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ABSTRACT
The constrained shortest path (CSP) query over static graph-
s has been extensively studied, since it has wide application-
s in transportation networks, telecommunication networks
and etc. Such networks are dynamic and evolve over time,
being modeled as time-dependent graphs. Therefore, in this
paper, we study the CSP query over a large time-dependent
graph. Specifically, we study the point CSP (PCSP) query
and interval CSP (ICSP) query. We formally prove that
it is NP-complete to process a PCSP query and at least
EXPSPACE to answer an ICSP query. We propose approx-
imate sequential algorithms to answer the PCSP and ICSP
queries efficiently. We also develop parallel algorithms for
the queries that guarantee to scale with big time-dependent
graphs. Using real-life graphs, we experimentally verify the
efficiency and scalability of our algorithms.
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1. INTRODUCTION
The constrained shortest path (CSP) query over a graph

is to find the best path from source to destination based
on one criterion with a constraint on another criterion [14,
16]. The CSP query in static graphs has been studied ex-
tensively [14, 16, 21, 29] because it has wide applications.
In route planning over transportation networks, a traveler
has a tour plan to Beijing with maximum budgets on dif-
ferent reimbursement categories. His/her travel budget is
1,000 RMB, his/her accommodation budget is 5,000 RM-
B, and other budget is 6,000 RMB. Thus, he may want to
compute a shortest route to Beijing with toll payment with-
in 1,000 RMB. In this scenario, he should compute a CSP
query that minimizes the total travel time within the budget
for toll payment. In an online navigation system, the con-
straint can be presented to the user in the form of a slider
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bar, which drastically simplifies user-system interactions. In
telecommunication networks, a routing algorithm not only
computes a fastest route, but also guarantees the packet loss
rate within a threshold for a reliable transmission [28]. In re-
ality, graphs often evolve over time. For example, buses and
trains run at different frequencies on schedule-based public
transportation systems, and road networks are consistently
congested during rush hours. The Vehicle Information and
Communication System (VICS) and the European Traffic
Message Channel (TMC) are two transportation system-
s, which can provide real-time traffic information to user-
s. Such transportation networks are time-dependent graphs,
i.e., the travel time for a road varies over time. Therefore,
in this paper, we study the CSP query over a large time-
dependent graph Gt.

Every edge e = (u, v) in Gt has two types of costs: fe(t)
and we(t). fe(t) is the time cost for specifying how long it
takes to travel through an edge e, and we(t) is the weight
(e.g, the toll fee) for traveling through an edge e. Both fe(t)
and we(t) are functions that are dependent on the departure
time t at the starting endpoint u of the edge e = (u, v).

When fe(t) is discrete, we refer Gt to a discrete time-
dependent graph. When fe(t) is continuous, we refer Gt

to a continuous time-dependent graph. In this paper, we
consider a continuous time-dependent graph for two reason-
s. First, continuous Gt is a general model, and discrete Gt

is a special case of continuous Gt. Second, a continuous
Gt can model many real networks, e.g., road networks [19],
schedule-based public transportation networks [32] and com-
puter networks [24].

The query types over continuous time-dependent graphs
include the point query and the interval query. The point
query computes the shortest path for a departure time point,
while the interval query has the departure time within a
period [24]. In this paper, we study point CSP (PCSP)
queries and interval CSP (ICSP) queries over continuous
time-dependent graphs. Below is an example.

Example 1. Figure 1 shows a continuous time-dependent
graph Gt with time-function fe(t) and weight-function we(t)
assigned to every edge e of Gt. In Figure 1(c), fe2(t) is the
time-function of edge e2, which is a piece-wise linear func-
tion. Also in this figure, we2(t) is the weight-function of
edge e2, which is a piece-wise constant function.

Assume that a person P would like to travel from a source
node s = v1 to a destination node d = v3 in Gt. For a PCSP
query, we consider the following scenario. Given a specific
departure time ts from s and a budget constraint ∆, P would
like to compute the earliest arrival time point at d, but takes
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Figure 1: A continuous time-dependent graph.

a toll payment at most ∆. For an ICSP query, we consider
the following scenario. Given a departure period [ts1, ts2]
from s and a budget constraint ∆, P would like to compute
the earliest arrival time function (with domain [ts1, ts2]) at
d, but takes a toll payment at most ∆. 2

An interval query over time-dependent graphs usually com-
putes the time function (also called speed profile [19]), which
is very useful in practice. For example, the answer of an in-
terval query gives the result of any point query by inputting
the starting time point into the time function [24]. There-
fore, an interval CSP also computes the earliest arrival time
function in this paper.
There are some challenges in processing PCSP and ICSP

queries efficiently, as explained below.

Challenges. The CSP query over a static graph is a classi-
cal NP-complete problem [13]. The extension from a static
graph to a time-dependent graph increases the expressivity
of the CSP query. Therefore, it may be more difficult to pro-
cess the CSP query over time-dependent graphs than over
static graphs. We prove that it is NP-complete to process
the PCSP queries over continuous time-dependent graphs.
However, the complexity becomes at least EXPSPACE in
processing an ICSP query over continuous time-dependent
graphs, and there is no polynomial time algorithm that can
approximate the query with guarantee.

Our Approaches. To attack the hard problems, we pro-
pose novel algorithms. Denote StaCSP by an algorithm that
solves the static CSP query. We first show that StaCSP can
easily be extended to process the PCSP queries over contin-
uous time-dependent graphs. To attack the harder problem
(ICSP queries over continuous time-dependent graphs), we
propose acceleration techniques by exploiting the structural
properties of time-functions. Moreover, we develop parallel
algorithms for the ICSP query that guarantee to scale with
big time-dependent graphs.

Contributions. This paper aims to answer these questions.

(1) We conduct the study on CSP queries over large time-
dependent graphs by incorporating continuous time and weight

functions, and we formally define these problems in Sec-
tion 2. We also study the problem complexities of the CSP
queries in this section.

(2) We build connections between the static CSP query and
the dynamic CSP queries, and adapt the algorithm (StaCSP)
of the static CSP query to processing the dynamic PCSP
query in Section 3. We propose a novel sequential algorithm
(SICSP) to answer the dynamic ICSP query by exploiting
the structural properties of time and weight functions in
Section 3.

(4) We develop two parallel algorithms that guarantee queries
to scale with graphs in Section 4.

(5) Using real road networks, we experimentally verify the
effectiveness and scalability of SICSP (Section 5). We find
the following. (a) SICSP is feasible on large graphs. It takes
17 seconds and 21MB memory on a graph of 5 million nodes
and the process is accelerated by 22 times using 12 machines
by our proposed method. (b) Our two parallel algorithms
are parallel scalable: they are on average 4.3 and 4.6 times
faster on large graphs, when the number of machines in-
creases from 4 to 20.

Related Work. We categorize it as follows:
Shortest path over discrete time-dependent graphs. The sim-
plest model of a time-dependent traffic network is the dis-
crete time-dependent graph (or “timetable” graph). The
timetable associated with each node consists of time-dependent
events (e. g., a vehicle departing from a stop) that happen
at discrete points in time.

A basic version of the model [27] contains a node for every
departure and arrival event, with consecutive departure and
arrival events linked by connection (or travel) edges. Several
path planning algorithms (such as earliest arrival time path,
latest departure time path, and shortest duration time path)
have been proposed for such graphs. Cooke et al. [9] proved
that these queries could be solved with a modified version
of Dijkstra’s algorithm. However, it does not scale well with
the size of the graph and several techniques, such as indexing
have therefore been proposed to improve efficiency [33, 32,
34]. All these studies aim to optimize the time objective, and
the algorithms there are almost the same. For example, our
algorithms can directly solve the problems concerning the
latest departure time path and the shortest duration time
path with minor modifications. Some studies [7, 26] have
aimed to optimize the earliest arrival time and number of
transfers for time-table graphs. Their methods cannot solve
our problem as the other optimized objective is different
(ours is the weight-optimal objective).

