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ABSTRACT
Query optimizers depend on selectivity estimates of query
predicates to produce a good execution plan. When a query
contains multiple predicates, today’s optimizers use a va-
riety of assumptions, such as independence between predi-
cates, to estimate selectivity. While such techniques have
the benefit of fast estimation and small memory footprint,
they often incur large selectivity estimation errors. In this
work, we reconsider selectivity estimation as a regression
problem. We explore application of neural networks and
tree-based ensembles to the important problem of selectiv-
ity estimation of multi-dimensional range predicates. While
their straightforward application does not outperform even
simple baselines, we propose two simple yet effective design
choices, i.e., regression label transformation and feature en-
gineering, motivated by the selectivity estimation context.
Through extensive empirical evaluation across a variety of
datasets, we show that the proposed models deliver both
highly accurate estimates as well as fast estimation.
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1. INTRODUCTION
Query optimizers use selectivity estimates to identify a

good execution plan. Ideally, a selectivity estimation tech-
nique should provide accurate and fast estimates, and use
a data structure that has small memory footprint and is ef-
ficient to construct and maintain [19]. The requirement of
fast estimation follows from the expectation that query op-
timization time should be small [13, 7], and is an important
practical constraint in database systems.
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To elaborate, current database systems primarily use his-
tograms for selectivity estimation of predicates on single ta-
ble attributes [5, 7]. For multi-dimensional predicates, the
default method to calculate combined selectivity is based on
a heuristic assumption such as attribute value independence
(AVI) [4, 5, 7]. When attributes are correlated, estimates
based on such assumptions may lead to huge errors resulting
in low quality plans [27, 32]. Some database systems also
provide an option for a small data sample [7]. While sam-
pling can capture attribute correlations well, small samples
have bad accuracy for selective predicates [34]. Neverthe-
less, database systems use such methods as they support
fast selectivity estimation, e.g., multi-dimensional estima-
tion based on AVI takes < 100µsec [38].

The research community has been actively working on the
multi-dimensional selectivity estimation problem [19] lead-
ing to many variants of multi-dimensional histograms [12,
21, 38], techniques that use random samples [22], or use both
histograms and samples [34] – Section 8 provides a review of
related work. They improve accuracy at the cost of signif-
icant increase in space or time overhead, because they fun-
damentally rely on more histogram buckets or larger sam-
ples to capture the data distribution in a high-dimensional

(a) For 2-dimensional predicates over a highly
correlated attribute-pair

(b) For 4-dimensional predicates over attributes
with mixed degree of correlation

Figure 1: Estimation quality for AVI and STHoles. Plot title
shows percentage of small errors [ratio-error < 2]
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space. Query-driven (self tuning) histograms [40, 10, 12, 22]
use more histogram buckets in the subspace that is relevant
for the current query workload, to improve the accuracy-
cost trade-off in a targeted fashion. The accuracy of such
techniques can degrade when workload queries have more
intersections with each other and they spread across a large
fraction of high-dimensional space.

We analyzed estimates based on both kinds of histogram
techniques: (i) AVI assumption, that uses only one dimen-
sional histograms; (ii) STHoles [12], that uses a query driven
multi-dimensional histogram. For this experiment, we used
a representative real world dataset and a set of queries dis-
tributed all over the domain space. Figure 1 shows a scatter
plot of actual number of rows satisfying the predicates (s)
vs. corresponding estimated values (ŝ), for 2D and 4D pred-
icates. Note that, queries with small estimation errors, i.e.,
max

(
s
ŝ
, ŝ
s

)
< 2, lie in a band-shaped area along the diagonal.

Queries with larger errors are farther away from this region.
For AVI, only one-third of the queries have small errors and
large errors are quite frequent. In contrast, STHoles pro-
vides highly accurate estimates for 2D predicates using only
200 buckets – except for very selective predicates (s < 100).
For 4D predicates, STHoles resulted in large errors even with
3500 buckets and 10× larger estimation time.

In addition to above approaches, selectivity estimation
has also been formulated as a regression problem: “Given
a set of queries labeled with actual selectivity values, learn
a function from a query to its selectivity”. Such labeled
queries can be collected as feedback from prior query exe-
cutions [40, 14], as proposed by self-tuning approaches; or
they can be generated offline in a data-driven fashion, simi-
lar to histogram construction (see Section 6). Past attempts
with regression formulation typically employed neural net-
works [11, 26, 29, 28, 25]. These methods are not designed
for fast estimation of multi-dimensional range selectivity.

1.1 Contributions

Regression models for range selectivity estimation. In
this work, we study whether regression techniques can be
used for accurate selectivity estimation of multi-dimensional
range predicates, especially under the practical constraints
of estimation time and memory footprint. Our study in-
cludes neural networks and tree-based ensembles. The
choice of these techniques is governed by the following rea-
sons: (1) they have an inherent ability to learn complex,
non-linear functions; (2) recent work [9, 16, 24] has produced
highly-optimized libraries based on these techniques.

Design choices for lightweight models. Notwithstanding
the promise, our initial exploration with these techniques
resulted in inferior accuracy compared to simple baselines
like AVI. Although the learned models perform better as we
increase the model size and complexity, we cannot afford ar-
bitrarily large models. We propose two simple, yet effective
design choices that improve accuracy of models without in-
creasing model size. First, we use log-transformed version
of regression labels. While the transformation is very sim-
ple, it has a strong impact on the effectiveness of regression,
particularly because relative error is more relevant in the
selectivity estimation context [32]. Second, we use a set of
heuristic selectivity estimators as extra features in addition
to predicate ranges. They help the model learn to differenti-

(a) 2-dimensional predicates

(b) 4-dimensional predicates

Figure 2: Estimation quality for proposed regression models.
Plot title shows the percentage of small errors [ratio-error < 2]

ate between queries that have very similar range predicates
but significantly different actual selectivities. Importantly,
these estimators are computationally efficient. Both these
design choices are generic and help both neural networks
and tree-based ensembles.

Experimental evaluation highlights. We perform exten-
sive empirical evaluation across multiple real-world datasets
to show that the proposed models provide fast and highly
accurate estimates for multi-dimensional ranges compared
to existing techniques including AVI, STHoles, uniform ran-
dom sampling and a state-of-the-art kernel density based
technique (KDE) [22] that improve over sampling.

Figure 2 shows the accuracy of proposed models based
on neural network (NN) and XGBoost [16] (a tree-based
ensemble), on the same 2D and 4D predicates as in Figure 1.
Observe that for both regression techniques, the percentage
of small errors is more than 80% and large errors are quite
rare. The errors are small even for highly selective queries.

