤ i ≤ k) do
4: δj = Search(Lj , cj , pivot)
5: cj = cj + δj
6: count = count ∗ (pivot == Lj [cj]) + 1
7: // count is 1 if pivot 6= Lj [cj] or increase by 1 otherwise
8: if count = k then
9: R = R ∪ {pivot}, cj + +
10: pivot = Lj [cj]
11: cj + +, j = (j mod k) + 1
12: return R

Algorithm 5 GallopSearch procedure

Input: Li: given list, c: index of cursor, p: pivot value
Output: δ: displacement that is the difference between c and the

index of lowest value which is no lower than p.
1: δ = 0
2: offset = 1
3: while c+ δ + offset < |Li| ∧ p > Li[c+ δ + offset] do
4: δ = δ + offset, offset = offset ∗ 2
5: while boffset/2c > 0 do
6: offset = boffset/2c
7: if c+ δ + offset < |Li| ∧ p > Li[c+ δ + offset] then
8: δ = δ + offset
9: return δ

Algorithm 6 MergeScan procedure

Input: Li: given list, c: index of cursor, p: pivot value
Output: δ: displacement
1: δ = 0
2: while c+ δ < |Li| ∧ p > Li[c+ δ] do
3: δ + +
4: return δ

2.3 Intersecting k lists
To perform the intersection of k lists, we may can apply

either or both 2-way or/and k-way algorithms. For example,
we can intersect k lists, by executing a k-way algorithm once⋂
Li∈L Li, or 2-way algorithms k − 1 times (((L1 ∩ L2) ∩

L3) · · · ∩ Lk).
Formally, we define intersection plan tree T recursively as

follows:

T (L) =


L1 L = {L1}⋂
Li∈L Li k -way

T (L′) ∩ T (L− L′) L′ ⊂ L, 2-way

(1)

where L = {L1, L2, ..., Lk} (|Li| ≤ |Lj |, ∀i ≤ j) is given set
of lists to intersect. Our cost model in Section 4 estimates
the cost of each plan tree T , so that cost optimizer finds an
efficient plan tree Topt for computing the intersection of the
given lists L.

3. HARDWARE PROFILING
On modern processors, using the number of comparisons

Oinst is not sufficient to estimate execution time of list inter-
section which depends on memory access, branch mispredic-
tion among other factors. Our goal is to develop new model
to reflect new cost factors. For example, as illustrated with
SIMD examples, underlying hardware may expedite some
instructions while penalizing others, for which a new spe-
cialized 2-way algorithm (Algorithm 3) had to be custom-
designed. In contrast, we aim to parametrize new factors

3

Table 1: Cause-based pivoting of top-down factors.

Top-down
Our category

Category
Base Branch Memory

latency(α) MISP(β) Stalls (γ)
Frontend bound X X
Bad Speculation X

Retiring X
Backend X X

such as slow memory accesses (of additional latency β) or
branch misprediction (of γ).

For the new parameterizations, we divide cost of instruc-
tion execution into those incurring additional latency β or γ.
For this goal, we adopt the state-of-the-art cycle accounting
analysis for a modern out-of-order architecture called the
top-down method [29].

In this work, we illustrate how the cost factors from top-
down profiler is mapped into our new cost factors. Top-
down model provides four groups of cost factors:

• Frontend bound – overhead in frontend.
It represents fetching instructions and issuing microop-
erations to backend. This is not dominant in list inter-
section with few instructions.
• Bad speculation – overhead between frontend and back-

end.
It represents wasted pipeline slots due to incorrect spec-
ulations. This is mainly caused by branch mispredictions
in list intersection.
• Retiring – no overhead.

It represents cycles where superscalar performing in full
potential. This is mainly related to the number of in-
structions computed.
• Backend bound: overhead in backend.

It represents wasted cycles due to lack of resources. Main
causes are either by memory stalls or long latency in-
structions such as division.

Table 1 guides how each of the above groups affects each
cost factor, especially over the following three cost factors:

• Base latency (α) – mainly including latency of success-
fully retired instructions with few other overhead such
as frontend bound or backend bound.
• Branch misprediction (β) – overhead caused by branch

misprediction.
• Memory stalls (γ) – overhead caused by memory refer-

ence.

The cost of a particular instruction is closely related to
the context of execution, thus it is hard to predict without
grouping instructions that share the same context. Based
on this observation, we set a “code hierarchy” based on loop
structure as the basic unit of cost analysis. In the next sec-
tion, we introduce how we model the cost of each algorithm.

4. PROBABILISTIC COUNTING
In this section, we analyze and build cost models for list

intersection algorithms for 2-way algorithms then generalize
them for k-way. For each algorithm, we first introduce how
to parametrize the cost model of the algorithm, then discuss
the probabilistic model of the algorithm. Table 2 describes
the symbols used in this section, and the details of the ma-
chine specific parameters will be discussed in Section 6.1.

Table 2: Symbols used in cost model.

Symbol Description
pi selectivity of a list Li to entire set of list L, pi =⋂k

j=1 Lj

|Li|

pi,j selectivity of Li to Lj , pi,j =
|Li∩Lj |
|Li|

ri,j list size ratio of Li to Lj , ri,j =
|Lj |
|Li|

δ displacement, moving distance of cursor c2 as a re-
sult of a 2-way loop.

δi displacement, moving distance of cursor ci as a re-
sult of a k-way loop.

δi,j subdisplacement, moving distance of cursor ci that
caused by pivot change for j-th round-robin itera-
tion after round-robin iteration on Li.

α
(event)
A unit cost parameter of base latency (for the event)

in algorithm A
β
(event)
A unit cost parameter of branch misprediction (MISP)

(for the event) in algorithm A
γ
(event)
A unit cost parameter of memory reference (for the

event) in algorithm A
Oevent computational occurrence of each event.
fMISP(p) function of misprediction that takes p as the prob-

ability of branch taken.

fMISP(p) =
p(1−p)

p3+(1−p)3+p(1−p)

∆ number of elements that can be stored in a 128- or
256-bit vector register.

Nln number of elements in a cache line. eg. 16 for 64-byte
cache line size with 4-byte elements.

4.1 2-way algorithms

4.1.1 2-Gallop
Cost estimation. We parametrize the cost of 2-Gallop
into six components including two types of base latency

(α
in/out
2gallop), two of branch mispredictions (MISPs) (β

in/out
2gallop),

and two types of memory subsystem costs (γ
mem/miss
2gallop). Then,

we formulate the cost model by aggregating them with their
corresponding event counts (Oevent).

$2gallop(L1, L2) = αin
2gallopOin + αout

2gallopOout

+ βin
2gallopOMISPin

+ βout
2gallopOMISPout

+ γmem
2gallopOmem + γmiss

2gallopOmiss. (2)

Models of loop iterations. 2-Gallop is generally imple-
mented in the structure of 2-level nested loop: one outer
loop (Line 3-7, Algorithm 1), that selects a pivot to search,
and two inner loops (Line 3-4 and 5-8, Algorithm 5), that
computes search of the pivot.