With respect to the weight-optimal objective, several s-
tudies in the field of operation research consider the weight-
optimal path problem in the context of the discrete time
model [8]. They develop dynamic programming schemes
to obtain the exact solution, but their time complexities
are very high and cannot cope with a large graph. Close
to our work is [35], they define a discrete time function
fi,j(vi, vj) and a discrete weight function wi,j(vi, vj) for each
edge (vi, vj), and aim to find the path with the minimum
weight, not the minimum time.
Shortest path over continuous time-dependent graphs.
The drawbacks of the discrete time model are two-fold. First,
this model cannot represent the state of the graph between
two discrete time points, which might yield inaccurate re-
sults. Second, the memory and processing requirements are
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high. A more precise way to describe a time-dependent traf-
fic network is to use the continuous time-dependent func-
tion. For the point query, computing the earliest arrival
time can also be done by making a minor modification to
Dijkstra’s algorithm if the first-in-first-out (FIFO) proper-
ty holds at the continuous model [9, 23]. Concerning the
interval query, recent work [19] have studied the shortest
duration time path problem without the FIFO property as
this approach allows to wait at intermediate nodes during
the route. However, it assumes that every edge function still
has the FIFO property, and thus the problem can be easily
solved by a Dijkstra-based algorithm. On the other hand,
the earliest arrival time path cannot be computed by this
algorithm, because the whole graph does not have the FIFO
property.
Other studies [24, 10, 12] have also provided Dijkstra-

based algorithms to solve the problems with the continu-
ous model, and the algorithm in [12] is the most efficient
thereof because it applies the most precise refinement ap-
proach that expands the time interval step-by-step rather
than computing the entire time interval iteratively. Other
research has built different kinds of indices to accelerate the
query, such as time-dependent CH [6] and time-dependent
SHARC [11]. As far as we know, [30] is the only work to
study the bi-criteria shortest path problem over continuous
time-dependent graphs. The algorithm in [30] can give the
exact answer to an ICSP query. However, the algorithm tra-
verses all paths from source to destination, which may take
exponential steps. Our proposed algorithm is efficient by
only computing time functions of destination node rather
than those of intermediate nodes from s to d. Therefore,
our algorithm is nearly 200 times faster than the algorithm
in [30] as shown in the experiments. [36] also studies the
CSP query over time-dependent graphs. But it only gives
exact solutions, and does not propose any approximate al-
gorithms and parallel algorithms.
CSP query over static graphs. The CSP is a classical NP-
complete problem. Handler and Zang [14] proposed a method
for exact CSP processing: one method formulated CSP as
an integer linear programming (ILP) problem, and solved
it with a standard ILP solver. This same methodology was
used by Mehlhorn and Ziegelmann [22]. The state-of-the-
art solution for the exact CSP problem is that proposed
in [15], which we call Sky-Dijk because it follows the general
idea of Dijkstra’s algorithm. To combat the hard problem,
Hansen [15] proposed the first c-approximate solution, which
runs in polynomial time, but has a high complexity. Lorenz
and Raz. [20] reduced this complexity. However, this solu-
tion is much slower than an exact CSP algorithm, as shown
in [18].
Our work differs from previous works in several ways.

(a) The works on (discrete and continuous) time-dependent
graphs advocate the Dijkstra-based algorithms, because all
their algorithms utilize the following property: the earliest
arrival time of a node vi can be computed by the earliest
arrival time of v′is incoming neighbors. However, this prop-
erty no longer holds true for the problems proposed in this
paper. (b) Previous works focus either on the time-optimal
objective or the weight-optimal objective, whereas our prob-
lems concentrate on both time-optimal and weight-optimal
objectives. One study on both optimal objectives is very in-
efficient, as it uses a very naive strategy. (c) All the works on
the static CSP query do not consider the dynamic nature of

time-dependent graphs. Therefore, we should propose nov-
el algorithms to process CSP queries over continuous time-
dependent graphs.

2. PROBLEM DEFINITION
In this section, we will present the definition of continu-

ous graph time-dependent graphs, based on which we define
PCSP and ICSP queries.

2.1 Continuous Graph Model
Time-Dependent Graph. A time-dependent graph is a
simple directed graph, denoted as Gt(V,E, F,W ) (or Gt for
short), where V is the set of nodes; E ⊆ V × V is the
set of edges; and F and W are two sets of non-negative
value functions. For every edge e = (u, v) ∈ E, there are
two functions: time-function fe(t) ∈ F and weight-function
we(t) ∈ W , where t is a time variable. A time function
fe(t) specifies how much time it takes to travel from u to
v, if departing from u at time t. A weight function we(t)
specifies how many weights (e.g., toll fee) it takes to travel
from u to v, if departing from u at time t. We define |V | = n
and |E| = m.
Time Function. The edge time function fe(t) is a con-
tinuous and periodic (with time period T ) function, de-
fined as follows: ∀k ∈ N, ∀t ∈ [0, T ), fe(kT + t) = fe(t),
where fe : [0, T ) → [1, Te] such that lim

t→T
fe(t) = fe(0), for

some fixed integer Te denoting the maximum value of fe(t).
Without loss of generality, fe(t) can be approximately rep-
resented by a piece-wise linear (PWL) function. In fact,
any continuous function could be approximated by a set of
PWL functions by applying the numerical approximation
method [25]. Since fe is a periodic, continuous PWL func-
tion, it can be represented succinctly by the number Ke of
breakpoints defining fe. LetK =

∑
e∈E Ke denote the num-

ber of breakpoints to represent all the edge-time functions
in Gt.

Figure 1 shows an example of a continuous time-dependent
graph Gt with time function fe(t) and weight function we(t)
for each edge. In Figure 1(c), fe2(t) defines the time func-
tions of the edge e2 = (v2, v3). The period T and Te of
fe2(t) are 100 and 40, respectively. fe2(t) has two break-
points (50, 40) and (80, 10).
FIFO Property. In this paper, we assume that the time func-
tions have the first-in-first-out (FIFO) property. The FIFO
property for an edge (u, v) implies that if departing earli-
er from u, one arrives earlier at v. We say Gt is a FIFO
graph only if the time function fe(t) of every edge e = (u, v)
has the FIFO property, i.e., t1 + fe(t1) < t2 + fe(t2) for
t1 < t2 ∈ [0, T ). For example, consider a road network, for
two cars towards the same road segment, the first one reach-
ing the starting point should leave the end point first. From
the PWL function perspective, fe(t) will satisfy the FIFO
property only if each of its linear coefficients is LCi > −1 for
i ∈ {1, 2, ...,Ke} and there are no discontinuities at which
fe(t) drops to a lower value. For example, in Figure 1, all
edge time functions have the FIFO property.
Arrival-Time Function. For a node v ∈ V , we use Arr(v)
and Dep(v) to denote the arrival time at v and departure
time from v, respectively. Then, for an edge e = (u, v) ∈ E,
we have Arr(v) = Dep(u) + fe(Dep(u)). As shown in the
problem below, we aim to compute the earliest arrival time
at a destination node d from a source s of Gt. Given a path
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p from s to d, based on the FIFO property, the waiting at
any node of p is never beneficial to a route algorithm for
the problem. Thus, we let Arr(v) = Dep(v) in this paper.
Let p = ⟨e1 = (v1, v2), e2 = (v2, v3), ..., eh = (vh, vh+1)⟩ be a
given path with the departure time ts. Then, we calculate

Arr(v1) = Dep(v1) = ts,

Arr(v2) = Arr(v1) + fe1(Arr(v1)),

...

Arr(vh+1) = Arr(vh) + feh(Arr(vh)).

The travel time of path p is defined as Trv(p) = Arr(vh+1)
−ts. The edge-arrival-time function of an edge e ∈ E is
defined as Arre(t) = t + fe(t), ∀t ∈ [0, T ). Then, the path-
arrival-time function of a path p = ⟨e1, ..., eh⟩ is the compo-
sition Arrp(t) = Arreh(Arreh−1(· · · (Arre1(t)) · · · )) of the
edge-arrival-time functions for the constituent edges. The
path-travel-time function is then Trvp(t) = Arrp(t)− t.

