
Hyper Dimension Shuffle: Efficient Data Repartition at
Petabyte Scale in SCOPE

Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman, Hiren Patel, Jaliya Ekanayake
Microsoft Corporation

{shiqiao, adnico, jinsu, marcfr, hirenp, jaliyaek}@microsoft.com

ABSTRACT
In distributed query processing, data shuffle is one of the most
costly operations. We examined scaling limitations to data shuffle
that current systems and the research literature do not solve. As
the number of input and output partitions increases, naı̈ve shuffling
will result in high fan-out and fan-in. There are practical limits to
fan-out, as a consequence of limits on memory buffers, network
ports and I/O handles. There are practical limits to fan-in because
it multiplies the communication errors due to faults in commodity
clusters impeding progress. Existing solutions that limit fan-out
and fan-in do so at the cost of scaling quadratically in the number of
nodes in the data flow graph. This dominates the costs of shuffling
large datasets.

We propose a novel algorithm called Hyper Dimension Shuffle
that we have introduced in production in SCOPE, Microsoft’s
internal big data analytics system. Hyper Dimension Shuffle is
inspired by the divide and conquer concept, and utilizes a recursive
partitioner with intermediate aggregations. It yields quasilinear
complexity of the shuffling graph with tight guarantees on fan-out
and fan-in. We demonstrate how it avoids the shuffling graph blow-
up of previous algorithms to shuffle at petabyte-scale efficiently on
both synthetic benchmarks and real applications.

PVLDB Reference Format:
Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman, Hiren Patel, Jaliya
Ekanayake. Hyper Dimension Shuffle: Efficient Data Repartition at Petabyte
Scale in Scope. PVLDB, 12(10): 1113-1125, 2019.
DOI: https://doi.org/10.14778/3339490.3339495

1. INTRODUCTION
Today distributed relational query processing is practiced on ever

larger datasets often residing on clusters of commodity servers. It
involves partitioned storage of data at rest, partitioned processing of
that data on workers, and data movement operations or shuffles [1,
15, 17, 21, 26]. A dataset S = {s1, . . . , sp} is horizontally
partitioned into p files of rows. There is a partition function to
assign rows to partitions, implementing for example a hash or range
partitioning scheme. A dataset at rest with partitioning S may be
read and processed by an operation with a partitioning requirement

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 10
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3339490.3339495

that is not satisfied by S. For example, a group-by-aggregation
operator grouping on columns C requires input data partitioned on
some subset of C. When that happens, the data must be shuffled
from S into a new partitioning T that satisfies that requirement,
such as hash(C, 100).

Data shuffle is one of the most resource-intensive operations in
distributed query processing [1, 14, 26]. Based on the access pat-
terns of the SCOPE system’s workload of data processing jobs at
Microsoft, it is the third most frequently used operation and the
most expensive operator overall. Thus, the implementation of the
data shuffle operator has a considerable impact on the scalability,
performance, and reliability of large scale data processing applica-
tions.

A full shuffle needs to move rows from everywhere to every-
where – a complete bipartite graph from sources to destinations
with a quadratic number of edges. Using a naı̈ve implementation
of the full shuffle graph, large datasets experience high fan-out and
high fan-in. A single partitioner has data for all recipients. High
fan-out of the partitioner results in a bottleneck at the source due
to high memory buffer requirements and excessive random I/O op-
erations. Meanwhile, the mergers have to read data from many
sources. High fan-in means numerous open network file handles
and high communication latencies. In addition, high fan-in blocks
forward progress because the multiplication of the probability of
connection failures eventually requires the vertex to give up and
restart. We see this occur regularly in practice. The fan-out and
fan-in issues limit the scale of data shuffle operations and there-
fore the scalability of data processing in general. Given a hardware
and OS configuration, the maximum fan-out and fan-in of shuffle
should be considered as givens.

To address the scalability challenges of data shuffle operations,
we propose a new data shuffle algorithm called Hyper Dimension
Shuffle (abbreviated as HD shuffle), which yields quasilinear com-
plexity of the shuffling graph while guaranteeing fixed maximum
fan-out and fan-in. It partitions and aggregates in multiple itera-
tions. By factoring partition keys into multi-dimensional arrays,
and processing a dimension each iteration, it controls the fan-out
and fan-in of each node in the graph. Since data shuffle is fun-
damental to distributed query processing [15, 17, 21, 26], the HD
shuffle algorithm is widely applicable to many systems to improve
data shuffle performance irrespective of system implementation de-
tails. Our contributions in this paper can be summarized as follows:

1. We describe HD shuffle algorithm with its primitives: re-
shapers, hyper partitioners, and dimension mergers. We
prove the quasilinear complexity of the algorithm given the
maximum fan-out and fan-in.

2. We implement HD shuffle in Microsoft’s internal distributed
query processing system, SCOPE. Several optimizations are

1113

also proposed to better accommodate HD shuffle. Through
the benchmark experiments and real workload applications,
we demonstrate significant performance improvements us-
ing HD shuffle in SCOPE. In a first for published results we
know of, we demonstrate petabyte scale shuffles of bench-
mark and production data.

3. To show the generality of HD shuffle algorithm, we also
implement it in Spark. The benchmark results presented
show HD shuffle outperforming the default shuffle algorithm
in Spark for large numbers of partitions.

The rest of the paper is organized as follows. In Section 2,
we describe the state of the art in data shuffle. In Section 3, we
describe the details of Hyper Dimension Shuffle algorithm, prove
its quasilinear complexity and demonstrate how the algorithm
functions with an example. Section 4 describes the implementation
of HD shuffle in SCOPE, including the execution model, specific
optimizations and streaming compatibility. In Section 5, we present
the performance analysis of HD shuffle algorithm by comparing
with the state of the art systems on both synthetic benchmarks and
real world applications in SCOPE and Spark. Section 6 provides
an overview of related work that attempts to address the scalability
challenges of data shuffle. Finally, we conclude in Section 7.

2. BACKGROUND

s1

f11 f12 . . . f1q

. . . sp

fp1 fp2 . . . fpq

t1 t2 . . . tq

Figure 1: Shuffling data from p source partitions to q target
partitions in MapReduce

MapReduce [17] formalized the problem of shuffling rows from
S = {s1, . . . , sp} source partitions to T = {t1, . . . , tq} target
partitions. Figure 1 shows a shuffling graph G of tasks and their
intermediate files. Each partitioner task si ∈ S creates one
intermediate file for each target, {fi1, . . . , fiq}. Each aggregator
tj ∈ T reads one file from each source, {f1j , . . . , fpj}. The data
flow from S to T is a complete bipartite graph G = (S, T, S×T).
The size complexity of G is dominated by the number of edges,
|S|×|T |. Dryad [21] and Tez [3] generalize MapReduce to general
data-flow programs represented as directed acyclic graphs (DAGs)
in which nodes are arbitrary data processing operations, and edges
are data movement channels. Edges encode shuffles and various
other flavors of data movement like joins and splits. There are
various systems that use this graph data-centric model, that vary in
data processing primitives, programming and extensibility models,
and streaming vs. blocking channel implementations. Shuffling is
common to all of them.

2.1 Scaling the Number of Target Partitions
The fan-out of a vertex si ∈ S grows linearly with the number

of target partitions |T |. The partitioning tasks in figure 1 write the
intermediate files fij to disk. As tuples can arrive in any random

order, an output buffer is allocated in memory for every partition
to group tuples into an efficient size to write. Since the memory in
the system is fixed, as |T | grows to swamp the buffer memory, any
scheme to free up or shrink buffers must result in more frequent,
smaller, and more expensive I/O writes. And since there are many
files to interleave writes to, random seeking increases.

s1

f11 f12 . . . f1q

. . . sp

fp1 fp2 . . . fpq

t1 t2 . . . tq

Figure 2: Writing a single sorted indexed file per partitioning task

SCOPE [13], Hadoop [1] and Spark [2, 10] use a variant of the
partitioner tasks to produce a single file fi, independent of the size
of |T |, as shown in figure 2. To achieve this, the tuples belonging
to each source partition are first sorted by the partitioning key, and
then written out to the file fi in the sorted order, together with
an index that specifies the boundaries of each internal partition
fij belonging to target task tj . This removes the small disk
I/Os altogether, at the cost of adding an expensive and blocking
operator – sort – into the partitioners. Thus, an aggregator can
not start reading until the partitioner writes the complete sorted
file, as a total order can only be created after every tuple is
processed in the source partition. This introduces a bottleneck,
particularly for streaming scenarios, where the data continuously
arrives and pipelines of operators can be strung together with
streaming channels to provide line rate data processing.

