Optimal and General Out-of-Order
Sliding-Window Aggregation

Kanat Tangwongsan
Mahidol University International College

kanat.tan@mahidol.edu

ABSTRACT

Sliding-window aggregation derives a user-defined summary of
the most-recent portion of a data stream. For in-order streams,
each window change can be handled in O(1) time even when the
aggregation operator is not invertible. But streaming data often arrive
inherently out-of-order, e.g., due to clock drifts and communication
delays. For such streams, prior work resorted to latency-prone
buffering or spent O(log n) time for every window change, where
n is the instantaneous window size. This paper presents FiBA, a
novel real-time sliding window aggregation algorithm that optimally
handles streams of varying degrees of out-of-orderness. FiBA is as
general as the state-of-the-art and supports variable-sized windows.
An insert or evict takes amortized O(log d) time, where d is the
distance of the change to the window’s boundary. This means O(1)
time for in-order arrivals and nearly O(1) time for slightly out-of-
order arrivals, tending to O(log n) time for the most severely out-
of-order arrivals. We also prove a matching lower bound, showing
optimality. At its heart, the algorithm combines and extends finger
searching, lazy rebalancing, and position-aware partial aggregates.
Further, FiBA can answer range queries that aggregate subwindows
for window sharing. Finally, our experiments show that FiBA
performs well in practice and conforms to the theoretical findings,
with significantly higher throughput than O(log) algorithms.

PVLDB Reference Format:

Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. Optimal and
General Out-of-Order Sliding-Window Aggregation. PVLDB, 12(10): 1167-
1180, 2019.

DOI: https://doi.org/10.14778/3339490.3339499

1. INTRODUCTION

Sliding-window aggregation is indispensable in streaming appli-
cations that involve continuously summarizing part of a data stream.
With stream processing now in widespread production in various
domains, sliding-window aggregation frameworks are expected to
deliver high throughput and low latency while allowing for simple
expression of a wide variety of aggregation operations.

Aggregation frameworks, when feasible, apply aggregation opera-
tions incrementally—that is, by keeping running partial aggregates
and modifying them in response to values arriving or leaving the
window. To aid simple expression of aggregation operations, past

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 10

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3339490.3339499

Martin Hirzel
IBM Research

hirzel@us.ibm.com

Scott Schneider
IBM Research

scott.a.s@us.ibm.com

Table 1: Aggregation operators.

Invertible Associative =~ Commutative

Sum-like: sum, count, mean,
v v v
geomean, stddey, ...

Collect-like: collect list, con-

cat strings, ith-youngest, ... v v x
Max-like: max, min, argMax, « v 9
maxCount, M4 [24], ...

Mergeable sketch [4]: Bloom,

CountMin, HyperLogLog, X v v

algebraic classifiers [22], ...

work [12, 15, 33] proposes casting them as binary operators. Their
algebraic properties (see Table 1) dictate how efficiently they can
be incrementalized. While an invertible and commutative binary
operator (one with an explicit “subtract” operation, e.g., sum) is the
simplest to efficiently handle, associative binary operators encom-
pass a wider class of operations (e.g., min/max, min-/maxCount,
M4 [24], Bloom filters [11], mergeable summaries [4], algebraic clas-
sifiers [22], Apache Flink’s interface for AggregateFunction [14])
and strike the best balance between expressiveness and efficiency.
For strictly in-order streams, performance differences between these
two classes are minor. The fastest algorithms for associative op-
erators take only O(1) time per window change, without requiring
invertibility, commutativity, or other properties [29, 32].

In reality, however, out-of-order streams are the norm [5], with
support provided on many stream processing platforms (e.g., [6,
7, 14, 37]). At the level of aggregation operators, solutions to
out-of-order arrivals fall into two broad categories: (i) Solutions
that buffer data items long enough to reorder them for use with an
in-order aggregation operator. This approach is simple but prone
to high latency, making it intolerable for applications that require
real-time or fine-grained queries, e.g., when seeking millisecond
responsiveness to avert risks. (ii) Solutions that eagerly incorporate
data items into the aggregation data structure as soon as they arrive.
As such, the aggregation is always updated and ready for queries, but
this requires out-of-order handling in the aggregation framework. Its
main advantage is more controlled latency. The best known solution
uses an augmented balanced tree (e.g., the red-black tree), costing
O(log n) time per insert or evict, where n is the window size.

Still, out-of-order streams come in many flavors: Clock skew
and network delays cause random, but mostly small, delays [31].
Batching causes frequent short spikes of moderate delays [16].
Failure followed by subsequent recovery can cause rare bursts of
large delays [25]. In all these scenarios, the O(log n)-time bound
stands in stark contrast with O(1) for the in-order setting. In practice,
this gap is found to translate to several-fold differences in latency
and throughput. This work sets out to bridge this difference.

1167

In another line of work, because many early streaming systems use
sliding-window algorithms that are too slow for large window sizes n,
they encourage users to specify coarse-grained windows, thereby
reducing the effective n [15, 26, 27, 34]. This puts the burden on
the programmers to trade off accuracy against time. While there are
scenarios where coarse-grained windows suffice, only fine-grained
windows can capture detailed behavior of a stream. Furthermore,
fixing a coarse granularity up-front precludes finer granularities in
ad-hoc queries. This work aims to reduce the technology limitations
that motivate such manual trade-off, so users can pick the window
granularity more on the basis of application requirements. That said,
when desired, our solution can also use coarse-grained windows.

This paper introduces the finger B-tree aggregator (FiBA), a
novel algorithm that optimally aggregates sliding windows on out-
of-order streams and in-order streams alike. Each insert or evict
takes amortized O(log d) time, where the out-of-order distance d
is the distance from the inserted or evicted value to the closer end
of the window (see Theorem 5 for a more formal statement). This
means O(1) for in-order streams, nearly O(1) for slightly out-of-order
streams, and never more than O(log n) for even severely out-of-order
streams. FiBA requires O(n) space and takes O(1) time for a whole-
window query. It is as general as the prior state-of-the-art, supporting
variable-sized windows and querying of any subwindow while only
requiring associativity from the operator. To our knowledge, no
existing out-of-order algorithms can achieve both this time bound
and this level of generality.

In broad strokes, the heart of our algorithm is a specially-designed
B-tree with the following technical features:
> Lean finger-searching. By maintaining minimal fingers (pointers)

to the start and end of the tree, FiBA can locate any value to insert

or evict in O(log d) worst-case time.
> Constant-time rebalancing. By carefully selecting and adapting

a specific variant of B-trees, the tree can store values in both

internal and leaf nodes (fully utilizing the space), and can be

rebalanced in O(1) amortized time via a somewhat lazy strategy.

Note that the more standard B-tree variants with, for example,

MAX_ARITY=2-MIN_ARITY-1 and eager rebalancing, while opti-

mized for top-down operations, do not have the same guarantees.
> Position-aware partial aggregates. By devising position-aware

partial aggregates and a corresponding algorithm, FiBA keeps
the cost of aggregate repairs at most that of search and rebalance.

Furthermore, FiBA is optimal and supports window sharing. We
prove that FiBA has the best asymptotic running time possible,
showing that for insert and evict with out-of-order distance up
to d, in the worst case, an operation must cost at least amortized
Q(log d). We also show how FiBA can support window sharing
with query time logarithmic in the subwindow size and the distance
from the largest window’s boundaries. Here, the space required is
O(nmax), where nmax is the size of the largest window.

Our experiments confirm the theoretical findings and show that
FiBA performs well in practice. This paper reports results with both
synthetic and real data, with implementations in both C++ and Java,
and with comparisons against Flink [14], RA [33], TwoStacks and
DABA [32], and (new) Scotty [34]. For large windows over slightly
out-of-order streams, FiBA yields up to 4.9x higher throughput
than existing algorithms. For strictly in-order streams (i.e., FIFO),
FiBA demonstrates constant-time performance and, depending on
the implementation language/platform, can be slower or faster than
specialized solutions for in-order streams.

Overall, FiBA makes out-of-order sliding-window aggregation
less resource-hungry and more responsive, enabling it to be used in
situations where it was previously deemed too expensive.

2. 000 SWAG AND LOWER BOUND

Consider a data stream where each value carries a logical time in
the form of a timestamp. Throughout, denote a timestamped value
as [",] or ¢:v in inline rendering. For example, [253] or2.3:5is
the value 5 at logical time 2.3. The examples in this paper use real
numbers for timestamps, but our algorithms do not depend on any
of their properties besides total ordering, so, e.g., they work just as
well with date/time representations.

It may seem intuitive to assume that values in such a stream arrive
in nondecreasing order of time (in order). However, due to clock drift
and disparate latency in computation and communication, among
other factors, values in a stream often arrive in a different order than
their timestamps. Such a stream is said to have out-of-order (000)
arrivals—there exists a later-arriving value that has an earlier logical
time than a previously-arrived value.

Our goal in this paper is to maintain the aggregate value of a
time-ordered sliding window in the face of out-of-order arrivals. To
motivate our formulation below, consider the following example,
which maintains the max and the maxcount, i.e., the number of times
the max occurs in a 5-second sliding window.