Weight Function. We assume that weight-function we(t)
is a piecewise constant function, calculated as follows:

we(t) =



w1, 0 ≤ t < t1

w2, t1 ≤ t < t2

...

wσ, tσ−1 ≤ t < tσ

(1)

Here, [0, tσ] is the time domain of function we(t) with σ
breakpoints. The value of wx (1 ≤ x ≤ σ) is a constant
and represents the value of we(t) when t ∈ [tx−1, tx]. The
assumption is reasonable. In real applications, the weight
functions are always piecewise constants. For example, in
road networks, the toll fees for traveling through a road are
distinct constant values during day and night. This means
that the weight-function of this road is a piecewise constant
function.
Figure 1 also illustrates the weight-functions for the two

edges e1 = (v1, v2) and e2 = (v2, v3). Let W =
∑

e∈E σe

denote the number of breakpoints to represent all the edge-
weight functions in Gt.
Similar to the time function, let p = ⟨e1 = (v1, v2), e2 =

(v2, v3), ..., eh = (vh, vh+1)⟩ be a given path with the depar-
ture time ts. For any vertex vi ∈ p, we use Wgh(vi) to
denote the weight from v1 to vi by path p. Wgh(vi) can be
calculated recursively as follows:

Wgh(v1) = 0, Arr(v1) = ts,

Wgh(v2) = Wgh(v1) + we1(Arr(v1)),

...

Wgh(vh+1) = Wgh(vh) + weh(Arr(vh)).

The weight of path p is defined as Wgh(p) = Wgh(vh+1).

2.2 Problem Statement
Let s and d be the route source and destination nodes in

Gt, let ts be a starting time point at s, and [ts1, ts2] be a
starting time interval. Let ∆ be a user specified the weight
constraint during the route from s to d. Next, we give the
definition of the problem of PCSP and ICSP queries over
time-dependent graphs.

Definition 1 (Point Constrained Shortest Path).
(PCSP) Given a continuous time-dependent graph Gt =

(V,E, F,W ), a PCSP query Q = (s, d, ts,∆) is to find a
path from s to d, represented as p = ⟨v0, v1, ...vh+1⟩, such
that: (1) s = v0 and d = vh+1, (2)Dep(s) = ts, and Arr(d)
is the minimum among all the possible paths meeting the
conditions (1) and (2).

Define Arrd(t) as the arrival-time function from s to d.
Also define Wghd(t) as the weight function from s to d.
Specifically, Arrd(t) monitors the arrival time at d of a route
R that departs from s at time t. Wghd(t) monitors the total
weight of R to d from s at time t. We then define an ICSP
query over continuous time-dependent graphs.

Definition 2 (Interval Constrained Shortest Path).
(ICSP) Given a continuous time-dependent graph Gt =
(V,E, F,W ), an ICSP query Q = (s, d, ts1, ts2,∆) is to com-
pute the earliest arrival-time function Arrd(t) from s to d,
such that (1) t ∈ [ts1, ts2] and (2) Wghd(t) ≤ ∆.

From the two definitions, we see that a ICSP query com-
putes the minimum Arrd(t), whereas a PCSP query calcu-
lates the minimum Arrd(ts) for t = ts. Thus, the PCSP
query is a special case of the ICSP query.

For example, we initiate an ICSP query against the time-
dependent graph in Figure 1(a) with time and weight con-
straints: s = v1, d = v3, [ts1, ts2] = [0, 30], ∆ = 80. The
optimal Arrd(t) and Wghd(t) are shown in Figure 1(d)1.

Definition 3 (Path Retrieval). Given a time depen-
dent graph Gt = (V,E, F,W ), a query Q = (s, d, ts1, ts2,∆)
is to find a path from s to d, represented as p = ⟨v0, v1,
...vh+1⟩, such that: (1) s = v0 and d = vh+1; (2) ts1 ≤
Dep(s) ≤ ts2; (3) Wgh(p) ≤ ∆; and (4) Arr(d) is the min-
imum among all possible paths meeting the conditions (1),
(2) and (3).

2.3 Problem Complexity
In terms of the problem complexities associated with two

queries, we propose the following theorems.

Theorem 1. It is NP-complete to answer an ICSP query
over continuous time-dependent graphs.

The proof can be found in the full version of this paper [1].

Theorem 2. The complexity lower bound of an ICSP
query over continuous time-dependent graphs is EXPSPACE.
In particular, it takes 2Ω(n) memory costs to answer the
query and there is no polynomial time algorithm that can
approximate it with any ratio bound. When every fe(t) is a
constant function, the approximation ratio is constant.

The proof can be found in the full version of this paper [1].

3. ALGORITHMS FOR CSP QUERIES
This section will propose algorithms for PCSP and ICSP

queries over continuous time-dependent graphs.

Solution of PCSP Queries. Denote StaCSP by an algo-
rithm that solves the static CSP query. We first give a good
result for PCSP queries based on the principle of StaCSP.

Theorem 3. StaCSP solves the PCSP query Qt = (s, d,
ts,∆) over a continuous time-dependent graph Gt.

1For convenience, the two functions in this figure show a domain
not restricted by [0, 30].
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Figure 2: An illustration of O and I-points of two paths.

The proof can be found in the full version of this paper [1].

Solution of ICSP Queries. As shown in Theorem 2, it
may take exponential time and space costs to process an IC-
SP query over continuous time-dependent graphs. To speed
up the ICSP query, we first exploit the structural properties
of the functions Arrd(t) and Wghd(t) in this section. We
then propose efficient algorithms to compute the minimum
Arrd(t) and Wghd(t) based on the structural properties.
Note that once we obtain the minimumArrd(t) andWghd(t),

we can compute the valid earliest arrival time function by
Wghd(t) ≤ ∆. Therefore, we only propose how to compute
the minimum Arrd(t) and Wghd(t) in the rest of this study.

3.1 Main Idea of Our Solution

3.1.1 Arrival­time and Weight Functions
Since both the time and weight functions are continuous,

we construct the arrival-time and weight functions for n-
ode d of Gt instead of scalar values (as in previous works)
for the discrete functions. Given node d, the arrival-time
function and weight function of d are denoted by Arrd(t)
and Wghd(t), respectively. Recall that the query is Q =
(s, d, ts1, ts2,∆). Arrd(t) monitors the arrival time at d of
a route R that departs from s at time t. Wghd(t) mon-
itors the total weight of R to d from s at time t. Thus,
the two functions of d can be denoted by a pair Fd(t) =
(Arrd(t),Wghd(t)). The domain ofArrd(t) (resp. Wghd(t))
is the departure time from s within the interval [ts1, ts2]. For
example, Arrd(20) = 30 means that a route R starts from s
at time 20 and arrives at d at time 30. Weightd(20) = 600
means the total weight taken by R from s to d is 600.

3.1.2 Structural Properties of Arrd(t)
The earliest arrival time function from s to d, Arrd(t),

is a PWL function since all input arrival-time functions are
assumed to be PWL functions and the function operators
used to compute Arrd(t) do not change the linearity of the
result. We are interested in the breakpoints on the curve
Arrd(t) that connect its different linear pieces. We differ-
entiate between two types of breakpoints. First, a break-
point may represent the intersection between two pieces of
arrival-time functions on different paths, referred to I-point.
Second, a breakpoint may represent a breakpoint on one of
the arrival-time functions for a path from s to d, referred to
O-point. Figure 2(a) depicts an arrangement of the arrival-
time functions for two paths and identifies the I-points and
O-points. From this figure, we observe: (1) Once we ob-
tain all O-points, we can establish Arrd(t) by connecting
two neighboring O-points on the same path. (2) The I-
points are the results (intersections) by these connections

and need not be computed explicitly in order to establish
Arrd(t). Based on this observation, we only show how to
determine O-points as follows.

Every O-point corresponds to a breakpoint on the arrival-
time function, Arrp(t), for some path p from s to d. Each
breakpoint on the Arrp(t) function is the result of a break-
point between two linear pieces of arrival-time functions on
an edge of p introduced because of a compound operation
for computing Arrp(t). In the following lemma, we demon-
strate that every breakpoint of an edge arrival-time function
can create at most one O-point on Arrp(t).

Lemma 1. Suppose P is the set of all paths that go through
edge e = (u, v) ∈ E and fe(t) is the arrival-time function
for e and has Ke breakpoints. Then, every path-arrival time
function Arrp(t), p ∈ P , creates, a maximum total of Ke

O-points on Arrd(t), i.e., each breakpoint ti of fe(t) creates
only one O-point on Arrp(t).