Port exhaustion happens if the aggregators reading the same in-
dexed file run concurrently. Then up to q network connections
to a single machine are attempted, as intermediate files are typi-
cally [13, 17] written locally by the task that produced them. If the
size of each partition is fixed at 1GB, a 1PB file requires |T | = 106

target partitions, which is above the number of ports that can be
used in TCP/IP connections.

High connection overhead becomes an issue when the amount
of data traveling on an edge of G becomes too small. Counterintu-
itively, because of the quadratic number of edges, if partition size
is held constant, increasing the amount of data shuffled decreases
the amount that travels along each edge! Consider a source par-
tition having size 1GB and the number of target partitions to be
|T | = 103. Assuming a uniform distribution of the target keys,
each fij would then yield around 1MB worth of data. This payload
can decrease to 1KB as we grow to |T | = 106. Overheads of tiny
connections start to dominate job latency.

2.2 Scaling the Number of Source Partitions
The fan-in of a vertex tj ∈ T grows linearly with the number of

source partitions |S|. Memory pressure due to the number of input
buffers and port exhaustion are thus also issues on the aggregator
side.

Hadoop and Spark aggregators limit the number of concurrent
network connections and the amount of buffer memory used. While
reading a wave of inputs, if buffer memory is exhausted they spill
an aggregated intermediate result to disk, which is then reread in

1114

s1 s2 s3 s4

tj

Figure 3: Aggregation with temporal order matching shading

a later wave. The temporal separation this creates is shown in
figure 3.

Failure is ever-present in a large commodity cluster. Individual
connections fail for a variety of reasons, some transient and some
persistent. We model commodity clusters as having a low indepen-
dent probability Pf of point-to-point connection failure. The prob-
ability of failure for an aggregator increases exponentially with the
number of input connections, since if one of the |S| intermediate
files, say f4j , fails to be read by target tj , then all the aggregating
progress of tj is lost and tj is rerun. The probability of success is
(1− Pf)

fan-in, so increasing fan-in reduces the chance of progress.
For a given value of Pf , the probability of success quickly switches
from nearly 1 to nearly 0 at some point as fan-in increases.

s1 s2 s3 s4

i1 i2

tj

Figure 4: Aggregation with maximum fan-in δin = 2

SCOPE uses a limit δin on the fan-in of any vertex. When δin <
|S|, a δin-ary tree is constructed to aggregate, with intermediate
vertices in between the target tj and the sources, as shown in
figure 4. This helps make progress in the presence of failure in two
ways: by decreasing the chance of aggregator node failure, and by
decreasing the unit of work to rerun in case of failure. For example,
a failure of task i2 in reading the file written by s4 will not cause
the aggregating progress of i1 to be lost.

The scheduling overhead, however, now amplifies the connec-
tion overhead. The number of intermediate tasks is |S| × |T | as-
suming δin is constant, as one tree is constructed for each target
tj ∈ T . The quadratic number of intermediate tasks dominates the
complexity of the shuffling graph.

Riffle [28] performs machine-level merging on the intermediate
partitioned data in the partitioners which converts the larger number
of small, random shuffle I/O requests in Spark into fewer large,
sequential I/O requests. This can be viewed as a variant of
aggregation trees.

3. HYPER DIMENSION SHUFFLE
We set out to solve the following data shuffling problem. Build

a data flow graph G to shuffle a rowset S = {s1, . . . , sp} into
T = {t1, . . . , tq}, with properties:

1. Quasilinear shuffling graph size. Given n = max(|S|, |T |),
|G| ∈ O(n logn).

2. Constant maximum fan-out of each vertex, δout.

3. Constant maximum fan-in of each vertex, δin.

Table 1: HD Shuffle parameters

Constants
δin: maximum fan-in of each vertex

δout: maximum fan-out of each vertex

Arrays
S = {s1, . . . , sp}: source partitions

T = {t1, . . . , tq}: target partitions

Matrices
T → [τ1, . . . , τr]: δout-factorization of |T |
S → [σ1, . . . , σd]: δin-factorization of |S|

We present the Hyper Dimension Shuffle algorithm for shuffling
data from source partitions S = {s1, . . . , sp} to target partitions
T = {t1, . . . , tq}. Then we prove the correctness of its properties.

A summary of this algorithm is: first factorize the input and
output partitions into multi-dimensional arrays, and then execute
multiple iterations where stages in each iteration aggregate data for
one dimension and partition data for the next. Before outlining the
full algorithm in section 3.5, we go over the operators that are used
as building blocks. The parameters used in this section are listed in
Table 1 for quick lookup.

3.1 Preliminaries
First we introduce our formal framework for partitioned data

processing and describe the three operators that HD shuffle uses:
hyper partitioner, dimension aggregator, and reshaper. Consider
initial partitioned rowset S = {s1, . . . , sp} with p files. We define
the shape of that rowset using an array of r dimensions. For
example, if p is 8, we may use r = 2, and a dimension signature
[3, 3]. This can be thought of as a file naming scheme for storing
a set of up to 3 × 3 = 9 files, of which 1 slot is unused. While
operators compute rowsets from rowsets, partitioned operators
compute shaped rowsets from shaped rowsets. Hyper partitioners
add one dimension, while dimension aggregators remove one. By
convention, we add least-significant dimensions and remove most-
significant.

[]

×2
[2]

×3
[2, 3]

Figure 5: Hyper partition tree for |T | = 6 and δout = 3

Figure 5 shows a degenerate case of an HD shuffle graph with
only hyper partitioners. It is composed of two hyper partitioners
partitioning a single zero-dimensional file into an intermediate
result of two files of shape [2], then into a final rowset with six files
of shape [2, 3]. This HD shuffle graph can be uniquely identified
by its input and output shape signatures, [] → [2, 3]. This graph
is full, but the algorithm extends to incomplete graphs with unused
slots.

The dimension aggregator aggregates one dimension. The first
aggregator in the HD shuffle graph in Figure 6 aggregates a
dimension size of 3, so each operator instance reads up to three
files and outputs one. The algorithm used may be order-preserving

1115

[3, 3]

÷3
[3]

÷3
[]

Figure 6: Dimension aggregation tree with |S| = 8 and δin = 3

or non-order-preserving, depending on whether the entire shuffle
needs to be order-preserving. This graph is the HD shuffle with
signature [3, 3] → [] for when input size |S| = 8. Reshaping |S|
into the 2-dimensional array [3, 3] leaves one unused slot at the end.

The reshape operator coerces a rowset into a desired shape
without moving or actually renaming any files. It purely establishes
a mapping from one shape to another. Consider a shuffle into
|T | = 6 partitions. Given a fan-out limit for the shuffle of δout = 3,
there are a few possible choices of r and specific dimension sizes
that create a legal shuffle graph, but they all have r > 1, since
|T | > δout. Say we choose a target shape of [2, 3]. Depending
on what happens after the shuffle, this two-dimensional shape may
no longer be convenient, but instead a shape of [6] may be desired
for further processing. The reshape operator does exactly that. We
may need to use it at the beginning and end of an HD shuffle.

3.2 Factorization and the Reshape Operator
The reshape operator maps one shape [n1, . . . , nr] to another.

Creating a shape from a cardinal number we call factorization.