P19 1)

Initially, the values 4,3,0,4 arrive in the same order as their
associated timestamps 2.0, 3.0,4.0,6.0. The maximum value is 4,
and maxcount is 2 because 4 occurs twice. When stream values
arrive in order, they are simply appended. For instance, when [645]
arrives, it is inserted at the end:

1L L L1 1]

But when values arrive out-of-order, they must be inserted into
the appropriate spots to keep the window time-ordered. For instance,
when [253] arrives, it is inserted between timestamps 2.0 and 3.0:

1L PP LU 150 1]

As for eviction, stream values are usually removed from a window
in order. For instance, if the watermark progresses to 7.2, that causes
[240] to be evicted from the front of the 5-second window:

LSR5

Notice that, in general, eviction cannot always be accomplished
by simply inverting the aggregation value. For instance, when the
watermark reaches 7.7, evicting [253] cannot be done by “subtracting

off” the value 5 from the current aggregation value. The algorithm
needs to efficiently discover the new max 4 and maxcount 2:

L1
Monoids. Monoids capture a large class of commonly used ag-
gregations [12, 33]. A monoid is a triple M = (S, ®, 1), where
® : S X § — S is a binary associative operator on S, with 1 being
its identity element. Notice that ® only needs to be associative;
while it is sometimes also commutative or invertible, neither of those

additional properties is required. For example, to express max and
maxcount as a monoid, if m and ¢ are the max and maxcount, then

max 4, maxcount 2

max 4, maxcount 3

max 5, maxcount 1

max 5, maxcount 1

max 4, maxcount 2

{my,cy) if my > myp
(ma, c2) if my <my
{my,c1 +c) if my = my

(m1, c1) ®max,maxcount {12, c2) =

Since ® is associative, no parentheses are needed for repeated
application. When the context is clear, we omit ®, e.g., writing gstu
forges@teu.

000 SWAG. This paper is concerned with maintaining an aggre-
gation on a time-ordered sliding window where the aggregation

1168

operator can be expressed as a monoid. This can be formulated as
an abstract data type (ADT) as follows:

Definition 1. Let(®, 1) be a binary operator from a monoid and its
identity. The out-of-order sliding-window aggregation (00O SWAG)
ADT is to maintain a time-ordered sliding window ["/‘]] . []

t; < tj4+1, supporting the following operations:

— insert(s: Time, v: Agg) checks whether ¢ is already in the
window, i.e., whether there is an i such that t =¢;. If so, it

replaces [é’] by [v_tév]. Otherwise, it inserts [f}] into the

window at the approf)riate location.

evict(z: Time) checks whether ¢ is in the window, i.e., whether

there is an i such that ¢t = ;. If so, it removes [\t)l,] from the

window. Otherwise, it does nothing.

query(): Agg combines the values in time order using the ®

operator. In other words, it returns v| ® ... ® v, if the window

is non-empty, or 1 if empty.

In
Vn

Lower Bound. For in-order streams, the SWAG operations take
O(1) time per operation [32]. The problem becomes more difficult
when the stream has out-of-order arrivals. This paper shows that to
handle out-of-order distance up to d, the amortized cost of a OoO
SWAG operation in the worst case must be at least Q(log d).

THeEOREM 1. Let m,d € Z be given such that m > 1 and 0 <
d < m. For any OoO SWAG algorithm, there exists a sequence of
3m operations, each with out-of-order distance at most d, for which

the algorithm requires a total of at least Q(mlog(1 + d)) time.

Our proof (in the appendix) shows this in two steps: (i) it establishes
a sorting lower bound for permutations on m elements with out-of-
order distance at most d; and (ii) it gives a reduction proving that
maintaining OoO SWAG is no easier than sorting such permutations.

Orthogonal Techniques. OoO SWAG operations are designed
to work well with other stream aggregation techniques. The
insert(z, v) operation supports the case where ¢ is already in the
window, so it works with pre-aggregation schemes such as window
panes [27], paired windows [26], Cutty [15], or Scotty [34]. For
instance, for a 5-hour sliding window that advances in 1-minute
increments, the logical times can be rounded to minutes, leading
to more cases where ¢ is already in the window. The evict(s)
operation accommodates the case where 7 is not the oldest time in
the window, so it works with streaming systems that use retractions
[2,5,6,9, 13, 17, 28, 37]. Neither insert(z,v) nor evict(t) is
limited to values of # that are near either end of the window, so they
work in the general case, not just in cases where the out-of-order
distance is bounded by buffer sizes or low watermarks.

Query Sharing. Definition 1 does not support query sharing. But

query sharing can be accommodated by adding a range query:

— query(tgron: Time, to: Time): Agg aggregates exactly the
values in the window whose times fall between t£pop and #to.
That is, it returns v;, ® ... ® v;, , where igrop is the largest
i such that teron < i, and ito is the smallest i such that
t;. < tro. If the subrange contains no values, it returns 1.

In these terms, this paper aims to construct efficient OoO SWAG
for arbitrary monoids.

3. FINGERB-TREE AGGREGATOR (FIBA)

This section introduces our algorithm gradually, giving intuition
along the way. It begins by describing a basic algorithm (Section 3.1)
that utilizes a B-tree augmented with aggregates. This takes O(log n)
time for each insert or evict. Reducing the time complexity below
log n requires further observations. This is explored intuitively in
Section 3.2 with details fleshed out in Section 3.3.

to

1169

ab..u
7 [15
9o
ab..f hi..n
315 9 [12
c | e i |1
ab d f h jk mn
112 4 °[6 [°[8 [*[10] 11 13 [14
alb][d jlk][m]n

Figure 1: Classic B-tree augmented with aggregates (top cell of each node).
The notation for stored aggregates omits ®, e.g., gstu is shorthand for the
valueofq®s ®@t®u.

3.1 Basic Algorithm: Augmented B-Tree

One way to implement OoO SWAG is to start with a classic B-tree
with timestamps as keys and augment that tree with aggregates.
This is a baseline implementation, which will be built upon. Even
though at this stage, any balanced trees can be used, we chose the
B-tree because it is well-studied and its customizable fan-out degree
enables trading intra-node costs against inter-node costs.

There are many B-tree variations. The range of permissible
arity, or fan-out degree of a node, is controlled by two parameters
MIN_ARITY and MAX_ARITY. While MIN_ARITY can be any integer
greater than 1, most B-tree variations require that MAX_ARITY be at
least 2 - MIN_ARITY — 1. Let a(y) denote the arity of node y, and just
a in clear context. Then a B-tree obeys the following size invariants:
e For a non-root node y, MIN_ARITY < a(y); for the root, 2 < a.
For all nodes, a < MAX_ARITY.

All nodes have a — 1 timestamps and values [")%], ..
All non-leaf nodes have a child pointers z, . .

ta—2

U lvaa

|-
- 2aq-1-

Figure 1 illustrates a B-tree augmented with aggregates. In
this example, MIN_ARITY is 2 and MAX_ARITY is 2 - MIN_ARITY = 4.
Consequently, all nodes have 1-3 timestamps and values, and non-
leaf nodes have 2—4 children. Each node in the tree contains an
aggregate, an array of timestamps and values, and optional pointers
to the children. For instance, the root node contains the aggregate
ab..u which is shorthand for a®b ® .. ® u, two timestamps and
values [;] [15’], and pointers to three children. Because we use
timestamps as keys, the entries are time-ordered, both within a node
and across nodes. We store timestamps in a parent node separating
and limiting the time in the subtrees it points to. The tree is always
height-balanced and all leaves are at the same depth.

What aggregate to keep in a node? For each node y, the aggregate
II4(y) stored at that node obeys the up-aggregation invariant:

HT(y) = HT(Z()) ® vy ® HT(Zl) ®...Q0V;2® HT(Za—l)

By a standard inductive argument, I14(y) is the aggregation of the val-
ues inside the subtree rooted at y. This means the query() operation
can simply return the aggregation value at the root (root. agg).
The operations insert(t, v) or evict(t) first search for the node
where 7 belongs. Second, they locally insert or evict at that node,
updating the aggregate stored at that node. Then, they rebalance the
tree, walking from that node towards the root as necessary to fix
any size invariant violations, while also repairing aggregate values
along the way. Finally, they repair any remaining aggregate values
not repaired during rebalancing, starting above the node where
rebalancing topped out and visiting all ancestors up to the root.

THEOREM 2. In a classic B-tree augmented with aggregates, if it
stores [‘t)‘]], . [‘t)"] the operation query() returns vi ® ... ® vy,.
n

THeoreM 3. In a classic B-tree augmented with aggregates,
the operation query() costs at most O(1) time and operations
insert(t,v) or evict(t) take at most O(log n) time.

The theorems follow directly from the up-aggregation invariant
and the fact that the tree height is O(logn) [10, 18, 21].

3.2 Breaking the O(log n) Barrier

The basic algorithm just described requires O(logn) time per
update. To improve upon the time complexity, we now discuss the
bottlenecks in the basic algorithm and outline a plan to resolve them.

In the basic algorithm, the insert(s, v) and evict(t) operations
involve four steps: (1) search for the node where r belongs; (2) locally
insert or evict; (3) rebalance to repair size invariants; and (4) repair
remaining aggregation invariants. The local insertion or eviction
takes constant time, as does the query(). But each of the steps for
search, rebalance, and repair takes up to O(log n) time. Hence, these
are the bottleneck steps and will be improved upon as follows:

(i) Maintaining “fingers” to the leftmost and rightmost leaves re-
duces the search complexity to O(log d), where d is the distance
to the closer end of the sliding-window boundary. For the
in-order or nearly in-order case, this means constant-time search.

(ii) By choosing an appropriate MAX_ARITY and a somewhat lazy
strategy for rebalancing, we can prove that rebalance takes no
more than constant time in the amortized sense. This means that
for any operation, the cost to restore the proper tree structure
amounts to constant, regardless of out-of-order distance.

(iii) By introducing position-dependent aggregates, we will ensure
that repairs to the aggregate values are made only to nodes along
the search path or involved in restructuring. This means that the
repairs cost no more than the cost of search and rebalance.

