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ABSTRACT
Recently there emerge many distributed algorithms that aim
at solving subgraph matching at scale. Existing algorithm-
level comparisons failed to provide a systematic view of dis-
tributed subgraph matching mainly due to the intertwining
of strategy and optimization. In this paper, we identify four
strategies and three general-purpose optimizations from rep-
resentative state-of-the-art algorithms. We implement the
four strategies with the optimizations based on the com-
mon Timely dataflow system for systematic strategy-level
comparison. Our implementation covers all representative
algorithms. We conduct extensive experiments for both un-
labelled matching and labelled matching to analyze the per-
formance of distributed subgraph matching under various
settings, which is finally summarized as a practical guide.

PVLDB Reference Format:
Longbin Lai, Zhu Qing, Zhengyi Yang, Xin Jin, Zhengmin Lai,
Ran Wang, Kongzhang Hao, Xuemin Lin, Lu Qin, Wenjie Zhang,
Ying Zhang, Zhengping Qian and Jingren Zhou. Distributed Sub-
graph Matching on Timely Dataflow. PVLDB, 12(10): 1099-
1112, 2019.
DOI: https://doi.org/10.14778/3339490.3339494

1. INTRODUCTION
Given a query graph Q and a data graph G, subgraph

matching is defined as finding all subgraph instances of G
that are isomorphic to Q. In this paper, we assume that the
query graph and data graph are undirected 1 simple graphs,
and may be unlabelled or labelled. We mainly focus on unla-
belled case given that most distributed algorithms are devel-
oped under this setting. We also demonstrate some results
of labelled matching due to its practical usefulness. Sub-
graph matching is one of the most fundamental operations
in graph analysis, and has been used in a wide spectrum

1Our implementation can seamlessly handle directed case.
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of applications [15, 25, 35, 42, 50]. As subgraph match-
ing problem is in general computationally intractable [44],
and data graph nowadays is growing beyond the capacity
of one single machine, people are seeking efficient and scal-
able algorithms in the distributed context. Unless otherwise
specified, in this paper we consider a simple hash partition
of the graph data, that is the graph is randomly partitioned
by the vertices, and the neighbors will be placed in the same
partition.

By treating query vertices as attributes and the matched
results as relational tables, we can express subgraph match-
ing via natural joins. The problem is accordingly trans-
formed into seeking optimal join plan, where the optimiza-
tion goal is typically to minimize the communication cost.

State-of-the-arts In order to solve subgraph matching us-
ing join, existing works studied several join strategies, which
can be categorized into three classes, namely “Binary-join-
based subgraph-growing algorithms” (BinJoin), “Worst-
case optimal vertex-growing algorithms” (WOptJoin) and
“Shares of Hypercube” (ShrCube). We also include Oth-
ers for algorithms that do not clearly belong to the above
categories.

BinJoin. The strategy computes subgraph matching by
solving a series of binary joins. It first decomposes the orig-
inal query graph into a set of join units whose matches can
serve the base relations of the join. The strategy then joins
the base relations based on a predefined join order. The
BinJoin algorithms differ in the use of join unit and join or-
der. Typical choices of join unit are star (a tree of depth 1) in
StarJoin [48], TwinTwig (an edge or intersection of two edges)
in TwinTwigJoin [32], and clique (a graph whose vertices are
mutually connected) in CliqueJoin [34]. Most existing al-
gorithms adopt the easier-solving left-deep join order [29]
except CliqueJoin, which explores the optimality-guaranteed
bushy join [29].

WOptJoin. Given {v0, v1, · · · , vn} as the query vertices,
WOptJoin strategy first computes all matches of {v0} that
can present in the results, then matches of {v0, v1}, and so
forth until constructing the results. Ngo et al. proposed the
worst-case optimal join algorithm GenericJoin [39], based
on which Ammar et al. implemented BiGJoin in Timely
dataflow system [38] and showed its worst-case optimality
[14]. In this paper, we also find out that the BinJoin algo-
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rithm CliqueJoin (with “overlapped decomposition” 2) is also
a variant of GenericJoin, and is hence worst-case optimal.

ShrCube. ShrCube strategy treats the computation of
the query with n vertices as an n-dimensional hypercube.
It partitions the hypercube across w workers in the clus-
ter, and then each worker can compute its own share locally
with no need of exchanging data. As a result, it typically
renders much less communication cost than that of BinJoin
and WOptJoin algorithms. MultiwayJoin adopts the idea of
ShrCube for subgraph matching. In order to properly par-
tition the computation without missing results, MultiwayJoin
needs to duplicate each edge in multiple workers. As a re-
sult, MultiwayJoin can almost carry the whole graph in each
worker for certain queries [32, 14] and thus scale out poorly.

Others. Shao et al. proposed PSgL [47] that processes
subgraph matching via breadth-first traversal. Starting from
an initial query vertex, PSgL iteratively expands the partial
results by merging the matches of “gray” (visited yet not
done) vertex’s neighbors. It has been pointed out in [32] that
PSgL is actually a variant of StarJoin. Very recently, Qiao
et al. proposed CrystalJoin [41] that aims at resolving the
“output crisis” by compressing the (intermediate) results.
The idea is to first compute the matches of the vertex cover
of the query graph, then the remaining vertices’ matches can
be compressed as intersection of the vertex cover’s neighbors
to avoid the costly output of cartesian product.

Optimizations. Apart from join strategies, existing algo-
rithms also explored a variety of optimizations, some of
which are query- or algorithm-specific, while we spotlight
three general-purpose optimizations, Batching, TrIndexing
and Compression. Batching aims to divide the whole com-
putation into sub-tasks that can be evaluated independently
in order to save resource (memory) allocation. TrIndexing
precomputes and indices the triangles (3-cycles) of the graph
to facilitate pruning. Compression attempts to maintain the
(intermediate) results in a compressed form to reduce main-
taining and communication cost.

Motivations In this paper, we survey seven representa-
tive algorithms to solve distributed subgraph matching:
StarJoin [48], MultiwayJoin [13], PSgL [47], TwinTwigJoin
[32], CliqueJoin [34], CrystalJoin [41] and BiGJoin [14]. While
all these algorithms embody some good merits in the-
ory, existing algorithm-level comparisons failed to pro-
vide a systematic view of distributed subgraph matching
due to several reasons. Firstly, the prior experiments did
not take into consideration the differences of languages
and the cost of the systems on which each implementa-
tion is based (Table 1). Secondly, some implementations
hardcode query-specific optimizations for each query, which
makes it hard to judge whether the observed performance
is from the algorithmic advancement or hardcoded opti-
mization. Thirdly, all BinJoin and WOptJoin algorithms
(more precisely, their implementations) intertwined join
strategy with some optimizations of Batching, TrIndexing
and Compression. We show in Table 1 how each optimiza-
tion has been applied in current implementation. For exam-
ple, CliqueJoin only adopted TrIndexing and some query-
specific Compression, while BiGJoin considered Batching in
general, but TrIndexing only for one query (Compression
was discussed in paper, but not implemented). People nat-
urally wonder that “A strategy may perform better than B
strategy if it applies C optimization”, but unfortunately none

2Decompose the query graph into join units that are allowed
to overlap edges

of existing implementation covers that combination. Last
but not least, there misses an important benchmarking of
the FullRep strategy, that is to maintain the whole graph
in each partition and parallelize embarrassingly [27].

Table 1 summarizes the surveyed algorithms regarding the
category of strategy, the optimality guarantee, and the sta-
tus of current implementations including the based platform
and how the three optimizations are adopted.

Our Contributions. To address the above issues, we
target a systematic, strategy-level benchmarking of dis-
tributed subgraph matching in this paper. To achieve this
goal, we implement all strategies, together with the three
general-purpose optimizations for subgraph matching based
on the Timely dataflow system [38]. Note that our imple-
mentation covers all seven representative algorithms. Here,
we use Timely as the base system as it incurs less cost [37]
than other popular systems like Giraph [5], Spark [52] and
GraphLab [36], so that the system’s impact can be reduced
to the minimum.