We make the model of each loop counts: Oout for the outer
loop and Oin1/Oin2 for each inner loop. The outer loop count
Oout is equal to |L1| because the loop linearly scans the
shorter list L1 for picking each element on the list as the
pivot.

Oout = |L1| (3)

The behavior of inner loops is probabilistic modeled with re-
spect to the displacement δ of the exponential search, which
is the number of skipped elements by a search. Formally, we
define the displacement δ as the distance between current
cursor c and the index c′ of lowest value matching or ex-
ceeding the pivot, where the cursor c is the index of element
that the search begins. If a displacement of a specific search
is δ, both inner loops are computed i = blog2 (δ + 1)c times.
Because 1) the first inner loop scans are (c+ 2k)-th element

4

for k-th iteration, for which the loop stops at the i-th it-
eration, and 2) the second loop executes the binary search
over the range of index [c + 2i−1, c + 2i) which requires i
iterations. Therefore, we model the probability distribution
of the loop count Oin shared by both inner loops as follows:

Oin = Oin1 = Oin2 = |L1|
|L2|∑
δ=0

blog2 (δ + 1)c · P [D = δ], (4)

where D is the random variable of displacement δ.
Next, we model the distribution associated with D. Con-

sider a generative process of drawing balls from a jar with
|L1 − L2| red, |L1 ∩ L2| orange, and |L2 − L1| blue balls:
select a ball, give it a sequence number, and put the ball in
L1 if red, L2 if blue, and in both if orange. This process will
generate two random lists.

We can consider a search as drawing balls from a jar un-
til drawing a red or orange ball. Then, the displacement
is identical to the sum of drawn orange or blue balls. We
model this process with a negative hypergeometric distri-
bution (NHG) by considering picking red/orange ball as a
‘success’ and blue balls as a ‘failure’. Specifically, we define
the random variable of D as follows:

D = (1− p1) ·NB1,prob(δ) + p1 ·NB1,prob(δ − 1), (5)

where prob is |L2|/|L1 ∪ L2| and p1 is |L1 ∩ L2|/|L1|. Since
we have large |L1| and |L2|, the NHG distribution can be
approximated by the negative binomial (NB) distribution
[16].

Branch mispredictions. We next model the count of MISPs,
based on the model of loop iterations. In particular, we iden-
tify the following three branches and their count.

• OMISPin : The count of mispredictions caused by the two
inner loops in GallopSearch (Algorithm 5). The first
branch (Line 2-3) is taken Oin times, and not taken Oout

times out of Oin + Oout times total. The second branch
(Line 4-7) is computed Oin times, and is taken or not
taken, each with half assuming the uniform distribution
of elements in lists.

OMISPin
= fMISP

(
Oout

Oout + Oin

)
(Oout + Oin) +

Oin

2
. (6)

• OMISPout : The count of mispredictions caused by the if
statement in Output (line 6-7, Algorithm 1) after Gal-
lopSearch. The branch is computed Oout times, and
taken |L1 ∩ L2| times when the search is successful.

OMISPout = fMISP

(
|L1 ∩ L2|

Oout

)
Oout. (7)

Memory references & cache misses. We identify mem-
ory subsystem costs including memory references, and cache
misses. The count of memory references Omem is easily mod-
eled from the algorithm structure: both inner loops have one
each, and the outer loop has two memory load instructions.
Thus, we compute Omem as 2Oin + 2Oout.

We next model the cache miss overhead which is also an
important memory subsystem cost. In 2-Gallop, few or no
capacity misses happen due to the small working set size,
however, cold/compulsory misses may occur frequently. For
modeling the cold miss, the stride, the memory address dis-
tance of subsequent accesses, is an important variable; if the
stride fits in the cache line size Nln, the cold misses do not
happen thanks to speculative caching.

As the cursor move distance δ determines the stride, the
cache misses are decided by δ and Nln.

• δ < Nln/2 – no cold cache miss happens.

• Nln/2 ≤ δ < Nln – then only one cold cache miss
occurs, because the maximum stride of galloping jump
(first inner loop) is Nln.

• δ ≥ Nln – the search has two additional cache misses
than the search of jump distance δ/2. As δ increases
twice, both inner loops have additional scan that the
stride is larger than Nln.

For example, if δ is Nln, we have three cold cache misses,
two in first inner loop (stride: Nln, 2Nln), and one in second
inner loop (stride: Nln). We formulate the number of cache
misses by the following function:

Omiss = |L1|
|L2|∑
δ=0

max

(
0,

⌊
log2

(
2δ

Nln

)⌋)
· P [D = δ]. (8)

4.1.2 2-Merge
We parametrize the cost of 2-Merge into base latency

(α2merge) and MISP (β2merge), and model the following cost
model with corresponding counts:

$2merge(L1, L2) = α2mergeOST + β2mergeOMISP. (9)

2-Merge is generally to be implemented in a single loop
with three cases {<,>,=}, which are separated by two con-
ditional branches. Thus, total loop count OST is computed
as follows:

OST =
∑

BT∈{<,>,=}
OBT. (10)

where OBT is computed as O= = |L1 ∩ L2|, O< = |L1| −
|L1 ∩ L2|, and O> = |L2| − |L1 ∩ L2|. As 2-Merge reads
data sequentially, the memory access cost of the algorithm is
marginal, for which we group this cost with the base latency.

We model the count of MISP OMISP as follows

OMISP = fMISP

(
O<

OST

)
OST

+ fMISP

(
O>

O> + O=

)
(O> + O=), (11)

based on our two-level nested branch implementation in 2-
Merge (if < else (if > else =)).

4.1.3 2-SIMD
We model the following cost of 2-SIMD with only one pa-

rameter – base latency (α2simd). In 2-SIMD, both the cost
of MISPs and memory loads are marginal, because the algo-
rithm does not require branching and has sequential memory
access pattern.

$2simd(L1, L2) = α2simdOST. (12)

For each iteration of 2-SIMD, the process selects a 128- or
256-bit vector of elements under the cursors, then finds in-
tersections between the vectors with SIMD computation. If
two lists are identical, both cursors of two lists are advanced
in every iteration, otherwise, both are advanced together
only if the last element of two selected vectors are equal to
each other. Thus, we formulate OST as follows:

OST =

{
|L1|
∆

L1 = L2
|L1|+|L2|

∆
− |L1∩L2|

∆2 L1 6= L2,
(13)

5

L1

L2

L3

Lk

v1 v1

vk

v3v2

δ1= ∑k
j=1δ1j

δ12

δ11=1

δ13 δ1k

…

Figure 2: Illustration of displacement δ1.

where ∆ is the number of elements fit in a vector register.
For example, if we intersect lists of 32-bit elements through
a SIMD algorithm with 128-bit vectors, then one vector can
handle four elements (∆ = 4).

4.2 k-way algorithms
The cost model of k-way algorithms requires understand-

ing the cursor movements after searches, or conversely, the
number of Search operations in the algorithm skeleton.
Thus, we first discuss the cursor movements (Section 4.2.1),
for a round robin strategy, commonly used in k-way algo-
rithms. Then, we discuss the cost models of k-way algo-
rithms with each procedure: GallopSearch or MergeS-
can (Section 4.2.2, 4.2.3).