Definition 1. An α-factorization of [n] into [n1, . . . , nr] must
satisfy:

r ∈ O(logn)

1 < ni ≤ α, ∀i ∈ {1, . . . , r}

n ≤
r∏

i=1

ni < α× n

A δin-factorization of |S| is constructed to shape source rowset
S so it is ready for HD shuffle. For example, in figure 6, we
factorized |S| = 8 → [3, 3]. The δout-factorization of |T | is
the shape of the shuffle result, such as [2, 3] in figure 5. The HD
shuffling graph is uniquely determined by these two shapes. The
definition stipulates some bounds that both serve to keep the size
of the graph and the fan-out and fan-in of the nodes bounded, at the
cost of increased iterations. One simple way to construct a valid
α-factorization is to select a minimal dimensionality r such that
αr ≥ n, and set all ni = α.

3.3 Hyper Partition Operator: Partitioning
by Dimension

Let [τ1, . . . , τr] be the δout-factorization of |T |. This generates
r iterations of the hyper partitioner. Iteration i ∈ {1, . . . , r} in-
creases the number of dimensions by one by appending a dimen-
sion of length τi. The operator computes the index of the interme-
diate file where a tuple belongs by computing the function:

P (k, i) =

(
k∏r

j=i+1 τj

)
mod τi

Each tuple starts with a known partition key k ∈ N|T | indicating
its target partition. At the beginning of shuffling, that is uncorre-
lated with its location. Then each iteration increases knowledge
about where that tuple is located by one dimension. The file a tuple
lands in corresponds to a single path from the root of the graph in
figure 5, which also corresponds to the sequence of P values up
to that point, culminating in the sequence [P (k, 1), . . . , P (k, r)].
Each color in the figure indicates a different path, and therefore a
different state of information. Note that τi is the fan-out, and by
definition τi ≤ δout. After r partition iterations, all the tuples in
any given file share the same value of k. Since the definition of the
δout-factorization of |T | guarantees that there are at least |T | dif-
ferent files after r iterations, that is sufficient to separate all values
of k.

3.4 Dimension Aggregation Operator: Merg-
ing by Dimension

The tuples destined for a target partition tj ∈ T can start out
scattered across all the source partitions si ∈ S. Let [σ1, . . . , σd]
be the δin-factorization of |S|. This gives us d iterations for the
dimension aggregator, which removes one dimension σi from the
shape of the intermediate rowset in each iteration i ∈ {1, . . . , d}.

Figure 6 shows the aggregation process from |S| = 8 source
partitions to a single target, with fan-in limit δin = 3, and δin-
factorization [3, 3]. Each σi ≤ δin in the factorization is used as
the fan-in of a vertex.

Aggregation does not lose any knowledge about where tuples
are located. That is because we only aggregate files with other files
that have the same state of knowledge about the destinations of the
tuples they contain.

3.5 Algorithm

Algorithm 1 Hyper Dimension shuffling
1: function HD SHUFFLE(S, T)
2: [τ1, . . . , τr]← δout-factorize(|T |)
3: [σ1, . . . , σd]← δin-factorize(|S|)
4: B0 ← reshape(S, [σ1, . . . , σd])
5: {i, j, k} ← {1, 1, 1}
6: for i ≤ r or j ≤ d do
7: if i ≤ r then
8: Bk ← hyperpartition(
9: Bk−1,

10: [σj , . . . , σd, τ1, . . . , τi])
11: i← i+ 1
12: else
13: Bk ← Bk−1

14: end if
15: if j ≤ d then
16: Bk ← dimensionaggregate(
17: Bk,
18: [σj+1, . . . , σd, τ1, . . . , τi−1])
19: j ← j + 1
20: end if
21: k ← k + 1
22: end for
23: T ← reshape(Bk−1, [|T |])
24: end function

The pseudocode of the HD shuffle algorithm, from source parti-
tions S to target partitions T , is presented in algorithm 1.

HD shuffle algorithm begins with computing a δout-factorization
of |T | into [τ1, . . . , τr] at line 2, and a δin-factorization of |S| into

1116

[3, 3]

×2
[3, 3, 2]

÷3

[3, 2]

×3
[3, 2, 3]

÷3
[2, 3]

Figure 7: Hyper Dimension Shuffle from |S| = 8 to |T | = 6 with δin = 3 and δout = 3

[σ1, . . . , σd] at line 3. To ensure that the size of the intermediate
vertices doesn’t exceed O(max(|S|, |T |)) during any data shuffle
iteration, the algorithm requires the additional constraint τi ≤ σi

for i ∈ {1, . . . ,min(r, d)−1}. It then utilizes the reshape operator
to map the sources S into the d-dimensional array [σ1, . . . , σd]
represented by B0, at line 4.

During iteration k, where 1 ≤ k ≤ r, we partition the data of
each vertex from the shaped rowset Bk−1 into τk output files using
the hyper partitioner, at line 8. The shaped rowset Bk is generated
from the shape of Bk−1 by adding a dimension of length τk.

During iteration k, where 1 ≤ k ≤ d, the dimension aggregator
collects σk files together into one, thereby removing one dimension
of length σk from Bk at line 16.

Since a partitioner that follows an aggregator uses the same
shape Bk of files as its input, we can combine the two operators
to be executed within a single process for efficiency.

After k−1 = max(r, d) iterations, the HD shuffle algorithm has
a resulting rowset Bk−1 of shape [τ1, . . . , τr]. Some of the files
can be empty, as the space can have holes depending on the δout-
factorization of |T |. However, according to the hyper partitioner,
the first |T | files will represent the union of all data that we started
in S. As such, we reshape Bk−1 into the 1-dimensional array [|T |]
and return that as our result, at line 23.

THEOREM 1. The Hyper Dimension shuffling algorithm, from
sources S to targets T with constant maximum fan-in δin and fan-
out δout, generates a graph of complexity |G| = |V | + |E| ∈
O(n logn), where n = max(|S|, |T |).

PROOF. Let the δout-factorization of |T | be [τ1, . . . , τr], and
the δin-factorization of |S| be [σ1, . . . , σd], with the additional
constraint that τi ≤ σi for i ∈ {1, . . . ,min(r, d)− 1}.

Since r ∈ O(log |T |) and d ∈ O(log |S|) and the algorithm has
max(r, d) iterations, then we have at most O(logn) iterations.

The number of vertices used during iteration k is upper bound by
the number of elements withinBk. As this multi-dimensional array
is reshaped at most twice during one iteration, we can consider the
maximum size of Bk as the complexity of vertices for a given k.

During iteration k ∈ {1, . . . ,min(r, d)}, the size of Bk is at
most:

|S| × τk ×
k−1∏
i=1

τi
σi
≤ |S| × τk ≤ δout × |S| ∈ O(n)

If r > d, then for iteration k ∈ {d+ 1, . . . , r} the size of Bk is at
most:

|S| ×
d∏

i=1

1

σi
×

k∏
i=1

τi ≤
k∏

i=1

τi ≤ δout × |T | ∈ O(n)

If r < d, then for iteration k ∈ {r + 1, . . . , d} the size of Bk is at
most:

|S| ×
k∏

i=r+1

1

σi
×

r∏
i=1

τi
σi
≤ |S| ×

k∏
i=r+1

1

σi
≤ |S| ∈ O(n)

Hence, during any iteration of the algorithm, the number of used
vertices is O(n). The total number of vertices in the graph is the
product of the number of iterations and the number of vertices used
within an iteration. Hence |V | ∈ O(n logn).

Each vertex in the graph has a constant maximum fan-in of δin
and fan-out of δout. Then, we have that:

|E| ≤ (δin + δout)× |V | ∈ O(n logn)

Therefore, |G| = |V |+ |E| ∈ O(n logn).

3.6 Example
We illustrate the HD shuffle algorithm through an example

shown in figure 7. In this example we shuffle [3, 3] to [3, 2],
and show how the partitioning tree in figure 5 interleaves with the
aggregation tree in figure 6. We shuffle data from |S| = 8 source
partitions to |T | = 6 target partitions, using a maximum fan-in and
fan-out of value δin = δout = 3.