Our novel FiBA algorithm combines these ideas to implement OoO
SWAG in O(log d) time, d < n. Below, we describe how they will
be implemented intuitively, leaving details to Section 3.3.

Search. In classic B-trees, a search starts at the root and ends at the
node being searched for, henceforth called y. Often, y is a leaf, so
the search visits O(log n) nodes. However, instead of starting at the
root, one can start at the left-most or right-most leaf in the tree. This
requires pointers to the corresponding leaf, henceforth called the left
and right fingers [19]. In addition, we keep a parent pointer at each
node. Hence, the search can start at the nearest finger, walk up to the
nearest common ancestor of the finger and y, and walk down from
there to y. The resulting algorithm runs in O(log d), where d is the
distance from the nearest end of the window—or more precisely, d is
the number of timed values from y to the nearest end of the window.

Rebalance. Insertions and evictions can cause nodes to overflow
or underflow, violating the size invariants. There are two popular
correction strategies: either before or after the fact. The before-the-
fact strategy ensures that ancestors of the affected node are not at risk
of overflowing or underflowing by preventive rebalancing (e.g., [18]).
The after-the-fact strategy first performs the local insert or evict,
then repairs any resulting overflow or underflow to ensure the size
invariants hold again by the end of the entire insert or evict operation.
We adopt the after-the-fact strategy, as it is amortized constant as long
as MAX_ARITY > 2 - MIN_ARITY (see Lemma 9, adapted from [21]).
For simplicity, we use MAX_ARITY = 2 - MIN_ARITY. The amortized
cost is O(1) as rebalancing rarely goes all the way up the tree. The
worst-case cost is O(log n), bounded by the tree height.

Repair. The basic algorithm stores at each node y the up-aggregate
[4(y), i.e., the partial aggregate of the subtree under y. This is
problematic, because it means that an insertion or eviction at a node z,
usually a leaf, affects the partial aggregates stored in all ancestors
of z—which is the entire path up to the root. To circumvent this
issue, we need an arrangement of aggregates that can be repaired by
traversing to a finger, without always traversing to the root. For this,
each node stores a kind of partial aggregate suitable for its position

Upagg ﬁ ﬁ Inner agg
Y y
T11(») agg agg Hr(y)
1 .o | t,, |times times | 7, T
Vo <o | vy |values values | Vv, oo | Vao
[z 2] Lz 2] N Y

() = TIr(z))®v®...0v, ,®l1(z,,) () = v ®Tn(z))®... 8l (z, 5)®V, »

Leftage N x x (), Rightagg
i by
agg J2V/0)) L0) agg
times | f, | s ty oo |, |times
values | Vg oo | Voa Vo values

ooo || ¥
Zy 21 |- Za2 |Za71 | Zo 21 |- Za2 || Zat
fx =root then 1

ifx= t then T
et)= (T T)T eT)

else I (x),
Figure 2: Partial aggregates definitions.

() = I;(0)@h(z,.)®

in the tree. A further consequence is the root no longer contains the
aggregate of the whole tree, and we need to ensure that query() can
be answered by combining partial aggregates at the left finger, the
root, and the right finger. To meet these requirements, we define four
kinds of partial aggregates in Figure 2. They are used in a B-tree
according to the following aggregation invariants:

>Non-spine nodes store the up-aggregate II;. Such a node is
neither a finger nor an ancestor of a finger. This aggregate must be
repaired whenever the subtree below it changes. Figure 3(A) shows
nodes with up-aggregates in white, light blue, or light green. For
example, the center child of the root contains the aggregate hijkimn,
comprising its entire subtree.

>The root stores the inner aggregate IL.. This aggregate is only
affected by changes to the inner part of the tree, and not by changes
below the left-most or right-most child of the root. Figure 3(A)
shows the inner parts of the tree in white and the root in gray.
>Non-root nodes on the left spine store the left aggregate I1 .
For a given node y, the left aggregate encompasses all nodes under
the left-most child of the root except for y’s left-most child zg. When
a change occurs below the left-most child of the root, the only
aggregates that need to be repaired are those on a traversal up to the
left spine and then down to the left finger. Figure 3(A) shows the left
spine in dark blue and nodes affecting it in light blue. For example,
the node in the middle of the left spine contains the aggregate cdef,
comprising the left subtree of the root except for the left finger.
>Non-root nodes on the right spine store the right aggregate I\ .
This is symmetric to the left aggregate IT . When a change occurs
below the right-most child of the root, only aggregates on a traversal
to the right finger are repaired. Figure 3(A) shows the right spine in
dark green and nodes affecting it in light green.

3.3 Maintaining Finger B-Tree 00O SWAG

We will now flesh out FiBA with a focus on how insert and
evict update the tree to maintain the size invariants from Section 3.1
and the aggregation invariants from Section 3.2.

Throughout, our running time discussion will be based on coin
counting. This aligns with our formal amortized analysis (Lemma 9)
using the accounting method [18], which can be thought of as
keeping coins at tree nodes. A coin is spent to cover the cost of
one internal O(1)-time local-modification operation (split, merge,
or move). The algorithm (conceptually) bills each insert(s, v) and
evict(s) to make up the difference. Excess coins are refunded to
maintain the appropriate balance. As the analysis will show, each

1170

A) agg | gh..o
times| 7 [15
values| g I o
hi..n
9 [12
i [
d f h i3 mn
4 |°[6 [°[8 |)[10][11|[13]14
d | [f i [k][m]n
Step A—B, in-order insert 22:v. Spent 0, refunded 1.
B gh..o
®) 7 [15
g o

©

=

hi..n

9 |12

i [

JI3 mn gs gs.v.
1011 [13 [14| [17 [19| [21 [22
i [k m [n q | s ul v

gh..o

7 115

gfo

hi..n

9 [12

i |1

jk mn qrs Lar.v
10] 11 1314 17 [18]19]°[21 22
i [k m | n qglr]s ulv

Step C—D, evict 1:a. Spent 0, billed 1.

D)

gh..o

E gh..o
® 7]15
g]o
hi..n pg..t
9 [12 18 | 20
i1 r |t
d f h jk mn q B pg..v
e[4 |°[6 [8 [*[10[11|[13[14|[T6 17 | [19 [*[21][22
d|[Fl[h][J[k][m]|n a|[s|[ufv
Step E—F, evict 2:b, merge. Spent 1, billed 0.
F gh..o
® 7 115
pq..t
18 | 20
r t
pq s Pq..v
16 [17 | [19 [21 [22
p [a]ls|[ulv

Figure 3: Finger B-tree with aggregates: example.

G ef..i
© 51719
el g i

|
L][h ik
fL 6 [°[8 [[10]11
ikl =

Step G—H, insert 3:c, split, height increase and split.
Spent 2, billed 0.
Figure 4: Finger B-tree height increase and split.

T gh..o
@ 7 [15
9]o
pg..t
[12 18 | 20
r t
h ik mn pq s pq..v
6 | e[10 [11| [13 [14 |[16 [17 | [19 [*[21 [22
jlkJ[m]njlplalls][ulv
Step I—J, evict 4:d, merge, move. Spent 2, billed 1.
i) ij..0
0 9 15
i [o
jk..n pq..t
[12] 18 [20
[1] rft
jk mn pq s pg..v
e[10 [11| [13 [14 | [16 [17 | [19 |*[21 [22
ilkJ[mlnjlplalls]lulv
Figure 5: Finger B-tree move.
L rst
© 18 | 20
r t
s uv
|19 [21 [22
- [s [[ufwv

Step K—L, evict 15:0, merge, merge and height decrease.
Spent 2, refunded 2.
Figure 6: Finger B-tree merge and height decrease.

insert(t,v) or evict(t) is never billed more than 2 coins, hence
rebalancing is amortized O(1) time. To visualize this accounting,
coins are rendered as little golden circles next to tree nodes.

Allinteresting cases of tree maintenance are illustrated in Figures 3—
6. Each state, for instance (A), shows a tree with aggregates and coins.
Each step, for instance A—B, shows an insert or evict, illustrating
how it affects the tree, partial aggregates, and coins.

e In Figure 3, Step A—B is an in-order insert without rebalance,
which only affects the aggregate at a single node, the right finger.

e Step B—C is an out-of-order insert without rebalance, affecting
aggregates on a walk to the right finger.

e Step C—D is an in-order evict without rebalance, affecting the
aggregate at a single node, the left finger.

e Step D—E is an out-of-order insert to a node with arity a =
2 - MIN_ARITY, causing an overflow; rebalancing splits it.

e Step E—F is an evict from a node with a = MIN_ARITY, causing
the node to underflow; rebalancing merges it with its neighbor.