4.2.1 Common structure analysis
The k-way algorithms (Algorithm 4) share the same outer

loop structure, and thus share the outer loop count. The
outer loop count is modeled by cursor displacements and
their subdisplacements based on a negative binomial distri-
bution and Markov chain. Since each outer loop iteration
moves only a cursor, the outer loop count is equal to the
total number of cursor moves, which is determined by dis-
placements (e.g., long displacements reduce the counts).

Without loss of generality, the general k-way algorithm
searches for the pivot v1 in L2 (Figure 2). The displacement
for this search is δ2 such that the value v2 under the index
c2 + δ2 is the smallest value which is equal to or greater
than v1. The search process continues and returns to L1 to
find a sequence of displacements δ2, . . . , δk, δ1 that updates
cursors {c2, ..., ck−1, ck, c1} to new values {c2 + δ2, . . . , ck +
δk, c1 + δ1}. We aim to model the distribution of each δi as
the random variable Di, then estimate the outer loop count
Oout with the variable Di as follows:

Oout =

k∑
i=1

|Li|
E[Di]

. (14)

As depicted in Figure 2, each δi is influenced by each
search trial of round-robin computation. Thus, we model
how each search affects δi. Formally, we can divide δi into k
subdisplacements {δi,1, δi,2, . . . , δi,k} such that the value

under ci +
∑k
j=1 δi,j is the smallest value but no smaller

than vi+k−1. More formally, we formulate Di using random
variable Di,j for δi,j :

Di =

k∑
j=1

Di,j . (15)

Subdisplacement δi,j can be interpreted as a contribution
of search on Lj for the move of ci, and search of vj in Li
(Figure 2). Similar with two list case (Section 4.1.1), the

subdisplacement can be modeled by a negative binomial dis-
tribution. We model Di,j as follows:

P [Di,j = δi,j] =


1− π0,j − π(k−1),j+

(π0,j + π(k−1),j)NB1,probi,j (0) δi,j = 0

(π0,j + π(k−1),j)NB1,probi,j (δi,j) δi,j > 0,

(16)

where probi,j is
|Li−Lj |
|Li∪Lj |

and πl,i is the probability of l num-

ber of preceding pivots are equal to the pivot vi. For exam-
ple, π0,j is the probability that vj−1 6∈ Lj and π2,j is the
probability that vj−1 ∈ Lj and vj−1 = vj−2 but vj−1 6=
vj−3. The subdisplacement Di,j follows NHG distribution,
only when the pivot value is changed after searching the list
Lj , formally vj−1 6= vj . The probability of this case is the
sum of π0,j by definition, and π(k−1),j as well, because when
we find k−1 constructive elements equal to vj , then we will
advance Lj to get a new pivot vj , which is no more equal to
vj−1. Otherwise, vj−1 is equal to vj , then the subdisplace-
ment always zero.

We model πl,i as the stationary probability of markov
chain π (Figure 3) that computes how many consecutive
pivots are equal to each other during intersection procedure.
Formally, we define πl,i as follows:

πl,i = P [π(∞) = sl,i], (17)

where sl,i is the markov state (Figure 3c) – vi, pivot of i, is
found in l consecutive proceeding searches.

Each markov state sl,i has two types of state transition,
(1) successful search, vi = vi+1 (Figure 3a) and (2) unsuc-
cessful search, vi 6= vi+1 (Figure 3b). For each successful
search, we set the next state as sl+1,i+1, when l is less than
k− 1, because we have l+ 1 constructive pivots after search
on Li+1. Otherwise, when l = k − 1 (Figure 3e), then as we
start with new pivot vi, we set the next state as s1,i+1. For
each unsuccessful search, we set the next state as s0,i+1 (Fig-
ure 3d). We formally define transition probability function
of π as follows:

P [π(t+1) = sl,i] = Γ · P [π(t) = sl,i]

+ (1− Γ) ·



∑k−2
l′=0

(
1−

|∩l′
j=0Li−j |

|∩l′
j=1Li−j |

)
P [π(t) = sl′,i−1]+

|Li−1−Li|
|Li−1|

P [π(t) = sk−1,i−1] l = 0
|Li−1∩Lj |
|Li−1|

(
P [π(t) ∈ {s0,i−1, sk−1,i−1}]

)
l = 1

|∩l
j=0Li−j |
|∩l

j=1Li−j |
P [π(t) = sl−1,i−1] 1 < l < k.

(18)

In the model, we adopt a damping factor Γ on the equation
to prevent the equation from diverging or not converging.

4.2.2 k-Gallop
Now we build the following cost model of k-Gallop with

six parameters – two types of base latency (αin
kgallop, αout

kgallop),

two types of MISP (βin
kgallop, βout

kgallop) and two types of mem-

ory system cost (γmem
kgallop, γmiss

kgallop):

$kgallop = αin
kgallop ·Oin + αout

kgallop ·Oout

+ βin
kgallop ·OMISPin

+ βout
kgallop ·OMISPout

+ γmem
kgallop ·Oin + γmiss

kgallop ·Omiss. (19)

We model the counts for inner loop computations (Oin)
and cold cache misses (Omiss) with the distribution of dis-
placement. When the displacement of a search is δi, then

6

s0,1

s1,1

s2,1

s3,1

s0,2

s1,2

s2,2

s3,2

s0,3

s1,3

s2,1

s3,1

s0,4

s1,4

s2,4

s3,4

a. unsuccessful search (vi ≠ vi+1)

Search on S2 Search on S3 Search on S4 ...S1

c. sl,i = l sequential proceeding elements are equal to vi

d. search fails = start next search with a new pivot
e. (k-1) constructive search successes = find an instrection element
(start next search with a new pivot)

b. successful search (vi = vi+1)

Figure 3: Illustration of markov chain π.

the search requires exact 2blog2(δi−1)c memory references.
Thus, we model Oin as follows:

Oin =
∑
Li∈S

|Li|∑
δi=2

2P [Di = δi] · blog2(δi − 1)c. (20)

The cold cache miss occurs when the stride of memory ac-
cess is longer than the number of elements in a cache line
Nln. When δi is longer than Nln + 1, all the memory refer-
ences have stride longer than Nln. Thus, we mathematically
formulate following Omiss:

Omiss =
∑
Li∈S

|Li|∑
δi=Nln+1

P [Di = δi] ·
(

2

⌊
log2

(
δi − 1

Nln

)⌋
+ 1

)
.

(21)

We model the count of MISPs for branches in two inner
loops (OMISPin) in GallopSearch as

OMISPin
= Oin ·

(
fMISP

(
Oout

Oin

)
+ 0.5

)
, (22)

because the first loop condition is not taken Oout times out
of total Oin executions, and the second loop condition is
taken or not taken with a probability of 50%. We also model
the following MISP count for the branch in the outer loop

(OMISPout) as
|∩Li∈LLi|

Oout
.