We implement the benchmarking platform using our best
effort based on the papers of each algorithm and email com-
munications with the authors. Our implementation is (1)
generic to handle arbitrary query, and does not include
any hardcoded optimizations; (2) flexible that can config-
ure Batching, TrIndexing and Compression optimizations
in any combination for BinJoin and WOptJoin; and (3)
efficient that are comparable to and sometimes even faster
than the original hardcoded implementation. Note that the
three general-purpose optimizations are mainly used to re-
duce communication cost, and is not useful to the ShrCube
and FullRep strategies. Aware that their performance
heavily depends on the local algorithm, we implement and
compare the state-of-the-art local subgraph matching algo-
rithms proposed in [12, 31] for unlabelled matching and
[15] for labelled matching, and adopt the algorithm of best-
possible performance. For ShrCube, we also refer to [19] to
implement “Hypercube Optimization” for better hypercube
sharing. We make the following contributions in the paper.

(1) A benchmarking platform based on Timely
dataflow system for distributed subgraph matching.
We implement four distributed subgraph matching strate-
gies (and the general optimizations) that covers seven state-
of-the-art algorithms: StarJoin [48], MultiwayJoin [13], PSgL
[47], TwinTwigJoin [32], CliqueJoin [34], CrystalJoin [41] and
BiGJoin [14]. Our implementation is generic to handle ar-
bitrary queries, including the labelled and directed queries,
and thus can guide practical use.

(2) Three general-purpose optimizations - Batching,
TrIndexing and Compression. We investigate the lit-
erature on the optimization strategies, and spotlight the
three general-purpose optimizations. We propose heuris-
tics to incorporate the three optimizations into BinJoin and
WOptJoin strategies, with no need of query-specific adjust-
ments from human experts. The three optimizations can be
flexibly configured in any combination.

(3) In-depth experimental studies. In order to exten-
sively evaluate the performance of each strategy and the
effectiveness of the optimizations, we use data graphs of dif-
ferent sizes and densities, including sparse road network,
dense ego network, and web-scale graph that is larger than
each machine’s configured memory. We select query graphs
of various characteristics that are either from existing works
or suitable for benchmarking purpose. In addition to run-
ning time, we measure the communication cost, memory
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Table 1: Summarization of the surveyed algorithms.

Algorithm Category Worst-case Optimality Platform Optimizations

StarJoin [48] BinJoin No Trinity [46] None
MultiwayJoin [13] ShrCube N/A Hadoop [32], Myria [19] N/A

PSgL [47] Others No Giraph [5] None
TwinTwigJoin [32] BinJoin No Hadoop Compression [33]
CliqueJoin [34] BinJoin Yes (Section 3.5) Hadoop TrIndexing, some Compression

CrystalJoin [41] Others N/A Hadoop TrIndexing, Compression
BiGJoin [14] WOptJoin Yes [14] Timely Dataflow [38] Batching, specific TrIndexing

usage and other metrics to help reason the performance.

(4) A practical guide of distributed subgraph match-
ing. Through empirical analysis covering the perspectives
of join strategies, optimizations and join plans, we propose a
practical guide for distributed subgraph matching. We also
inspire interesting future work.

2. PRELIMINARIES

2.1 Problem Definition
Graph Notations. A graph g is defined as a 3-tuple,
namely g = (Vg, Eg, Lg), where Vg is the vertex set and
Eg ⊆ Vg × Vg is the edge set of g, and Lg is a label function
that maps each vertex µ ∈ Vg and/or each edge e ∈ Eg to
a label. Note that for unlabelled graph, Lg simply maps all
vertices and edges to ∅. For a vertex µ ∈ Vg, denote Ng(µ)
as the set of neighbors, dg(µ) = |Ng(µ)| as the degree of µ,

dg =
2|Eg|
|Vg| and Dg = maxµ∈V (g) dg(µ) as the average and

maximum degree, respectively. A subgraph g′ of g, denoted
g′ ⊆ g, is a graph that satisfies Vg′ ⊆ Vg and Eg′ ⊆ Eg.

Given V ′ ⊆ Vg, we define induced subgraph g(V ′) as the
subgraph induced by V ′, that is g(V ′) = (V ′, E(V ′), Lg),
where E(V ′) = {e = (µ, µ′) | e ∈ Eg, µ ∈ V ′ ∧ µ′ ∈ V ′}.
We say V ′ ⊆ Vg is a vertex cover of g, if ∀ e = (µ, µ′) ∈
Eg, µ ∈ V ′ or µ′ ∈ V ′. A minimum vertex cover V cg is a
vertex cover of g that contains minimum number of vertices.
A connected vertex cover is a vertex cover whose induced
subgraph is connected, among which a minimum connected
vertex cover is denoted as V ccg .

Data and Query Graph. We denote the data graph as
G, and let N = |VG|, M = |EG|. Denote a data vertex of
id i as ui where 1 ≤ i ≤ N . Note that the data vertex has
been reordered such that if dG(u) < dG(u′), then id(u) <
id(u′). We denote the query graph as Q, and let n = |VQ|,
m = |EQ|, and VQ = {v1, v2, · · · , vn}.
Subgraph Matching. Given a data graph G and a query
graph Q, we define subgraph isomorphism:

Definition 1. (Subgraph Isomorphism.) Subgraph iso-
morphism is defined as a bijective mapping f : VQ → VG
such that: (1) ∀v ∈ VQ, LQ(v) = LG(f(v)); (2) ∀(v, v′) ∈
EQ, (f(v), f(v′)) ∈ EG, and LQ((v, v′)) = LG((f(v), f(v′))).
A subgraph isomorphism is called a Match in this paper.

With the query vertices listed as {v1, v2, . . . , vn}, we can
simply represent a match f as {uk1 , uk2 , . . . , ukn}, where
f(vi) = uki for 1 ≤ i ≤ n. The Subgraph Matching problem
aims at finding all matches of Q in G. Denote RG(Q), or
R(Q) when the context is clear, as the result set of Q in
G. As prior works [32, 34, 47], we apply symmetry break-
ing for unlabelled matching to avoid duplicate enumeration

caused by automorphism. Specifically, we first assign par-
tial order OQ to the query graph according to [24]. Here,
OQ ⊆ VQ × VQ, and (vi, vj) ∈ OQ means vi < vj . In un-
labelled matching, a match f must satisfy the order con-
straint : ∀(v, v′) ∈ OQ, it holds f(v) < f(v′). Note that we
do not consider order constraint in labelled matching.

Example 1. In Figure 1, we present a query graph Q and
a data graph G. For unlabelled matching, we give the partial
order OQ under the query graph. There are three matches:
{u1, u2, u6, u5}, {u2, u5, u3, u6} and {u4, u3, u6, u5}. It is
easy to check that these matches satisfy the order con-
straint. Without the order constraint, there are actually
four automorphic3 matches corresponding to each above
match [13]. For labelled matching, we use different fillings
to represent the labels. There are two matches accordingly
- {u1, u2, u6, u5} and {u4, u3, u6, u5}.

v1

v2 v3
OQ = {(v1, v3), (v2, v4)}

u1

u3

u4
u5

u6

v4

u2

Figure 1: Query Graph Q (Left) and Data Graph G (Right).

By treating the query vertices as attributes, data edges
and matched results as relational tables, we can write sub-
graph matching query as a multiway join of the edge rela-
tions. For example, regardless of label and order constraints,
the query of Example 1 can be written as the following join

R(Q) = E(v1, v2) 1 E(v2, v3)

1 E(v3, v4) 1 E(v1, v4) 1 E(v2, v4).
(1)

This motivates researchers to leverage join operation for
large-scale subgraph matching, given that join can be easily
distributed, and it is natively supported in many distributed
data engines like Spark [52] and Flink [16].

2.2 Timely Dataflow System
Timely is a distributed data-parallel dataflow system [38].

The minimum processing unit of Timely is a worker, which
is simply a thread of execution, and one physical machine
can schedule multiple workers. Timely follows the shared-
nothing dataflow computation model [21] that abstracts the
computation as a dataflow graph. In the dataflow graph,
the vertex (a.k.a. operator) defines the computing logics
and the edges in between the operators represent the data
flow. One operator can accept multiple input streams, feed
them to the computing, and produce (typically) one output
stream. After the dataflow graph for certain computing task

3Automorphism is an isomorphism from one graph to itself.
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is defined, it is distributed to each worker in the cluster, and
further translated into a physical execution plan. Based on
the physical plan, each worker can accordingly process the
task in parallel while accepting a portion of the input.