When we interleave partitioners and aggregators, we need not
materialize after aggregation. Instead, the data is piped straight into
the next partitioner. This diagram emphasizes this by representing a
vertex as a circle©whether it contains an aggregator, a partitioner,
or both. A square � represents an the intermediate file that does
need to be sent to another vertex.

The algorithm computes the δout-factorization of |T | as [τ1, τ2]
= [2, 3] and the δin-factorization of |S| as [σ1, σ2] = [3, 3]. Every
tuple has a partitioning key with value in N6 that indicates the final
target partition it belongs to. We can view these key values in base
3, to align the actions taken by the hyper partitioner on dimensions
with the values of the digits within the keys.

In the first iteration, each of the 8 source vertices partition their
data into 2 intermediate files labeled by different colors indicating
the value of P(k,1) of the tuples they contain. This creates a total
of 16 physical files of shape [σ1, σ2, τ1] = [3, 3, 2]. Then, the

1117

dimension aggregator removes the σ1 dimension by combining 3 of
the files into one collection of tuples, generating new intermediate
vertices of shape [σ2, τ1] = [3, 2]. Each vertex aggregates a distinct
set of files that all have the same set of final destinations.

The next shuffling iteration proceeds by having the same vertices
that aggregated utilize the hyper partitioner to each produce 3
intermediate files, where each file corresponds to a fixed key value
in N6. That results in 18 files with shape [σ2, τ1, τ2] = [3, 2, 3].

Finally, the dimension aggregator uses a 2-dimensional shape
[τ1, τ2] = [2, 3] to remove the σ2 dimension, by combining the
3 files for each unique partitioning key into a single file. Thus,
all the tuples that share the same target partitioning key value are
together in their own target file.

4. HD SHUFFLE IN SCOPE
HD shuffle is in production in the SCOPE big data analytics en-

gine both for batch and streaming jobs. SCOPE’s Job Manager
(JM) inherits from Dryad [21] the dimensional model of partitioned
processing. Edges in the data flow graph are connected according
to mappings between the upstream and downstream vertices. We
implement the reshape operator as such a logical mapping. Dimen-
sion aggregator is a variation on SCOPE’s merger that reads data
from upstream vertices in the aggregating dimension. The hyper
partitioner is a SCOPE partitioner extended to support the recur-
sive hyper partitioning function.

4.1 SCOPE Execution Model
SCOPE is part of the Cosmos big data storage and analytics plat-

form. It is used to analyze massive datasets by integrating tech-
niques from paralleled databases [11] and MapReduce systems [7,
17] with a SQL-like declarative query language called SCOPE. A
SCOPE script is compiled into a query execution plan using a cost-
based optimizer derived from Cascades [20]. A query execution
plan is a DAG of parallel relational and user-defined operators.
Graph fragments are grouped into pipelines, and a DAG of data
flow stages is superimposed on the query execution plan. This stage
graph is then expanded by JM into the full graph of vertices and
scheduled on the available resources in Cosmos clusters. In batch
mode, channels are blocking edges that write a file to local storage,
ready for downstream vertices to read remotely. Exploiting the pull
execution model and blocking to write to local SSD costs time, but
gives batch jobs high resiliency and fault tolerance, since compute
resources can be acquired whenever they become available, while
failed vertices can be rerun.

Figure 8a shows a stage graph of a simple query which reads
data from unstructured inputs and outputs into a structured stream
with a specific partitioning property. There are two stages, SV1 and
SV2, with two operators in each. The query is first translated into
a logical tree containing two operators: the extractor and the out-
putter. The optimizer generates an execution plan with a additional
partitioner and merger, physical operators that together implement
shuffle, enforcing the partitioning required downstream. The parti-
tioning S of the input data cannot satisfy the required partitioning
T of the structured stream. The degree of parallelism (abbreviated
as DOP), the number of independent executions (vertices) of each
stage is determined by the optimizer. In this case the DOP of the
first stage could be a function of the data size of the input, and
the DOP of the second stage could be inherited from the structured
stream’s required partitioning. In the naı̈ve shuffling model from
Figure 1, each downstream merger depends on every upstream par-
titioner. Scaling out the data processing leads to high fan-out and
fan-in. The HD shuffle implementation as in figure 8b trades off

Figure 8: SCOPE execution graphs

path-length for fixed fan-out and fan-in. Another iteration of parti-
tion and merge can be added to scale out further.

The HD shuffle algorithm is used to replace the existing index-
based partitioning and dynamic aggregation techniques [13] which
are originally proposed to address high fan-out and fan-in in
SCOPE. Index-based partitioning is triggered when the output par-
titions exceeds the system fan-out limit while dynamic aggregation
is triggered when the input partitions exceeds the system fan-in
limit. Using the same criteria, HD shuffle is triggered when the
system fan-out and fan-in limits are exceeded by the data shuffle
operation. In SCOPE, the best choice of fan-out and fan-in limits
are determined by several factors. Both reads and writes reserve
I/O buffer memory for each stream. By default, the unit of Cosmos
computing resource (called a token) has 6GB DDR4-2400 heap
memory, each input stream reserves 16MB, and each output stream
reserves 4MB. This creates an upper bound of fan-in < 375 and
fan-out < 1500 for a one-token container. Another factor is the
multiplication of the probability of connection failures observed in
Cosmos clusters. In practice, when the cluster is experiencing load
and maintenance outages at the high end of normal range, jobs with
fan-in in the thousands stop making progress. Currently, we use
250 as the default fan-in limit and 500 as the default fan-out limit
for HD Shuffle in SCOPE.

HD shuffle can increase path length because r, the number of
iterations, may increase as needed, and each iteration adds a layer
of tasks rearranging and materializing the same data. However,
HD shuffle only requires two iterations of partition and aggregation
stages on SCOPE’s current workload, given the system fan-out
and fan-in limits, which is no more than the current dynamic
aggregation approach. So for SCOPE, HD Shuffle is a pure
win. In other systems, some shuffle algorithms require no extra
data materialization by utilizing a sliding aggregating window for
the input channels shown in figure 3. For those systems, there
is a trade-off between extra data materialization of HD shuffle
and the overhead of excessive remote fetches and data spilling
of the intermediate aggregating results. We demonstrate this
overhead is dominating in Spark and HD shuffle improves the
shuffle performance through our experiments.

1118

4.2 SCOPE Optimizations for HD Shuffle
HD shuffle takes advantage of several optimizations in SCOPE

to improve scheduling efficiency and query plan quality.

4.2.1 Job Scheduling Efficiency
When the inputs and outputs of a shuffle are not whole multiples

of fan-in and fan-out, the α-factorization generates a sparse array
with unused slots. We leverage dummy vertex optimization to
support sparse array scheduling. During job graph construction,
some mergers will have missing inputs, which we represent as
dummy channels. During execution, unnecessary connections are
ignored and unnecessary vertices are skipped.

Another optimization that we use is group-aware scheduling.
For the naı̈ve shuffling model, the downstream merger cannot be
executed until all upstream partitioners complete. This introduces
long tail effects on job execution where all downstream vertices are
stuck waiting for a few upstream stragglers. HD shuffle has a key
advantage: the downstream merger depends only on the partitioners
with the same value in one dimension. Thus the barrier between
successive stages is scoped down to that dimension, and waves can
be scheduled independently.

4.2.2 Removing Unnecessary Stage Breaks
HD shuffle as described introduces a reshape operator at the

beginning and end. The reshape operator is just a renumbering
of channels that does not need to move any data. We observe that
the reshape operator introduces an extra vertex boundary in some
jobs incurring additional data materialization. Materialization just
for bookkeeping purposes would be unfortunate. In the example
shown in figure 8b, the reshape operators would occur in the
middle of stages SV1 and SV3, breaking them in half. We solve
this by reordering reshape operators with the other operators in
the execution graph. In the example, the reshape operators are
moved after the first hyper partitioner and before the last dimension
aggregator, avoiding any additional stage breaks.