4.2.3 k-Merge
We parameterize the cost of k-Merge into four compo-

nents – two types of base latency (αin
kmerge, αout

kmerge), two

types of MISP (βin
kmerge, βout

kmerge). Then, we model the cost
of k-Merge as follows:

$kmerge = αin
kmerge ·Oin + αout

kmerge ·Oout

+ βin
kmerge ·OMISPin

+ βout
kmerge ·OMISPout . (23)

We model the count of MISP for the inner loop condition

(OMISPin) as Oin · fMISP

(
Oout
Oin

)
, because the branch is not

taken Oout times out of total Oin executions. Oin is equal
to
∑
Li∈L |Li| because k-Merge scans all elements in lin-

ear, and the count of MISP for the branch in outer loop
(OMISPout) is equal to the OMISPout of k-Gallop.

��� 	�� ����
�������r��log2�

��
�

��
	

��
�

�
���

��
���

��
�p

�

��

���
���
���
���

�
��
���

���

(a) 2-Gallop

��� 	�� ����
�������r��log2�

��
�

��
	

��
�

�
���

��
���

��
�p

�

��

���
���
���
���

�
��
���

���

(b) 2-Merge

��� 	�� ����
�������r��log2�

��
�

��
	

��
�

�
���

��
���

��
�p

�

��

���
���
���
���

�
��
���

���

(c) 2-SIMD

Figure 4: 2-way vs. k-way in various setting.
(|L1| = 212, blue: 2-Gallop faster, red: k-Gallop faster.)

5. OPTIMIZATION SPACE REDUCTION
Though cost model itself suggests an optimization scheme

of enumerating all possible algorithms and their costs, then
execute the minimal cost one, it is too time consuming. Thus
in this section, we argue two ideas for reducing the optimiza-
tion space. First, in Section 5.1, we discuss that reducing the
space to include only the 2-way algorithms does not com-
promise optimality much. Second, in Section 5.2, we discuss
another rule for intersecting multiple posting lists.

5.1 2-way vs. k-way
We claim that, to intersect k-list, applying 2-way intersec-

tion k− 1 times is faster than a single k-way intersection in
most scenarios. To show this, we first identify representative
input constraints and analytically show inputs satisfying the
constraints meet our hypothesis on a common system (e.g.,
IvyBridge) which fall into one of the four cases (Case 1
to 4). Then, we empirically show the claim indeed holds for
a wide range parameter combinations. In the analysis, we
consider that L1 is the shortest list among the input.
Case 1 All k inputs have equal lengths and no element

is in more than one list → 2-SIMD outperforms both k-
Gallop and k-Merge:

In modern architecture, the cost of 2-SIMD (α2simd
2
|L1| =

3.12|L1| in our IvyBridge) is usually smaller than the lower
bounds of base latencies in outer loop and inner loop cost
for both k-Gallop ((αout

kgallop +αin
kgallop)|L1| = 3.32|L1|) and

k-Merge ((αout
kmerge + αin

kmerge)|L1| = 3.45|L1|). That is, al-
though we have the similar numbers of micro-operations for
2-SIMD, and the outer loop of k-Gallop or k-Merge both
k-way algorithms have additional inner loop costs thus they
are slower than 2-SIMD. Considering the other costs such
as branch misprediction or memory miss, this difference is
even higher.

Case 2 All k inputs are identical to each other → 2-
Merge outperforms both k-Merge and k-Gallop:

In this case, the outer loop cost of k-Gallop (2.97k|L1|)
and k-Merge (2.91k|L1|) is higher than the cost of 2-Merge
(1.16(k− 1)|L1|), because 2-Merge tends to have fewer mi-
cro operations. $2merge is equal to (k−1)αout

2merge|L1|, $kgallop

is greater than k(αin
kgallop+αout

kgallop+βmem
kgallop)|L1|, and $kmerge

is equal to k(αin
kmerge + αout

kmerge)|L1|.
Case 3 The length ratio r is high → both search-based al-

gorithms 2-Gallop and k-Gallop dominate all scan-based
algorithms, and 2-Gallop is faster than k-Gallop in most
of the scenarios:

The number of searches in 2-Gallop is at most that in
k-Gallop. The number of searches in k-Gallop is approx-

7

imately k|L1|, because k-Gallop selects most of elements
in the L1. However, the number of searches in 2-Gallop is
upper-bounded to (k − 1)|L1|, and still has much chance
to have a lower value, because each time of 2-Gallop uses
intermediate results as the pivot instead of picking all ele-
ments in L1.

For example, consider a scenario with a short list L1 and
1024 times longer k − 1 lists. If there is no element in more
than one list, then 2-Gallop execute the searches |L1| times,
while k-Gallop execute the searches k|L1| times, because
the first intermediate result of 2-Gallop is an empty list,

while k-Gallop picks |L1|
1+((k−1)/1024)

≈ |L1| elements from

each list, total k|L1|. If L1 is subset of all input lists, 2-
Gallop execute searches (k−1)|L1| times, while k-Gallop
do k|L1| times.

Case 4 The number of input lists k is large → the costs
of each k-way algorithm are higher than the corresponding
2-way algorithms:

In this case, the characteristics of the k-way cost mod-
els are different from the other scenarios. When we exe-
cute a k-way algorithm with large k, we suffer a capacity
cache miss problem, because all k-way algorithms require
to store lines/pages including each k cursor elements to the
cache/TLB entry.

We also empirically compare the costs of using consecu-
tive 2-way intersections, and a k-way intersection in Figure 4
and in more detail in Section 6.3. While there are some cor-
ner cases that a k-way intersection performs better, both
methods have a negligible absolute difference. Thus, a wise
selection of consecutive 2-way algorithms outperforms a sin-
gle k-way algorithm in most scenarios.

We can generalize this to a general k-way intersection tree.
In the above situation, we can replace any intersection tree
T with non 2-way intersection operations into 2-way inter-
section tree T2 whose cost is equal or less than T . For any
non 2-way operation T ′ in T , we can replace it into T ′2 with
equal or lower cost following the above observations. By re-
peatedly applying this replacement, we can transform T into
a faster 2-way intersection tree in most scenarios.

5.2 Case study: web search
Even after reducing the space to 2-way algorithms, in web

search scenarios with multiple keywords, the size of search
space may expand exponentially, because the number of pos-
sible 2-way binary tree plans is exponential. Existing work
for pruning exponential search space, such as “shortest vs
shortest (SvS)” [5] can be used for 2-way binary tree selec-
tion, but our problem still requires to decide which algorithm
to use for each intersection.