o In Figure 4, Step G—H is an insert that causes nodes to overflow

1171

fun query(): Agg

1
z 1fr:10:3;1:1115r(L7§if§) 40 fun rebalanceForInsert(node: Node): NodexBoolxBool
C 99 . . 41 hitjefr, hitrigne < node.leftSpine, node.rightSpine
4 return leftFinger.agg ® root.agg ® rightFinger.agg 2 while node.arity > MAX_ARITY
5 . . -
. . 43 if node.isRoot()
6 fun insert(t: Time, v: Agg) " heightIncreaseO)
7 node searchNod(-?(t) 45 hitieft, hitrignt < true, true
8 node. localInsertTimeAndValue(t, v) 46 split(node)
9 top, hitiefr, hitright < rebalanceForInsert(node) o nﬁde & node. parent
1o repairAggs(top, hitiefr, Hitright) w hitiegr « hitiere or node.leftSpine
1
. e 49 hitright ¢ hitrighe Oor node.rightSpine
12 fun evict(r: Time) 50 return node, hitjeft, hitrignt
13 node < searchNode(t) st
1; if;m}gl,m;dx ¢ node. IocalSearch(t) s2 fun rebalanceForEvict(node: Node, toRepair: Node)
© if node.isLeafO 53 : NodexBoolxBool
. : . 54 hitjeft, hitrignt < node.leftSpine, node.rightSpine
17 node. localEvictTimeAndValue(t) - if node — toRepair
18 top, hitiefr, hitrighnt ¢ rebalanceForEvict(node, null) - node 1;ca1Re§airAgngUp()
9 else 57 while not node.isRoot() and node.arity < MIN_ARITY
20 top, hitjeft, hitright < evictInner(node, idx) o parent — node.parent
z repairdggs(top, hitiese, hitrignd) 50 nodeIdx, siblingIdx « pickEvictionSibling(node)
. . . 60 sibling « parent.getChild(siblingIdx
23 fu.t'1 repairAggs(top: Node, hitiesr: Bool, hitrighe: Bool) o hitrighf < ﬁitrightgor siblgng.rithSp?ine
» 1fw;g{éhizA9gg§£) O 62 if sibling.arity < MIN_ARITY
o to <—p;:o gieﬁt 63 node < merge(parent, nodeldx, siblingIdx)
P P.par 64 if parent.isRoot() and parent.arity = 1
27 top.localRepairAgg() o heightDecrease()
2 else 66 else
29 top.localRepairAgg()
30 if top.leftSpine or top.isRoot() and hitieft ZZ elsenode < parent
31 left <« top A
2 while not left.isLeaf() ® move(parent, nodeldx, siblingTds)
3 left « left.getChild(®) - if rode — ioRepair
o . left ..locall?epa1rAgg() . . 72 node. localRepairAggIfUp()
35 if top.rightSpine or top.isRoot() and hitright 2 hitiese — hities oOF node.leftSpine
36 right < top . . ; . .
H . . 74 hitright < hitrignt Or node.rightSpine
¥ wh1]:e not I‘lqht.lSLEaf(') , , 75 return node, hitjesr, hitrignt
38 right « right.getChild(right.arity - 1)
39 right.localRepairAgg()
Figure 7: Finger B-Tree with aggregates: algorithm.
76 fun evictInner(node: Node, idx: Int): NodexBoolxBool M)
77 left, right < node.getChild(idx), node.getChild(idx+1) [0 |
78 if right.arity > MIN_ARITY
79 leaf, tieaf, Viear ¢« oldest(right) T Yo
o else 9 |12 18 | 20
81 leaf, tieaf, Viear <« youngest(left) i] ; t
82 leaf.localEvictTimeAndValue(t1eaf)
83 node.setTimeAndValue(idx, fieaf, Vieaf) i =
84 top, hitjefr, hitright ¢ rebalanceForEvict(leaf, node) = J iy Pq St |28k
85 if top.isDescendent(node) 7 I ﬁ 1.0 I 1k1 17‘? I 1: 16 I 17 1119 |° 2u1 I 2v2
86 while top # node 9] Pla
87 top < top.parent Step M—N, out-of-order evict 9:i. Spent 0, billed 1.
88 hitiest < hitjefr Or top.leftSpine) [o]
89 hitright < hitpignt Or top.rightSpine
L) top.localRepairAggIfUp() | o]
91 return top, hitieft, hitright
jk.n pg..t
Figure 8: Finger B-Tree evict inner: algorithm. 10 I 12 18 [20
j | r t
. . . gh..n k mn
all the way up to the root, causing a height increase followed by 718 1[5 [14
splitting the old root. This affects aggregates on all split nodes gl h Nk | [m [n
and on both spines. Figure 9: Finger B-tree evict inner: example.
e In Figure 5, Step I—J is an evict that causes first an underflow
that is fixed by a merge, and then an underflow at the next level
where the neighbor node is too big to merge. The algorithm bottom-up, aggregate repair works in the direction of the partial
repairs the size invariant with a move of a child and a timed value aggregates: either up for up-agg or inner-agg, or down for left-agg
from the neighbor, touching aggregates on all nodes affected by or right-agg. Our algorithm piggybacks the repair of up-aggs onto
rebalancing plus a walk to the left finger. the local insert or evict and onto rebalancing, and then repairs the
e In Figure 6, Step K—L is an evict that causes nodes to underflow remaining aggregates separately. To facilitate the handover from
all the way up to the root, causing a height decrease. This affects the piggybacked phase to the dedicated phase of aggregate repair,
aggregates on all merged nodes and on both spines. the rebalancing routines return a triple (top, hitjeft, hitright), for
Figure 7 shows most of the algorithm, excluding only evictInner, instance, in Line 9. Node top is where rebalancing topped out, and
which will be presented later. While rebalancing always works if it has an up-agg, it is the last node whose aggregate has already

1172

been repaired. Booleans hitjesr and hitpjghe indicate whether
rebalancing affected the left or right spine, determining whether
aggregates on the respective spine have to be repaired.

Figure 8 shows function evictInner. To evict something from an
inner node, Line 82 evicts a substitute from a leaf instead, and Line 83
writes that substitute over the evicted slot. Function evictInner
creates an obligation to repair an extra node during rebalancing,
handled by parameter toRepair on Line 52 in the same figure.

THEOREM 4. In a finger B-tree with aggregates that contains

[‘t)‘l], ey [‘t}’;] operation query() returns vi ® ... ® vy.

Proor. If the root is a leaf, the root stores an inner aggregate,
representing all the values. Otherwise, correctness follows directly
from the aggregation invariants. [

THEOREM 5. In a finger B-tree with aggregates, query() costs
O(1) time, and insert(t,v) and evict(t) take time Tgoqpcp +
Trebalance + Trepair» where

o Tsoarch is O(logd), with d being the distance to the start or
end of the window, whichever is closer;

® Trebalance is amortized O(1) and worst-case O(log n); and

® Trepair IS O(Tsearch + Trebatance)-

Proor. The query() operation performs at most two ® operations,
hence running in O(1) time. The search cost Tyeyrch is bounded as
follows: Let yg be the node at the finger where search begins and
define y; 4 as the parent of y;. This forms a sequence of spinal
nodes on which searching takes place. Remember ¢ = MIN_ARITY is
constant. Because the subtree at y; has Q(ui) keys and the search
key is at distance d, the key must belong in the subtree rooted at
some y;+, where i* = O(log d). Thus, it takes i* steps to walk up
the spine and at most another i* to locate the spot in the subtree
as all leaves are at the same depth, bounding Tyearch by 0(logﬂ d).
Lemma 9 in the appendix gives the rebalance cost Tiepalance- Finally,
by the aggregation invariants, a partial aggregation is affected only
if it is along the search path or involved in rebalancing. Therefore,
the number of affected nodes that requires repairs is bounded by
O(Tsearch + Trebalance)- Treating u as bounded by a constant, Trepair
i O(Tsearch + Trebalance)> concluding the proof. [

4. WINDOW SHARING

This section explains how to use a single finger B-tree to efficiently
answer queries on subwindows of different sizes on the fly. Appli-
cations are numerous. One common example is simple anomaly
detection that compares two related aggregates: one on a large
window representing normal stable behavior and the other on a small
window representing recent behavior. An alert is triggered when the
aggregates differ substantially. Whereas in this example, the sizes of
the windows are known ahead of time, in other applications—e.g.,
interactive data exploration—queries can be ad hoc.

We implement window sharing via range queries, as defined at
the end of Section 2. This has many benefits. The window contents
need to be saved only once regardless of how many subwindows
are involved. Thus, each insert or evict needs to be performed
only once on the largest window. This approach can accommodate
an arbitrary number of shared window sizes. For instance, many
users can register queries over different window sizes. Importantly,
queries can be ad hoc and interactive, which would otherwise not
be possible to support using multiple fixed instances. Furthermore,
the range-query formulation also accommodates the case where the
window boundary is not the current time (f+o # ftow)- For instance,
it can report results with some time lag dictated by punctuation or
low watermarks.

fun query(terom: Time, tyo: Time): Agg
nodefron, nodei, < searchNode(tfrom), SearchNode(tio)
nodetop, < leastCommonAncestor(nodegron, nodeto)
return queryRec(nodetop, tfrom, tto)

fun queryRec(node: Node, tfrom: Time, tro: Time): Agg
if tfrom = —0 and ty, = +o0 and node.hasAggUp()
return node.agg
res « 1
10 if not node.isLeaf()
11 thext < node.getTime(0)

1
2
3
4
5
6
7
8
9

12 if terom < thext

13 res = res ® queryRec(node.getChild(0),

14 Tfrom,

15 next < tro 7 +00 I tyo)

16 for i € [0, ..., node.arity - 2]

17 t; < node.getTime(i)

18 if terom <t; and t; < tyo

19 res « res ® node.getValue(i)

20 if not node.isLeaf() and i+ 1 < node.arity—2

21 ti+1 < node.getTime(i + 1)

22 if #; < tyo and tgrom < ti+]

23 res « res ® queryRec(node.getChild(i+ 1),
24 terom < i 7 —00 : ffrom,
25 tiv] Stro 7 400 I to)
26 if not node.isLeaf()

27 tcurr < node.getTime(node.arity - 2)

28 if teurr < tro

29 res = res ® queryRec(node.getChild(node.arity - 1),
30 terom < fcurr 7 =90 Ifrom,
31 tto)

32 return res

Figure 10: Range query algorithm.