Consider the following representation of the PWL function
fe(t):

fe(t) =



α1t+ β1, 0 ≤ t < t1

α2t+ β2, t1 ≤ t < t2

...

αKet+ βKe , tKe−1 ≤ t < tKe = T

(2)

For every breakpoint ti, i = 1, ...,Ke of fe(t), consider
path pi to be the concatenation of a path with the latest
starting time (LST ) from s, which arrives at v at time ti,
link (u, v), and a path with an earliest arrival time (EAT )
to d, which starts from v at time αiti + βi. Additionally,
recall that the starting time interval from s is [ts1, ts2]. A
PCSP query with a starting time ts2 will return an arrival
time of td at d. Based on the FIFO property, any departure
within the interval [ts1, ts2] will arrive at d before the time
td.

Based on Lemma 1 and the FIFO property, ti will create
O-points only within the rectangular region with four corner
points as: (ts1, EAT ), (LST,EAT ), (ts1, td) and (LST, td)
(Figure 3(a)). To compute the related O-points of ti, we
first enumerate the path set Ps,u from s to u and the path
set Pv,d from v to d. Thereafter, for every ps,u ∈ Ps,u, we
compute the departure time Dep by traversing ps,u from u
at time ti to s. Similarly, we compute the arrival time Arr
by traversing pv,d from u at time αiti + βi to d. Finally, we
obtain all the related O-points of ti as (Dep,Arr). In order
to make sure that each (Dep,Arr) is on the final Arrd(t), we
also calculate the weight WGH of the route departing from
s at time Dep to d at time Arr. (Dep,Arr) is an O-point of
Arrd(t) if (Arr,WGH) is not dominated by any other pair
(with a smaller arrival time and weight) with the same Dep.

For all O-points of Arrd(t), we classify the O-points on the
same path into one groupGP and sort them in the ascending
order of their departure times. In everyGP , we connect each
pair of neighboring O-points by a linear piece, which is one
part of Arrd(t). We then can obtain the complete Arrd(t).
We naturally obtain all I-points, which are the intersection
points of two different pieces.

3.1.3 Structural Properties of Wghd(t)
All breakpoints of Wghd(t), referred to W-points, are only

created from the breakpoints of we(t) of every edge e ∈ Gt.
Thus, the W-points of Wghd(t) are similar to the O-points
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Figure 3: An illustration of the rectangle containing
O-points and W-points.

of Arrd(t). Wghd(t) does not have breakpoints that are
similar to the I-points of Arrd(t), since all pieces of Wghd(t)
are horizontal and cannot intersect.
For every breakpoint ti, i = 1, ..., σ of we(t) of an edge e =

(u, v) ∈ Gt, ti will create W-points within the rectangular
region with four corner points as: (ts1,Wmin), (LST,Wmin),
(ts1,Wmax) and (LST,Wmax). Here, LST is the latest s-
tarting time of the route from s which arrives at v at time
ti; Wmin is the smallest weight of the route starting from s
within the time interval [ts1, LST ] to d with a time no later
than td, passing through edge (u, v); and Wmax is the largest
weight of the route starting from s within the time interval
[ts1, LST ] to d with a time no later than td, passing through
edge (u, v). Figure 3(b) shows such a rectangle. To compute
the related W-points of ti, we first enumerate the path set
Ps,u from s to u and the path set Pv,d from v to d. There-
after, for every ps,u ∈ Ps,u, we compute the weight WGH1

of a route by traversing ps,u from u at time ti to s. At the
same time, we also compute the weight WGH2 of a route
by traversing pv,d from v at time αiti + βi to d. Thus, we
obtain the total weight WGHt = WGH1 +WGH2 +we(ti)
of the route R from s to d passing through e = (u, v). Sure-
ly we obtain the departure time Dep and arrival time Arr
of R. Finally, we can obtain all the related W-points of ti
as (Dep,WGHt). (Dep,WGHt) could be a final point of
Wghd(t) if its (Arr,WGHt) is a skyline point among al-
l the points (i.e., not dominated) with the same departure
time Dep. We can obtain complete pieces of Wghd(t) by
connecting the W-points with the same WGHt.

3.1.4 Acceleration Techniques
Theorem 2 tells us that it takes at least 2n memory to

compute the minimum Arrd(t) and Wghd(t), and there is
no polynomial-time approximation algorithm with a guar-
antee. This negative result forces us to resort to heuristic
strategies. We minimize both Arrd(t) and Wghd(t) at the
same time, which is too expensive. Our heuristic strate-
gy sets its first priority as minimizing Arrd(t) and then to
minimize Wghd(t). Intuitively, the heuristic strategy first
computes fast routes (from s to d), among which the route
with the least weight is selected.
To establish Arrd(t), the heuristic scheme first computes

O-points with Arr as small as possible. Among such points,
the heuristic scheme selects the skyline points as the final
O-points. Thereafter, Arrd(t) is constructed according to
the scheme proposed in the previous subsection. Similarly,
to construct Wghd(t), we compute the W-points with small
values for the earliest arrival time, and we then select the
skyline W-points.
For a ti of fe(t), the heuristic scheme only selects the

point (LST,EAT ) (the lower-right corner of the rectangle

in Figure 3(a)) as its candidate O-point. There are two
reasons for this approach. First, (LST,EAT ) can achieve
the smallest arrival time for ti. Second, for any other point
(Dep,EAT ) of the rectangle with Dep < LST , the depar-
ture time Dep might have a related smaller arrival time than
LST , though (Dep,EAT ) also achieves the smallest arrival
time EAT . Similarly, we construct Wghd(t) by computing
(LST,EAT ). In particular, the heuristic strategy works as
follows:

Heuristic Strategy. All the possible O-points on Arrd(t)
could be captured by computing, for every breakpoint at
time ti on the edge-time function fe(t) of each edge e =
(u, v), the latest stating time (LST ) at s for arriving at u at
time ti, and the earliest arrival time (EAT ) at d for depar-
ture time fe(ti) at v. The point (LST,EAT ) is a potential
O-point on Arrd(t). In order to make sure that (LST,EAT )
is on the final Arrd(t), we also calculate the weight WGH
of the route departing from s at time LST to d at time
EAT and obtain a point of Arrd(t) as (LST,WGH). If
(EAT,WGH) is not dominated by any other pair with the
same LST , (LST,EAT ) is an O-point of Arrd(t). Similar-
ly, all the W-points of Wghd(t) can be computed, for every
breakpoint at time ti on the edge-weight function we(t) of
each edge e = (u, v), as (LST,WGH). (LST,WGH) could
be a final point of Wghd(t) if (Arr,WGH) is a skyline point
among all the points with the same LST .

Although we adopt a heuristic strategy, the query quality
is very high, as shown in the experiments. Furthermore, the
heuristic strategy results in a very fast query response time.

3.2 Algorithm Details
Based on the heuristic strategy, we propose two efficient

procedures that compute the minimumArrd(t) andWghd(t).
The two procedures are denoted as ICSP Arr and ICSP Wgh.
In this section, we show how to perform ICSP Arr whose
pseudo-codes are illustrated in Algorithm 1.

ICSP Arr uses a list L to maintain the O-points of Arrd(t).
In particular, ICSP Arr consists of three phases: (1) calculate
the O-points of Arrd(t), (2) validate them to obtain the final
O-points, and (3) construct Arrd(t).

Phase 1: Calculate the O-points of Arrd(t) (lines 3-
8). To compute the candidate O-points of Arrd(t), for each
breakpoint of each edge e = (u, v), ICSP Arr first determines
the latest departure time LST by the Dijkstra-based algo-
rithm from u on each time ti of fe(t) to s, and the earliest
arrival time EAT by the Dijkstra-based algorithm from v
at time fe(ti) to d (lines 5-6). Let the two shortest paths
be SP1 and SP2. ICSP Arr then computes the weight of the
path from s to d by summarizing the weights of SP1, SP2

and e (line 7). Finally, ICSP Arr adds the information of
every computed point to L as candidate O-points (line 8).