3. ALGORITHM SURVEY
We survey the distributed subgraph matching algorithms

following the categories of BinJoin, WOptJoin, ShrCube,
and Others. We also show that CliqueJoin is a variant of
GenericJoin [39], and is thus worst-case optimal.

3.1 BinJoin
BinJoin processes subgraph matching by solving a series

of binary joins. To improve the performance of BinJoin,
people devoted their efforts into: (1) using more complex
base relations other than edge; (2) devising better join plan
P . The base relations B[q] represent the matches of a set
of sub-structures [q] of the query graph Q. Each p ∈ [q] is
called a join unit, and it must satisfy VQ =

⋃
p∈[q] Vp and

EQ =
⋃
p∈[q]Ep. With the data graph partitioned across

the cluster, [34] constrains the join unit to be the structure
whose results can be independently computed within each
partition (i.e. embarrassingly parallel [27]). It is not hard
to see that when each vertex has full access to the neighbors
in the partition, we can compute the matches of a k-star (a
star of k leaves) rooted on the vertex u by enumerating all
k-combinations within NG(u). Therefore, star is a qualified
and indeed widely used join unit.

Given the base relations, the join plan P determines an
order of processing binary joins. A join plan is left-deep4 if
there is at least a base relation involved in each join, other-
wise it is bushy.

StarJoin. As the name suggests, StarJoin uses star as the
join unit, and it follows the left-deep join order. To decom-
pose the query graph, it first locates the vertex cover of the
query graph, and each vertex in the cover and its unused
neighbors naturally form a star [48]. A StarJoin plan for
Equation 1 is

(J1) R(Q) = Star(v2; {v1, v3, v4}) 1 Star(v4; {v2, v3}),

where Star(r;L) denotes a Star relation (the matches of the
star) with r as the root, and L as the set of leaves.

TwinTwigJoin. Enumerating a k-star on a vertex of de-
gree d will render O(dk) cost. We refer star explosion to the
case while enumerating stars on a large-degree vertex. Lai
et al. proposed TwinTwigJoin [32] to address the issue of
StarJoin by forcing the join plan to use TwinTwig (a star of
at most two edges) instead of a general star as the join unit.
Intuitively, this would help ameliorate the star explosion by
constraining the cost of each join unit from dk of arbitrary
k to at most d2. TwinTwigJoin follows StarJoin to use left-
deep join order. The authors proved that given any general
StarJoin plan in the left-deep join order, we can rewrite it as
an alternative TwinTwigJoin plan that draws no more cost
(evaluated using random graph model [22]) than the original
StarJoin [32]. A TwinTwigJoin plan for Equation 1 is

(J1) R1(v1, v2, v3, v4) =

TwinTwig(v1; {v2, v4}) 1 TwinTwig(v2; {v3, v4});

(J2) R(Q) = R1(v1, v2, v3, v4) 1 TwinTwig(v3; {v4}),

(2)

4More precisely it is deep, and can further be left-deep and
right-deep. In this paper, we assume that it is left-deep
following the prior work [32].

where TwinTwig(r;L) denotes a TwinTwig relation with r as
the root, and L as the leaves.

CliqueJoin. TwinTwigJoin hampers star explosion to some
extent, but still suffers from the problems of long execu-
tion (Ω(m

2
) rounds) and suboptimal left-deep join plan.

CliqueJoin resolves the issues by extending StarJoin in two
aspects. Firstly, CliqueJoin applies the “triangle parti-
tion” strategy (Section 4.2), which enables CliqueJoin to use
clique, in addition to star, as the join unit. The use of
clique can greatly shorten the execution especially when the
query is dense, although it still degenerates to StarJoin when
the query contains no clique subgraph. Secondly, CliqueJoin
exploits the bushy join plan to approach optimality. A
CliqueJoin plan for Equation 1 is:

(J1) R(Q) = Clique({v1, v2, v4}) 1 Clique({v2, v3, v4}),
(3)

where Clique(V ) denotes a Clique relation of V .

Implementation Details. We implement the BinJoin
strategy based on the join framework proposed in [34] to
cover StarJoin, TwinTwigJoin and CliqueJoin.

We use power-law random graph (PR) model [20] to es-
timate the cost as [34], and implement the dynamic pro-
gramming algorithm [34] to compute the cost-optimal join
plan. Once the join plan is computed, we translate the plan
into Timely dataflow that processes each binary join using
a Join operator. We implement the Join operator following
Timely’s official “pipeline” HashJoin example5. We modify
it into a “batching-style” join that is analogous to a MapRe-
duce process - the mappers (senders) shuffle the data based
on the join key, while the reducers (receivers) maintain the
received key-value pairs in a hash table for join processing
(until mappers complete). The reasons that we adopt the
“batching-style” join are: (1) buffering all inputs before join
can leverage the partial order of the query graph, where bi-
nary search can be applied to improve the performance; (2)
it replays the original implementation in Hadoop; and (3) it
favors the Batching optimization (Section 4.1).

3.2 WOptJoin
WOptJoin strategy processes subgraph matching by

matching vertices in a predefined order. Given the query
graph Q and VQ = {v1, v2, · · · , vn} as the matching order,
the algorithm starts from an empty set, and computes the
matches of the subset {v1, · · · , vi} in the ith rounds. De-
note the partial results after the ith (i < n) round as Ri,
and p = {uk1 , uk2 , · · · , uki} ∈ Ri is one of the tuples. In

the i + 1th round, the algorithm expands the results by
matching vi+1 with uki+1 for p iff. ∀1≤j≤i(vj , vi+1) ∈ EQ,
(ukj , uki+1) ∈ EG. It is immediate that the candidate
matches of vi+1, denoted C(vi+1), can be obtained by in-
tersecting the relevant neighbors of the matched vertices as

C(vi+1) =
⋂

∀1≤j≤i∧(vj ,vi+1)∈EQ

NG(ukj ). (4)

BiGJoin. BiGJoin adopts the WOptJoin strategy in
Timely dataflow system. The main challenge is to imple-
ment the intersection efficiently using Timely dataflow. For
that purpose, the authors designed the following three op-
erators: (1) Count: Checking the number of neighbors of
each ukj in Equation 4 and recording the worker that stores

5https://github.com/TimelyDataflow/
timely-dataflow/blob/master/examples/hashjoin.rs
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the one with the smallest neighbor set; (2) Propose: At-
taching the smallest neighbor set to p as (p;C(vi+1)); (3)
Intersect: Sending (p;C(vi+1)) to the worker that main-
tains each ukj and update C(vi+1) = C(vi+1) ∩ NG(ukj ).
After intersection, we will expand p by pushing into p every
vertex of C(vi+1).

Implementation Details. We directly use the authors’
implementation [6], but slightly modify the codes to use the
common graph data structure. We do not consider the dy-
namic version of BiGJoin in this paper, as the other strategies
currently only support static context. The matching order is
determined using a greedy heuristic that starts with the ver-
tex of the largest degree, and consequently selects the next
vertex that connects with most already-selected vertices (id
as tie breaker).

3.3 ShrCube
ShrCube strategy treats the join as a hypercube of n (n is

the number of attributes) dimension. It attempts to divide
the hypercube evenly across the workers in the cluster, so
that each worker can compute its own share without data
communication.

MultiwayJoin. MultiwayJoin applies the ShrCube strat-
egy to solve subgraph matching in one single round. Con-
sider w workers in the cluster, a query graph Q with
VQ = {v1, v2, . . . , vn} vertices and EQ = {e1, e2, . . . , em},
where ei = (vi1 , vi2). Regarding each query vertex vi, as-
sign a positive integer as bucket number bi that satisfies∏n
i=1 bi = w. The algorithm then divides the candidate

data vertices for vi evenly into bi parts via a hash function
h : u 7→ zi, where u ∈ VG, 1 ≤ zi ≤ bi. This accordingly
divides the whole computation into w shares, each of which
can be indiced via an n-ary tuple (z1, z2, · · · , zn), and is as-
signed to one worker. Afterwards, regarding each query edge
ei = (vi1 , vi2), MultiwayJoin maps each data edge (u, u′) to
n-ary tuples as (z1, · · · , zi1 = h(u), · · · , zi2 = h(u′), . . . , zn),
where other than zi1 and zi2 , each zi iterates through
{1, 2, · · · , bi}, and the edge will be sent to all related work-
ers.