In case of search engines, where word occurrences are
known to typically follow zipfian distribution, we find 2-
Gallop is a good choice when length ratio is higher than
some threshold, which holds mostly true for the second and
later intersections with zipfian distribution. For example, an
intermediate result after 1st intersection, input lists for 2nd

intersection, is short, because it covers posting lists of two
rare words. It is even more unlikely that two rare words to
occur in the same document, such that length ratio rarely
exceeds the threshold found. We can thus order input lists
in the ascending order of length, then decide an algorithm
for the first intersection, and apply 2-Gallop for the rest.
We empirically validate that this simple rule significantly
reduces the space without compromising optimality much

Table 3: Synthetic dataset parameters.

argument symbol values
lists k 2,3,4 ... 15,16
scale |L1| 210, 210.1, 210.2 ... 212 ... 220

length ratio r 20, 20.1, 20.2 ... 21 ... 22... 29 ... 210

correlation p 0, 0.01, 0.02 ... 0.1 ... 0.2 ... 0.9 ... 1

in Section 6.3. As an added bonus, this rule relieves the cost
model from estimating the output list size of preceding in-
tersections, such that supporting nonblocking execution as
in search engines is also straightforward.

6. EXPERIMENTS
In this section, we empirically show that (1) our cost mod-

els are accurate, and (2) our cost-based 2-way optimizer
outperforms any existing intersection algorithm, including
k-way algorithms and the state-of-the-art methods in vari-
ous scenarios.

In particular, we consider both (1) different hardware ar-
chitectures, and (2) different input characteristics. We eval-
uate our cost models on two machines with different pro-
cessors: Intel IvyBridge equipped with four processors of
2.93 Ghz clock and 32GB DDR3 RAM, and SandyBridge
equipped with four processors of 3.60 Ghz clock and 64GB
DDR3 RAM. All experiments are implementations in C++.

6.1 Experimental setup
We evaluate our method on a synthetic dataset and two

real-world corpora: Wikipedia corpus1 and CommonCrawl
web corpus2. We generate synthetic data with four param-
eters: the number of lists n, the length of the smallest list
|L1|, the correlation between all lists p which is the length
ratio between the shortest list and the intersection of all
lists, and the length ratio between the shortest list and the
other lists r. We first generate p|L1| elements randomly that
are common in all lists, then, fill the rest of each list with
distinct elements, so that the intersection of lists is set as we
intended. We consider diverse combinations of these param-
eters to see the robustness of the models and the algorithms
for various input characteristics as shown in Table 3. We set
the default values shown in bold in Table 3, unless otherwise
noted.

We use two corpora to consider a web search scenario
querying keywords over a corpus, where posting lists for the
keywords are intersected. Wikipedia corpus has 9.0M docu-
ments and 412M unique keywords, and CommonCrawl web
corpus has 2.9B documents. We extract the entire Wikipedia
corpus and a sampled set of 3.3M documents from Common-
Crawl web corpus to build an inverted index with words as
the key over the documents. This index takes a word and
returns a list of documents containing the keyword.

On each corpora, we compute the queries extracted from
the real-life search engine log on Wikipedia, used in [28].
We extract 450 queries from this query log that contains at
least two keywords, and execute the intersection of the lists
from the inverted index for the keywords. The number of
keywords in queries ranges from 2 to 10 for each 50 queries.

1https://dumps.wikimedia.org/enwiki/20160701
2https://commoncrawl.org/2017/12/december-2017-crawl-
archive-now-available/

8

2 3 4 5 6 7 8 9 10

number of keywords (lists) in query

0

50000

100000

150000

200000

250000

ev
en
t c
ou
nt

Oin

est. value

(a) Oin of 2-Gallop

2 3 4 5 6 7 8 9 10

number of keywords (lists) in query

0

50000

100000

150000

200000

ev
en
t c
ou
nt

Oout

est. value

(b) Oout of k-way

Figure 5: Accuracy of selected event counts in randomly
selected real queries.

As shown in Table 4, we see most of queries include a small
shortest list, and have large ratios.

For each hardware system, we learn the cost model pa-
rameters by running intersection algorithms over randomly
generated lists, and measuring its running time and top-
down hardware counters using Intel VTune Amplifier. Then,
we apply a gradient descent solver to obtain the unit cost
parameters. In computation of the stationary probability of
Markov chain P [πt = si,j] (Eq 18), we propagate proba-
bilities sufficiently large t times (300 in our experiments).
Table 5 describes the obtained unit cost parameters from
our machines.

In the evaluation, we represent response time per total
input size as the cost metric to compare average time to
process an element in various scenarios. For measuring ac-
curacy of methods, we consider both additive and relative
errors. The relative error shows the overall accuracy of the
cost model over various test input sizes. The additive error
complements the relative error, for very short queries where
relative error deviates significantly for a minute difference.
Formally, we define the errors as follows:

time per input =
$A∑

Li∈S |Li|
(24)

additive error =
$A − $A∑
Li∈S |Li|

(25)

relative error =

(
$A

$A
− 1

)
· 100(%). (26)

These measures are positive if a cost model overestimates
costs, and negative if a cost model underestimates costs.

6.2 Correctness of cost models
We show our cost models for algorithm selection are ac-

curate in two granularities: event count estimation, and cost
estimation.

Event count accuracy. The cost model consists of estima-
tions of many event counts such as Oin, Oout and OMISP.
Many event counts can be obtained trivially through other
counts or list properties. For example, Oout of 2-Merge gen-
erally equals to the size of input lists. However, some event
counts such as Oin or OMISP in the gallop algorithms (2-
Gallop, k-Gallop), and Oout in k-way algorithms are es-
timated using a negative binomial distribution or Markov
chain.

We thus show that the correctness of estimation for se-
lected complex event counts: Oin of 2-Gallop, and Oout of
both k-way algorithms. In 450 Wikipedia queries, our model

��� 	�� ����
�
�
���r, log2�

��
�

��
	

��
�

��
���

�

�
�

��
�p

�

�	��

��	�

��

�	�

	��

��
�

�
�

��
��
��
�

(a) 2-Gallop

��� 	�� ����
�
�
���r, log2�

��
�

��
	

��
�

��
���

�

�
�

��
�p

�

�	��

��	�

��

�	�

	��

��
�

�
�

��
��
��
�

(b) 2-Merge

��� 	�� ����
�
�
���r, log2�

��
�

��
	

��
�

��
���

�

�
�

��
�p

�

�	��

��	�

��

�	�

	��

��
�

�
�

��
��
��
�

(c) 2-SIMD

Figure 6: Heatmap of relative error for 2-way algorithms
in IvyBridge (|L1| = 212).

(a) on IvyBridge system (b) on SandyBridge system

Figure 7: Cost model of 2-way algorithms on different
length ratio r (|L1| = 212, p = 0.5).

provides accurate estimation for each count. In detail, the
5th and 95th percentile errors for Oin of 2-Gallop are -1.6%
(under-est.) and 24.1% (over-est.), and same percentile er-
rors for Oout of k-way algorithms are 0.0% and 23.1% as the
actual computation can early terminate. Figure 5 represents
both measured and estimated count values of nine randomly
selected queries in Wikipedia corpus, identified by number
of keywords, which shows each event count has marginal
errors. In this experiment, we collect actual counts by us-
ing the program counters, and compare each value with the
corresponding value in our model.