Phase 2: Validate the Candidate O-points (lines 9-
18). To validate every candidate O-point Ti of L, ICSP Arr
verifies whether Ti is dominated by a point (on some path
P from s to d) with the same departure time as Ti. Note
that P must contain several candidate O-points in L. To
achieve this aim, ICSP Arr first classifies the points of L
on the same path into one group and obtains a partition
of L (line 9). ICSP Arr easily obtains the classification, as
the paths have been determined in computing the candi-
date O-points. After the classification, ICSP Arr validates
every candidate O-point Ti of L by comparing the informa-
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Algorithm 1: ICSP Arr

Input: Gt(V,E), Q(vs, vd, ts1, ts2,∆)
Output: {Arrd(t)} of d

1 Arrd(t) = NULL;
2 List L;
3 for every edge e = (u, v) ∈ E do
4 for i = 0 to |f(e)| do
5 LST = ReverseDijkstra(u, s, ti);
6 EAT = Dijkstra(v, d, fe(ti));
7 Determine the weight WGH of the corresponding path

from s to d through (u, v);
8 InsertToList(L, T = {LST,EAT,WGH});

9 Classify the points of L on the same path into one group and
obtain a partition of L;

10 for each Ti = {LSTi, EATi,WGHi} in L do
11 Sort points Tj of each group of L in the ascending order of

|LSTi − LSTj |;
12 for each group GP in L except for the group including Ti

do
13 for each Tj = {LSTj , EATj ,WGHj} of GP as the

order do
14 Determine the path P related to GP ;
15 Determine the weight WT of P from s at time

LSTi to d at time Arrp(LSTi);
16 if Arrp(LSTi) < EATi and WT < WGHi then
17 Remove O-point Ti = {LSTi, EATi,WGHi}

from L;

18 Break;

19 for each group GPof L do
20 Sort points Ti = (LSTi, EATi) in the ascending order of

LSTi;
21 for each two neighbor points Ti and Tj in the sorted GP

do
22 AddLinearPiece(Arrd(t), Ti, Tj);

tion of Ti with that of the points in other groups (paths,
line 10). Before the comparison, ICSP Arr sorts each of the
other groups GP s in the ascending order of |LSTi − LSTj |
for Ti and Tj in GP (line 11), so that the comparison s-
tarts from the points close to Ti. It then compares Ti with
the points in each sorted GP in ascending order (lines 12-
13). In this process, ICSP Arr obtains the path P from s at
time LSTj to d at time EATj (line 14). Thereafter, it ob-
tains the weight WT of this route and the compared point
(Arrp(LSTi),WT ) (line 15). ICSP Arr removes Ti if it is
dominated by (Arrp(LSTi),WT ) (lines 16-17). Note that
once a Tj is removed, ICSP Arr jumps out of traversing GP
and starts for another group of L (line 18), because only
one point in each path can be dominated. Finally, ICSP Arr
obtains true O-points from L.

Phase 3: Construct Arrd(t) (lines 19-22). This phase
is easy, since ICSP Arr has obtained all breakpoints to build
Arrd(t). First, for the breakpoints in each group (path),
ICSP Arr sorts them in the ascending order of LSTi (line
21) such that ICSP Arr can add a linear piece of Arrd(t)
between two consecutive breakpoints (lines 21-22).

Example 2. Figure 2(b) illustrates an example of how
ICSP Arr is performed. Recall that Figure 2(a) gives al-
l O-points and I-points of two paths. ICSP Arr calculates
all (LST,EAT ) as candidate O-points, which have small-
er arrival times than those in Figure 2(a). After validating
all (LST,EAT ), ICSP Arr obtains the true O-points of t-
wo paths as shown in Figure 2(b), i.e., O1, O3, O5, O6 of
path P1 and O8, O9, O11, O13 of path P2. ICSP Arr con-
nects the pair of neighboring O-points on the same path and
then outputs the approximation function Arrd(t), i.e., the

Algorithm 2: ArrTime

Input: (Arrd(t),Wghd(t)) of L(d), Q
Output: Dep(s), Arr(d)

1 Construct a time list TL and a weight list WL;
2 for each pair (Arrd(t),Wghd(t)) in L(d) do
3 Based on Wghd(t), determine constant weights with

values smaller than ∆ and insert them into WL;
4 Based on WL, determine the smallest and largest

time points [ta, tb];
5 if [ts1, ts2] ∩ [ta, tb] ̸= ϕ then
6 Insert Min(Arr(ts1), Arr(ta)) into TL;

7 Determine the smallest time point tτ in TL;

8 Dep(s) = Arr−1
d (tτ );

9 Arr(d) = tτ
10 return (Dep(s), Arr(d));

path formed by O1, O3, O5, O6 approximates P1 and the
path formed by O8, O9, O11, O13 approximates P2. From
this example, we observe that after the heuristic method is
applied, the approximation function Arrd(t) has 12 fewer
breakpoints (O-points and I-points) in Figure 2(b) than those
in Figure 2(a). This result shows that the heuristic method
is effective. 2

ICSP Wgh uses similar steps to ICSP Arr to calculateWghd(t).
Thus, we omit the detailed description of ICSP Wgh.

Theorem 4.

• The time complexity of ICSP Arr is O(K(m+ n logn)
+K2(logK +m+ n)), where K is the total number of
breakpoints of fe(t) in Gt. The memory complexity of
ICSP Arr is O(m).

• The time complexity of ICSP Wgh is O(W 2(n+m) +
W (m+n logn)+W logW ), where W is the total num-
ber of breakpoints of we(t) in Gt. The memory com-
plexity of ICSP wgh is O(m).

The proof can be found in the full version of this paper [1].

Path Retrieval. Now that we obtain the smallest func-
tions Arrd(t) and Wghd(t), we can compute the earliest ar-
rival time Arr(d) and its related departure time Dep(s), by
inputting Q = (s, d, ts1, ts2,∆) into Arrd(t) and Wghd(t).
Specifically, Algorithm 2 shows how to compute Arr(d) and
Dep(s). Note that the input L(d) is the list of pair of func-
tions (Arrd(t),Wghd(t)). Based on the fixed departure time
ts = Dep(s), we can use the PCSP query Q = (s, d, ts,∆)
to retrieve the path for the ICSP query.

4. PARALLEL ICSP QUERY
ICSP queries may be cost-prohibitive over big time depen-

dent graphsGt. Therefore we develop parallel algorithms for
the ICSP queries that guarantee to scale with big Gt.

4.1 Parallel Scalability
To characterize the effectiveness of parallelism, we advo-

cate a notion of parallel scalability following [17]. Consider a
problem I posed on a graph Gt. We denote by t(|I|, |G|) the
running time of the best sequential algorithm for solving I
on Gt. For a parallel algorithm, we denote by T (|I|, |G|, ns)
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the time it takes to solve I on G by using ns machines,
taking ns as a parameter.

Parallel Scalability. An algorithm is parallel scalable if,

T (|I|, |Gt|, ns) = O(
t(|I|, |Gt|)

ns
) + (ns|I|)O(1)

. That is, the parallel algorithm achieves a linear reduc-
tion in sequential running time, plus a “bookkeeping” cost
O((ns|I|)l) that is independent of |Gt|, for a constant l.
A parallel scalable algorithm guarantees that the more

machines that are used, the less time it takes to solve I on
Gt. Hence, given a big graph Gt, it is feasible to efficiently
process I over Gt by adding machines when needed.

4.2 Parallel Algorithms
To parallelize the ICSP query, we should parallelize the

sequel algorithm ICSP Arr (Algorithm 1). In this section,
we propose two parallel algorithms (denoted as T Arr and
F Arr), each of which works with a master Mc and ns slaves
(machines).
The proposed schemes consist of two parallelisms, time-

parallelism and fragment-parallelism. T Arr utilizes the fol-
lowing time-parallelism: T Arr creates a partition scheme of
the time period T over multiple slaves once for all, so that it
is performed on all partitioned time sub-intervals in paral-
lel. F Arr utilizes the following fragment-parallelism: F Arr
creates a partition scheme of Gt over multiple slaves once
for all, so that it is performed on these fragments in parallel.
We first show how T Arr is executed, and we then intro-

duce F Arr.