Implementation Details. There are two main impact
factors of the performance of ShrCube. Firstly, the hy-
percube sharing by assigning proper bi for vi. To achieve
better performance, we adopt the “Hypercube Optimiza-
tion” proposed by Chu et al [19]. Secondly, the local al-
gorithm. When the edges arrive at the worker, we collect
them into a local graph (duplicate edges are removed), and
use local algorithm to compute the matches. For unlabelled
matching. we study the state-of-the-art local algorithms
from “EmptyHeaded” [12] and “DualSim” [31]. We imple-
ment all our benchmarking queries (Figure 2) using “Emp-
tyHeaded” and “DualSim”, “DualSim” generally performs
better as it does not need to maintain intermediate results
as “EmptyHeaded”. As a result, we adopt “DualSim” as the
local algorithm for MultiwayJoin. For labelled matching, we
implement “CFLMatch” proposed in [15], which is the best-
so-far labelled matching algorithm to our best knowledge.

Now we let each worker independently compute matches
in its local graph. Simply doing so will result in duplicates,
so we process deduplication for MultiwayJoin, the details of
which can be found in the full paper [4].

3.4 Others
PSgL. PSgL processes subgraph matching iteratively via
breadth-first traversal. All query vertices are configured

three status, “white” (initialized), “gray” (visited, but
neighbors unmatched) and “black” (finalized). Denote vi
as the vertex to match in the ith round. The algorithm
starts from matching initial query vertex v1, and coloring
the neighbors as “gray”. In the ith round, the algorithm
applies the workload-aware expanding strategy at runtime
to select the vi to expand among all current “gray” vertices
based on a greedy heuristic to minimize the communication
cost [46]; the partial results from previous round Ri−1 (spe-
cially, R0 = ∅) will be distributed among the workers based
on the candidate data vertices that can match vi; the algo-
rithm then computes Ri by merging Ri−1 with the matches
of the star formed by vi and its neighbors NQ(vi), namely
Star(vi;NQ(vi)); after vi is matched, vi is colored as “black”
and its “white” neighbors will be colored as “gray”; essen-
tially, this process is analogous to StarJoin by processing
Ri = Ri−1 1 Star(vi;NQ(vi)). As prior work [34] have
already shown that PSgL’s performance is dominated by
CliqueJoin [34], we will not further discuss this algorithm
in this paper.

CrystalJoin. CrystalJoin aims to resolve the “output crisis”
by compressing the results of subgraph matching [41]. The
authors defined a structure called crystal, denoted Q(x, y).
A crystal is a subgraph of Q that contains two sets of vertices
Vx and Vy (|Vx| = x and |Vy| = y). Here, the induced
subgraph Q(Vx) is a x-clique, while Vy forms an independent
set and every vertex in Vy connects to all vertices of Vx. The
algorithm first obtains the minimum vertex cover V cQ, and
then applies the Core-Crystal Decomposition to decompose
the query graph into the core Q(V cQ) and a set of crystals
{Q1(x1, y1), . . . ,Qt(xt, yt)}. Each crystal satisfies that its
clique part is a subgraph of the core.

With core-crystal decomposition, the computation has ac-
cordingly split into three stages: (1) Core computation.
Given that Q(V cQ) itself is a query graph, the algorithm
can be recursively applied to compute Q(V cQ); (2) Crystal
computation. Given a crystal Q(x, y), we can compute
the matches as (fx, Iy), where fx = {u1, u2, . . . , ux} is a
matched instance of Q(Vx), and Iy =

⋂x
i=1NG(ui) denotes

the set of vertices that can match Vy. It is not hard to see
that each y-combination of Iy together with fx recover a
match; (3) One-time assembly. This stage joins the core
instances with the compressed crystal matches to produce
the final results.

We notice two technical obstacles to implement
CrystalJoin according to the paper. Firstly, the core Q(V cQ)
may be disconnected, a case that can produce exponential
number of results. The authors originally implemented to
maintain a full replica of the graph in each machine to re-
solve this issue, which is not desirable as we’d rather use
FullRep strategy. Secondly, the authors proposed to pre-
compute the cliques up to certain k, which is often cost-
prohibitive in practice. Take UK (Table 2) dataset as
an example, the triangles, 4-cliques and 5-cliques are re-
spectively about 20, 600 and 40000 times larger than the
graph itself. Therefore, we adapt CrystalJoin in the follow-
ing. Firstly, we replace the core Q(V cQ) with Q(V ccQ ). Sec-
ondly, instead of implementing CrystalJoin as a new strat-
egy, we use it as an alternative join plan (matching order)
for WOptJoin. According to CrystalJoin, we first match
Q(V ccQ ), while the matching order inside and outside V ccQ
still follows WOptJoin’s greedy heuristic (Section 3.2). It
is worth noting that our adaptation achieves high perfor-
mance comparable to the original implementation.

FullRep. We implement FullRep by letting each worker
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pick its share of computation via a Round-Robin strategy,
that is we settle an initial query vertex v1, and let first
worker match v1 with u1 to continue the remaining process,
and second worker match v1 with u2, and so on. This simple
strategy already works very well on balancing the load. We
use “DualSim” for unlabelled matching and “CFLMatch”
for labelled matching as ShrCube.

3.5 Worst-case Optimality
Given a query Q and the data graph G, we denote the

maximum possible result set as RG(Q). Simply speaking,
an algorithm is worst-case optimal if the aggregation of the
total output (including intermediate output) is bounded by

Θ(|RG(Q)|). Todd [49] and Ngo et al. [39] almost mean-
while proposed the worst-case join algorithm. Ammar et
al. proposed GenericJoin for subgraph matching based on
Ngo’s algorithm [39]. Following GenericJoin, BiGJoin was
developed and shown to be worst-case optimal [14].

As for CliqueJoin, the optimality has not been claimed
in the paper [34]. In this work, we further contribute to
the finding of CliqueJoin’s worst-case optimality. We refer
interested readers to the full paper [4] for a complete proof.

4. OPTIMIZATIONS
We brief the three general-purpose optimizations,

Batching, TrIndexing and Compression in this section,
and how we orthogonally apply them to BinJoin and
WOptJoin algorithms. Here we only introduce the basic
idea due to short of space, while we refer interested readers
to the full paper [4] for details. Note that in the rest of
the paper, we will use the strategy BinJoin, WOptJoin,
ShrCube instead of their corresponding algorithms, as we
focus on strategy-level comparison.

4.1 Batching
Let R(Vi) be the partial results that match the given ver-

tices Vi = {vsi , vs2 , . . . , vsi} (Ri for short if Vi follows a
given order), and R(Vj) denote the more complete results
with Vi ⊂ Vj . Denote Rj |Ri as the tuples in Rj whose pro-
jection on Vi equates Ri. Let’s partition Ri into b disjoint
parts {R1

i , R
2
i , . . . , R

b
i}. We define Batching on Rj |Ri as

the technique to independently process the following sub-
tasks that compute {Rj |R1

i , Rj |R2
i , . . . , Rj |Rbi}. Obviously,

Rj |Ri =
⋃b
k=1Rj |R

k
i .

WOptJoin. Recall from Section 3.2 that WOptJoin
progresses according to a predefined matching order
{v1, v2, . . . , vn}. In the ith round, WOptJoin will Propose
on each p ∈ Ri−1 to compute Ri. It is not hard to see
that we can easily apply Batching to the computation of
Ri|Ri−1 by randomly partitioning Ri−1. For simplicity, the
authors implemented Batching on R(Q)|R1(v1). Note that
R1(v1) = VG in unlabelled matching, which means that we
can achieve Batching simply by partitioning the data ver-
tices. For short, we also say the strategy batches on v1,
and call v1 the batching vertex. We follow the same idea to
apply Batching to BinJoin algorithms.

BinJoin. While it is natural for WOptJoin to batch on
v1, it is non-trivial to pick such a vertex for BinJoin. We
propose the heuristic to apply Batching to BinJoin on the
vertex that presents in the most join units. Note that such
vertex can only be in the join key, as otherwise it must at
least not present in either side of the join. For complex
query, we can still have join unit that does not contain any
batching vertex using the above heuristic. In this case, the

sub-query that does not contain the batching vertex will
cause huge burden on the Join operation. Thus, we de-
vise the join-level Batching following the idea of external
MergeSort. Specifically, we inject a Buffer-and-Batch op-
erator for the two data streams before they arrive at the
Join operator. The Buffer-and-Batch operator will buffer
the data on disk, and then consume them for join in batches,
where each batch is determined by the hash value of the join
key. Note that such join-level Batching is natively imple-
mented in Hadoop’s “Shuffle” stage, and we incorporate this
in Timely to improve the scalability of BinJoin.