To answer the range query query(ffrom, fto). the algorithm, shown
in Figure 10, uses recursion starting from the least-common ancestor
node whose subtree encompasses the queried range. The main
technical challenge is to avoid making spurious recursive calls.
Because the nodes already store partial aggregates, the algorithm
should only recurse into a node’s children if the partial aggregates
cannot be used directly. Specifically, we aim for the algorithm to
invoke at most two chains of recursive calls, one visiting ancestors
of nodefrqn and the other visiting ancestors of nodeto. The insight
for preventing spurious recursive calls is that one needs information
about neighboring timestamps in a node’s parent to determine
whether the node itself is subsumed by the range. This is passed
down the recursive call: whether the neighboring timestamp in the
parent is included in the range on the left or right is indicated by
Lfrom = —90 OF tro = +00, respectively.

This strategy alone would have been similar to range query in
an interval tree [18], albeit without explicitly storing the ranges.
However, our partial aggregate scheme adds another difficulty: not
all nodes store agg-up values I11(y). Fortunately, any nodes that lack
IT4(y) must be on one of the two recursion chains, because if a query
involves spines of the entire window, then those spines coincide with
edges of the intersection between the window and the range.

THEOREM 6. In a finger B-tree with aggregates that contains
[‘t)'l],..., [‘t)';] the operation quf:ry(tf.mm, tto) relur.ns the ag-
gregate Vi, . ®...Q Vv, where igrop is the largest i such that

terom < ligryy ANd ito is the smallest i such that t;, < tro.

Proor. By induction, each recursive call returns the aggregate of
the intersection between its subtree and the queried range. [

THEOREM 7. In a finger B-tree with aggregates that contains
[‘t)'l] RN [‘t)';] the operation query (t from tto) takes time
O(log d £rom + log dto + log ngyp), where
® ifrom is the largest index i such that t gropm < iz,

® it is the smallest index i such that t;,, < tto

1173

® dgrom = Min(i grom 1 — i from) and dto = min(ito, n —ito) are
the distances to the window boundary
® Ngup = ito — Lfrom IS the size of subwindow being queried.

Proor. Using finger searches, Line 2 takes O(log dfrom +10g dto).
Now the distance from either node 1o Or nodet o to the least-common
ancestor (LCA) is at most O(log ng,y,). Therefore, locating the LCA
takes at most O(log ngyp), and so do subsequent recursive calls in
queryRec that traverse the same paths. [

In particular, when a query ends at the current time (i.e., when
tto = thow), the theorem says that the query takes O(log ngy,p) time,
where ngyy is the size of the subwindow being queried.

5. RESULTS

This section describes experimental analysis with both synthetic
and real data, with implementations in both C++ and Java, and with
comparisons against current state-of-the-art techniques.

5.1 Synthetic data in C++

We implemented both OoO SWAG variants in C++: the baseline
classic B-tree augmented with aggregates and the finger B-tree
aggregator (FiBA). We present experiments with competitive min-
arity values: 2, 4 and 8. Higher values for min-arity were never
competitive in our experiments. Our experiments run outside of any
particular streaming framework so we can focus on the aggregation
algorithms themselves. Our load generator produces synthetic data
items with random integers. The experiments perform rounds of
evict, insert, and query to maintain a sliding window that accepts
a new data item, evicts an old one, and produces a result each round.

We present results with three aggregation operators, each repre-
senting a category of computational cost. The operator sum performs
an integer sum over the window, and its computational cost is less
than that of tree traversals and manipulations. The operator geomean
performs a geometric mean over the window. For numerical stability,
this requires a floating-point log on insertion and floating-point
additions during data structure operations. It represents a middle
ground in computational cost. The most expensive operator, bloom,
is a Bloom filter [11] where the partial aggregations maintain a bitset
of size 214, It represents aggregation operators whose computational
cost dominates the cost of maintaining the SWAG data structure.

We ran all experiments on a machine with an Intel Xeon E5-2697
at 2.7 GHz running Red Hat Enterprise Linux Server 7.5 with a
3.10.0 kernel. We compiled all experiments with g++ 4.8.5 with
optimization level -03.

5.1.1 Varying Distance. We begin by investigating how insert’s
out-of-order distance affects throughput. The distance varying
experiments, Figure 11, maintain a constant-sized window of n =
222 = 4,194,304 data items. The x-axis is the out-of-order distance
d between the newest timestamp already in the window and the time-
stamp created by our load generator. Our adversarial load generator
pre-populates the window with high timestamps and then spends the
measured portion of the experiment producing low timestamps. This
regime ensures that after the pre-population with high timestamps,
the out-of-order distance of each subsequent insertion is precisely d.

This experiment confirms the prediction of the theory. The classic
B-tree’s throughput is mostly unaffected by the change in distance,
but the finger B-tree’s throughput starts out significantly higher.
At the smallest values of d, the best finger B-tree outperforms the
corresponding classic B-tree by a factor of 3.4x for sum, 2.5x for
geomean, and 4.9x for bloom. For larger values of d, the finger
B-tree throughput follows a log d trend. All variants enjoy an uptick
in performance when d = n, that is, when the distance is the size n

of the window. This is a degenerate special case. When n = d, the
lowest timestamp to evict is always in the left-most node in the tree,
so the tree behaves like a last-in first-out (LIFO) stack, and inserting
and evicting requires no tree restructuring—O(1) time overall.

The min-arity that yields the best-performing B-tree varies with
the aggregation operator. For expensive operators, such as bloom,
smaller min-arity trees perform better because they perform fewer
partial aggregations inside of anode. Conversely, for cheap operators,
such as sum, higher min-arity trees that require fewer rebalance and
repair operations perform better. The step-like throughput curves for
the finger B-trees is a function of their min-arity: larger min-arity
means longer sections where the increased out-of-order distance still
affects only a subtree with the same height. When the throughput
suddenly drops, the increase in d meant an increase in the height of
the affected subtree, causing more rebalances and updates.

5.1.2 Latency. The worst-case latency for both classic and finger
B-trees is O(log nn), but we expect finger variants to reduce average
latency. The experiments in Figure 12 confirm this expectation. All
latency experiments use a window size of n = 222 The top set of
experiments uses an out-of-order distance of d = 0 and the bottom
set uses an out-of-order distance of d = 220 = 1,048,576. (We
chose the latter distance because it is among the worst-performing
in the throughput experiments.) The experimental setup is the same
as for the throughput experiments, and the latency is for an entire
round of evict, insert, and query. The y-axis is the number of
processor cycles for a round, in log scale. Since we used a 2.7 GHz
machine, 103 cycles take 370 nanoseconds and 10° cycles take 370
microseconds. The brown bars show the median latency, the shaded
regions show the distribution of latencies, and the black bars are the
99.9th percentile. The range is the minimum and maximum latency.
When the out-of-order distance is 0 and the aggregation operator
is cheap or only moderately expensive, the worst-case latency in
practice for the classic and finger B-trees is similar. This is expected,
as the time is dominated by tree operations, and they are worst-
case O(logn). However, the minimum and median latencies are
orders of magnitude better for the finger B-trees. This is also
expected, since for d = 0, the fingers enable amortized O(1) updates.
When the aggregation operator is expensive, the finger B-trees have
significantly lower latency as they repair fewer partial aggregates.
With an out-of-order distance of d = 229 and cheap or moderately
expensive operators, the classic and finger B-trees have similar
latency. This is expected: as d approaches n, the worst-case latency
for finger B-trees approaches O(logn). Again, with expensive
operators, the minimum, median, and 99.9th percentile of the finger
B-tree with min-arity 2 is orders of magnitude lower than that of
classic B-trees. There is, however, a curious effect clearly present
in the bloom experiments with finger B-trees, but still observable
in the others: min-arity 2 has the lowest latencys; it gets worse with
min-arity 4, then improves with min-arity 8. Recall that the root may
be slimmer than the min-arity. With d = 220, depending on the arity
of the root, some aggregation repairs walk almost to the root and
then back down a spine while others walk to the root and no further.
The former case, which walks twice the height, is more expensive
than the latter, which walks just the whole height. The frequency of
the expensive case is a function of the window size, tree arity, and
out-of-order distance, and these factors do not interact linearly.

5.1.3 FIFO: In-order Data. A special case for FiBA is when
d = 0; with in-order data, the theoretical results show that FiBA
enjoys amortized constant time performance. Figure 13 compares the
B-tree-based SWAGs against the state-of-the-art SWAGs optimized
for first-in, first-out, completely in-order data. TwoStacks only works
on in-order data and is amortized O(1) with worst-case O(n) [3].
DABA also only works on in-order data and is worst-case O(1) [32].