Not only our models achieve high accuracy, but also
they have fast estimation time. The end-to-end estima-
tion time for our models is between 1-2× of AVI, depend-
ing on whether the extra features are used. In both cases,
the accuracy is much better than AVI. For comparison,
STHoles/KDE could not beat the accuracy of our best mod-
els even with 10× larger estimation time.

We use datasets with up to 10 dimensions to demonstrate
that the desirable properties of the proposed models scale
with dimensions. Further, we empirically validate that each
of the design choice help in improving accuracy of learned
models and inclusion of heuristic estimators also make the
models more robust against data updates.

In summary, we emphasize that regression models have
a distinctive advantage in terms of efficiently approximat-
ing selectivity for multi-dimensional range predicates. This
paper demonstrates that we can design models that deliver
both fast and highly accurate estimates. We see this work
as a step towards improving the state-of-the-art of selectiv-
ity estimation under practical constraints of low overhead
query optimization.
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Figure 3: Selectivity estimation in query processing

2. BACKGROUND
When a declarative query is submitted to the database

system, it is first optimized to identify a good (low latency)
execution plan. The quality of execution plan chosen by
the query optimizer hugely depends on the quality of size
estimates at intermediate stages of the plan, often termed
as selectivity estimates. Figure 3 gives an overview of how
query processing architecture interacts with selectivity esti-
mation module.

The selectivity estimation techniques usually have an of-
fline phase where they collect statistical information about
database tables including row counts, domain bounds and
histograms. During query optimization, this information
serves as the source for selectivity estimation techniques.
For example, consider a query with conjunction of multiple
simple predicates (〈attribute〉 〈operator〉 〈constant〉) on dif-
ferent attributes of a database table. Most database systems
first compute selectivity fraction1 for each simple predicate
using a histogram on the corresponding attribute. Then,
combined selectivity of conjunction is computed using an
assumption regarding distribution of values across different
attributes. Below, we list two such assumptions:

1. Attribute Value Independence (AVI): It assumes that
values for different attributes were chosen independent
of each other. Under this assumption, the combined
selectivity fraction for predicates on d attributes is cal-
culated as

∏d
k=1(sk), where sk is the selectivity frac-

tion of predicate on kth attribute.
2. Exponential BackOff : When attributes have corre-

lated values, AVI assumption could cause significant
underestimations. Microsoft SQL Server introduced
an alternative assumption, termed as Exponential
BackOff [3], where combined selectivity fraction is cal-
culated using only 4 most selective predicates with
diminishing impact. That is, combined selectivity is

given by s(1) × s
1
2
(2) × s

1
4
(3) × s

1
8
(4), where s(k) represents

kth most selective fraction across all predicates.

Opportunity. The selectivities estimated using limited in-
formation available to estimation techniques can be hugely
erroneous [27]. For instance, multi-dimensional range pred-
icates on single table may suffer from estimation errors due
to attribute correlations. While modern database systems
have support for limited multi-column statistics [7], the in-
formation is not sufficient to capture the correlation in fine
1We use the term selectivity fraction to denote the fraction
of total rows in the table that satisfy the query predicate(s).

granularity across numeric attributes. While past research
literature [14] has already noted that actual selectivities for
predicates can be monitored with low overhead during query
execution, and can be used to improve future estimates [15,
10, 40] – current systems do not fully exploit this opportu-
nity. Powerful regression methods are excellent candidates
that can leverage the feedback information to learn good
quality selectivity estimators.

3. PROBLEM DESCRIPTION
Consider a table T with d numerical attributes A1,A2,. . .,

Ad. Let the domain for kth attribute be [mink, maxk].
Any conjunctive query q on numerical attributes of T can
be represented in the following canonical form: (lb1 ≤ A1 ≤
ub1) ∧ . . . ∧ (lbd ≤ Ad ≤ ubd). In this representation, if the
query does not contain predicate on some attribute Ak, then
it is included as mink ≤ Ak ≤ maxk. For instance, if there
are two attributes A1 and A2, each with domain [0,100].
Then, predicate 10 ≤ A1 ≤ 20 would have the following
canonical representation: (10 ≤ A1 ≤ 20) ∧ (0 ≤ A2 ≤ 100).
The above definition includes one-sided range predicates as
well as point predicates, i.e., Ak = x can be specified as
lbk = x and ubk = x.

We define actual selectivity of q as the number of rows
in table T that satisfy all predicates in the query q, and
denote it with act(q). Similarly, we use est(q) to denote the
estimated selectivity for query q. We define a labeled query
set S = {(q1 : act(q1)), . . . , (qm : act(qm))}, with actual
selectivity as the label. As an example, Sexample = {((10 ≤
A1 ≤ 20) ∧ (0 ≤ A2 ≤ 100) : 500), ((10 ≤ A1 ≤ 20) ∧ (40 ≤
A2 ≤ 80) : 300), . . .}.

Problem. Given a set S of labeled queries, we wish to learn
a regression model M , such that for any conjunctive range
query q on T , M produces estimated selectivity est(q) close
to the actual selectivity act(q).

Note that the problem definition does not make any as-
sumption about the source and distribution of queries in the
set S, but the learned model M is expected to produce ac-
curate estimates for queries that are well represented in the
training set S. Also, we highlight that our focus is on selec-
tivity estimation for conjunction of two or more predicates,
and we do not intend to replace single attribute histograms
in the system metadata.

3.1 Formulation as a regression problem
For each query qj in labeled query set S, we create a

tuple of 2 × d values 〈lb1, ub1, . . . , lbd, ubd〉 that serve as
input features for the regression model M , we call them
range features. The corresponding actual selectivity value,
i.e., act(qj) serves as the source of regression label. As
an example, the input features for queries in Sexample are
〈10, 20, 0, 100〉 and 〈10, 20, 40, 80〉 with regression labels 500
and 300, respectively.

Query Space. To answer a query on a d-dimensional
dataset, the regression model M takes as input a point lo-
cation in the 2d-dimensional space defined over domain of
range features – we call it query space. The task for regres-
sion methods is to learn a function f over the query space to
approximate the actual selectivity function. Observe that,
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Figure 4: Example of model architecture

only those points in the query space correspond to valid
range queries for which lbk ≤ ubk, ∀k ∈ [d].

3.2 Evaluation metrics
To evaluate the accuracy of the model M , we use a held-

out test query set Stest and q-error [32] as accuracy met-
ric. We chose q-error metric since it is relative as well as
symmetric [32, 34]. Each query qi ∈ Stest has a q-error

ei = max
(

est(qi)
act(qi)

, act(qi)
est(qi)

)
. We assume act(q) ≥ 1 and

est(q) ≥ 1.
To evaluate average accuracy of M over Stest, we use ge-

ometric mean of q-error values, since it is more resilient to
outlier errors compared to the arithmetic mean. We also
highlight 95th percentile q-error value across all queries.