4.2.1 Time­based Parallel Algorithm T Arr

We first distribute Gt to ns slaves in two steps: (1) Each
slave maintains a copy of Gt. The copy only contains the
node and edge sets of Gt instead of its edge-time and edge-
weight functions. (2) T Arr partitions the time period T
of functions into ns disjointed subintervals, and the edge-
time and edge-weight functions of the ith subinterval are
distributed to Gt in the ith slave. Note that the length of
each subinterval should be equal so that the distribution is
balanced.
Based on the partition, T Arr works as follows: (1) The

master Mc posts Q to each slave. (2) Each slave Mi then
invokes ICSP Arr to compute the partial function of the min-
imum Arrd(t) and sends the answer to Mc. (3) Once all the
slaves have sent their partial functions to Mc, the master
computes Arrd(t) of Gt as the union of all the partial func-
tions.
Note that the slave Mi contains all the nodes and edges of

Gt, and every edge e holds its ith partial time-function f i
e(t).

The main idea of ICSP Arr is to compute the shortest-paths
for every breakpoint of f i

e(t). Therefore, ICSP Arr outputs
O-points originated from the breakpoints of f i

e(t). In other
words, the partial function computed in Mi is originated
from f i

e(t). After unifying all the partial functions, we could
obtain the complete Arrd(t).
For T Arr, we have the following theorem.

Theorem 5. T Arr is parallel scalable for graph Gt tak-

ing time O( t(Q,Gt)
ns

+ns), where t(Q,Gt) is the running time
of ICSP Arr.

The proof can be found in the full version of this paper [1].

4.2.2 Fragment­based Parallel Algorithm F Arr

We first partition Gt into ns fragments and distribute
them to the slaves. To maximize parallelism, a partition
scheme should guarantee that, (1) each of ns slaves man-
ages a small fragment of approximately equal size, and (2)
a query can be evaluated locally at each fragment without
incurring inter-fragment communication. We propose such
a scheme.

In (1), a fragment does not only include a substructure of
Gt, but also includes the edge-functions (time and weight)
associated with the substructure. Thus, the balance should
consider both substructures and their edge-functions.

To achieve this goal, we construct a static graph Gs(Vs,
Es) from Gt(Vt, Et) as follows: Vs = Vt and Es = Et. Each
edge es ∈ Es has a weight of A(es) = k(et) + w(et), where
es = et for et ∈ Et. Here, k(et) and w(et) are the numbers
of the breakpoints of functions fe(t) and we(t), respectively.
Then, we partition Gt into balanced fragments as follows.

Balanced Fragments. Each slave Mi manages a fragment
Fi, which contains the subgraph Gi of Gt(Vt, Et) induced by
a set Vi of nodes, such that

∪
Vi = Vt (i ∈ [1, ns]) and the

size of Fi is bounded by c ·
∑

es∈Es
A(es)

ns
, for a small constant

c.
Intuitively, each balanced fragment Fi of Gt includes al-

most the same sized subgraph as well as the same number of
breakpoints. Based on this definition, we can use an existing
balanced graph partition strategy (e.g., [31]) to perform on
Gs and obtain the static Fi. Then, Fi is associated with edge
functions. Specifically, [31] uses multilevel label propagation
to iteratively coarsen a graph until the coarsened graph is
small enough, and then uses a high quality off-the-shelf par-
titioning algorithm to generate the final partitioning on the
coarsened graph.

To achieve (2), F Arr should be parallel scalable. Unfor-
tunately, we have a negative theorem for this goal.

Theorem 6. Any exact sequential algorithm for the IC-
SP query over continuous time-dependent graphs cannot have
a fragment-based parallel scalable version.

The proof can be found in the full version of this paper [1].
We cannot have a parallel scalable algorithm from an ex-

act algorithm. We however develop a parallel scalable algo-
rithm by resorting to heuristic techniques. Specifically, we
add more heuristics to ICSP Arr to make it parallel scalable.
We first show which steps of ICSP Arr should be parallelized.

In ICSP Arr, steps 5 and 6 take O(m + n logn) time by
running the Dijkstra-based algorithms, and other steps take
O(1) time when K are considered as constants. Thus, F Arr
parallelizes the most expensive steps 5 and 6 of ICSP Arr.
Based on the proof of Theorem 6, we know that there is no
parallel scalable algorithm for steps 5 or 6 of ICSP Arr.

We solve the problem by adding heuristics to steps 5 and
6. We first define some key concepts before giving the par-
allel scalable algorithm (F Arr).

For an edge e ∈ Gt, we define U(e) as the upper bound of
fe(t) and L(e) as the lower bound of fe(t). For a time-
dependent graph Gt = (Vt, Et, fe(t)), we also define the
static graphs Gu(Vu, Eu, Fu) as Vu = Vt, Eu = Et and
Fu(e) = U(e), and Gl(Vl, El, Fl) as Vl = Vt, El = Et and
Fl(e) = L(e). Intuitively, for an edge eu ∈ Gu, Fu(eu)
maintains the upper bound of the time-function of et ∈ Gt.
Similarly, for an edge el ∈ Gl, Fl(el) maintains the lower
bound of the time-function of et ∈ Gt.
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Figure 4: A partitioned graph Gu and its summary
graph Su.

We partition Gu (resp. Gl) to obtain balanced fragments
over slaves. For two fragments Fi and Fj (i ̸= j), we refer a
node u ∈ Fi to a border node of Fi if u has a neighbor v in
Fj . The edge between two border nodes is a crossing edge.
F Arr is performed over the partitioned Gu and Gl.
Figure 4 gives a graph Gu partitioned into two fragments

F1 and F2. Node a3 is a border node of F1, since a3 has a
neighbor b1 in F2. Edge (a3, b1) is a crossing edge from F1

and F2.

Algorithm 3: F Arr

Input: Gt, Q, master Mc, ns slaves M1,...,Mns

Output: {Arrd(t)} of d
1 /*executed at master Mc*/
2 Perform steps 1-4 of ICSP Arr;

3 L̂ST =Shortest Path(u, s, ti);

4 ÊAT =Shortest Path(v, d, fe(ti));
5 Perform steps 7-23 of ICSP Arr;

Now, we show the detailed steps of F Arr in Algorithm 2
which works as follows. At master Mc, F Arr performs all
the steps of ICSP Arr except for steps 5 and 6, which are
parallelized over the slaves. Either step 5 or 6 is parallelized
through the procedure Shortest Path that approximates the
true values of LST and EAT (lines 3 and 4). Based on the

approximations (L̂ST and ÊAT ), we perform ICSP Arr to
approximate Arrd(t). In the following, we first show how
Shortest Path is executed, after which we analyze the com-
plete process of F Arr.

Procedure Shortest Path. The main idea of Shortest Path
is as follows. Shortest Path parallelizes the Dijkstra-based
algorithm over the static graphs Gu and Gl instead of the
time-dependent graph Gt. Intuitively, Gu and Gl maintain
the upper and lower bounds of the travel time over Gt, and
thus Shortest Path returns the upper and lower bounds of
the true value returned by step 5 (or step 6) in ICSP Arr.
Shortest Path then uses the bounds to approximate the true
value. We prove that Shortest Path is parallel scalable.
Shortest Path inputs a query Qsp which consists of two n-

odes (x, y) of Gt and a starting time tx from x. Shortest Path
also inputs static graphs Gu and Gl. Shortest Path outputs
arrival time Arry at y. Shortest Path is executed over the
master Mc and ns slaves Mi (i ∈ [1, ns]). Algorithm 3 shows
the detailed steps of Shortest Path.
Over Mc, Shortest Path works as follows. (1) Mc posts

Qsp to each slave Mi (line 2). (2) After Mc receives answers
from every slave (line 3), Mc constructs two summary graphs

Algorithm 4: Shortest Path

Input: Qsp = (x, y, tx), partitioned Gu and Gl

Output: Arry
1 /*executed at master Mc*/
2 Post Qsp to each slave Mi;
3 if every slave Mi returns the answer then
4 Construct two summary graphs SGu and SGl based

on all the answers;
5 Over SGu (resp. SGl), compute the

shortest-distance SDu (resp. SDl) from x to y;
6 UP = tx + SDu, LB = tx + SDl;

7 return UP+LB
2

;

8 /*executed at each slave in parallel over Gu (resp.
Gl)*/

9 if Mi contains x then
10 Compute the shortest-distance SDb from x to each

border node b of Mi;
11 Send the set {(b, SDb)} to Mc;

12 else if Mi contains y then
13 Compute the shortest-distance SDb from y to each

border node b of Mi;
14 Send the set {(b, SDb)} to Mc;

15 else
16 Compute the shortest-distance SDa,b between each

pair of border nodes a and b of Mi;
17 Send the set {(a, b, SDa,b)} to Mc;

Su = (V1, E1,W1) and Sl = (V2, E2,W2) based on all the
answers (line 4). Note that x and y are nodes of Su (resp.
Sl). (3) Over Su (resp. Sl), Mc computes the shortest-
distance SDu (resp. SDl) from x to y (line 5). (4) Finally,
Mc calculates upper and lower bounds of Arry as UP =
tx + SDu, LB = tx + SDl and outputs the average UP+LB

2
to approximate Arry (lines 6 and 7).