4.2 Triangle Indexing
As the name suggests, TrIndexing precomputes the trian-

gles of the data graph and indices them along with the graph
data to prune infeasible results. Based on the default hash
partition, Lai et al. proposed “triangle partition” [34] to
also incorporate the edges among the neighbors in each par-
tition. “Triangle partition” allows BinJoin to use clique as
the join unit [34], which greatly improves the performance of
certain queries. “Triangle partition” is in de facto a variant
of TrIndexing, which instead of explicitly materializing the
triangles, maintains them in the local graph structure (e.g.
adjacency list). As we will show in the experiment (Sec-
tion 5), this will save a lot of storage compared to explicit
triangle materialization. As a result, we adopt the “triangle
partition” for TrIndexing optimization in this work.

BinJoin. It is obvious that BinJoin becomes CliqueJoin
with TrIndexing, and StarJoin (or TwinTwigJoin) otherwise.

WOptJoin. In order to match vi in the ith round,
WOptJoin utilizes Count, Propose and Intersect to
process the intersection of Equation 4. For ease
of presentation, suppose vi+1 connects to the first s
query vertices {v1, v2, . . . , vs}, and given a partial match,
{f(v1), . . . , f(vs)}, we have C(vi+1) =

⋂s
j=1NG(f(vj)).

In the original implementation, it is required to send
(p;C(vi+1)) via network to all machines that contain each
f(vj)(1 ≤ j ≤ s) to process the intersection, which can
render massive communication cost. In order to reduce
the communication cost, we implement TrIndexing for
WOptJoin in the following. We first group {v1, . . . , vs}
such that for each group U(vx), we have U(vx) = {vx} ∪
{vy | (vx, vy) ∈ EQ}. Because of TrIndexing, we have
NG(f(vy)) (∀vy ∈ U(vx)) maintain in f(vx)’s partition.
Thus, we only need to send the prefix to f(vx)’s machine,
and the intersection within U(vx) can be done locally. We
process the grouping using a greedy strategy that always
constructs the largest group from the remaining vertices.

4.3 Compression
Compression aims to maintain the (intermediate) results

in a compressed form to reduce the maintaining and com-
munication cost. In the following, when we say “compress a
query vertex”, we mean maintaining its matched data ver-
tices in the form of an array, without unfolding them in line
with the one-one mapping of a match (Definiton 1). Qiao
et al. proposed CrystalJoin to study Compression in general
[41], which inspires a heuristic for doing Compression, that
is to compress the vertices whose matches will not be used in
any future computation. In fact, Compression is convention-
ally studied in relational database as factorization [40], while
we follow CrystalJoin to call it Compression as it literally is.

BinJoin. Obviously we can not compress any vertex that
presents in the join key. What we need to do is to locate the
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vertices to compress in the join unit, namely star and clique.
For star, the root vertex must remain uncompressed, as the
leaves’ computation depends on it. For clique, we can only
compress one vertex, as otherwise the mutual connection
between the compressed vertices will be lost. In a word,
we compress two types of vertices: (1) non-key and non-
root vertices of a star join unit, (2) one non-key vertex of a
clique join unit. Now that the join units are computed with
Compression, the join results are compressed accordingly.

WOptJoin. Based on a predefined join order
{v1, v2, . . . , vn}, we can compress vi (1 ≤ i ≤ n), if there
does not exist vj (i < j) such that (vi, vj) ∈ EQ. In other
words, vi’s matches will never be involved in any future in-
tersection (computation). Note that vn’s can be trivially
compressed. With Compression, when vi is compressed, we
will maintain its matches as an array instead of unfolding it
into the prefix like a normal vertex.

5. EXPERIMENTS

5.1 Experimental settings
Environments. We deploy two clusters for the experi-
ments: (1) a local cluster of 10 machines connected via one
10GBps switch and one 1GBps switch. Each machine has
64GB memory, 1 TB disk and 1 Intel Xeon CPU E3-1220
V6 3.00GHz with 4 physical cores; (2) an AWS cluster of
40 “r5-2xlarge” instances connected via a 10GBps switch,
each with 64GB memory, 8 vCpus and 500GB Amazon EBS
storage. By default we use the local cluster of 10 machines
with 10GBps switch. We run 3 workers in each machine
in the local cluster, and 6 workers in the AWS cluster for
Timely. The codes are implemented based on the open-
sourced Timely dataflow system [9] using Rust 1.32. We
are still working towards open-sourcing the codes, and the
bins together with their usages are temporarily provided6 to
verify the results.

Metrics. In the experiments, we measure query time T as
the slowest worker’s wall clock time from an average of three
runs. We allow 3 hours as the maximum running time for
each test. We use OT and OOM to indicate a test case runs out
of the time limit and out of memory, respectively. By de-
fault we will not show the OOM results for clear presentation.
We divide T into two parts, the computation time Tcomp
and the communication time Tcomm. We measure Tcomp as
the time the slowest worker spends on actual computation by
timing every computing function. We are aware that the ac-
tual communication time is hard to measure as Timely over-
laps computation and communication to improve through-
put. We consider T −Tcomp, which mainly records the time
the worker waits data from the network channel, and it be-
longs solely to communication time. While the other part of
communication that overlaps computation is of less interest
as it does not affect the query progress. As a result, we sim-
ply let Tcomm = T −Tcomp in the experiments. We measure
the peak memory usage using Linux’s “time -v” in each
machine. We define the communication cost as the number
of integers a worker receives during the process, and mea-
sure the maximum communication cost among the workers
accordingly.

Dataset Formats. We preprocess each dataset as follows:
we treat it as a simple undirected graph by removing self-
loop and duplicate edges, and format it using “Compressed

6https://goo.gl/Xp5BrW

Sparse Row” (CSR) [3]. We relabel the vertex id according
to the degree and break the ties arbitrarily.

Compared Strategies. In the experiments, we implement
BinJoin and WOptJoin with all Batching, TrIndexing
and Compression optimizations (Section 4). ShrCube
is implemented with “Hypercube Optimization” [19], and
“DualSim” (unlabelled) [31] and “CFLMatch” (labelled)
[15] as local algorithms. FullRep is implemented with the
same local algorithms as ShrCube.

Auxiliary Experiments. We have also conducted several
auxiliary experiments to study the strategies of BinJoin,
WOptJoin, ShrCube and FullRep: (1) “Scalability” ex-
periment in unlabelled matching. The experiment shows
that FullRep scales out the best, followed by WOptJoin,
BinJoin and ShrCube; (2) “Vary Density” experiment in
labelled matching. This experiment shows that all strate-
gies’ performance decreases with the densities; (3) “Vary
Labels” experiment in labelled matching. This experiment
shows the transition from unlabelled to labelled matching
for all strategies. We present these experiments in the ap-
pendix of the full paper [4].

5.2 Unlabelled Experiments
Datasets. The datasets used in this experiment are shown
in Table 2. All datasets except SY are downloaded from pub-
lic source, which are indicated by the letter in the bracket
(S [10], W [11], D [1]). All statistics are measured as G is
an undirected graph. Among the datasets, GO is a small
dataset to study cases of extremely large (intermediate) re-
sult set; LJ, UK and FS are three popular datasets used in
prior works, featuring statistics of real social network and
web graph; GP is the google plus ego network, which is ex-
ceptionally dense; US and EU, on the other end, are sparse
road networks. These datasets vary in number of vertices
and edges, densities and maximum degree, as shown in Ta-
ble 2. We synthesize the SY data according to [17] that
generates data with real-graph characteristics. Note that
the data occupies roughly 80GB space, and is larger than
the configured memory of our machine. We synthesize the
data because we do not find public accessible data of this
size. Larger dataset like Clueweb [2] is available, but it is
beyond the processing power of our current cluster.