4.2.3 Repetition of Data Reducing Operations
It is efficient to reduce data early before data movement, so

SCOPE has built support for local GroupByAggregate, user-defined
recursive reducer, and TopNPerGroup. Since HD shuffle moves
data multiple times, there is an opportunity to apply the operation
each time. For example, if a sum is desired, once one round of ag-
gregation is done, some rows in the same group may have moved
to the same vertex, so a round of local sums there can reduce data
further before sending the rows to their destination (where another
sum will be done).

We have not found enough evidence that using such mechanism
would make an appreciable improvement so we have not enabled it
yet for HD shuffle.

4.3 StreamSCOPE Compatibility
The naı̈ve data shuffle model prevents scaling to the needs

of SCOPE’s largest streaming jobs. Two key requirements of
streaming applications are continuous data processing and fast
recovery from faults and stragglers [27]. For continuous data
processing, SCOPE implements a variant with streaming channels.
For fast recovery, SCOPE checkpoints all channels in globally
addressable highly-available storage. The memory requirements
of sorted merger with streaming input channels imposes a hard
constraint on fan-in. Meanwhile, checkpoints built on the quadratic
partitioning intermediate files causes excessive small writes.

The HD shuffle algorithm is a key enabler for the production
SCOPE streaming pipelines. The fan-in limit, which guarantees

the maximum number of upstream vertices for dimension merger,
allows tight system control over the memory used by streaming
channels. The number of global files written by checkpoints of the
hyper partitioners can be tuned by choosing the proper partition
dimension constrained by the fan-out limit. The flexibility to
choose different dimension lengths of the α-decomposition allows
for different heuristics to balance the number of intermediate
vertices and the workloads. When the number of recursive partition
and aggregation iterations is held constant, the number of vertices
in the streaming job is linear in the number of input and output
partitions. Compared to the naı̈ve shuffle, HD shuffle constrains the
dependency between a node and its inputs to a single dimension, so
it is less expensive to recover from faults and stragglers. SCOPE is
now able to support streaming jobs with |S| = |T | = 2000.

5. EVALUATION
We have implemented the Hyper Dimension Shuffle algorithm

in the SCOPE [13] language (referred to as SCOPE+HD in this
section), and deployed it into the production Cosmos platform used
inside Microsoft. The evaluation is performed for both synthetic
benchmarks and production workloads.

The unit of computing resource allocated in Cosmos clusters is a
token, representing a container composed of 2× Xeon E5-2673
v4 2.3GHz vCPU and 6GB DDR4-2400 memory, on a ma-
chine with a 40Gb network interface card. A task must start by
acquiring a token and hold that token through its completion. The
job parallelism, the number of concurrent tasks, is constrained by
the number of tokens allocated to the job.

5.1 Synthetic Benchmark Evaluation
We use the TPC-H [6] benchmark for the synthetic evaluation

and perform the evaluation for two different workloads: data
shuffle jobs and TPC-H benchmark queries.

5.1.1 Scaling Input and Output Partitions
For this experiment, data is generated for TPC-H scale 103 (1

TB), with the LINEITEM table partitioned by the L ORDERKEY
column. To illustrate a large shuffling graph on a small payload, we
read the L PARTKEY column from the input table and project away
the other columns. We repartition the data on L PARTKEY column
to produce the output table. The maximum fan-out and fan-in limits
are set as δout = δin = 500. Each job uses 500 tokens. We
perform two tests to scale the input and output partitions separately
to better understand the performance impacts. For scaling the input
partitions, we vary the number of source partitions |S| from 5×103
to 200×103 incrementally by 5×103, while maintaining a constant
number of target partitions |T | = 5 × 103, and vice versa for
scaling the output partitions. Three important metrics are recorded:
1. the total number of tasks performed in the job; 2. the end-to-end
job latency; 3. the total compute time calculated by accumulating
inclusive CPU utilization time reported by all SCOPE operators.

Figures 9a, 9c and 9b show what happens as the number of input
partitions increases. While SCOPE does not reasonably scale past
|S| = 4 × 104 partitions, we observe that SCOPE+HD can easily
go up to |S| = 2 × 105 partitions. The number of tasks in both
algorithms increases linearly with the number of input partitions,
but SCOPE’s slope is |T |/250 and SCOPE+HD’s slope is 1. In
SCOPE+HD, the number of tasks in the first round of partitioning
is |S|, while the number of tasks in each subesequent round is fixed.

While the number of tasks directly affects the end-to-end job
latency and the total compute time, it is not the only factor. For
example, when |S| = 1.5 × 104, SCOPE uses ≈ 1.8 × 105 tasks
for the entire job, and has a job latency of ≈ 8.6× 103 seconds. In

1119

0 0.5 1 1.5 2
·1050

2

4

·105

Number of source partitions

N
um

be
ro

fT
as

ks

SCOPE
SCOPE+HD

(a)

0 0.5 1 1.5 2
·1050

0.5

1

·107

Number of source partitions

To
ta

lC
om

pu
te

Ti
m

e
(s

)

SCOPE
SCOPE+HD

(b)

0 0.5 1 1.5 2
·1050

2

4

·104

Number of source partitions

L
at

en
cy

(s
)

SCOPE
SCOPE+HD

(c)

0 0.5 1 1.5 2
·1050

2

4

·105

Number of target partitions

N
um

be
ro

fT
as

ks

SCOPE
SCOPE+HD

(d)

0 0.5 1 1.5 2
·1050

0.5

1

·107

Number of target partitions

To
ta

lC
om

pu
te

Ti
m

e
(s

)
SCOPE

SCOPE+HD

(e)

0 0.5 1 1.5 2
·1050

1

2

3

·104

Number of target partitions

L
at

en
cy

(s
)

SCOPE
SCOPE+HD

(f)

Figure 9: TPC-H scale 103, δin = δout = 500

0 0.5 1 1.5 2
·1050

5

10

15
·103

Number of source partitions

To
ta

ls
hu

ffl
e

w
ri

te
tim

e
(s

)

Spark
Spark+HD

(a)

0 0.5 1 1.5 2
·1050

2

4

6

8
·105

Number of source partitions

To
ta

ls
hu

ffl
e

re
ad

tim
e

(s
)

Spark
Spark+HD

(b)

0 0.5 1 1.5 2
·1050

5

10

15
·102

Number of source partitions

L
at

en
cy

(s
)

Spark
Spark+HD

(c)

0 0.5 1 1.5 2
·1050

2

4

6

·103

Number of target partitions

To
ta

ls
hu

ffl
e

w
ri

te
tim

e
(s

)

Spark
Spark+HD

(d)

0 0.5 1 1.5 2
·1050

2

4

·105

Number of target partitions

To
ta

ls
hu

ffl
e

re
ad

tim
e

(s
)

Spark
Spark+HD

(e)

0 0.5 1 1.5 2
·1050

2

4

6

·103

Number of target partitions

L
at

en
cy

(s
)

Spark
Spark+HD

(f)

Figure 10: TPC-H scale 103, δin = δout = 500

1120

contrast, when |S| = 2×105, SCOPE+HD uses a larger number of
tasks of≈ 2.1×105, but shows a smaller job latency of≈ 2.5×103
seconds. This is achieved by 1). using faster operators without the
generation of a sorted indexed intermediate file, which translates in
faster tasks; and 2). not fully partitioning a source in one iteration,
which yields a higher data payload to connection ratio.

Figures 9d, 9f and 9e show that varying the number of target
partitions |T | results in similar behavior to what we see when we
vary the number of source partitions.

We also look at the effect of scaling partition numbers on systems
that limit the simultaneous count of opened connections, and only
use one task per target partition to merge shuffled results, such as in
figure 3. To that end, we implement HD shuffle in Spark 2.3.0 and
use an HDFS shim layer on top of the Cosmos storage system. A
session consisting of 500 executors is created with each executor
matching a token. We run the same experiments as the ones
described in Section 5.1.1 with baseline Spark and Spark+HD (we
use δout = δin = 500 and r = 2 for Spark+HD). We compare the
shuffling performance between Spark and Spark+HD and record
three important metrics: total shuffle write time, total shuffle read
time, and end-to-end job latency.