Therefore, we know that graphs Su = (Vl, E1,W1) and
Sl = (V2, E2,W2) are important to Shortest Path. Below,
we formally define Su. Sl can be defined similarly as Su.

Su = (V1, E1,W1) is defined from the partitioned Gu as
follows: (a) The node set V1 consists of x, y and the border
nodes of Gu. (b) The edge set E1 consists of four types of
edge sets Ex, Ey, Ea and Eb, i.e., E1 = Ex ∪Ey ∪Ea ∪Eb.
(b1) For every edge ex = (x, ux) ∈ Ex, x and ux are in the
same fragment Fi of Gu, and ux is a border node of Fi. Its
weight W1(ex) is the shortest-distance from x to ux within
Fi. (b2) Ey and its weight function are defined similarly as
Ex. (b3) For every edge ea = (ua, va) ∈ Ea, ua and va are
border nodes of the same fragment Fj and neither x nor y
are in Fj . Its weight W1(ea) is the shortest-distance from
ua to va within Fi. (b4) For every edge eb ∈ Eb, eb is a
crossing edge ec ∈ Gu. Its weight W1(eb) is Fu(ec).

Simply speaking, the summary graph is constructed from
the partitioned graph, only maintaining the source node, the
destination node and the border nodes of each fragment.

For example, Figure 4(b) shows the summary graph Su of
the partitioned Gu in Figure 4(a). Su is constructed from
Gu as follows: x has edges to border nodes a3 and a4 of
F1 with edge weights 2 and 2; Su keeps the crossing edges
(a3, b1) and (a4, b2) of Gu; y also connects to the border
nodes b1 and b2 of F2. Note that Su does not contain nodes
a1 and a2, because they are not the mentioned nodes above.
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Subsequently, over ns slaves, Shortest Path computes the
node set V1, the edge set E1 and the edge-weight set W1 of
Su (resp. Sl) in parallel, which works as follows. (1) When
slave Mi contains x (line 9), we perform line 10 and obtain
Ex (line 11). (2) When slave Mi contains y (line 12), we
perform line 13 and obtain Ey (line 14). (3) When slave Mi

contains neither x nor y (line 15), we perform line 16 and
obtain Ea (line 17). After the three phases, we also obtain
Eb and can construct Su (resp. Sl) in the master.

Theorem 7. F Arr is parallel scalable (with running time

O( t(Q,Gt)
ns

+ ns)), where t(Q,Gt) is the running time of IC-
SP Arr.

The proof can be found in the full version of this paper [1].

5. PERFORMANCE EVALUATION
Specifically, we evaluate the scalability and parallel s-

calability of ICSP queries over continuous time-dependent
graphs. For scalability, we use one machine that has 2 Intel
Xeon E5345 CPUs, 32GB memory, and runs CentOS Linux
5.6. For parallel scalability, we use a cluster of 21 machines
in a high-speed kilomega network, where one machine is s-
elected as the master and the remaining 20 machines are
selected as slaves. Each slave has the same configuration as
the one in the scalability. All programs are coded in Java.

5.1 Experimental Settings
Datasets. We employ the following real time-dependent
road networks.

CDU: We use a real taxi trajectory dataset collected by Didi
Chuxing [3] in Chengdu, China, which is published through
its GAIA initiative [4]. Each taxi trajectory of this dataset
is represented by a sequence of time-stamped points, each
of which contains the information of latitude, longitude and
altitude. The taxi trajectories were recorded by different
taxi GPS loggers, and have a variety of sampling rates, i.e.,
every 2-4 seconds per point. The dataset is collected in a
period of over two months (from October 2016 to Novermber
2016).
To map the trajectories to road network, we use the latest

city boundaries [2] and extract its road network out of the
national road network of China from Geofabrik via Osmcon-
vert [5]. The road network is represented as an undirected
graph with 214,440 nodes and 466,330 edges. For each edge
e of the road network, we obtain its time-function fe(t) from
the real time-stamped points associated with it.

W-US: This network describes a Western USA road network,
and it includes 6,262,104 nodes and 15,248,146 edges. A
node represents an intersection or a road endpoint, and an
edge represents a road segment.
We generate time-dependent graphs using W-US dataset

as follows. We first generate the travel time according to
the road length. The travel time for an edge (u, v) is greater
if the road represented by (u, v) is longer. To simulate a
real traffic case, we compute the betweenness centrality for
every edge in Gt and sort all the edges in descending order
of betweenness. The time domain is set as T = [0, 2, 000],
i.e., the departure time t can be selected from [0, 2,000]
for any node in a graph. Here, 2,000 means 2,000 time u-
nits. For every we(t), we split the time domain T into k

Table 1: Approximation ratios of SICSP
Distance (ds) 10 15 20 25 30
Approximation ratio 1.2 1.5 2.1 2.8 3.5

Time interval (ls) 400 600 800 1,000 1,200
Approximation ratio 1.3 1.7 2.1 2.8 3.2

No. of segments of fe(t) (nf ) 5 10 15 20 25
Approximation ratio 1.5 1.8 2.1 2.8 3.3

No. of segments of we(t) (nw) 5 10 15 20 25
Approximation ratio 1.6 1.8 2.1 2.5 2.5

subintervals and assign a constant value randomly for ev-
ery subinterval and then it is a piecewise constant func-
tion. For every fe(t), the time domain T is also random-
ly divided into k subintervals ([t0, t1], [t1, t2], · · · , [tk−1, tk]),
where t0 and tk are the start and end of the time domain
T , respectively. The value of fe(t0) is first generated as
a random number from [0, f̄ ], where f̄ is a number to re-
strict the maximum value of fe(t). Within each subin-
terval [tx−1, tx] (1 ≤ x ≤ k), fe(t) is a linear function
fx
e (t), fx

e (tx−1) = fx−1
e (tx−1) and fx

e (tx) is generated as
a random number from [max(0, fx

e (tx−1) − △tx), f̄ ], where
△tx = tx−tx−1. Then, the time function fe(t) is guaranteed
to be non-negative and FIFO.

Algorithms. We evaluate the proposed algorithms for IC-
SP queries over time-dependent graphs. Specifically, we e-
valuate the sequential algorithm (SICSP) and compare it
with the forward label setting (FLS) algorithm in [30] We e-
valuate the time-parallelism based algorithm (PICSP-T) and
the fragment-parallelism based algorithm (PICSP-F).

Metrics. We are interested in the following aspects for eval-
uating the performances of SICSP, PICSP-T and PICSP-F:
(1) the impact of the number of nodes (|Vt|); (2) the impact
of the number of edges (|Et|); (3) the impact of distances
(ds) between the source and destination; (4) the impact of
the length (ls) of the starting time interval [ts1, ts2] (i.e.,
ls = ts2 − ts1); and (5) the impact of the average numbers
(nf and nw) of segments of fe(t) and we(t). For PICSP-T
and PICSP-F, we also study the impact of the number of
slaves (ns). The parameters requiring evaluation are: (1)
querying time; (2) memory overhead; and (3) the approxi-
mation ratio of the heuristic method (i.e., SICSP, PICSP-T
and PICSP-F).

The approximation ratio is computed as follows. FLS re-
turns the exact function Arrd(t), and a heuristic method
returns an approximation function Arr∗d(t). We random-
ly select w time points ti (1 ≤ i ≤ w) from the starting
time interval [ts1, ts2] and we then obtain w function values
for Arrd(t) (resp. Arr∗d(t)): Arrd(ti) for 1 ≤ i ≤ w (resp.
Arr∗d(ti) for 1 ≤ i ≤ w). Based on the function values, we

compute the approximation ratio as (
∑w

i=1

Arr∗d(ti)

Arrd(ti)
)/w. We

set w = 40 in the following experiments.