In addition to the accuracy, we also evaluate the model M
on time taken to produce estimated selectivity for queries in
Stest, and time taken to train the model M using labeled
queries in Strain.

4. CHOICE OF REGRESSION METHODS
To construct regression model M , we use non-linear re-

gression techniques as the data can have non-linear, complex
distributions in general. We consider two types of generic
non-linear regression methods: neural networks and tree-
based ensembles. Provided with sufficient training data,
both methods can learn increasingly more complex regres-
sion functions with increase in the number of model parame-
ters and offer flexible accuracy-space tradeoff, as we describe
in this section.

4.1 Background

Neural Network (NN). We use the standard feed-forward
neural network. The simplest NN model has an input layer
that consists of nodes to feed the vector of feature values
as input and a single neuron output layer that produces the
prediction value. In addition to the neuron in the output
layer, the network can have more neurons in the form of l
hidden layers. When l = 0, neural network is equivalent
to a linear regression model. When l > 1, the network is
referred to as a deep neural network. We use neural network
with fully connected layers, as visualized in Figure 4(a) for
l = 2. We use ReLU (Rectified Linear Unit) activations for
neurons in the hidden layers. The neuron in the output layer
uses linear activation. The total number of parameters in
the model is a function of the number of input features and
the number of neurons in each of the hidden layers.

Tree-based ensembles. We consider both random forests
and gradient boosted trees. During training, the former uses

bagging and the latter uses boosting as the ensemble strat-
egy. Both methods construct multiple binary trees. At the
prediction time, each tree independently produces a predic-
tion value using the input features. To do this, each inter-
nal node in the tree uses exactly one input feature value
to decide the next subtree, and each leaf node corresponds
to a regression value. The predictions from all the trees
are aggregated to produce the final prediction of the en-
semble. Random forests use an unweighted average, and
gradient boosted trees use a weighted sum to aggregate the
predictions. The model sizes for both are determined by the
number of trees t and the number of leaves v in each tree.
Figure 4(b) shows an example tree-based ensemble model
with t = 2 trees, each with v = 3 leaves where leaf nodes
are shown as shaded circles.

4.2 Promise for selectivity estimation
We use regression methods to learn a function over the

query space to support multi dimensional range selectiv-
ity estimation. In this section, we explain why the chosen
regression techniques are promising candidates for multi-
dimensional selectivity estimation task.

4.2.1 Neural network
As mentioned earlier, we use ReLU units as the activation

functions for hidden neurons. Past work [33, 18] has shown
that a neural network with piecewise linear activations will
divide input feature space (i.e. query space) into local re-
gions, where each region is a convex polytope. Within each
local region, the regression function expressed by the neural
network is a linear function of input features – such func-
tions are called local linear functions. The maximal number
of local regions is bounded by 2n, where n is the total num-
ber of neurons in the hidden layers. Increase in the number
of hidden layers and their neurons leads to increase in the
number of possible regions [33], which can help more closely
approximate the actual selectivity function.

4.2.2 Tree-based ensembles
Each leaf node in the ensemble of trees corresponds to

a region in the query space defined by conjunction of the
ranges on input features from the internal nodes along the
path from root, e.g.,

(c1 ≤ lb1 < c2) ∧ (c3 < ub1 ≤ c4) ∧ (c5 ≤ ub2 ≤ c6)

Hence, each learned tree partitions the query space using
hyper-rectangular regions corresponding to its leaf nodes.
Further, different learned trees in the ensemble partition the
query space in different ways, where the regions for different
trees can overlap with each other. The maximal number of
unique predictions is bounded by vt, where v is the number
of leaves in each tree, and t is the number of trees. By
increasing the number of leaves, we allow each learned tree to
use more regions to partition the query space. With increase
in the number of trees, the ensemble can utilize more ways
of partitioning the query space. Overall, both can result
in finer granularity approximation of the actual selectivity
function.

4.2.3 Comparison with multi-d histograms
Multi-dimensional histograms can be viewed as very spe-

cial regression methods: they store the exact selectivity for a
number of ‘anchor’ queries, corresponding to each histogram
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bucket. For example, a bucket for 2d histogram given by
10 ≤ A1 ≤ 20 and 40 ≤ A2 ≤ 80, corresponds to a point
location < 10, 20, 40, 80 > in the query space. For any of
the ‘anchor’ queries, multi-d histograms deliver accurate se-
lectivity estimate. For most other queries, the estimate pro-
duced by multi-d histograms relies on uniform distribution
assumption. While having more such anchor queries can
reduce the dependence on uniform assumption to increase
accuracy of histograms, their memory and estimation time
overhead typically increase linearly with the number of an-
chor queries.

Our proposed regression methods, on the other hand, pro-
cess a large number of queries during training, but do not re-
member any individual query. They use the training queries
to effectively learn (1) how to partition the space of all pos-
sible queries into regions, and (2) a simple-form selectivity
function for all possible queries inside each region. Their
unique ability lies in representing a large number of regions
using small memory footprint and efficient computation of
selectivity estimates, e.g., selectivity estimation with tree
base ensembles require traversing small number of binary
search trees.

5. MODEL DESIGN CHOICES
While larger size models can achieve finer granularity ap-

proximation, they also lead to increased estimation time.
This section discusses our model design choices to create
compact models that can still capture complex functions.

5.1 Log-transformed labels
We generate training labels by applying log-transform (we

use base 2) to selectivity value act(qi). At estimation time,
we apply inverse-transformation on model prediction to get
the final estimation, i.e., est(qi) = 2p, where p is the model
prediction. While the transformation is very simple, it en-
ables use of generic regression techniques for problem do-
mains such as selectivity estimation, without changing the
implementation details of the technique – this is because se-
lectivity variation across different queries can be huge, and
relative metric is more relevant, as explained next.