Cost estimation accuracy. We next discuss the accuracy
of cost model. All 2-way models show reasonable accuracy
in most of the synthetic pairwise queries (Figure 6). For the
2-Merge model, each 5th/95th percentile of the error per
input is -0.324/0.401 (ns) on the IvyBridge machine, and
-0.327/0.445 (ns) on the SandyBridge machine. For the 2-
Gallop model, each 5th/95th percentile of the same value
in is -0.353/0.128 (ns) on the IvyBridge, and -0.388/0.151
(ns) on the SandyBridge. The 2-SIMD model has 0.1 ns
of maximum error per input which is most accurate among
the tested models, because of the simplicity of the algorithm
and the cost model. Figure 7 shows our cost model on dif-
ferent length ratio. In this experiments, we build two-list
synthetic test cases with all possible combinations of r and
p in Table 3.

All the cost models of each k-way algorithms also have rea-
sonable accuracy on the synthetic dataset. Both k-Merge
and k-Gallop cost models have low relative error in more
than half of test cases (Table 6), which is less than ±10%.
Figure 8 shows detailed result of relative errors in various
cases. For both models, although the relative error is high
for some queries, the absolute error in this case is marginal.

9

Table 4: Statistics of real-data queries.

Wikipedia Queries Common Crawl Queries
shortest longest total min ratio max ratio correlation shortest longest total min ratio max ratio correlation
|L1| |Ln|

∑
|Li| |L2|/|L1| |Ln|/|L1| | ∩ Li|/|L1| |L1| |Ln|

∑
|Li| |L2|/|L1| |Ln|/|L1| | ∩ Li|/|L1|

mean 16.1K 1.32M 2.44 856.47 61.8K 3.9% 15.7K 435K 925K 1114.2 49.4K 9.3%
min 1 3.59M 5886 1.00 1.18 0% 1 8978 10.1K 1.00 1.05 0%
25% 108 411K 654K 2.59 109 0% 1624 152K 297K 1.68 10.45 0.13%
50% 629 819K 1.58M 9.74 1050 0.11% 6995 296K 621K 3.15 42.38 0.59%
75% 6594 1.51M 3.81M 64.14 7875 2.0% 21.8K 541K 1.43M 8.35 216 2.8%
max 559K 7.44M 13.6M 197K 4.46M 99.2% 130K 2.22M 4.97M 21.8K 831K 74.2%

Table 5: Estimated unit cost parameters.

Cost type base latency (α) branch misprediction (β) memory cost (γ)
Cost subtype inner loop outer loop inner loop outer loop ref. cost miss. cost

(Symbol) (αin
(y)

) (αout
(y)

) (βin
(y)

) (βout
(y)

) (γmem
(y)

) (γmiss
(y)

)

System Ivy Sandy Ivy Sandy Ivy Sandy Ivy Sandy Ivy Sandy Ivy Sandy
Algorithm (y)

2-Gallop (2gallop) 1.36 1.31 1.36 1.64 1.29 1.36 5.47 6.64 0.55 0.65 53.6 70.8
2-Merge (2merge) 1.16 1.24 - - 4.38 4.61 - - - - - -
2-SIMD (2simd) 6.23 6.93 - - - - - - - - - -

k-Gallop (kgallop) 0.35 0.36 2.97 3.04 2.91 3.03 2.53 2.01 0.74 0.80 59.4 67.4
k-Merge (kmerge) 0.53 0.66 2.91 2.69 6.35 5.91 2.49 2.12 - - - -

Table 6: Correctness of the k-way intersection optimizer
(|L1| = 212).

Algo/System error type min 25% 50% 75% max

k-Gallop/Ivy
Abs -1.23 -0.05 -0.00 0.05 0.65
Rel -34.8% -6.9% 0.4% 5.2% 37.4%

k-Gallop/Sandy
Abs -1.10 -0.09 -0.02 0.03 0.64
Rel -31.7% -11.6% -1.4% 6.1% 23.4%

k-Merge/Ivy
Abs -1.39 -0.05 -0.00 0.02 0.87
Rel -25.6% -3.4% -0.1% 2.6% 38.5%

k-Merge/Sandy
Abs -1.33 -0.08 -0.00 0.03 . 0.44
Rel -23.0% -5.5% -0.0% 3.4% 44.1%

Abs: ns / input size, Rel: %

6.3 Comparison of Algorithms
Component Algorithms. Our cost-based approach with
2-way algorithm outperforms any of the k-way algorithms
in general. We compare 2-way algorithms and k-way al-
gorithms in both synthetic dataset and real corpora. For
scheduling 2-way intersection orders, we use the simple but
effective state-of-the-art, namely “shortest vs shortest (SvS)”
as 2-way scheduling algorithm [5], which intersects two short-
est lists at a time.

2-Gallop outperforms both of k-way algorithms in most
of the synthetic data. 2-Gallop is faster than k-Gallop
except few extreme cases such that r is close to 64 (Fig-
ure 10a-b). In this extreme case, the cost of k-Gallop is
very similar to the cost of 2-Gallop (Figure 10c), because
the cache performance of 2-Gallop is slightly worse than
k-Gallop. That is, access pattern of 2-Gallop causes more
cache alignment problem than k-Gallop. However, in gen-
eral, 2-Gallop has less required search trials and compara-
ble cache efficiency compared to k-Gallop. If all lists have
similar lengths, either 2-SIMD or 2-Merge outperforms all
other algorithms in any correlation p (Figure 10d).

Also in the real-world datasets, our cost-based 2-way ap-
proach outperforms all k-way algorithms. On both Wikipedia
corpus (Figure 11) and CommonCrawl web corpus (Fig-
ure 12), our approach is faster than both two k-way algo-

Table 7: Comparison between algorithms.

Algorithm
rmax

1 4 16 64 256 1024
2-Gallop 2.51 2.36 1.19 0.63 0.43 0.21
2-Merge 2.47 2.65 1.75 1.29 1.13 1.04
2-SIMD 2.02 2.26 2.10 1.99 1.96 1.95
2-Opt 1.54 1.73 0.96 0.46 0.23 0.10

SIMD V1 1.57 1.50 0.79 0.43 0.31 0.27
SIMD V3 2.19 1.14 0.68 0.39 0.29 0.26

SIMD Inoue 2.94 2.77 1.74 1.32 1.16 1.08
SIMD Gallop 2.30 1.70 0.87 0.53 0.40 0.19

STL 3.77 3.81 2.75 2.15 1.95 1.85
2-Opt All 1.48 1.14 0.66 0.34 0.20 0.10

unit: µs / input size

rithms in all of the 450 queries. Moreover, the optimized ap-
proach completes 84.7% (Wiki) and 92.0% (web) of queries
within 500µs on the IvyBridge machine, while k-Gallop
completes only 62.2% (Wiki) and 49.6% (web) of queries
within 500µs on the same IvyBridge machine.