Each data is hash partitioned (“hash”) across the clus-
ter. We also implement the “triangle partition” (“tri.”) for
TrIndexing optimization (Section 4.2). To do so, we use
BiGJoin to compute the triangles and send the triangle edges
to corresponding partition. We record the time T∗ and aver-
age number of edges |E∗| of the two partition strategies. The
partition statistics are recorded while running in the local
cluster, except for SY that is processed in the AWS cluster.
From Table 2, we can see that |Etri.| is noticeably larger,

around 1-10 times larger than |Ehash|. Note that in GP and
UK, which either is dense, or must contain a large dense
community, the “triangle partition” can maintain a large
portion of data in each partition. While compared to com-
plete triangle materialization, “triangle partition” turns out
to be much cheaper. For example, the UK dataset contains
around 27B triangles, which means each partition in our
local cluster should by average take 0.9B triangles (three in-
tegers); in comparison, UK’s “triangle partition” only main-
tains an average of 0.16B edges (two integers) according to
Table 2.

We use US, GO and LJ as default datasets in the exper-
iments “Exp-1”, “Exp-2” and “Exp-3” in order to collect
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useful feedbacks from successful queries, while we may not
present certain cases when they do not give new findings.

Queries. The queries are presented in Figure 2. We also
give the partial order under each query for symmetry break-
ing. The queries except q7 and q8 are selected based on all
prior works [14, 32, 34, 41, 47], while varying in number
of vertices, densities, and the vertex cover ratio |V ccQ |/|VQ|,
in order to better evaluate the strategies from different per-
spectives. The three queries q7, q8 and q9 are relatively chal-
lenging given their result scale. For example, the smallest
dataset GO contains 2, 168B(illion) q7, 330B q8 and 1, 883B
q9, respectively. We present the number of results of each
successful query on each dataset in the auxiliary materials
(Section 9). Note that q7 and q8 are absent from existing
works, while we benchmark q7 considering the importance
of path query in practice, and q8 considering the varieties of
the join plans.
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v2 v3

v4 v1

v2 v3

v4 v1

v2 v3
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{(v1, v2), (v1, v3),
(v1, v4), (v2, v4)}
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Figure 2: The unlabelled queries.

Exp-1: Optimizations. We study the effectiveness of
Batching, TrIndexing and Compression for both BinJoin
and WOptJoin strategies, by comparing BinJoin and
WOptJoin with their respective variants with one optimiza-
tion off, namely “without Batching”, “without Trindexing”
and “without Compression”. In the following, we use the
suffix of “(w.o.b.)”, “(w.o.t.)” and “(w.o.c.)” to represent
the three variants. We use the queries q2 and q5, and the
results of US and LJ are shown in Figure 3. By default,
we use the batch size of 1, 000, 000 for both BinJoin and
WOptJoin (according to [14]) in this experiment, and we
reduce the batch size when it runs out of memory, as will be
specified.

While comparing BinJoin with BinJoin(w.o.b.), we ob-
serve that Batching barely affects the performance of q2, but
severely for q5 on LJ (1800s vs 4000s (w.o.b.) ). The reason
is that we still apply join-level Batching for BinJoin(w.o.b.)

that dumps the intermediate data to the disk (Section 4.1).
While q5’s intermediate data includes the massive results of
sub-query Q({v2, v3, v4, v5}), which incurs huge amount of
disk I/O (US does not have this problem as it produces very
few results). We also run q5 without the join-level Batching
on LJ, but it fails with OOM. For BinJoin, TrIndexing is
a critical optimization, with the observed performance of
BinJoin better than that of BinJoin(w.o.t.), especially so on
LJ. This is expected as BinJoin(w.o.t.) actually degenerates
to StarJoin. Compression, on the one hand, allows BinJoin
to run much faster than BinJoin(w.o.c.) for both queries on
LJ, on the other hand, makes it slower on US. The reason is
that US is a sparse dataset with few room for Compression,
while Compression itself incurs extra cost. We also compare
BinJoin with BinJoin(w.o.c.) on the other sparse graph EU,
and the results are the same.

For WOptJoin strategy, Batching has little impact to
the performance. Surprisingly, after using TrIndexing to
WOptJoin, the improvement by average is only around
18%. We do another experiment in the same cluster but us-
ing 1GBps switch, which shows WOptJoin is over 6 times
faster than WOptJoin(w.o.t.) for both queries on LJ. Note
that Timely uses separate threads to buffer received data
from the network. Given the same computing speed, a faster
network allows the data to be more fully buffered and hence
less wait for the following computation. Similar to BinJoin,
Compression greatly improves the performance while query-
ing on LJ, but the opposite on US.

Exp-2 Challenging Queries. We study the challenging
queries q7, q8 and q9 in this experiment. We run this experi-
ment using BinJoin, WOptJoin, ShrCube and FullRep,
and show the results of US and GO (LJ failed all cases)
in Figure 4. Recall that we split the time into computation
time and communication time (Section 5.1), here we plot the
communication time as gray filling in each bar of Figure 4.

FullRep beats all the other strategies, while ShrCube
fails q8 and q9 on GO because of OT. Although ShrCube
uses the same local algorithm as FullRep, it spends a lot
of time on deduplication (Section 3.3).

We focus on comparing BinJoin and WOptJoin on GO
dataset. On the one hand, WOptJoin outperforms BinJoin
for q7 and q8. Their join plans of q7 are nearly the same
except that BinJoin relies on a global shuffling on v3 to
processing join, while WOptJoin sends the partial results
to the machine that maintains the vertex to grow. It
is hence reasonable to observe BinJoin’s poorer perfor-
mance for q7 as shuffling is typically a more costly oper-
ation. The case of q8 is similar, so we do not further dis-
cuss. On the other hand, even living with costly shuffling,
BinJoin still performs better for q9. Due to the vertex-
growing nature, WOptJoin’s “optimal plan” will have to
process the costly sub-query Q({v1, v2, v3, v4, v5}). On US
dataset, WOptJoin consistently outperforms BinJoin for
these queries. This is because that US does not produce
massive intermediate results as LJ, thus BinJoin’s shuffling
cost consistently dominates.

While processing complex queries like q8 and q9, we can
study varieties of join plans for BinJoin and WOptJoin.
First of all, we want the readers to note that BinJoin’s join
plan for q8 is different from the optimal plan originally given
[34]. The original “optimal” plan computes q8 by joining
two tailed triangles (triangle tailed with an edge), while this
alternative plan works better by joining the uppers “house-
shape” sub-query with the bottom triangle. In theory, the
tailed triangle has worse-case bound (AGM bound [39]) of
O(M2), smaller than the house’s O(M2.5), and BinJoin’s
actually favors this plan based on cost estimation. However,
we find out that the number of tailed triangles is very close
to that of the houses on GO, which renders costly process
for the original plan to join two tailed triangles. This indi-
cates insufficiency of both cost estimation proposed in [34]
and worst-case optimal bound [14] while computing the join
plan, which will be further discussed in Section 6.

Secondly, it is worth noting that we actually report the re-
sult of WOptJoin for q9 while using the CrystalJoin plan, as
it works better than WOptJoin’s original “optimal” plan.
For q9, CrystalJoin will first compute Q(V ccQ ), namely the
2-path {v1, v3, v5}, thereafter it can compress all remaining
vertices v2, v4 and v6. In comparison, the “optimal” plan can
only compress v2 and v6. In this case, CrystalJoin performs
better because it configures larger compression. In [41], the
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Table 2: The unlabelled datasets.

Datasets Name |VG|/mil |EG|/mil dG DG Thash/s |Ehash|/mil Ttri./s |Etri.| /mil

google(S) GO 0.86 4.32 5.02 6,332 1.53 0.28 2.31 1.23
gplus(S) GP 0.11 12.23 218.2 20,127 5.57 0.80 46.5 10.68

usa-road(D) US 23.95 28.85 2.41 9 12.43 1.89 3.69 1.90
livejournal(S) LJ 4.85 43.37 17.88 20,333 14.25 2.81 20.33 12.49
uk2002(W) UK 18.50 298.11 32.23 194,955 61.99 17.16 266.60 156.05
eu-road(D) EU 173.80 342.70 3.94 20 72.96 22.47 16.98 22.98

friendster(S) FS 65.61 1806.07 55.05 5,214 378.26 118.40 368.95 395.31
Synthetic SY 372.00 10,000.00 53 613,461 2027 493.75 5604.00 660.61
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Figure 3: Effectiveness of optimizations.
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Figure 4: Challenging queries.

authors proved that it renders maximum compression to use
the vertex cover as the uncompressed core. However, this
may not necessarily result in the best performance, consid-
ering that it can be costly to compute the core part. In
our experiments, the unlabelled q4, q8 and labelled q8 are
cases that CrystalJoin plan performs worse than the origi-
nal BiGJoin plan (with Compression optimization), where
CrystalJoin plan does not render strictly larger compression
while having to process the costly core part. As a result, we
only recommend CrystalJoin plan when it leads to strictly
larger compression.