Increased focus on relative error. We typically expect the
regression models to achieve low mean-squared-error (MSE)
across all queries, when they work well. Consider an exam-
ple of two queries q1 and q2, where act(q1) = 20000 and
act(q2)=100. If we use selectivity values act(qi) directly
as training labels, then the model is more likely to pre-
dict est(q1) = 19500, est(q2) = 600, than est(q1) = 19100,
est(q2) = 200. Hence, it tends to deliver low relative error
for q1 and high relative error for q2. Using log transformed
labels, i.e. log act(qi) pushes the algorithm to reduce the
difference between log act(qi) and log est(qi), i.e.,

| log act(qi)− log est(qi)| =
∣∣∣∣log

act(qi)

est(qi)

∣∣∣∣ = | log(ei)|

which should reduce q-error (in general, relative error).
Achieving low MSE in the log-transformed space means

low value of

1

|Stest|

|Stest|∑
i=1

[log act(qi)− log est(qi)]
2 =

1

|Stest|

|Stest|∑
i=1

log2 ei

Note that, minimizing the average of log(ei) is equivalent to
minimizing the geometric mean of q-error; and minimizing
max(ei) is equivalent to minimizing the worst case q-error.
Optimizing for only one of them might result in undesirable
values for another. Minimizing the mean squared log(ei)
accommodates both goals because the square assigns higher
weight to larger q-errors during the average.

Implication for NN and tree-based ensembles. We be-
lieve that log-transform allows both models to capture
abrupt selectivity variation in the query space with fewer pa-
rameters. This is because each technique now generates pre-
dictions through a log-linear function, as explained next.

Neural network As mentioned in Section 4.2, a neural
network encodes different linear functions for different local
regions. Without doing log transformation, each learned
local linear function has the form

est(q) = a0 + a1lb1 + · · ·+ a2dubd (1)

in its local region. By log-transforming the selectivity la-
bels, we allow the NN to learn local log-linear functions.
Specifically, in a local region, we now have

log est(q) = a0 + a1lb1 + · · ·+ a2dubd

Equivalently, estimates for each local region are given by,

est(q) = 2a0 × (2a1)lb1 × · · · × (2a2d)ubd (2)

In the linear model Eq. (1), each feature value contributes
to the selectivity estimate in an additive form. In the log-
linear model Eq. (2), each feature value contributes as a
multiplicative factor. As a result, even a simple-form func-
tion in each local region can accommodate larger selectivity
variation.

Tree-based ensembles Given an input feature vector,
each learned tree produces a regression value using a sub-
set of features. The ensemble produces final prediction by
using a weighted sum of these values. However, when the
summed values corresponding to different trees are of very
different magnitudes, the values of large magnitude could
heavily dominate the final prediction, making it insensitive
to the values of small magnitude. That means, although
different trees partition the query space into a variety of
regions and allow for up to vt unique predictions, many pre-
dictions are merely determined by a small number of trees
and have nearly identical value. The log transformation of
selectivity labels effectively aggregates the predictions from
all the trees with a log-linear model, such that the aggre-
gated value is not heavily dominated by a few predictions
in the ensemble. This leads to a potentially more efficient
use of the model capacity, because each individual tree can
actively influence the final prediction for regions created by
various combinations of leaf nodes.

5.2 Correlation based estimators as features
Selectivity is a function of both query and underlying data

distribution. As per the formulation in Section 3.1, range
features encode information about the query, i.e., query’s
position and spread in the data domain space. Regression
models with only range features learn information about the
data distribution indirectly via the actual selectivity labels.
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While both neural networks and tree-based models are ca-
pable of learning complex interactions between the basic in-
put features, using histograms and domain knowledge to
manually engineer extra features can help improve selectiv-
ity estimation accuracy without increasing model size if the
features are highly informative. On the other hand, since
we impose time and size constraint to the regression mod-
els, the additional features should satisfy the following basic
criteria.

1. Efficiency: Efficient derivation of feature values is
important since it causes additional overhead to es-
timation time for an ad hoc query (computing range
features is already efficient).

2. Relevance: We require the added features to be
highly relevant, i.e., strongly correlated with the ac-
tual selectivity. Inclusion of irrelevant features may
hurt as fewer model parameters would be available to
capture the interaction among relevant features, not to
mention that it may cause unnecessary computations.

5.2.1 Heuristic estimators as features
The domain experts have designed simple heuristic esti-

mators, e.g., AVI and EBO (described in Section 2) that use
information from single attribute histograms to produce se-
lectivity estimates for conjunction of predicates. In the same
spirit as AVI, another estimator has been considered in the
past [1], which returns the combined selectivity as the mini-
mum selectivity across individual predicates – we call it the
MinSel estimator. We include the estimates based on all
three heuristic estimators (AVI, EBO and MinSel) as extra
input features to our regression models.

All of these estimators have a common first step, i.e., scan-
ning the relevant histograms, followed by estimator specific
simple computations. The efficiency is not a concern since
single attribute histograms are typically independent of data
size. In our experiments, selectivity computation for each at-
tribute took only 20-30 µsec. We justify relevance of these
features in the remainder of this section.

5.2.2 Rationale: Varying degree of correlation
For a given conjunction of predicates, the combined actual

selectivity depends on the degree of correlation among the
individual predicates induced by the underlying data dis-
tribution. The above set of estimators can capture various
scenarios with different degrees of correlation, as explained
next. An estimator based on AVI assumption would pro-
duce good estimates if the predicates have no correlation
between them. MinSel estimator represents the other ex-
treme compared to AVI, and produces good estimates when
all predicates are satisfied by the same set of data rows, i.e.,
full correlation. The EBO estimator is expected to capture
some intermediate scenarios between complete independence
and full correlation.

We observe that although each estimator is not accurate
for all the queries, it may be accurate for a subset of queries
and the model can learn the appropriate mapping from the
training data. We include these correlation based features
(referred to as CE features) to demonstrate the impact of
such features that utilize information in single attribute his-
tograms and we understand that including other estimators
may also be helpful.

We empirically validated the relevance of these features for
different data distributions. For each estimator, we found

Table 1: Percentage of queries with q-error ≤ 2 for estima-
tors and their oracular combinations on different datasets

2D Datasets 4D
Estimators #1 #2 #3 #4

AVI 94 61 32 34
MinSel 49 53 86 12
EBO 74 72 63 37

Oracle combinations
(AVI,MinSel) 95 72 88 42
(AVI,EBO) 98 80 64 45

(MinSel,EBO) 74 73 89 40
(AVI,MinSel,EBO) 98 81 90 50

specific real-world datasets where it is significantly better
than the other two. In Table 1, we show the percentage
of queries with q-error ≤ 2 for different estimators across
four datasets. The first three workloads have 2-dimensional
predicates on 3 different datasets (dataset1, dataset2 and
dataset3). We found that each estimator wins for one of the
2D datasets by a margin of at least 10%.

Our choice of these three estimators as features is further
motivated by the observation that the CE features com-
plement each other. We demonstrate their complementary
behavior using oracle combinations of individual estimators
in Table 1. Here, (AVI,EBO) corresponds to a hypotheti-
cal oracle that knows the better estimator between AVI and
EBO to use for each individual query, and so on. The oracle
using all the three estimators has the best performance for
all the datasets. For example, it improves the percentage of
queries with q-error ≤ 2 from 72% to 81% on dataset2.