1174

.}
000 sum, window 222

bclassic2 -4- bclassic4 -4-

bclassic8

—— bfinger2
000 geomean, window 222

—— bfinger4 —— bfinger8

000 bloom, window 222

0.3

_J

throughput [million items/s]

21 23 25 27 29 211 213 215 217 219 221 21 23 25 27 211 213 215 217 219 221 N 21 23 25 27 29 211 213 215 217 219 221
out-of-order distance out-of-order distance out-of-order distance
Figure 11: Out-of-order distance experiments.
sum, window 222, distance 0 geomean, window 222, distance 0 bloom, window 2?2, distance 0
o] 106 4
810 9 10% 4 8
g =] S 199.9%
; 99.9% 99.9% 99.9% 99.9% g 99.9% 99.9% g igg % oo 999
.9% o o o o .9% o o
ﬁ 1001 99.9% 99.9f ﬁ 99.9% 499.9% | 9990 L 99.9b ﬁ 105 99.9% 99.9%
g 8 10° g
5 5 5
1024 T T bl 104 4
belassic2 belassics blassic bfinger2 bfingera bfinger8 belassic2 bclassica bclassic8 bfinger2 bfingerd bfingers belassic2 belassicd belassic8 bfinger2 bfingerd bfinger8
sum, window 222, distance 22° geomean, window 222, distance 220 bloom, window 222, distance 22°
10° 4 T - -
10° 4
8 8 8
S 10 4 S] 3
210 $ 10 [99.9%
@ 9 @ 99.9% 99.9% T 999
H
g 1044 g 99.0% —09.0% —+99.9% L gggy T999% Loogh g 99:9% 99.9%
= 99.9% 4-99.9% +99.9% --99.9% —+99.9% Logok =
102 10° 4 A T A 10° 4
bcla‘ssicZ bcla‘ssic4 bc\a‘ssicB bfinci;erz bfinéer4 bfinéerB bcla‘ssicz bc\a‘sswc4 bcla%sica bfinéerz bfinéer4 bfm‘gers bc\a‘ssicz bcla‘ssic4 bcla‘ssic& bfinéerz bfinéer4 bfiné_;ers
Figure 12: Latency experiments.
-4- two_stacks —}— daba --}-- reactive -4- bclassic2 -4- bclassic4 -4- bclassic8 —}— bfinger2 —— bfinger4 —— bfinger8
20 FIFO sum s FIFO geomean FIFO bloom
'-::::\\—-‘—1-_P——___ﬂ——-l-——l-—l—-i- ————————

30

20

10

throughput [mil. items/s]

213 215 217
window size in data items

211
window size in data items

21 23 25 27 9 11 213 3l5 217

window size in data items

213 215 217 319 219 21

Figure 13: FIFO experiments.

The Reactive Aggregator supports out-of-order evict but requires
in-order insert, and is amortized O(log n) with worst-case O(n) [33].
The x-axis represents the window size n.

TwoStacks and DABA perform as seen in prior work: for most
window sizes, TwoStacks with amortized O(1) time has the best
throughput. DABA is generally the second best, as it does a little more
work on each operation to maintain worst-case constant performance.

The finger B-tree variants demonstrate constant performance as
the window size increases. The best finger B-tree variants stay within
30% of DABA for sum and geomean, but are about 60% off of
DABA with a more expensive operator like bloom. In general, finger
B-trees are able to maintain constant performance with completely
in-order data, but the extra work of maintaining a tree means that
SWAGs specialized for in-order data consistently outperform them.

The classic B-trees clearly demonstrate O(log n) behavior as the
window size increases. Reactive does demonstrate O(log n) behavior,
but it is only obvious with bloom. For sum and geomean, the fixed
costs dominate. Reactive was designed to avoid using pointer-based
data structures under the premise that the extra memory accesses
would harm performance. To our surprise, this is not true: on our

hardware, the extra computation required to avoid pointers ends
up costing more. For bloom, Reactive outperforms B-tree based
SWAGs because it is essentially a min-arity 1, max-arity 2 tree, thus
requiring fewer aggregation operations per node.
5.1.4 Window Sharing. One of the benefits of FiBA is that it
supports range queries while maintaining logarithmic performance
for queries over that range. Range queries enable window sharing: a
single window can support multiple queries over different ranges.
An obvious benefit from window sharing is reduced space usage, but
we also wanted to investigate its time usage. Figure 14 shows that
window sharing did not consistently improve runtime performance.
The experiments maintain two queries: a big window fixed to
size 222, and a small window whose size Ngmall Varies from 1 to
222 shown on the x-axis. The workload consists of out-of-order
data items where the out-of-order distance d is half of the small
window size, i.e., d = ngmay1/2. The _twin experiments maintain two
separate trees, one for each window size. The _range experiments
maintain a single tree, using a standard query for the big window
and a range query for the small window.

1175

-4- bfinger2_twin —}— bfinger2_range -4- bfingerd4_twin —— bfinger4_range -4- bfinger8_twin —— bfinger8_range

Shared sum, big window 222 Shared geomean, big window 222 Shared bloom, big window 222
0.10

0.08

throughput [mil. items/s]
S

0.06
0.04
2 0.02
0 21 24 27 510 I3 Sle 5l 222 0 21 24 27 510 513 Sle 5l 222 0.00 21 24 27 510 513 Sle 5l 222
small window size in data items small window size in data items small window size in data items

Figure 14: Window sharing experiments. Out-of-order distance also varies as n/2 where n = ngpy,y is the small window size.

-4- bclassic2 -4- bclassic4 -4- bclassic8 —— bfinger2 —— bfinger4 —— bfinger8
Bike sum Bike geomean Bike bloom

272 271 0 21 22 23 24 25 272 271 0 21 22 23 24 25 272 271 0 2! 22 23 24 25
window duration in days window duration in days window duration in days

throughput [million items/s]

Figure 15: NYC Citi Bike data for August, 2018 through December, 2018.

Our experiment performs out-of-order insert and in-order evict, window ranges from about 11, 000 elements for a time window of
so insert costs O(log d) and evict costs O(1). Hence, on average, 1/4 of a day up to about 991, 000 elements for 32 days.
each round of the _range experiment costs O(log d) for insert, O(1) In this mostly in-order dataset, out-of-order arrivals are generally
for evict, and O(1) + O(log ngmay1) for query on the big window and mild and sporadic, but there are bursts of severely out-of-order
the small window. On average, each round of the _twin experiment items, concentrated in about two weeks in November. The mean
costs 2 - O(log d) for insert, 2 - O(1) for evict, and 2 - O(1) for query out-of-order distance is d = 56.47 (~ 85.9 seconds). However,
on the big and small window. Since we chose d = ngya/2, this up to 99% of events have d < 9 (= 149 seconds). The severely
works out to a total of O(log d) per round in both the _range and the out-of-order bursts show up in the last 0.01%, with d > 150, 000.
_twin experiments. There is no fundamental reason why window The most severe has d ~ 1 million (17.7 days late).

sharing is slightly more expensive in practice. A more optimized
code path might make range queries slightly less expensive, but we 53 Synthetic data in Apache Flink (Java)
would still expect them to remain in the same ballpark.

By picking d = ngmay/2, our experiments demonstrate the case
where window sharing is the most likely to outperform the twin
experiment. We could have increased the number of shared win-
dows to the point where maintaining multiple non-shared windows
performed worse because of the memory hierarchy, but that is the
same benefit as reduced space usage. We conclude that the primary
benefits of window sharing in this context are reduced space usage
and the ability to query against arbitrarily-sized windows on the fly.

How does FiBA perform relative to the state-of-the-art open-
source counterparts? To answer this question as well as to understand
FiBA’s performance characteristics in a different environment, we
reimplemented both the classic augmented B-tree and FiBA variants
in Java inside Apache Flink [14]. Apache Flink was chosen because
at the time of writing, it is one of the most popular open-source
streaming platforms and has been the testing ground for many
research projects. Our Java implementation observes idiomatic
Java patterns but is otherwise the same as the C++ version. All
Flink-based experiments were run on a 2-core virtual machine with

5.2 Real data in C++ Intel Xeon Platinum 8168 CPU at 2.70GHz, running Ubuntu 18.04.2
Our real data experiments, Figure 15, use the NYC Citi Bike LTS with a 4.15 kernel. We compiled and ran all experiments with
data [1] for two purposes: to show that our techniques work well 64-bit OpenJDK 1.8.0_191, using Apache Flink version 1.7.1.
with real out-of-order data and to showcase time-based windows. 5.3.1 Distance-varying and FIFO. We repeated the distance-
We use data from August 2018 to December 2018, for a total of varying and FIFO experiments using as baseline Flink’s built-in
about 8 million events. Each event includes trip duration, start and sliding-window aggregation (.aggregate(<AggregateFunction>)).
stop time, and start and stop location. We use start time as the event The distance-varying experiment, Figure 16, uses window size
timestamp and consider events with earlier start time than any prior 213 = 8 192 items. Though smaller than before, it is enough to study
event to be out-of-order. The experimental environment is the same the behavior of all the algorithms without choking the baseline. FiBA
as in Section 5.1 except that it uses time-based windows. We vary and the classic augmented B-tree perform as seen previously. The
the window size from 1/4 of a day to 32 days. We calculate the sum throughput of Flink’s built-in algorithm remains constant indepen-
and geomean over trip duration and bloom over start location. dent of the out-of-order distance; however, it is orders of magnitude
The real data experiments mirror the trends with synthetic data: slower than the other algorithms due to asymptotical differences.
the finger B-trees consistently outperform their classic counterparts The FIFO experiment in Figure 17 exhibits the same general
and lower arity trees perform better with more expensive operators. trends as before, except that in this environment, the FiBA algorithms
The characteristics of the real data experiments are subranges within (bfinger4 and bfinger8, both O(1) time for FIFO input) outperform
the spectrum explored with synthetic data: the actual size of the TwoStacks (a specialized O(1)-time algorithm for FIFO), reversing

1176

[
N

o

o

Flink: 00O geomean, window 8192 Flink: FIFO geomean Flink: Coarse-grained geomean, window 8192
64
34 —— bfingerd --- Dbclassic8 —— bfingerd ---bclassic4 101—— cg bfinger4 ---' bfingers
—— bfinger8 - Flink —— bfinger8 ---bclassic8 §{—— cg_bfinger8 - Flink
2] -—- 41 --- two_stacks - Flink | === bfinger4 (New) Scotty

PEP P P4

throughput [mil. items/s]
throughput [mil. items/s]

out-of-order distance

Figure 16: Out-of-order experiments on Flink

the ranking in the C++ experiments. The throughput of Flink’s
built-in algorithm decreases linearly with the window size and is
never competitive. We stopped the Flink experiment at window size
n =213 = 8,192, after which point each run became too expensive.