Experimental Results.
Exp-1: Approximation Ratio of SICSP. We first eval-
uate the approximation ratios of SICSP on the CDU graph
by varying ds from 10 to 30, ls from 400 to 1,200, and nf

and nw from 5 to 25. Table 1 reports the results from which
we find the following. (1) The approximation ratios increase
when ds and nf increase, and the largest approximation ra-
tios are 3.5 and 3.3. (2) In contrast, the approximation
ratios do not increase strictly as ls and nw grow, and the
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Figure 5: Impact of distance between source and desti-

nation.

approximation ratios are both around 3. (3) The findings in
(1) and (2) show that SICSP returns very small (constant)
approximation ratios in practice for the real traffics, despite
that the algorithm is heuristic.

Exp-2: Scalability of SICSP. This set of experiments
evaluate the scalability of SICSP, compared to FLS.

Varying ds. We vary ds from 10 to 30 on the CDU graph.
In this test, we set ls = 800, nf = 15 and nw = 15. To
generate the distance of l , we fix a source and perform a
BFS search in l hops to obtain a set of destinations. As
shown in Figure 5, (1) SICSP is very efficient (e.g., 3.3s on
average) and consumes little memory overhead (e.g., 6MB
on average). In contrast, FLS takes 500s, and even worse
yet, consumes nearly 10GB of memory overhead. (2) SICSP
consumes more time and memory overhead as ds increases,
since a longer distance needs more computations in SICSP.
FLS is not affected by changes in ds because FLS computes
the arrival and weight functions from s to all other nodes.
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Figure 6: Impact of the length of time interval [ts1, ts2].

Varying ls. We vary ls from 400 to 1,200 on the CDU graph.
In this test, we set ds = 20, nf = 15 and nw = 15. As shown
in Figure 6, (1) SICSP is 200 times faster than FLS and
consumes 1/1,000 the memory overhead of FLS. (2) Both
the querying time and memory overhead of SICSP and FLS
are not affected, since both fe(t) and we(t) do not change.

Varying nf and nw. We vary both nf and nw from 5 to
25 on the CDU graph. In this test, we set ds = 20 and
ls = 800. As shown in Figure 7, (1) the querying time and
memory overhead of SICSP increase along with the number
of segments (i.e., nf and nw). This is because SICSP runs
more Dijkstra-based algorithms when nf and nw increase.
(2) ICSP-T increases more rapidly than ICSP-W, since the
change in nf has a bigger impact on Arrd(t) than the change
in nw.
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Figure 8: Impact of node size.
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Figure 9: Impact of edge size.

Varying |Vt|. We vary |Vt| from 1 million to 5 million, where
graphs with 1 million to 5 million are generated from the W-
US dataset. In this test, we set ds = 20, ls = 800, nf = 15
and nw = 15. As shown in Figure 8, (1) the querying time
and memory overhead of SICSP are always less than those of
FLS. SICSP is nearly 300 times faster than FLS. The memory
overhead of SICSP is nearly 5,000 times less than that of
FLS. (2) The querying time and memory overhead of SICSP
increase marginally when the number of nodes increases.

Varying |Et|. We vary |Et| from 2M to 32M by fixing |Vt| =1M
on the W-US dataset. In this test, we set ds = 20, ls = 800,
nf = 15 and nw = 15. As shown in Figure 9, (1) the query-
ing time and memory overhead of SICSP increase slightly
and are 5.8s and 5.3MB at the graph with 8 million edges.
(2) The querying time and memory overhead of FLS grow
exponentially, and are beyond 1,000s and 10GB at the graph
with 8 million edges.

The results in Exp-1 and Exp-2 justify that SICSP is very
efficient and lightweight, and scales well with all metrics.
Furthermore, ICSP has very small approximation ratios, de-
spite that SICSP is a heuristic algorithm.

Exp-3: Scalability of PICSP-T and PICSP-F. This set of
experiments evaluates the scalability of parallel algorithm-
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Figure 15: Impact of slave

size on the W-US dataset.

s, PICSP-T and PICSP-F. In particular, we only report the
querying time because neither PICSP-T nor PICSP-F incurs
inter-fragment communications.

Varying ds and ls. We vary ds from 10 to 30 and ls from 400
to 1,200 on the CDU graph. In this setting, we set nf = 15
and nw = 15, and the number of slaves is set as ns = 12.
As shown in Figures 10 and 11, (1) the querying time of
PICSP-F is always less than that of PICSP-T, when ds and
ls take in all values. This is because PICSP-F only computes
shortest-distances between the border nodes of slaves, while
PICSP-T still calculates shortest-distance for every pair of
nodes of Gt. (2) The querying times of PICSP-F and PICSP-
T increase when ds increases, while the querying time does
not change as ls grows.

Varying |Vt| and |Et|. We vary |Vt| from 1M to 5M and |Et|
from 2M to 32M on the W-US dataset. In this setting, we
set ds = 20, ls = 800, nf = 15, nw = 15, and the number
of slaves is set as ns = 12. As shown in Figures 12 and 13,
(1) the querying time of both PICSP-T and PICSP-F scales
well with |Vt| and |Et|, but PICSP-F increases more smoothly
than PICSP-T. (2) On |Vt|, PICSP-T and PICSP-F outperfor-
m SICSP by 7.3 times and 22 times on average, respectively,
when 12 slaves are used to accelerate the process.

Varying number of slaves. We vary the number of slaves from
4 to 20 on the CDU and W-US datasets. In this setting, we

set ds = 20, ls = 800, nf = 15, nw = 15. As shown in
Figure 14 on the CDU dataset, (1) PICSP-T and PICSP-
F scale well with the increase of slaves: for PICSP-T, the
improvement is 4.3 (resp. 3.9) times when the number of
slaves increases from 4 to 20. (2) As shown in Figure 15 on
the W-US dataset, (1) PICSP-T and PICSP-F also scale well
when the number of slaves increases: for PICSP-T, the im-
provement is 4.3 (resp. 4.6) times when the number of slaves
increases from 4 to 20. The two results verify Theorems 5
and 7.

Table 2: Approximation ratios of PICSP-F
Distance (ds) 10 15 20 25 30
Approximation ratio 1.7 2.6 3.5 4.8 5.6

Time interval (ls) 400 600 800 1,000 1,200
Approximation ratio 2.1 2.8 3.5 3.9 5.3

No. of segments of fe(t) (nf ) 5 10 15 20 25
Approximation ratio 1.9 2.5 3.5 4.2 5.5

No. of segments of we(t) (nw) 5 10 15 20 25
Approximation ratio 2.1 2.8 3.5 4.1 4.9

Exp-4: Approximation Ratio of PICSP-F. Finally, we
evaluate the approximation ratios of PICSP-F on the CDU
graph by varying ds from 10 to 30, ls from 400 to 1,200,
nf and nw from 5 to 25, since we add ICSP heuristics to
make PICSP-F parallel scalable. Table 2 reports the results
from which we find the following. (1) The approximation
ratios increase when ds, ls, nf and nw increase, and the av-
erage approximation ratios of these parameters are all 3.5.
(2) The approximation ratios of PICSP-F are 1.3 times as
those of SICSP on average, which explains why it is worth-
while to add heuristics to make PICSP-F parallel scalable.
The results in Exp-3 show that PICSP-F always outperforms
PICSP-T. Therefore, we only need PICSP-F in practice.

The results in Exp-3 and Exp-4 justify the parallel scala-
bility of PICSP-F and PICSP-T.

6. CONCLUSION
We have proposed a dynamic CSP query by extending

the traditional static constrained shortest path to the time-
dependent graphs. We have also studied important issues in
connection with the dynamic CSP query, from complexity
to algorithms to applications. The novelty of this work lies
in its adaption of static algorithms to solving new problems,
heuristic techniques (plugging structural properties of time
and weight functions into the shortest path algorithm), and
parallel scalable algorithms to cope with big time-dependent
graphs. Our experimental study has verified the feasibility
of our proposed algorithms in real-life graphs.
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