Our cost-based optimizer usually suggests 2-Gallop ex-
tensively, and leverages 2-Merge or 2-SIMD to process rel-
atively rare cases of similar lengths. The optimizer applies
2-Gallop at least 50% of the first step because the length
ratio between first two shortest list is larger than 9.74 in 50%
of queries. The optimizer always uses 2-Gallop at the later
steps because the minimum length ratio between the first in-
termediate result and the third list is at least 10.9 in 99.5%
of the queries with 3+ keywords, for which 2-Gallop is the
fastest option. This supports our claims in Section 5.2 holds
for web search scinario, which follows zipfian distribution.

State-of-the-art Algorithms. We compare the component
algorithms and our cost-based optimizer with the state-of-
the-art algorithms – SIMD Inoue, SIMD V1, SIMD V3 and
SIMD Gallop. To compare algorithms, we build six scenar-
ios with different maximum length ratio (rmax) that is the
length ratio between shortest and longest lists. Each sce-
nario consists of 100 test cases that differ from the number

10

��� ��� ����
�����
��	�����r, log2�

��
�

��
�

��
�

�
���

�	
���

��
p�

����
����
���
���
���

��
�	
���

��
��
��
�

(a) k-Gallop, k = 4 (b) k-Gallop, r = 1

��� ��� ����
�����
��	�����r, log2�

��
�

��
�

��
�

�
���

�	
���

��
p�

����
����
���
���
���

��
�	
���

��
��
��
�

(c) k-Merge, k = 4 (d) k-Merge, r = 1

Figure 8: Heatmap of relative error for k-way algorithm in IvyBridge, |L1| = 212.

(a) IvyBridge
p = 0.5, x-axis: r

(b) IvyBridge
r = 1, x-axis: p

(c) SandyBridge
p = 0.5, x-axis: r

(d) SandyBridge
r = 1, x-axis: p

Figure 9: Cost model of k-way algorithms in four-list scenarios, |L1| = 212.

2-Gallop cost
2-Gallop model

2-Merge cost
2-Merge model

2-SIMD cost
2-SIMD model

k-Gallop cost
k-Gallop model

k-Merge cost
k-Merge model

(a) IvyBridge,
p = 0.5, x-axis : r

(b) SandyBridge,
p = 0.5, x-axis : r

(c) IvyBridge,
r = 1, x-axis: p

(d) SandyBridge,
r = 1, x-axis: p

Figure 10: Comparison of algorithms in four-list scenarios with |L1| = 212.

0 1 2 3 4 5
response time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e 2-Gallop
2-Merge
2-SIMD
2-Opt
k-Gallop
k-Merge

(a) IvyBridge

0 1 2 3 4 5
response time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e 2-Gallop
2-Merge
2-SIMD
2-Opt
k-Gallop
k-Merge

(b) SandyBridge

Figure 11: CDF of response times for 450 query on
Wikepedia corpus.

0 1 2 3 4 5
response time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e 2-Gallop
2-Merge
2-SIMD
2-Opt
k-Gallop
k-Merge

(a) IvyBridge

0 1 2 3 4 5
response time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
til

e 2-Gallop
2-Merge
2-SIMD
2-Opt
k-Gallop
k-Merge

(b) SandyBridge

Figure 12: CDF of response times for 450 query on
CommonCrawl web corpus.

11

of lists and correlation. Table 7 describes the average time
for computing intersection of synthetic lists with each algo-
rithm.

When deploying only one algorithm, using SIMD V3 has
good results over a wide range of scenarios, while SIMD V1
and SIMD Gallop are optimal in some scenarios. SIMD V3 is
the fastest algorithm when 4 ≤ rmax ≤ 512, SIMD V1 is the
fastest when rmax = 1, and SIMD Gallop is the fastest when
rmax ≥ 1024. Both SIMD V1/V3 algorithms add element
skipping to the merge-based algorithm, which are faster than
search-based algorithms in the scenarios where the length
ratio is not very large. If the length ratio is very large, then
using search-based algorithm such as SIMD Gallop or Gallop
is efficient. Even the SIMD Gallop is faster than 2-Gallop
in general, the difference is marginal.

Deploying the various algorithms contextually through
the optimizer provides a faster option than deploying only
one algorithm for diverse inputs. First, our optimizer consid-
ering only component algorithms (2-Opt) is (1) faster than
all component algorithms in all scenarios, and (2) faster than
SIMD V1 and V3 when rmax is 1 or at least 256. Second, our
extended optimizer considering all component algorithms
and state-of-the-art algorithms (2-Opt All) outperforms all
other algorithms. Both optimizers suggest an appropriate
algorithm based on the cost model of each algorithm very
well, thus improve speed by recommending faster algorithms
in each 2-way intersection step for diverse input scenarios.

7. RELATED WORK
List intersection operator has been widely used in many

applications, for which various approaches are studied in
the literature. Merge-based approaches simultaneously ex-
plore all lists, while search-based approaches [2, 5, 6, 10,
27] set one as a pivot (which may change) and use an ef-
ficient search to intersection candidates in the remaining
lists. Thus, search-based algorithms is faster in case the
lengths of the sets are widely distributed. On the other
hand, [17, 21] claim that, with comparable length lists, a
simple merge-based algorithm performs better than search-
based algorithms. Hash-based approaches [11, 27] invest re-
sources off-line to build hash structures to make intersection
small, however, their total cost is much higher than merge-
or search-based algorithms.

Recently, numerous works study how to speedup the list
intersection algorithms by exploiting SIMD instructions.
Schlegel et al. [26] adopt STTNI instruction (in SSE 4.2 in-
struction set) for intersection of 8-bit or 16-bit integer lists.
However, STTNI instruction does not support data types
larger than 16 bits, it which limits applicability. Lemire et al.
[21] design two merge-based algorithms (SIMD V1 and V3),
and search-based algorithm (SIMD gallop) with SIMD in-
structions. V1 or V3 is faster than SIMD gallop if the lengths
of two lists are comparable, but SIMD gallop outperforms
otherwise. Inoue et al. [17] improve such gain by increas-
ing data parallelism: they use SIMD instructions to com-
pare only a part of each item for filtering out unnecessary
comparisons. SIMD instructions are also exploited to reduce
branch misprediction [17, 21], an expensive overhead in some
workloads, by replacing control flow into data flow called
If-Conversion [1]. We include a representative SIMD algo-
rithm in our optimization, and also compare our approach
with these individual SIMD algorithms in Section 6.3.

In the context of web search, list intersection operator is
generally executed on the regular architectures. In detail, a
large search engine distributes computation by sharding the
inverted index on hundreds or thousands of servers, such
that each server maintains a shard corresponding to a set
of web documents and their associated sorted postings lists.
For a given user query, this engine processes the query in two
main phases: matching and ranking. In the matching phase,
each server intersects the corresponding postings lists, then
results are aggregated from all servers to some servers for
ranking. List intersection returns all results, rather than em-
ploying early-termination [7, 8, 12] to return a subset to re-
duce the ranking costs. In fact, the matching phase in a com-
mercial search engine [15] returns a superset of the results
and uses the ranking phase for further filtering. The ranking
phase follows the matching phase [25], is typically performed
in successive steps for pruning, and is extensively accelerated
with custom hardware such as FPGAs [24] and ASICs [18]
in commercial engines. Thus custom hardware reduces the
ranking time, and subsequently introduces changes to the
matching phase. In contrast, list intersection (or the match-
ing phase) is still performed on the regular architectures
without specialized hardware, which dominates query pro-
cesses.