5.3.2 Coarse-grained Window. Coarse-grained windows intelli-
gently combine items together to reduce the effective window size.
The coarse-grained window experiment, Figure 18, studies how
throughput (y-axis) changes with slide granularity (x-axis: how
often queries are requested). The window size is 213 =8 192, and
the workload is FIFO. We present two variations on FiBA: vanilla
bfinger is the standard FiBA algorithm except that queries are only
made at the specified granularity, whereas cg_bfinger (coarse-grained
bfinger) uses FiBA together with slicing, so items that will be evicted
together are combined into one. This helps reduce the effective
window size. We also include (New) Scotty, a recent work by Traub
et al. [35], which improved upon Scotty [34]. The numbers reported
are from their flink-connector v.0.3 code on GitHub. Flink’s built-in
aggregation, though never competitive, is included for reference and
shows throughput improving linearly with the slide granularity.

As expected, vanilla FiBA algorithms see practically no improve-
ment as the slide granularity increases: although queries are less
frequent, the dominant cost stems from insert/evict operations, which
remain the same. But Scotty’s throughput improves as the window
becomes coarser, ultimately outperforming vanilla FiBA (bfinger4,
bfinger8) for coarse windows. However, FIBA with coarse-grained
sliding (cg_bfinger) not only has the best throughput for the whole
range of granularities but also exhibits performance improvement
with coarser sliding granularity. This may seem counterintuitive as
FiBA is already an O(1)-time algorithm; however, because coarse-
grained sliding combines items, insert creates a new entry less often
and evict occurs less frequently—hence, less total work overall.

6. RELATED WORK

Out-of-Order Stream Processing. Processing out-of-order (O0O)
streams is a popular research topic with a variety of approaches. But
there are surprisingly few incremental algorithms for OoO stream
processing. Truviso [25] handles stream data sources that are out-of-
order with respect to each other but where input values are in-order
with respect to the stream they arrive on. The algorithm runs separate
stream queries on each source followed by consolidation. In contrast,
FiBA allows each individual stream input value to have its own
independent OoO behavior. Chandramouli et al. [17] describe how
to perform pattern matching on out-of-order streams but do not tackle
sliding window aggregation. Finally, the Reactive Aggregator [33]
performs incremental sliding-window aggregation and can handle
000 evict in O(log n) time. In contrast, FiBA can handle both OoO
insert and OoO evict, and takes sub-O(log n) time.

One approach to OoO streaming is buffering: hold input stream
values in a buffer until it is safe to release them to the rest of the

ol I3 Hls H17 Sl
window size in data items

Figure 17: FIFO experiments on Flink

21 23 25 27 29 11
Slide granularity in data items

throughput [mil. items/s]

Figure 18: Coarse-grained sliding experiments

pipeline [31]. Buffering has the advantage of not requiring out-
of-order handling in the query since the query only sees in-order
data. Unfortunately, buffering increases latency (since values endure
non-zero delay) and reduces quality (since bounded bufter sizes
lead to outputs computed on incomplete data). One can reduce the
delay by optimistically performing computation over transactional
memory [13] and performing commits in-order. Finally, one can tune
the trade-off between quality and latency by adaptively adjusting
buffer sizes [23]—with further optimization possible, e.g., via
incremental reordering [16]. In contrast, FiBA can handle arbitrary
lateness without sacrificing quality nor significant latency.

Another approach to OoO streaming is retraction: report outputs
quickly but revise them if they are affected by late-arriving inputs.
At any point, results are accurate with respect to stream input values
that have arrived so far. An early streaming system that embraced
this approach was Borealis [2]. Spark Streaming externalizes state
from operators and handles stragglers like failures, invalidating parts
of the query [37]. Pure retraction requires OoO algorithms such as
000 sliding window aggregation, but the retraction literature does
not show how to do that efficiently. Our paper is complementary,
describing an efficient OoO sliding window aggregation algorithm
that could be used with systems like Borealis or Spark Streaming.

Using a low watermark (lwm) is an approach to OoO streaming
that combines buffering with retraction. The lwm approach allows
000 values to flow through the query but limits state requirements at
individual operators by limiting the OoO distance. CEDR proposed
8 timestamp-like fields to support a spectrum of blocking, buffering,
and retraction [9]. Li et al. [28] formalized the notion of a Iwm based
on the related notion of punctuation [36]. StreamInsight, which was
inspired by CEDR, offered a state-management interface to operator
developers that could be used for sliding-window aggregation. Sub-
sequently, MillWheel [5], Flink [14], and Beam [6] also adopted the
Iwm concept. The lwm leaves it to the operator developer to handle
000 values. Our FiBA algorithm is an OoO aggregation operator
that could be used with systems like the ones listed above.

Sliding Window Aggregation with Sharing. All of the following
papers focus on sharing over streams with the same aggregation
operator, e.g., monoid (S, ®,1). The Scotty algorithm supports
sliding-window aggregation over out-of-order streams while sharing
windows with both different sizes and slice granularities [34, 35].
For instance, Scotty might share a window of size 60 minutes and
granularity 3 minutes with a session window whose gap timeout
is set to 5 minutes. When a tuple arrives out-of-order, older slices
may need to be updated, fused, or created. Scotty relies upon an
aggregate store (e.g., based on a balanced tree) to maintain slice
aggregates. FiBA could serve as a more efficient aggregate store for
Scotty, thus combining the benefits of Scotty’s stream slicing with
asymptotically faster final aggregation.

Other prior work on window sharing requires in-order streams.
The B-Int algorithm uses base intervals to share windows with differ-
ent sizes [8]. Krishnamurthi et al. show how to share windows that

1177

differ not just in size but also in granularity [26]. Cutty windows [15]
extend the Reactive Aggregator [33] to share windows with different
sizes and granularities. The FlatFIT algorithm performs sliding win-
dow aggregation in amortized constant time and supports window
sharing [29]. Finally, SlickDeque focuses on the scenario where
x ® y always returns strictly either x or y, and offers window sharing
for that scenario with a time complexity of O(1) in the best case and
O(n) in the worst case [30]. In contrast to the above work, FiBA
combines window sharing with out-of-order processing.

Finger Trees. Our FiBA algorithm uses techniques from the liter-
ature on finger trees, combining and extending them to work with
sliding window aggregation. Guibas et al. [19] introduced finger
trees in 1977. A finger can be viewed as a pointer to some position in
a tree that makes tree operations (usually search, insert, or evict) near
that position less expensive. Guibas et al. used fingers on B-trees,
but without aggregation. Huddleston and Mehlhorn [21] offer a
proof that the amortized cost of insertion or deletion at distance d
from a finger is O(log d). Our analysis of tree maintenance cost is
inspired by Huddleston and Mehlhorn, but simplified and addressing
a different data organization: we support storing values in internal
nodes, whereas Huddleston and Mehlhorn’s trees store values only
in leaves. Finally, Hinze and Paterson [20] present purely functional
finger trees with amortized time complexity O(1) at distance 1 from a
finger. They describe caching a monoid-based measure at tree nodes,
but this cannot be directly used for sliding-window aggregation
(SWAG). Our paper is the first to use finger trees for OoO SWAG.

7. CONCLUSION

FiBA, presented in this paper, is a novel algorithm for sliding-
window aggregation over out-of-order streams. Built on specially-
designed finger B-trees augmented with position-aware aggregates,
it works with any associative aggregation operator, does not restrict
the kinds of out-of-order behavior, and supports window sharing.
FiBA outperforms the prior state-of-the-art and has optimal time
complexity, matching the lower bound derived in this paper.

8. APPENDIX

Time Lower Bound. For a permutation 7 on a set X, denote by
ni, i = 1,...,|X], the i-th element of the permutation. Let &;(r)
be the number of elements among 7q, 7o, . . ., m;_1 that are greater
than m;—i.e., 6;(m) = |[{j <i | mj > m;}|. This coincides with our
out-of-order distance: if elements with timestamps 71, 75, ... are
inserted into OoO SWAG in that order, 7; has out-of-order distance
6 (7). For an ordered set X and d > 0, let G;(X) denote the set of
permutations 7 on X such that max; 6;(r) < d—i.e., every element
is out of order by at most d.We begin by bounding the size of such a
permutation set.

LemMma 8. For an ordered set X and d < |X|,

1Ga(X)| = d\(d + X4

Proor. The base case is |Go(0)| = 1—the empty permutation.
For non-empty X, let xy = min X be the smallest element in X.
Then, every m € G;(X) can be obtained by inserting xg into one of
the first min(|X|, d + 1) indices of a suitable n’ € G4(X \ {xp}). In
particular, each 7’ € G4(X\{xp}) gives rise to exactly min(| X|, d+1)
unique permutations in G4(X). Hence, |G4(X)| = |Ga(X \ {x0})| -
min(| X|, d + 1). Expanding this gives

1X] d IX|
1Ga(X)| = [| min(k,d + 1) = (]_[k)([d+1),
k=1 k=1 k=d+1

which is d!(d + 1)IXI=4, completing the proof. []

Proor oF THEorREM 1. Fix X = {1,2,...,m}. Let A be an 00O
SWAG instantiated with the operator x ® y = x—i.e., it computes
the first element of the window. Now let 7 € G4(X) be given. We
will sort using A. First, insert m elements [Zi , [2 e [gz]
into A. By construction, each insertion has out-of-order distance at
most d. Then, query and evict m times, reminiscent of heap sort.
At this point, 7 has been sorted using 3m OoO SWAG operations
in total. By a standard information-theoretic argument (see, e.g.,
[18]), sorting a permutation in G4(X) requires, in the worst case,

Q(log |G4(X)|) time. There are two cases to consider: If d < 7,

we have |G4(X)| = (1 +d)™4 > (1 +dy™"™/2 = (1 + dy™/2, s0
log|Gq(X)| = Q(mlog(1 + d)). Otherwise, we have m > d > 7
and |G4(X)| = d! > (m/2)!. Using Stirling’s approximation, we
know log |G4(X)| = Q(mlogm), which is Q(mlog(l + d)) since
2m > 1 + d. In either case, log |G4(X)| = Q(mlog(1 +d)). [

Tree Rebalancing Cost. We analyze the restructuring cost:

LemMma 9. Let u > 2. The amortized cost due to tree rebal-
ancing in a B-tree with nodes of arity between MIN_ARITY = p and
MAX_ARITY = 2u (inclusive), starting with an empty tree initially, is
O(1) per 000 SWAG operation.