The final observation is that the computation time dom-
inates most of the evaluated cases, except BinJoin’s q8,
WOptJoin and ShrCube’s q9 on US. We will further dis-
cuss this in Exp-4.

Exp-3 All-Around Comparisons. In this experiment,
we run q1 − q6 using BinJoin, WOptJoin, ShrCube and
FullRep across the datasets GP, LJ, UK, EU and FS. We
also run WOptJoin with CrystalJoin plan in q4 as it is
the only query that renders different CrystalJoin plan from
BiGJoin plan, and the results show that the performance
with BiGJoin plan is consistently better. We report the re-
sults in Figure 5, where the communication time is plot-
ted as gray filling. As a whole, among all 35 test cases,
FullRep achieves the best 85% completion rate, followed by
WOptJoin and BinJoin which complete 71.4% and 68.6%
respectively, and ShrCube performs the worst with just
8.6% completion rate.

FullRep typically outperforms the other strategies. Ob-
serve that WOptJoin’s performance is often very close to
FullRep. The reason is that the WOptJoin’s comput-
ing plans for these evaluated queries are similar to “Dual-
Sim” adopted by FullRep. The extra communication cost
of WOptJoin has been reduced to very low while adopt-
ing TrIndexing optimization. While comparing WOptJoin
with BinJoin, BinJoin is better for q3, a clique query (join
unit) that requires no join (a case of embarrassingly par-
allel). BinJoin performs worse than WOptJoin in most
other queries, which, as we mentioned before, is due to the
costly shuffling. There is an exception - querying q1 on GP
- where BinJoin performs better than both FullRep and
WOptJoin. We explain this using our best speculation.
GP is a very dense graph, where we observe nearly 100
vertices with degree around 10,000. To process q1, after
computing the sub-query Q({v1, v2, v4}), WOptJoin (and
“DualSim”) processes the intersection of v1 and v4 (their
matches) for v3. Those larger-degree vertices are now fre-
quently pairing, leading to expensive intersection. In com-
parison, BinJoin computes q1 by joining the sub-query
Q({v1, v2, v3}) with Q({v1, v3, v4}). Because both strategies
computeQ({v1, v2, v3}), we consider how BinJoin computes
Q({v1, v3, v4}). BinJoin first locate the matched vertex of
v3, then matches v1 and v4 among its neighbors, which
is generally cheaper than intersecting the neighbors of v1
and v4 to compute v3. Due to the existence of these high-
degree pairs, the cost WOptJoin’s intersection can exceed
BinJoin’s shuffling.

We observe that the computation time Tcomp dominates
in most cases as we mentioned in “Exp-3”, with details listed
in Table 3 for all queries using BinJoin and WOptJoin on
LJ. This is trivially true for ShrCube and FullRep, but
it may not be clearly so for WOptJoin and BinJoin given
that they all need to transfer a massive amount of interme-
diate data. We investigate this and find out two potential
reasons. The first one attributes to Timely’s highly opti-
mized communication component, which allows the compu-
tation to overlap communication by using extra threads to
receive and buffer the data from the network so that it can
be mostly ready for the following computation. The sec-
ond one is the fast network. We re-run these queries using
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Figure 5: All-around comparisons.

Table 3: Computation time vs. communication time (all
queries using BinJoin and WOptJoin on LJ).

Queries BinJoin/s WOptJoin/s
Tcomp Tcomm Tcomp Tcomm

q1 415 43 197 35
q2 20 9 9 6
q3 3 0 34 9
q4 OT OT 1522 769
q5 1022 654 428 314
q6 95 0 1511 332

the 1GBps switch, while the results show the opposite trend
that the communication time Tcomm in turn takes over.

Table 4: The web-scale experiments.

Queries BinJoin (Tcomp)/s WOptJoin (Tcomp)/s

q2 8810 (6893) 1751 (1511)
q3 76 (75) 518 (443)

Exp-4 Web-Scale. We run the SY datasets in the AWS
cluster of 40 instances. Note that FullRep can not be
used as SY is larger than the machine’s memory. We use
the queries q2 and q3, and present the results of BinJoin
and WOptJoin (ShrCube fails all cases due to OOM) in Ta-
ble 4. The results are consistent with the prior experiments,
but observe that the gap between BinJoin and WOptJoin
while querying q1 is larger. This is because that we now
deploy 40 AWS instances, and BinJoin’s shuffling cost in-
creases.

5.3 Labelled Experiments
We use the LDBC social network benchmarking (SNB) [7]

for labelled matching experiment due to the lack of labelled
big graphs in the public. SNB provides a data generator that
generates a synthetic social network of required statistics,
and a document [8] that describes the benchmarking tasks,
in which the complex tasks are actually subgraph matching.
The join plans of BinJoin and WOptJoin for labelled ex-
periments are generated as unlabelled case, but we use the
label frequencies to break tie.

Table 5: The labelled datasets.

Name |VG| |EG| dG DG # Labels

DG10 29.99 176.48 11.77 4,282,812 10
DG60 187.11 1246.66 13.32 26,639,563 10

Datasets. We list the datasets and their statistics in Ta-
ble 5. These datasets are generated using the ”Facebook”
mode with a duration of 3 years. The dataset’s name, de-
noted as DGx, represents a scale factor of x. The labels are
preprocessed into integers.

Psn Pos

t

Cmt

Tag tCls

tCls

q1

Pos

t

Tag

CmtPsn

Psn

q3

Psn Psn

Cmt Post

q5

Psn Psn

City City

Cty

q6

Psn Psn

CityPsn

Cty

q7

Psn

Psn

City

Cty

Psn

Psn

City

q8

Psn Psn

Psn

q2

Psn Psn Psn

City City City

Cty

q4

q9

Post

Figure 6: Labelled queries.

Queries. The queries, shown in Figure 6, are selected from
the SNB’s complex tasks with some adaptions, and the de-
tails are in the full paper.

Exp-5 All-Around Comparisons. We now conduct
the experiment using all queries on DG10 and DG60, and
present the results in Figure 7. Here we compute the join
plans for BinJoin and WOptJoin by using the unlabelled
method, but further using the label frequencies to break
tie. The gray filling again represents communication time.
FullRep outperforms the other strategies in many cases,
except that it performs slightly slower than BinJoin for
q3 and q5. This is because that q3 and q5 are join units,
and BinJoin processes them locally in each machine as
FullRep, and it does not build indices as “CFLMatch”
used in FullRep. When comparing to WOptJoin, Among
all these queries, we only have q8 that configures differ-
ent CrystalJoin plan (w.r.t. BiGJoin plan) for WOptJoin.
The results show that the performance of WOptJoin drops
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about 10 times while using CrystalJoin plan. Note that the
core part of q8 is a 5-path of “Psn-City-Cty-City-Psn” with
enormous intermediate results. As we mentioned in unla-
belled experiments, it may not always be wise to first com-
pute the vertex-cover-induced core.

We now focus on comparing BinJoin and WOptJoin.
There are three cases that intrigue us. Firstly, observe
that BinJoin performs much better than WOptJoin while
querying q4. The reason is high intersection cost as we dis-
covered on GP dataset in unlabelled matching. Secondly,
BinJoin performs worse than WOptJoin in q7, which again
is because of BinJoin’s costly shuffling. The third case is q9,
the most complex query in the experiment. BinJoin per-
forms much better while querying q9. The bad performance
of WOptJoin comes from the long execution plan together
with costly intermediate results. The two algorithms all ex-
pand the three “Psn”s, and then grow via one of the “City”s
to “Cty”, but BinJoin approaches this using one join (a tri-
angle 1 a TwinTwig), while WOptJoin will first expand to
“City” then further “Cty”, and the “City” expansion is the
culprit of the slower run.