Figures 10a, 10b and 10c show the three metrics of scaling input
partitions. We experience high job failure rate for baseline Spark
when the job scales past |S| = 16 × 104 input partitions. As the
downstream merger requires data from all upstream partitioners,
the multiplication of the probability of remote fetch failures due
to unavailability of upstreams, frequently as a result of local file
missing and network connection failures, becomes non-negligible.
With the increase of upstream partitioners, the job will eventually
fail due to too many retries for the downstream merger. In contrast,
the dimension merger in HD shuffle only requires data from at most
δin upstream tasks and it can scale up to |S| = 2 × 105 partitions
without any job failures observed. In terms of performance,
Spark+HD achieves an almost constant running time reported by
all three metrics, but baseline Spark has a linear increase of running
time with the increase of input partitions. HD shuffle improves both
reliability and performance for Spark.

Figures 10d, 10e and 10f show the effects of varying the number
of target partitions |T |, while maintaining a constant number
of source partitions. The same trend is found for the shuffle
write and read metrics. However, the end-to-end job latency
increases for both baseline Spark and Spark+HD. The job latency
of Spark+HD improves by only about 15% compared with baseline
Spark but shows a similar slope. This can be explained by a
new bottleneck other than shuffling: the time spent creating the
partitioned Parquet files in Cosmos global store. The Cosmos
storage layer is designed with metadata operations that operate on a
set of files. While SCOPE is able to leverage this implementation,
Spark uses the metadata operations native to HDFS, through the
HDFS shim layer. We observe that the per file metadata operation
cost [2], in the Cosmos store, associated with the finalization of the
increasingly partitioned output parquet file dominates job latency,
when compared to the constant cost paid for the fixed partitioned
count output parquet file in figure 10c.

5.1.2 Scaling Shuffled Data
Next, we study how the data shuffle algorithm scales when the

amount of data to be shuffled increases while keeping per partition
data size constant. We run jobs that use maximum fan-out and fan-
in limits of δout = δin = 250 and 20GB of data per input and
output partition. The input data, the working set for the jobs, is the
unordered data generated by the DBGEN tool for the LINEITEM
table. This working set is then shuffled, to be partitioned by the

L ORDERKEY column. The data scalability tests are performed in
two ranges since the original shuffle algorithm of SCOPE doesn’t
scale well beyond 100 TB: 1. SCOPE vs. SCOPE+HD: TPC-H
scales ranging from 20 × 103 (20 TB) to 100 × 103 (100 TB)
using 500 tokens; 2. SCOPE+HD only: TPC-H scales ranging
from 20× 104 (200 TB) to 100× 104 (1 PB) using 2000 tokens.

For the first scalability test (20 TB ∼ 100 TB), SCOPE has a
number of intermediate aggregator tasks quadratic in the TPC-H
scale, as shown in figure 11a. Meanwhile, SCOPE+HD stays at a
linear pattern with one recursive partitioning and aggregating iter-
ation. However, the costs of scheduling and running intermediate
aggregators which read and write tiny amount of data is overshad-
owed by those of the upstream partitioners and downstream merg-
ers, as the task execution cost is dominated by the amount of data
that a task processes. Thus, SCOPE is able to achieve a linear pat-
tern in both latency and total compute time when the volume of
data processed is correlated with the target partitioning count, as
observed in figures 11c and 11b. SCOPE+HD, however, still yields
a net benefit over SCOPE across these metrics, through avoiding
the sort in SCOPE’s index partitioner, reduced task scheduling, and
reduced network connection overhead.

Finally, we examine the execution complexity for HD shuffle
algorithm when the amount of shuffled data reaches petabyte levels.
Figures 12a, 12c and 12b show the results for the SCOPE+HD
jobs which shuffle the LINEITEM table in TPC-H scaling from
200 TB to 1 PB – the quadratic nature of SCOPE prohibits it from
scaling gracefully when the number of partitions grows by an order
of magnitude. We observe a linear pattern for the SCOPE+HD
jobs, with the cost dominated by data transfer. It is also worth
mentioning that no extreme stragglers of any task or increase of
task failures have been observed in multiple runs of the 1 PB scale
data cooking jobs. By providing tight guarantees on fan-in and fan-
out, HD shuffle algorithm has proved to scale linearly in the number
of tasks and computing resources, with room to go well beyond the
1 petabyte level.

5.1.3 TPC-H Benchmark Queries
We run all 22 TPC-H benchmark queries on 100 TB TPC-H

dataset using 1000 tokens to prove performance gains resulting
from HD shuffle algorithm. The raw TPC-H data are first cooked
into structured streams. Here, we use the following partitioning
specification for the TPC-H dataset:

• The partitioning of the LINEITEM and ORDERS tables are
aligned. The data are hash distributed by ORDERKEY values
into 4000 partitions.

• The partitioning of the PARTSUPP and PART tables are
aligned. The data are hash distributed by PARTKEY values
into 1000 partitions.

• The CUSTOMER table is hash distributed by CUSTKEY into
500 partitions, and the SUPPLIER table is hash distributed
by SUPPKEY into 100 partitions.

There are 8 out of 22 queries either requiring no data shuffle
operation or requiring data shuffle operation with the input and
output partitions below the set maximum fan-out and fan-in limits
of δout = δin = 250. These queries are excluded from the
comparison results as they don’t trigger HD shuffle algorithm.
The query performance results are shown in figure 13. Overall,
HD shuffle algorithm achieves on average 29% improvement on
the end-to-end job latency (figure 13b) and 35% improvement on
the total compute time (figure 13a) for the 14 TPC-H queries.
Particularly, HD shuffle algorithm achieves 49% improvement on

1121

0.2 0.4 0.6 0.8 1
·1050

2

4

6

8

·104

TPC-H scale

N
um

be
ro

fT
as

ks

SCOPE
SCOPE+HD

(a)

0.2 0.4 0.6 0.8 1
·105

2

4

6

8

·106

TPC-H scale

To
ta

lC
om

pu
te

Ti
m

e
(s

)

SCOPE
SCOPE+HD

(b)

0.2 0.4 0.6 0.8 1
·105

0.5

1

1.5

·104

TPC-H scale

L
at

en
cy

(s
)

SCOPE
SCOPE+HD

(c)

Figure 11: 20GB per partition, δin = δout = 250

0.2 0.4 0.6 0.8 1
·106

0.5

1

·105

TPC-H scale

N
um

be
ro

fT
as

ks

SCOPE+HD

(a)

0.2 0.4 0.6 0.8 1
·106

0.5

1

·108

TPC-H scale

To
ta

lC
om

pu
te

Ti
m

e
(s

)

SCOPE+HD

(b)

0.2 0.4 0.6 0.8 1
·106

2

4

6

·104

TPC-H scale

L
at

en
cy

(s
)

SCOPE+HD

(c)

Figure 12: 20GB per partition, δin = δout = 250

Q3 Q5 Q7 Q8 Q9
Q10 Q13 Q14 Q15 Q17 Q18 Q19 Q20 Q21

0.5

1

1.5

2

2.5

3

3.5

4

4.5

·106

To
ta

lC
om

pu
te

Ti
m

e(
s)

SCOPE

SCOPE+HD

(a)

Q3 Q5 Q7 Q8 Q9
Q10 Q13 Q14 Q15 Q17 Q18 Q19 Q20 Q21

1

2

3

4

5

6

·103

L
at

en
cy

(s
)

SCOPE

SCOPE+HD

(b)