We emphasize using the 4D dataset in Table 1 that, while
one of these estimators works reasonably well for 2D queries
and they also complement each other well, their accuracy
for higher dimensional predicates is much worse than 2D
queries. For the 4D workload, the percentage of queries
with q-error ≤ 2 lies in the range 12% to 50% for all three
estimators as well as the hypothetical oracles.

To summarize, choosing one of these estimators irrespec-
tive of data distribution clearly exposes database systems
to the risk of large estimation errors for majority of queries.
However, using such estimators as input features to learned
models provides a principled way to exploit their benefits
and use model parameters to further improve accuracy.

In addition to improvement in accuracy, we empirically
found that use of CE features also improve the robustness
of the models against updates to the underlying datasets.
The intuition is that 1D histograms can be quickly updated
to reflect the data distribution changes and model that uses
CE features can use this updated information to improve es-
timates with respect to the new actual selectivity, the details
of the experiment can be found in Section 7.4.

6. INTEGRATION WITH EXISTING DBMS
Regression models for multi-dimensional range selectiv-

ity estimation can be integrated into the existing system
architecture as shown in Figure 5. At a high level, the inte-
gration is conceptually similar to how it would be done for
any generic multi-dimensional histograms, as both support
estimation of conjunction of range predicates. Below we dis-
cuss how these models are utilized by selectivity estimation
module, followed by details on training of models.
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Figure 5: Deployment of regression models

6.1 Estimation with regression models
Consider a model M1 trained for table T1 on attributes

A1, A2, A3, A4 and another model M2 trained for T2 on at-
tributes B5, B6, B7. Model M1 can be used to estimate se-
lectivity of conjunctive range predicates over any subset of
the attributes A1 to A4, by representing the predicate in
canonical form defined in Section 3. For example, M1 can
produce estimate for A1∧A2 or A2∧A3∧A4. Similar argu-
ment holds for M2 regarding predicates on T2. Given that
pushing down base-predicates as filter operators on tables
(before any join-operator) is a standard practice, models
M1 and M2 can serve any query that involve table T1, T2 or
both. If the query has additional predicates on same table,
e.g. string predicates or predicates with IN clause, exist-
ing methods in database systems or techniques from past
work [30] can be used to combine partial information from
different sources. Overall, regression models help in fixing
estimation errors due to correlations between range pred-
icates at base-level of query plan trees where access path
decisions are made. Note that, fixing errors at the base of a
plan tree would reduce the error propagated up the tree.

We have empirically evaluated models for up to moder-
ately large (ten) number of attributes. Table that have
much larger number of numeric attributes, say 100, pose
additional challenges for any technique including regression
models. It is unclear whether it is better to create a single
model for all attributes or partition them to be handled by
separate independent models [23]. It an interesting research
problem beyond the scope of this paper.

6.2 Training regression models
Training a regression model requires a set of queries la-

beled with actual selectivities, and optionally CE feature
values. Feedback from past query executions is a natural
source to collect such training data, at no explicit over-
head. In this respect, regression models resemble query-
driven techniques proposed in the past [10, 12, 39, 22]. For
any technique that takes only labeled queries as input, we
can also think of a scenario where we generate training ex-
amples to bootstrap the technique before receiving any ex-
ternal query. Since collecting actual selectivities involves
executing a large set of queries over the data, it is quite re-
source consuming and takes up to (# rows × # queries) op-
erations since queries may have arbitrary overlap with each
other. There are several ways to reduce the latency. First,
we can use parallel resources, as the training process is of-
fline. Second, we can build an R-tree index on the query set,
to reduce the number of queries to be checked for contain-

ment per data row. Finally, we can also approximate actual
selectivity labels by executing queries over a large enough
sample of data and reduce latency by decreasing #rows per
query. We empirically study the resources needed for model
training under this trade-off in Section 7.4.

Impact of data updates. Models may need retraining
whenever there is a significant shift in the query workload
distribution or underlying data distribution, compared to
initial training. Such cases can be triggered by a bulk data
update, similar to the triggers in existing engines [6] or a
large fraction of served queries resulting in bad selectivity
estimates compared to selectivities found after executions.

Once triggered, the new actual selectivity labels for exist-
ing training queries can be computed efficiently if the system
already supports a delta store for all updated rows in the
data, which reduce # rows to be processed. Otherwise, com-
puting actual selectivities is identical to bootstrapping and
similar ideas can be used to reduce overhead. Interestingly,
we found that models that use CE features do not neces-
sarily need expensive retraining and can work reasonably
well with updated 1D histograms. We study the trade-offs
available in case of database updates in Section 7.4.

7. EXPERIMENTS
The experimental evaluation is divided under three main

categories. First, we evaluate performance of our best mod-
els in comparison with existing techniques with varying
memory footprint, datasets and predicate dimensionality.
Second, we present the decisions that result in best mod-
els for a given memory budget, i.e, impact of design choices,
hyper-parameters and training size. Finally, we discuss the
overhead associated with model training, possible ways to
reduce the overhead and impact of data updates on accu-
racy of models. Before going into details of evaluation, we
describe the experimental setup.

7.1 Experimental Setup

Datasets. We used 4 real-world datasets from different do-
mains to evaluate the estimation quality on a variety of re-
alistic data distributions.

1. Forest [8]: The original forest cover type dataset has
581012 rows and 54 attributes. We use first 10 numeric
attributes as in [21, 22] (other attributes are binary).
An example of its non-linearly correlated attribute-
pairs is shown in Figure 6(a).

2. Power [8]: It contains measurements of electric power
consumption in a household at one-minute sampling
rate over 4 years. We used the 7 numeric attributes
after the first two attributes (date and time) with over
2 million rows.

3. Weather: This is a dataset constructed by authors of
[34] using data sourced from daily global historical cli-
mate network. It contains daily observations of climate
records in 3.4 million rows across 7 attributes.