BinJoin WOptjoin ShrCube FullRep

q1 q2 q3 q4 q5 q6 q7 q8 q9
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>3h T (sec)

(a) DG10
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104
>3h T (sec)
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Figure 7: All-around comparisons of labelled matching.

6. DISCUSSIONS AND FUTURE WORK.
We discuss our findings and potential future work based

on the experiments in Section 5. Eventually, we summarize
the findings into a practical guide.

Strategy Selection. FullRep is obviously the preferred
choice when the machine can hold the graph data, while
both WOptJoin and BinJoin are good alternatives when
the graph is larger than the capacity of the machine. For
BinJoin and WOptJoin, on one side, BinJoin may per-
form worse than WOptJoin (e.g. unlabelled q2, q4, q5)
due to the expensive shuffling operation, on the other side,
BinJoin can also outperform WOptJoin (e.g. unlabelled
and labelled q9) while avoiding costly sub-queries due to
query decomposition. One way to choose between BinJoin
and WOptJoin is to compare the cost of their respective
join plans, and select the one with less cost. For now, we can
either use cost estimation proposed in [34], or summing the
worst-case bound, but none of them consistently gives the
best solution, as will be discussed in “Optimal Join Plan”.
Alternatively, we refer to “EmptyHeaded” [12] to study a
potential hybrid strategy of BinJoin and WOptJoin. Note

that “EmptyHeaded” is developed in single-machine set-
ting, and it does not take into consideration the impact of
Compression, we hence leave such hybrid strategy in the
distributed context as an interesting future work.

Optimizations. Our experimental results suggest always
using Batching, using TrIndexing when each machine has
sufficient memory to hold “triangle partition”, and us-
ing Compression when the data graph is not very sparse
(e.g. dG ≥ 5). Batching often does not impact perfor-
mance, so we recommend always using Batching due to
the unpredictability of the size of (intermediate) results.
TrIndexing is critical for BinJoin, and it can greatly im-
prove WOptJoin by reducing communication cost, while
it requires extra storage to maintain “triangle partition”.
Amongst the evaluated datasets, each “triangle partition”
maintains an average of 30% data in our 10-machine clus-
ter. Thus, we suggest a memory threshold of 60%|EG| (half
for graph and half for running algorithm) for TrIndexing
in a cluster of the same or larger scale. Note that the
threshold does not apply to extremely dense graph. Among
the three optimizations, Compression is the primary perfor-
mance booster that improves the performance of BinJoin
and WOptJoin by 5 times on average in all but the cases
on the very sparse road networks. For such very sparse data
graphs, Compression can render more cost than benefits.

Optimal Join Plan. It is challenging to systematically
determine the optimal join plans for both BinJoin and
WOptJoin. From the experiments, we identify three im-
pact factors: (1) the worst-case bound; (2) cost estima-
tion based on data statistics; (3) favoring the optimizations,
especially Compression. All existing works only partially
consider these factors, and we have observed sub-optimal
join plans in the experiments. For example, BinJoin bases
the “optimal” join plan on minimizing the cost estimation,
but the join plan does not render the best performance for
unlabelled q8; WOptJoin follows the worst-case optimal-
ity, while it may encounter costly sub-queries for labelled
and unlabelled q9; CrystalJoin focuses on maximizing the
compression, while ignoring the facts that the vertex-cover-
induced core part itself can be costly to compute. Addition-
ally, there are other impact factors such as the partial orders
of query vertices and the label frequencies, which have not
been studied in this work due to short of space. It is an-
other very interesting future work to thoroughly study the
optimal join plan while considering all above impact factors.

Computation vs. Communication. We argue that
distributed subgraph matching nowadays is a computation-
intensive task. This claim holds when the cluster configures
high-speed network (e.g. ≥ 10GBps), and the data pro-
cessor can efficiently overlap computation with communica-
tion. Note that computation cost (either BinJoin’s join or
WOptJoin’s intersection) is lower-bounded by the output
size that is equal to the communication cost. Therefore,
computation becomes the bottleneck if the network condi-
tion is good to guarantee the data to be delivered in time.
Nowadays, the bandwidth of local cluster commonly exceeds
10GBps, and the overlapping of computation and communi-
cation is widely used in distributed systems (e.g. Spark [52],
Flink [16]). As a result, we tend to see distributed subgraph
matching as a computation-intensive task, and we advocate
future research to devote more efforts into optimizing the
computation while considering the following perspectives:
(1) the new advancements of hardware, for example the co-
processing on GPU in the coupled CPU-GPU architectures

1109



Table 6: All Query’s Results.

Dataset q1 q2 q3 q4 q5 q6 q7 q8 q9

GO 539.58M 621.18M 39.88M 38.20B 27.80B 9.28B 2,168.86B 330.68B 1.88T
GP 1.42T 1.16T 78.40B - - - - - -
US 1.61M 21,599 90 117,996 2,186 1 160.93M 2,891 89
LJ 51.52B 76.35B 9.93B 53.55T 44.78T 18.84T - - -
UK 2.49T 2.73T 157.19B - - - - - -
EU 905,640 2,223 6 12,790 450 0 342.48M 436 71
FS - 185.19B 8.96B - - 3.18T - - -
SY - 834.78B 5.47B - - - - - -

DG10* 40.14M 26.76M 28.73M 22.59M 23.08B 1.49M4 47,556 42.56M 10.07M
DG60* 302.41M 169.86M 267.38M 161.69M 203.33B 12.44M 983,370 4.14B 114.19M

[26] and the SIMD programming model on modern CPU
[28]; (2) general computing optimizations such as load bal-
ancing strategy and cache-aware graph data accessing [51].

A Practical Guide. Based on the experimental findings,
we propose a practical guide for distributed subgraph match-
ing in Figure 8. Note that this program guide is based
on current progress of the literature, and future work is
needed, for examples to study the hybrid strategy and the
impact factors of the optimal join plan, before we can arrive
at a solid decision-making to choose between BinJoin and
WOptJoin.
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Figure 8: A practical guide of distributed subgraph matching.

7. RELATED WORK
Isomorphism-based Subgraph Matching. In the la-
belled case, Shang et al. [45] used the spanning tree of
the query graph to filter infeasible results. Han et al. [25]
observed the importance of matching order. In [43], the
authors proposed to utilize the symmetry properties in the
data graph to compress the results. Bi et al. [15] proposed
CFLMatch based on the “core-forest-leaves” matching order,
and obtained performance gain by postponing the notorious
cartesian product.

The unlabelled case is also known as subgraph list-
ing/enumeration, and due to the gigantic (intermediate) re-
sults, people have been either seeking scalable algorithms

in parallel, or devising techniques to compress the results.
Other than the algorithms studied in this paper (Section 3),
Kim et al. proposed the external-memory-based parallel al-
gorithm DualSim [31], which maintains the data graph in
blocks on the disk, and matches the query graph by swap-
ping in/out blocks of data to improve I/O efficiency.

Incremental Subgraph Matching. Computing subgraph
matching in a continuous context has recently drawn a lot of
attentions. Fan et al. [23] proposed incremental algorithm
that identifies a portion of the data graph affected by the
update regarding the query. The authors in [18] used the
join scheme as BinJoin algorithms (Section 3.1). The al-
gorithm maintained a left-deep join tree for the query, with
each vertex maintaining a partial query and the correspond-
ing partial results. Then one can compute the incremental
answers of each partial query in response to the update,
and utilizes the join tree to re-construct the results. Graph-
flow [30] solved incremental subgraph matching using join,
in the sense that the incremental query can be transformed
into m independent joins, where m is the number of query
edges. Then they used the worst-case-optimal join algo-
rithm to solve these joins in parallel. Most recently, Kim
et al. proposed TurboFlux that maintains data-centric in-
dex for incremental queries, which achieves good tradeoff
between performance and storage.

8. CONCLUSIONS
In this paper, we implement four strategies and three

general-purpose optimizations for distributed subgraph
matching based on Timely dataflow system, aiming for a
systematic, strategy-level comparison. Based on thorough
empirical analysis, we summarize a practical guide, and we
also motivate interesting future work for distributed sub-
graph matching.

9. AUXILIARY MATERIALS
All Query Results. In Table 6, We show the number of
results of every successful query on each dataset evaluated
in this work, where M , B, T stand for millions, billions and
trillions, respectively. Note that DG10 and DG60 record the
labelled queries of q1 − q9.
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