Figure 13: TPC-H scale 105

1122

17
-10

-01

17
-10

-06

17
-10

-11

17
-10

-16

17
-10

-21

17
-10

-26

17
-10

-31

17
-11

-05

17
-11

-10

17
-11

-15

17
-11

-20

17
-11

-25

17
-11

-30

17
-12

-05

17
-12

-10

17
-12

-15

17
-12

-20

17
-12

-25

17
-12

-30

18
-01

-04

18
-01

-09

18
-01

-14

18
-01

-19
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

17
-10

-01

17
-10

-06

17
-10

-11

17
-10

-16

17
-10

-21

17
-10

-26

17
-10

-31

17
-11

-05

17
-11

-10

17
-11

-15

17
-11

-20

17
-11

-25

17
-11

-30

17
-12

-05

17
-12

-10

17
-12

-15

17
-12

-20

17
-12

-25

17
-12

-30

18
-01

-04

18
-01

-09

18
-01

-14

18
-01

-19
0

20

40

60

80

100

120
A

vg
jo

b
co

m
pu

te
tim

e
(h

)

N
um

be
ro

fj
ob

s

SCOPE

SCOPE+HD
Job count

Figure 14: Improvement validation for recurring jobs

18
-03

-08

18
-03

-13

18
-03

-18

18
-03

-23

18
-03

-28

18
-04

-02

18
-04

-07
0%

1%

2%

3%

4%

5%

18
-03

-08

18
-03

-13

18
-03

-18

18
-03

-23

18
-03

-28

18
-04

-02

18
-04

-07
0%

2%

4%

6%

8%

C
om

pu
te

Ti
m

e

Jo
bs

us
in

g
SC

O
PE

+H
D

Figure 15: Cluster savings

the end-to-end job latency and 53% improvement on the total
compute time for Q5, which is the largest performance gain among
all queries.

We also observe that the end-to-end job latency and the total
compute time are not always linearly dependent. For example, the
total compute time of Q20 improves by 35% with HD shuffle algo-
rithm but the end-to-end job latency only improves by 3%. It is be-
cause the data shuffle operation is not in the longest running path in
the query execution graph which determines the job latency. Thus,
the improvement from HD shuffle algorithm doesn’t reflect on the
the job latency for Q20. Another example is Q10 where the end-to-
end job latency improves by 32% using HD shuffle algorithm but
its total compute time degrades by 4%. The compute time degrada-
tion is a result of materializing more intermediate data. HD shuffle
algorithm materializes all input data in the recursive partition and
aggregate stages. In comparison, the dynamic aggregators are only
scheduled for the input partitions over the fan-in limit and there-
fore materialize less data. For data shuffle operation with the input
partitions slightly over the fan-in limit, the benefit of less data mate-

rialization overshadows the cost of extra sort operation for SCOPE
without HD shuffle. However, the end-to-end job latency improves
significantly due to the usage of non-blocking operator in HD shuf-
fle algorithm which yields high scheduling efficiency. HD shuffle
algorithm relieves the long tail effect caused by the stragglers of
the partitioners which in turn improves the job latency.

5.2 Production Evaluation
Beyond the benchmark evaluation, HD shuffle algorithm also

proves its success on real production workloads in SCOPE on Cos-
mos clusters, the internal big data analytics system at Microsoft.
According to the SCOPE utilization statistics, data shuffling is the
third frequently used operation and the most expensive physical op-
erator in production workloads. The original data shuffle model in
SCOPE utilizes the index-based partitioning and dynamic aggrega-
tion techniques. The former technique requires the partitioned data
to be sorted in order to generated the indexed file and the latter in-
troduces the quadratic number of intermediate aggregators. Both
lead to inefficient utilization of compute resources and limits the
amount of data which can be shuffled. To address these limita-
tions, HD shuffle algorithm is implemented in SCOPE to provide
an approximately linear performance guarantee when the shuffled
data size increases. Here, we demonstrate the HD shuffle algo-
rithm performance on real workloads through two evaluations 1: 1.
improvement validation for preview period; 2. efficiency improve-
ment summary of HD shuffle feature after its general availability
on all production clusters.

The improvement evaluation was performed from 12/16/2017 to
01/16/2018 on one of the production clusters for Microsoft Office
team. By utilizing the workload analysis tool [23], we find the
HD shuffle feature on that cluster enhances the performances of
26 recurring pipelines. Recurring pipeline schedules the same job
periodically to process data from different time frames. All these
candidate jobs contain one or more large data shuffling operations
where the input and output partitions are beyond the system fan-
in and fan-out limits. The performance evaluation result shown
in figure 14 provides the performance comparison in terms of

1The production evaluation is not performed through A/B testing
due to resource constraints, and the improvement is estimated based
on the recurring job history.

1123

the average compute hours (one compute hour means executing
with one token for one hour) for the jobs from these 26 recurring
pipelines before and after HD shuffle feature is enabled. As we
highlighted in the figure, by enabling the HD shuffle feature the
average compute hours for the jobs from these recurring pipelines
reduce over 20% and there are around 60 jobs scheduled everyday
which yields 3% token savings for that cluster.

SCOPE announced general availability of HD shuffle feature
in March 2018. For the efficiency summary, we collect all jobs
which utilized HD shuffle feature from 03/08/2018 to 04/07/2018
and compare the total compute hours of these jobs with the 75
percentile of their historic runs. The accumulated compute hour
savings from these jobs are shown in figure 15. HD shuffle feature
contributes to 4% cluster-wide savings by improving 7% of jobs
which are enormous improvements for these jobs. For example,
one of the shuffling-intensive production job has its total compute
hours reduced from 8129 hours to 3578 hours (-56%) and its end-
to-end job latency reduced from 5 hours to 3 hours. It is not
surprising at all that HD shuffle is one of the largest efficiency
improvement features which frees up over thousands of machines
everyday.

6. RELATED WORK
In the background section, we briefly describe some techniques

widely embraced by state of the art distributed systems [1, 13, 26,
29] to improve data shuffle operations. A comprehensive descrip-
tion of recently proposed techniques and optimizations follows.

SCOPE [13, 29] proposes two techniques to improve the scala-
bility of data shuffle operations: index-based partitioning and dy-
namic aggregation. Index-based partitioning is a runtime opera-
tion which writes all partitioned outputs in a single indexed file. It
converts the enormous random I/O operations to sequential writ-
ing and reduces the excessive number of intermediate files. On the
other hand, the partition task requires a stable sort operation on the
partition key column to generate the index file, which is an added
expense and blocking operation. Dynamic aggregation is used to
address the fan-in issue for mergers when the number of source in-
puts is large. The job scheduler [12] uses several heuristics to add
intermediate aggregators at runtime dynamically, from which the
downstream merger operator would be scheduled subsequently to
combine the partial merged results to accrue the final ones. It guar-
antees that the amount of required memory buffer and concurrent
network connections of any merger can be constrained at a desired
level. It can also achieve load balancing, data locality and fast re-
covery for the intermediate aggregators. Despite these benefits, dy-
namic aggregation introduces quadratic intermediate aggregators,
which causes significant scheduling overhead.

Hadoop and its relatives [1, 7, 18] have used similar techniques
to write a singled indexed file and perform intermediate aggrega-
tions in the downstream mergers. Aligned with the purpose of this
paper, we would like to highlight some optimizations on top of
Hadoop which improve its data shuffle performance. Sailfish [25]
is built around the principle of aggregating intermediate data and
mitigating data skew on Hadoop by choosing the number of reduce
tasks and intermediate data partitioning dynamically at runtime. It
enables network-wide data aggregation using an abstraction called
I-files which are extensions of KFS [5] and HDFS [4] to facili-
tate batch transmission from mappers to reducers. By using I-files
and enabling auto-tuning functionality, Sailfish improves the shuf-
fle operation in Hadoop. However, Sailfish is sensitive to strag-
glers of the long running reduce tasks and fragile to merger fail-
ures due to high revocation cost. Hadoop-A [22] improves Hadoop
shuffle by utilizing RDMA (Remote Direct Memory Access) over

InfiniBand. It addresses the two critical issues in Hadoop shuf-
fle: (1) the serialization barrier between shuffle/merge and reduce
phases and (2) the repeated merges and disk access. To eliminate
the serialization overhead, a full pipeline is constructed to overlap
the shuffle, merge and reduce phases for ReduceTasks, along with
an alternative protocol to facilitate data movement via RDMA. To
avoid repeated merges and disk access, a network-levitated merge
algorithm is designed to merge data. However, the reduce tasks
buffer intermediate data in memory, which enforces a hard scala-
bility limit and incurs high recovery cost for merging failures. Op-
timizing the shuffling operations for distributed systems built with
emerging hardware, such as NUMA machines is also explored in
recent research [24]. The evidence shows that designing hardware-
aware shuffle algorithms provides great opportunities to improve
performance for distributed systems.