4. Higgs [8]: This is a scientific dataset that has 11 mil-
lion rows with features regarding kinematic properties
measured by particle detectors in the accelerator. We
use last 7 high-level features that physicists derive to
correctly classify the particles.
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(a) Data distribution (b) Data centric queries

Figure 6: Example of data-centric query distribution for a
correlated attribute pair

Workloads. Each dataset is treated as a table. We use
queries with range predicates on two or more attributes. We
call a query d-dimensional if it has non-trivial range bounds
for d attributes. For a given total number of queries, we con-
struct query workload in the following way: For a D dimen-
sional dataset, we generate queries with dimensions varying
from 2 to D for all possible subsets of attributes, with equal
number of queries to represent each subset. For a chosen
set of d attributes (Ak1 , Ak2 , ..., Akd) of a dataset, we cre-
ate queries in the manner described next. The query centers
follow one of the two distributions in equal proportions: uni-
form random over the data domain, or uniform random over
the data tuples. The first distribution is named random-
centric and the second distribution is named data-centric
distribution, as visualized in Figure 6(b). For each dimen-
sion of a query, we use uniformly distributed widths for
random-centric queries and exponentially distributed widths
for data-centric queries, over the domain of that dimension.
We validated that the constructed query sets contain queries
all over the data domain space, with huge variation in vol-
umes as well as actual selectivity values. Unless stated oth-
erwise, we used query workload with 20,000 examples, with
80% queries as training set and remaining 20% as test set.

List of comparative techniques. We used the following
techniques for comparison.

1. AVI, traditional estimator for most database systems.

2. STHoles [12] (abbv. as sth), state-of-the-art query
driven technique for multi-d histograms.

3. Samples, i.e, uniform random samples, given the
same size constraint as other techniques. We use a
sample with 1000 rows (abbv. as 1k sample) when
comparing with fixed small size (16KB) models.

4. KDE[22], (abbv. as sample kde) is a state-of-the-art
kernel density estimator that can use feedback queries
to improve the estimation quality for any given sample.
We used the code made available by the authors [2]
with SquaredQ loss function and Batch variant for
bandwidth optimization.

5. BestCE, refers to an oracle technique that can mag-
ically choose the most accurate selectivity estimate
among AVI, EBO, and MinSel for any given query.

When BestCE does not improve upon AVI, it highlights
the difficulty of estimation task. 2

6. 10k sample, we also use uniform random sample with
10k rows for accuracy comparison. Observe that, it is
larger than typical recommendation [7] and has longer
estimation time (> 10× compared to AVI).

The first four are existing techniques, and the latter two
impractical methods serve as accuracy landmarks.

Model variants. We experimented with three different
kinds of regression techniques, i.e., neural network imple-
mented with Keras [17]), random forest [36], and gradient
boosted trees, XGBoost [16] and LightGBM [24]. We found
that XGBoost has equal or better accuracy and estimation
time than both LightGBM and random forests for a given
model size, so we only report XGBoost (denoted as xgboost)
and neural network (denoted as nn).

For each regression model, there are four variants due to
our design choices: Log-transform and CE features. We pro-
pose the variant that uses both choices (denoted as Log+CE)
as the best variant. Hence, only Log+CE variant is used in
most experiments except for Section 7.3.1, where we empir-
ically justify our choice. For each model size budget, we
consider a space of models, i.e., nn with different numbers
of hidden layers and xgboost with different numbers of trees,
as detailed in Section 7.3.2. We report the performance for
best choice model for each memory budget, except in Sec-
tion 7.3.2, where we present the typical choices that we em-
pirically observed for the best models. Note that, range fea-
tures are normalized to domain [0,1000]; log-transformation
of labels use log-base 2; and CE features go through the
same transformation as the labels.

(a) Forest2D (b) Power2D

Figure 7: Accuracy for correlated attribute-pairs

7.2 Accuracy and estimation time evaluation
We first study the impact of memory on accuracy and

estimation time of different techniques. Note that, AVI and
BestCE are baselines that use 1D histograms with at most
200 buckets each. Then we compare our models constrained
on memory and estimation time with other techniques across
different datasets and predicates of different dimensionality.

7.2.1 Impact of memory budget
In this section we plot, on a log-log scale, the accuracy

measured by geometric mean of q-error (later abbv. as gmq),

2By definition, the accuracy of BestCE is better than each
of AVI, EBO, and MinSel – hence we do not report explicit
comparison with EBO and MinSel.
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(a) Accuracy for Power4D (b) Accuracy for Power7D (c) Estimation Time for Power4D

Figure 8: Impact of model size on accuracy and estimation time

for all techniques over a range of memory budgets. We also
report estimation time over the same memory range. To-
gether, they show that larger models typically give better
accuracy at the expense of increased estimation time.

2D correlated datasets. In Figure 7, we use (as datasets)
two targeted attribute pairs with different types of correla-
tion: (a) non-linearly correlated attribute-pair, visualized in
Figure 6(a), from Forest dataset, and (b) linearly correlated
attribute-pair from Power dataset. Below are the highlights
from this experiment,

• BestCE is significantly more accurate compared to AVI
when attributes are correlated.
• All techniques including our models gain accuracy very

quickly with memory to outperform even BestCE.
• NN models are highly accurate for model sizes as small

as 1 KB, i.e., 128 parameters. XGBoost models typi-
cally need more space compared to NN models.

Accuracy for higher dimensional workloads. In Fig-
ure 8, we show the performance of different techniques for a
representative higher dimensional dataset (Power). We high-
light here that, our workload includes queries on all possible
subset of attributes. Figure 8(a) and (b) show accuracy for
4-attribute subset and the full 7-attribute version of Power
dataset, respectively. Figure 8(c) show the estimation time
(in millisecond) for the 4D subset.

BestCE continues to be more accurate compared to AVI
even for higher dimensional workloads. For sampling, more
memory allows more sample tuples that leads to improved
accuracy. As expected, KDE technique consistently outper-
forms sampling and performs quite similar to AVI estimator
for small sample sizes for 2D as well as 4D workloads. But
when evaluated on 7D version of the dataset (Figure 8(b)),
the accuracy gain is not sufficient to outperform the AVI es-
timator in terms of gmq. While it is already known that
improvements due to KDE technique reduce with increase
in dimensions [22], we suspect that the mix of 2D to 7D
predicates in our workloads further increases the difficulty
of bandwidth optimization. We do not use parallel-version
of KDE [22] that could efficiently process larger samples.

STHoles, in marked contrast to the 2D dataset, could
not deliver reasonable accuracy even with 256 KB memory,
while its estimation time increased rapidly. Note here that
STHoles does not directly optimize for the relative metric.
For 7-dimensional version of Power dataset shown in Fig-
ure 8(b), the accuracy degrades further (out of plot range).

We believe that one reason for huge degradation in accuracy
is highly intersecting queries spreading all over the large 7-
dimensional domain space.

Finally, regression models with memory footprint as small
as 16KB are sufficient to outperform the stronger baseline
BestCE even for higher dimensional workloads.