Shipping k-way algorithms to all servers has been favored
in commercial search engine, with its pipelined implemen-
tation [23] and low memory requirement. A contradicting
opinion of favoring 2-way algorithms has been considered in
a different problem context where blocking, which requires
storing intermediate results, is common [19]. Our work pa-
rameterizes the given hardware and generates a cost-optimal
algorithm accordingly. As a result, we are applicable to sys-
tems using nonblocking pipelined algorithms, outperforms
the existing state-of-the-art methods.

List compression encodings are devised for representing
elements with fewer bits such as delta encoding [30, 31], and
elias-fano encoding [13, 14, 22]. Such encodings are used for
transferring the inverted index and its postings lists to or
form storage or network devices when their bandwidth is
substantially slower than main memory bandwidth. How-
ever, postings lists are managed in main memory and in
an uncompressed layout for fast access hosted on server
machines with large main memories, requiring a fast main
memory-based intersection algorithm.

8. CONCLUSIONS
We study the problem of cost-based optimization for list

intersection. We analytically and empirically show that ship-
ping an identical k-way algorithm to all servers is inefficient.
Instead, we develop a cost model adaptive to different hard-
ware systems and inputs, and use a cost-based optimizer to
generate an efficient scheduling of 2-way intersection com-
putation using parameters reflecting dataset and modern ar-
chitecture characteristics. We validate our framework exper-
imentally and find that the cost models closely estimate the
actual intersection cost, and as a result, 2-way intersection
scheduling with our cost-based optimizer outperforms the
state-of-the-art alternatives.

Acknowledgements
This work is supported by Microsoft Research Asia. We
thank the IndexServe team in Microsoft Bing.

12

9. REFERENCES

[1] J. R. Allen et al. Conversion of control dependence to
data dependence. POPL, 1983.

[2] R. Baeza-Yates. A fast set intersection algorithm for
sorted sequences. CPM, pages 400–408, 2004.

[3] J. Barbay and C. Kenyon. Adaptive intersection and
t-threshold problems. SODA, pages 390–399, 2002.

[4] J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive
set intersections for text searching. pages 146–157.
Springer, 2006.

[5] J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. An
experimental investigation of set intersection
algorithms for text searching. Journal of Experimental
Algorithmics (JEA), 14, 2009.

[6] J. L. Bentley and A. C.-C. Yao. An almost optimal
algorithm for unbounded searching. Inform. Proc.
Lett., 5(SLAC-PUB-1679):82–87, 1975.

[7] A. Z. Broder et al. Efficient query evaluation using a
two-level retrieval process. CIKM, pages 426–434,
2003.

[8] K. Chakrabarti, S. Chaudhuri, and V. Ganti.
Interval-based pruning for top-k processing over
compressed lists. ICDE, pages 709–720, 2011.

[9] S. Chaudhuri. An overview of query optimization in
relational systems. PODS, pages 34–43, 1998.

[10] J. S. Culpepper and A. Moffat. Efficient set
intersection for inverted indexing. ACM Transactions
on Information Systems (TOIS), 29(1), 2010.

[11] B. Ding and A. C. König. Fast set intersection in
memory. PVLDB, 4(4):255–266, Jan. 2011.

[12] S. Ding and T. Suel. Faster top-k document retrieval
using block-max indexes. SIGIR, pages 993–1002,
2011.

[13] P. Elias. Efficient storage and retrieval by content and
address of static files. Journal of the ACM (JACM),
21(2):246–260, 1974.

[14] R. M. Fano. On the number of bits required to
implement an associative memory. Massachusetts
Institute of Technology, Project MAC, 1971.

[15] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer,
M. Curmei, S. Elnikety, and Y. He. Bitfunnel:
Revisiting signatures for search. SIGIR, pages
605–614, 2017.

[16] D. Hu and A. Yin. Approximating the negative
hypergeometric distribution. International Journal of
Wireless and Mobile Computing, 7(6):591–598, 2014.

[17] H. Inoue, M. Ohara, and K. Taura. Faster set
intersection with simd instructions by reducing branch
mispredictions. PVLDB, 8(3):293–304, 2014.

[18] N. P. Jouppi et al. In-datacenter performance analysis
of a tensor processing unit. ISCA, pages 1–12, 2017.

[19] R. Krauthgamer, A. Mehta, V. Raman, and A. Rudra.
Greedy list intersection. ICDE, pages 1033–1042, 2008.

[20] T. Lee, J. Park, S. Lee, S.-w. Hwang, S. Elnikety, and
Y. He. Processing and optimizing main memory
spatial-keyword queries. PVLDB, 9(3):132–143, 2015.

[21] D. Lemire, L. Boytsov, and N. Kurz. Simd
compression and the intersection of sorted integers.
Software: Practice and Experience, 46(6):723–749,
2016.

[22] G. Ottaviano and R. Venturini. Partitioned elias-fano
indexes. SIGIR, pages 273–282, 2014.

[23] E. Pitoura. Pipelining, page 2117. Springer US, 2009.

[24] A. Putnam et al. A reconfigurable fabric for
accelerating large-scale datacenter services. ISCA,
pages 13–24, 2014.

[25] K. M. Risvik et al. Maguro, a system for indexing and
searching over very large text collections. WSDM,
pages 727–736, 2013.

[26] B. Schlegel, T. Willhalm, and W. Lehner. Fast
sorted-set intersection using SIMD instructions.
ADMS, pages 1–8, 2011.

[27] D. Tsirogiannis, S. Guha, and N. Koudas. Improving
the performance of list intersection. PVLDB,
2(1):838–849, 2009.

[28] M. Yang, B. Ding, S. Chaudhuri, and K. Chakrabarti.
Finding patterns in a knowledge base using keywords
to compose table answers. PVLDB, 7(14):1809–1820,
2014.

[29] A. Yasin. A top-down method for performance
analysis and counters architecture. ISPASS, pages
35–44, 2014.

[30] J. Zhang et al. Performance of compressed inverted
list caching in search engines. WWW, pages 387–396,
2008.

[31] M. Zukowski et al. Super-scalar ram-cpu cache
compression. ICDE, page 59, 2006.

13

	Introduction
	List Intersection Algorithms
	2-way algorithms
	2-Gallop
	2-Merge

	k-way algorithms
	Skeleton of k-way algorithm
	k-Gallop
	k-Merge

	Intersecting k lists

	Hardware Profiling
	Probabilistic Counting
	2-way algorithms
	2-Gallop
	2-Merge
	2-SIMD

	k-way algorithms
	Common structure analysis
	k-Gallop
	k-Merge

	Optimization Space Reduction
	2-way vs. k-way
	Case study: web search

	Experiments
	Experimental setup
	Correctness of cost models
	Comparison of Algorithms

	Related Work
	Conclusions
	References