In Spark [26] and other related systems [8, 9, 14, 19] that rely on
efficient in-memory operators, the cost of data shuffle using slow
disk I/O operations is magnified. The proposed optimizations [16,
28] focus on providing efficient partial aggregation of the interme-
diate data for the map tasks. [16] has introduced shuffle file consol-
idation, an additional merge phase to write fewer, larger files from
the map tasks to mitigate the excessive disk I/O overhead. Shuffle
file consolidation refers to maintaining a single shuffle file for each
partition, which is the same as the number of Reduce tasks, per core
rather than per map task. In other words, all Map tasks running
on the same core write to the same set of intermediate files. This
significantly reduces the number of intermediate files created by
Spark shuffle resulting in better shuffle performance. Despite the
simple and effective idea, it remains unclear about the failure re-
covery mechanism and the way to handle stragglers of map tasks.
Riffle [28] on the other hand proposes an optimized shuffle ser-
vice to provide machine level aggregation, which efficiently merge
partitioned files from multiple map tasks scheduled on the same
physical machine. The optimized shuffle service significantly im-
proves I/O efficiency by merging fragmented intermediate shuffle
files into larger block files, and thus converts small, random disk
I/O requests into large, sequential ones. It also develops a best-
effort merge heuristic to mitigate the delay penalty caused by map
stragglers. Riffle keeps both the original, unmerged files as well as
the merged files on disks for fast recovery from merging failures.
However, the merging operations need to provide read buffer for all
intermediate files which becomes a system overhead. Rescheduling
failed or slow map tasks on different machines will require merging
the intermediate files from scratch. Slow map stragglers still have
a long tail effect on job latency.

7. CONCLUSION
Motivated by the scalability challenges of data shuffle operations

in SCOPE, we present an innovative data shuffle algorithm called
Hyper Dimension Shuffle. By exploiting a recursive partitioner
with dimension merger, HD shuffle yields quasilinear complexity
of the shuffling graph with tight guarantees on fan-in and fan-out.
It improves the current data shuffle model in SCOPE by using
faster operators and avoiding the quadratically increasing shuffling
graph. Based on our experiments, HD shuffle stands out among the
current data shuffle algorithms through its competitive advantage in
handling data shuffle operations at petabyte scale with remarkable
efficiency for both synthetic benchmarks and practical application
workloads.

8. REFERENCES
[1] Apache Hadoop. https://hadoop.apache.org/.

1124

https://hadoop.apache.org/

[2] Apache Spark. https://spark.apache.org/.
[3] Apache Tez. https://tez.apache.org/.
[4] Hadoop distributed filesystem.

http://hadoop.apache.org/hdfs.
[5] Kosmos distributed filesystem.

http://kosmosfs.sourceforge.net/.
[6] TPC-H specification.

http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-h_v2.17.3.pdf.

[7] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,
A. Silberschatz, and A. Rasin. Hadoopdb: An architectural
hybrid of mapreduce and dbms technologies for analytical
workloads. PVLDB, 2(1):922–933, 2009.

[8] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari,
and I. Stoica. Blink and it’s done: Interactive queries on very
large data. PVLDB, 5(12):1902–1905, 2012.

[9] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: Queries with bounded errors and
bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 29–42, New York, NY, USA, 2013.
ACM.

[10] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or,
J. Rosen, I. Stoica, P. Wendell, R. Xin, and M. Zaharia.
Scaling spark in the real world: Performance and usability.
PVLDB, 8(12):1840–1843, 2015.

[11] J. A. Blakeley, P. A. Dyke, C. Galindo-Legaria, N. James,
C. Kleinerman, M. Peebles, R. Tkachuk, and V. Washington.
Microsoft sql server parallel data warehouse: Architecture
overview. In M. Castellanos, U. Dayal, and W. Lehner,
editors, Enabling Real-Time Business Intelligence, pages
53–64, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[12] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. In Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 285–300, Berkeley, CA,
USA, 2014. USENIX Association.

[13] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

[14] B. Chandramouli, R. C. Fernandez, J. Goldstein, A. Eldawy,
and A. Quamar. Quill: Efficient, transferable, and rich
analytics at scale. PVLDB, 9(14):1623–1634, 2016.

[15] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford.
Spanner: Google’s globally-distributed database. ACM
Trans. Comput. Syst., 31(3):8:1–8:22, Aug. 2013.

[16] A. Davidson and O. Andrew. Optimizing shuffle
performance in spark. In Tech. Rep, University of California,
Berkeley-Department of Electrical Engineering and
Computer Sciences, 2013.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &

Implementation - Volume 6, OSDI’04, pages 10–10,
Berkeley, CA, USA, 2004. USENIX Association.

[18] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a yellow elephant run like
a cheetah (without it even noticing). PVLDB,
3(1-2):515–529, 2010.

[19] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: Fast data analysis using
coarse-grained distributed memory. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 689–692, New
York, NY, USA, 2012. ACM.

[20] G. Graefe. The cascades framework for query optimization.
Data Engineering Bulletin, 18, 1995.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
Distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[22] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,
H. Wang, H. Subramoni, C. Murthy, and D. K. Panda. High
performance rdma-based design of hdfs over infiniband. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 35:1–35:35, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[23] A. Jindal, S. Qiao, H. Patel, Z. Yin, J. Di, M. Bag,
M. Friedman, Y. Lin, K. Karanasos, and S. Rao.
Computation reuse in analytics job service at microsoft. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, pages 191–203, New
York, NY, USA, 2018. ACM.

[24] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman.
Numa-aware algorithms: the case of data shuffling. In CIDR,
2013.

[25] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov,
and D. Reeves. Sailfish: A framework for large scale data
processing. In Proceedings of the Third ACM Symposium on
Cloud Computing, SoCC ’12, pages 4:1–4:14, New York,
NY, USA, 2012. ACM.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA,
2012. USENIX Association.

[27] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages
423–438. ACM, 2013.

[28] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman.
Riffle: Optimized shuffle service for large-scale data
analytics. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 43:1–43:15, New York, NY,
USA, 2018. ACM.

[29] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and
D. Shakib. Scope: Parallel databases meet mapreduce. The
VLDB Journal, 21(5):611–636, Oct. 2012.

1125

https://spark.apache.org/
https://tez.apache.org/
http://hadoop.apache.org/hdfs
http://kosmosfs.sourceforge.net/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.3.pdf

	Introduction
	Background
	Scaling the Number of Target Partitions
	Scaling the Number of Source Partitions

	Hyper Dimension Shuffle
	Preliminaries
	Factorization and the Reshape Operator
	Hyper Partition Operator: Partitioning by Dimension
	Dimension Aggregation Operator: Merging by Dimension
	Algorithm
	Example

	HD Shuffle in SCOPE
	SCOPE Execution Model
	SCOPE Optimizations for HD Shuffle
	Job Scheduling Efficiency
	Removing Unnecessary Stage Breaks
	Repetition of Data Reducing Operations

	StreamSCOPE Compatibility

	Evaluation
	Synthetic Benchmark Evaluation
	Scaling Input and Output Partitions
	Scaling Shuffled Data
	TPC-H Benchmark Queries

	Production Evaluation

	Related Work
	Conclusion
	References