Estimation time. With regard to estimation time, 16KB
regression models are within 2× factor compared to AVI
that takes ≈ 100µsec. Observe that the estimation time
increases very slowly for XGBoost models. The time for
models corresponds to the variant Log+CE and includes the
time to compute the heuristic estimators required for in-
put features. Sampling needs much longer estimation time
(≈ 10×), to deliver accuracy values similar to 16KB mod-
els. These estimation times are computed using a single-
threaded implementation of only the prediction module of
each technique to avoid platform bias. Specifically, estima-
tion routine for our NN models requires (l + 1) vector to
matrix multiplications and additions, and XGBoost models
require binary tree traversal for each learned tree. We have
reported times for NNs with 3 layers and XGBoost trees
with moderate depth (16 leaves). Also, estimation time for
models does not change significantly with small change in
number of input features, hence the behavior shown in Fig-
ure 8(c) is representative for wider datasets as well.

7.2.2 Accuracy across different datasets
Given their fast estimation time, we use models with small

memory footprint (16 KB) in all further experiments. We
compare them against other techniques that have short es-
timation time (AVI, and 1k sample), as well as the accuracy
landmarks, BestCE and 10k sample. KDE and STHoles are
not included as they are not expected to deliver competitive
accuracy values under the estimation time constraint. In ad-
dition to geometric mean q-error (in the range [1,10]), we re-
port 95th percentile q-error (range [1,104]) across 3 datasets
in Figure 9 (Higgs dataset is used later in Section 7.2.3).

Observe that lightweight regression models consistently
outperform all other techniques in both metrics. The only
dataset for which our models do not reach the 10k sample
landmark is Forest dataset, because the dataset itself is
small (≈ 500k rows). The accuracy for AVI estimator and
1k sample are almost never satisfactory; and BestCE im-
proves over AVI only for Power dataset. In absolute terms,
models have gmq values close to 2 and 95th percentile close
to 10.
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(a) Power (b) Weather (c) Forest

Figure 9: Accuracy comparison for various datasets (models take 16 KB each)

(a) Power (b) Weather

Figure 10: Impact of increase in number of dimensions (leg-
end shared with Figure 9)

7.2.3 Scaling with the number of dimensions
Next, we evaluate the impact of dimensionality on various

techniques. For this purpose, we first dig deeper into the
accuracy of the (16KB) models evaluated in Section 7.2.2 by
breaking down accuracy with regard to dimensionality of the
predicates. In Figure 10, for Power and Weather datasets,
we report the 95th percentile q-error values on y-axis (log-
scaled), with the number of dimensions on x-axis. For a
given dimension, say d, we evaluate queries on all possible
d-dimensional predicates on various attribute subsets.

We find that 1k sample is the least accurate technique.
Queries with more dimensions tend to be more selective,
which leads to drop in accuracy of sampling techniques with
small samples. BestCE, AVI and 10k sample, all of them
suffer from 95th percentile q-error close to 100 for high di-
mensional queries. We show that the accuracy of our models
is significantly more robust with the increase in dimensions,
q-error keeping below 10 at 95th percentile in most cases.

Finally, we present an experiment targeted specifically for
high dimensional predicates on large size datasets (Weather
and Higgs). In Figure 11, we show that the accuracy of
models is significantly better compared to even 10k sample
when we consider only large size datasets. Observe that our
models perform significantly better than AVI and sampling
techniques in terms of gmq values as well, showing that our
models are particularly better at handling high dimensional
predicates.

7.3 Best model selection
In this section, we discuss the choices that help us select

best regression model for a given memory budget (we use 16
KB budget).

(a) Weather (b) Higgs

Figure 11: Accuracy for only 7D predicates on large datasets
(legend shared with Figure 9)

(a) Power (b) Weather

Figure 12: Design impact on NN models

7.3.1 Impact of design choices
First, we evaluate the impact of proposed design choices

on the accuracy of models. We present the accuracy for all
model variants for NN models in Figure 12 and for XGBoost
in Figure 13. Observe that the accuracy improves, with re-
spect to Basic Model, with each individual design choice. We
find that individually log-transform leads to improvement of
larger magnitude compared to CE features. We emphasize
that CE features play a crucial role of delivering “last mile
improvements”. Overall, the design choices help both NN
and XGBoost models. The cost of improvements due to
CE features is the extra memory requirement in terms of
1D histograms. We do not consider memory for histograms
as an overhead for our models since histograms are already
present in systems and may be useful for other purposes.

7.3.2 Model architecture space
As mentioned earlier, we explored different models for a

given memory budget and reported only the best models for
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(a) Power (b) Weather

Figure 13: Design impact on XGBoost models

Figure 14: Accuracy impact of #trees: XGBoost (16 KB)

each budget. In this section, we describe how we explored
model architecture space for a given model size.

For neural networks, given a model size constraint, we
construct different networks by varying the number of hid-
den layers l from 1 to 4. For each choice of l, we create a
single model such that the number of neurons in all hidden
layers are as close as possible while satisfying ni ≥ nj for
each pair of adjacent layers (j = i + 1). Each network is
optimized for 500 epochs using Adam algorithm, with batch
size 32 and mean squared error (MSE) as the loss function.

For tree-based ensembles, for a given model size con-
straint, we create different models by varying the number
of trees as powers of 2, starting at two trees. That is,
t ∈ {2, 4, 8, ...}. For each choice of t, we then decide the num-
ber of leaves as the maximum number among v ∈ {2, 4, 8, ...}
that satisfies the model size constraint. We used single-
threaded training with default values for other hyperparam-
eters.

We empirically observed that neural networks with l = 2
or l = 3 hidden layers provide reasonable accuracy across
all datasets. For XGBoost models, we found that a small
number of deep trees as well as many trees with small depth
provide suboptimal accuracy (Figure 14). For a given model
size constraint, it is most reasonable to use moderately deep
trees (16 leaves each) and increasing the number of trees as
memory budget increases, our 16 KB models accommodate
16 learned trees. For 16 KB models with these architecture
choices, Figure 15 shows the distribution of q-error values
across different datasets using boxplots. Note that the box

(a) NN (b) XGBoost

Figure 15: 3-layer NN and 16-tree XGBoost (16KB)

(a) NN (b) XGBoost

Figure 16: Accuracy gains with # training examples

boundaries represent 25th and 75th with the internal marker
as median value. We use the whisker to represent 95th per-
centile error value. Note that for Higgs dataset, we report
the models targeted to learn high-dimensional queries.

7.3.3 Trade-off with training set size
In this section, we analyze the impact of increased training

data on accuracy of regression models (shown in Figure 16).
We report these numbers for 16 KB models with 3 layers
for NN and 16 trees for XGBoost on Power dataset. The
accuracy generally improves with larger training data for
both model types. However, NN models typically require
more training data while XGBoost models work reasonably
well even with small training.