Proor. This proof is a specialization of the rebalancing cost
lemma in [21]. We prove this lemma by showing that if each
insert and evict is billed two coins, the following invariant can
be maintained for every B-tree node. Let w be a node with arity a.
In a tree with minimum arity y and maximum arity 2y, during the
intermediate steps, the arity of a node always has arity between p — 1
and 2u + 1 (inclusive). We maintain a coin reserve of

ifa=2u+1

if a =2u or (a = u — 1 and w is not the root)
if a = p and w is not the root

if a < 2u and (a > p or w is the root)

coins(w) =

S =N b

To insert or evict, the data structure locates a node where an entry
is either added or removed. Either way, coins(-) of this node never
changes by more than 2, so 2 coins can cover the difference. But
this may trigger a chain of splits or merges. Below, we argue that
the coin reserve on each node can pay for such splits and merges.
When split is called on a node w, then w has arity 2u + 1, sow
has a reserve of 4 coins. When w is split, it is split into two nodes
¢ and r, with one entry promoted to w.parent, the parent of w.
Node ¢ will have arity y + 1 and node r will have arity u. Because
u < p+1 < 2u, we have coins(€) = 0 and node ¢ needs no coin.
But node r has coins(r) = 1, so it needs 2 coins. Moreover, now that
the arity of w.parent is incremented, node w . parent may need up
to 2 additional coins. Out of 4 coins w has, use 1 to pay for the split,
give 1 to r, and give up to 2 to w. parent, refunding any excess.
When merge is called on a node w, it has arity u — 1 and the
sibling to merge with has arity u. Between these two nodes, we
have 2 + 1 = 3 coins in reserve. Once merged, the node has arity
pu+p—1=2u—1,soitneeds O coins. As a result of merging, the
parent of w loses one child, so it may potentially need 1 coin. Out of
3 coins in reserve, use 1 for the merge and give up to 1 to w. parent.
Finally, note that each of heightIncrease, heightDecrease, and
move can happen at most once for each OoO SWAG update. The
internal operations heightIncrease and heightDecrease are easy
to account for. For move, when called on a node w, it must be that
w has arity u — 1, and the sibling it is interacting with has arity a’,
where u < a’ < 2u. So, w has 2 coins. Once moved, w has arity u,
so it needs only 1 coin, leaving 1 coin for the sibling. The sibling of
w will loose one arity, so it needs at most 1 more coin (either going
from arity u + 1 to y, or e to u — 1). This concludes the proof. [

1178

[1

—

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

Citi Bike System Data.
https://www.citibikenyc.com/system-data, 2019. Retrieved
April, 2019.

D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,

A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
design of the Borealis stream processing engine. In
Conference on Innovative Data Systems Research (CIDR),
pages 277-289, 2005.

adamax. Re: Implement a queue in which push_rear(),
pop_front() and get_min() are all constant time operations.
http://stackoverflow.com/questions/4802038/, 2011. Retrieved
Oct., 2018.

P. K. Agarwal, G. Cormode, Z. Huang, J. Phillips, Z. Wei, and
K. Yi. Mergeable summaries. In Symposium on Principles of
Database Systems (PODS), pages 23-34, 2012.

T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom, and
S. Whittle. MillWheel: Fault-tolerant stream processing at
internet scale. PVLDB, 6(11):1033-1044, 2013.

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernandez-Moctezuma, R. Lax, S. McVeety, D. Mills,

F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
PVLDB, 8(12):1792-1803, 2015.

M. H. Alj, C. Gerea, B. Raman, B. Sezgin, T. Tarnavski,

T. Verona, P. Wang, P. Zabback, A. Kirilov,

A. Ananthanarayan, M. Lu, A. Raizman, R. Krishnan,

R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli,

J. Goldstein, S. Bhat, Y. Li, V. Di Nicola, X. Wang, D. Maier,
I. Santos, O. Nano, and S. Grell. Microsoft CEP server and
online behavioral targeting. PVLDB, 2(2):1558-1561, 2009.
A. Arasu and J. Widom. Resource sharing in continuous
sliding window aggregates. In Conference on Very Large Data
Bases (VLDB), pages 336-347, 2004.

R. S. Barga, J. Goldstein, M. Ali, and M. Hong. Consistent

streaming through time: A vision for event stream processing.

In Conference on Innovative Data Systems Research (CIDR),
pages 363-373, 2007.

R. Bayer and E. M. McCreight. Organization and maintenance
of large ordered indices. Acta Informatica, 1:173-189, 1972.
B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM (CACM),
13(7):422-426, 1970.

0. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird:
A framework for integrating batch and online MapReduce
computations. PVLDB, 7(13):1441-1451, 2014.

A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber. Speculative
out-of-order event processing with software transaction
memory. In Conference on Distributed Event-Based Systems
(DEBS), pages 265-275, 2008.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache Flink: Stream and batch processing
in a single engine. IEEE Data Engineering Bulletin,
38(4):28-38, 2015.

P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl.
Cutty: Aggregate sharing for user-defined windows. In
Conference on Information and Knowledge Management
(CIKM), pages 1201-1210, 2016.

1179

[16] B. Chandramouli, J. Goldstein, and Y. Li. Impatience is a
virtue: Revisiting disorder in high-performance log analytics.
In International Conference on Data Engineering (ICDE),
pages 677-688, 2018.

[17] B. Chandramouli, J. Goldstein, and D. Maier.
High-performance dynamic pattern matching over disordered
streams. PVLDB, 3(1):220-231, 2010.

[18] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[19] L.J. Guibas, E. M. McCreight, M. F. Plass, and J. R. Roberts.
A new representation for linear lists. In Symposium on the
Theory of Computing (STOC), pages 49-60, 1977.

[20] R. Hinze and R. Paterson. Finger trees: A simple
general-purpose data structure. Journal of Functional
Programming (JFP), 16(2):197-217, 2006.

[21] S. Huddleston and K. Mehlhorn. A new data structure for
representing sorted lists. Acta Informatica, 17(2):157-184,
1982.

[22] M. Izbicki. Algebraic classifiers: A generic approach to fast
cross-validation, online training, and parallel training. In
International Conference on Machine Learning (ICML), pages
648-656, 2013.

[23] Y. Ji, H. Zhou, Z. Jerzak, A. Nica, G. Hackenbroich, and
C. Fetzer. Quality-driven processing of sliding window
aggregates over out-of-order data streams. In Conference on
Distributed Event-Based Systems (DEBS), pages 68-79, 2015.

[24] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A
visualization-oriented time series data aggregation. PVLDB,
7(10):797-808, 2014.

[25] S. Krishnamurthy, M. J. Franklin, J. Davis, D. Farina,

P. Golovko, A. Li, and N. Thombre. Continuous analytics over
discontinuous streams. In International Conference on
Management of Data (SIGMOD), pages 1081-1092, 2010.

[26] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing
for streamed aggregation. In International Conference on
Management of Data (SIGMOD), pages 623-634, 2006.

[27] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No
pane, no gain: Efficient evaluation of sliding-window
aggregates over data streams. ACM SIGMOD Record,
34(1):39-44, 2005.

[28] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and
D. Maier. Out-of-order processing: A new architecture for
high-performance stream systems. PVLDB, 1(1):274-288,
2008.

[29] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. FlatFIT:
Accelerated incremental sliding-window aggregation for
real-time analytics. In Conference on Scientific and Statistical
Database Management (SSDBM), pages 5.1-5.12, 2017.

[30] A.U. Shein, P. K. Chrysanthis, and A. Labrinidis. SlickDeque:
High throughput and low latency incremental sliding-window
aggregation. In Conference on Extending Database
Technology (EDBT), pages 397—408, 2018.

[31] U. Srivastava and J. Widom. Flexible time management in
data stream systems. In Symposium on Principles of Database
Systems (PODS), pages 263-274, 2004.

[32] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency
sliding-window aggregation in worst-case constant time. In
Conference on Distributed Event-Based Systems (DEBS),
pages 66-77,2017.

[33] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu.
General incremental sliding-window aggregation. PVLDB,
8(7):702-713, 2015.

[34] J. Traub, P. Grulich, A. R. Cuellar, S. Bres, A. Katsifodimos, [36] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting

T. Rabl, and V. Markl. Scotty: Efficient window aggregation punctuation semantics in continuous data streams. Transations

for out-of-order stream processing. In Poster at the on Knowledge and Data Engineering (TKDE), 15(3):555-568,

International Conference on Data Engineering (ICDE-Poster), 2003.

2018. [37] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
[35] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Bre83, Discretized streams: Fault-tolerant streaming computation at

A. Katsifodimos, T. Rabl, and V. Markl. Efficient window scale. In Symposium on Operating Systems Principles (SOSP),

aggregation with general stream slicing. In Conference on pages 423-438, 2013.

Extending Database Technology (EDBT), 2019.

1180