7.4 Overhead associated with models
In this section, we discuss the overhead associated with

training and maintaining regression models. The entire
pipeline to train the proposed regression models consists of
three major steps. The first step is construction of the train-
ing queries labeled with actual selectivities. The second step
is computation of range and CE features, that in turn re-
quire constructing/updating 1D histograms. And the final
step is using the training data to learn the model parame-
ters. As mentioned in Section 6.2, collecting actual selectiv-
ity labels is the most resource consuming step as it is pro-
portional to data size itself, unless the labels are available
from query feedback. Also, the steps are identical for initial
model training as well as retraining after data updates, un-
less the system supports a delta store for the updated rows.
We first discuss the trade-offs associated with model train-
ing in case of updates. Then, we compare the end-to-end
training overhead for NN and XGBoost models.

Handling data updates. We use Power dataset for this ex-
periment and present results with XGBoost as the regression
model. Note that, the original dataset has 2M rows and a
variety of pair-wise correlations. We performed two experi-
ments (visualized in Figure 17) where: (a) we appended 20%
extra rows in sparse regions of the original dataset; (b) we
updated all tuples of the dataset resulting in huge change
in the data distribution (no significant change in pair-wise
correlations).

First, we focus on the leftmost two box-plots in Fig-
ure 17(a). We observe that that if we continue to use the
models trained using selectivity labels and CE features from
the original dataset, the accuracy of our models degrades
significantly even with 20% appended data rows. In Fig-
ure 17(b) where 100% rows are updated, the accuracy degra-
dation is much worse. Hence, if the underlying data is sig-
nificantly updated, the models are not recommended to be
used in their original form.
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(a) 20% rows appended

(b) 100% rows updated

Figure 17: Handling dataset updates

Interestingly, we found that the accuracy of our models
can be regained to a large extent by only updating 1D his-
tograms and using updated CE features as input to the orig-
inally trained model, as shown by the third box-plot in each
of Figure 17(a) and (b). Observe that, histogram update
is comparatively fast and is already supported by existing
systems. Thus, use of CE features makes our models more
robust against data updates.

Model retraining overhead. To achieve best accuracy
with regression models, selectivity labels used during train-
ing should reflect the actual data distribution. In this ex-
periment, we empirically show that use of data sample for
selectivity calculations provides an interesting trade-off be-
tween overhead of calculating selectivity labels and accuracy.
We used 1k, 10k, 100k sample in addition to full data (2M
rows) and the resulting q-error distributions are shown in
last four box-plots of Figure 17. We found that use of 100k
sample (5% of the original dataset) provides reasonably good
accuracy with 20× less data to process.

Finally, we found that XGBoost takes only few seconds
for the last step of learning model parameters compared
to several minutes for NN. To measure end-to-end training
overhead, we used 2k training examples for XGBoost model
and 16k examples for NN with selectivities computed using
100k sample. The entire process took less than a minute to
learn XGBoost model, 10× faster compared to NN model.

8. RELATED WORK
Selectivity estimation in the context of query optimization

has been an active area of research for multiple decades – we
refer to [19] for an extensive survey. Here, we provide a brief
review of studies that are relevant to the goal of selectivity
estimation for conjunctive range predicates.
Multi-dimensional histograms This is arguably the most
well studied approach to capture attribute correlations [35,
37]. The idea is to use multi-dimensional buckets that par-
tition the data domain, to approximate the data distribu-
tion. This approach faces challenges as dimensions increase
because there are potentially many ways to identify buck-
ets [19]. Also, the space requirement increases with the num-
ber of dimensions because the domain space increases expo-
nentially and data can be skewed. Later proposals [12, 21,
38] used overlapping buckets that allow a given number of

buckets to identify more complex distributions, they gener-
ally require more resources during bucket identification.
Query-driven histograms Query-driven (self-tuning)
methods [10, 12, 39] are better designs in multi-dimensional
histogram as they focus only on regions in the subspaces that
are being accessed by queries in the current workload. The
limitation of such methods is highlighted when workload is
spread in large fraction of a high-dimensional space.
Sampling based methods Sampling based methods [42]
have a lot of advantages as a data sample can represent any
distribution without prior knowledge and support a richer
class of predicates beyond range predicates. Their key weak-
nesses are (a) low accuracy for highly selective predicates
and (b) high estimation cost because calculating an estimate
requires a full scan over the samples [22]. Kernel density es-
timators (KDE) [21, 22] can provide significantly improved
accuracy for given sample size. But such techniques [22] are
designed for futuristic platforms when GPUs are common-
place. Also, they do not avoid scanning a large sample at
estimation time, which is slow without parallel resources.
There have been recent proposals [34, 25] that combine in-
formation from both histograms and samples to handle the
issue of highly selective predicates, but they do not meet
the practical requirements of small memory footprint and
estimation time.
Learned models Use of machine learning techniques for
selectivity estimation is not new, prior work explored dif-
ferent models ranging from curve-fitting[15], wavelets [31],
to probabilistic graphical models [20, 41]. Infact some early
works also use neural network based models for selectivity
estimation over small number of attribute [11, 26, 29, 28].
Despite these attempts, fast and accurate selectivity esti-
mation for multi-dimensional range predicates was a blind-
spot. In this paper, we demonstrate significant progress on
this important problem with extensive evaluation on multi-
ple real-world datasets. Most recently, [25] targeted corre-
lations across joins using a custom neural network architec-
ture. While [25] certainly addresses generic version of the
selectivity estimation problem, the models in this paper are
much more succinct leading to significantly faster estima-
tions. Also, we do not confine the regression techniques to
be neural network, and found that tree-based ensembles are
much faster to train compared to neural networks.

9. CONCLUSION AND FUTURE WORK
This paper explored the application of standard regres-

sion techniques to selectivity estimation of range predicates.
We showed that lightweight models can be designed to to de-
liver fast and accurate estimates for multi-dimensional range
predicates. With extensive empirical evaluation over multi-
ple real world datasets, we found that the accuracy of mod-
els is significantly better than existing methods in database
systems, with reasonably small training effort. We believe
that the learned models can add significant value to existing
systems, due to desirable properties such as small memory
footprint and simple estimate routines.

There are several interesting directions for future work
including automatically deciding the attribute subsets for
model construction; handling larger class of queries such as
join queries with arbitrary filters etc. We see this work as
an initial step towards using learning techniques to improve
the state of selectivity estimation under practical constraint
of small query optimization time.
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