
Creating Top Ranking Options in the Continuous
Option and Preference Space

Bo Tang† Kyriakos Mouratidis‡ Man Lung Yiu§ Zhenyu Chen†
† Southern University of Science and Technology, {tangb3@,11510237@mail.}sustech.edu.cn

‡ Singapore Management University, kyriakos@smu.edu.sg
§ The Hong Kong Polytechnic University, csmlyiu@comp.polyu.edu.hk

ABSTRACT
Top-k queries are extensively used to retrieve the k most relevant
options (e.g., products, services, accommodation alternatives, etc)
based on a weighted scoring function that captures user prefer-
ences. In this paper, we take the viewpoint of a business owner who
plans to introduce a new option to the market, with a certain type of
clientele in mind. Given a target region in the consumer spectrum,
we determine what attribute values the new option should have,
so that it ranks among the top-k for any user in that region. Our
methodology can also be used to improve an existing option, at the
minimum modification cost, so that it ranks consistently high for an
intended type of customers. This is the first work on competitive
option placement where no distinct user(s) are targeted, but a gen-
eral clientele type, i.e., a continuum of possible preferences. Here
also lies our main challenge (and contribution), i.e., dealing with
the interplay between two continuous spaces: the targeted region
in the preference spectrum, and the option domain (where the new
option will be placed). At the core of our methodology lies a novel
and powerful interlinking between the two spaces. Our algorithms
offer exact answers in practical response times, even for the largest
of the standard benchmark datasets.

PVLDB Reference Format:
Bo Tang, Kyriakos Mouratidis, Man Lung Yiu and Zhenyu Chen. Creat-
ing Top Ranking Options in the Continuous Option and Preference Space.
PVLDB, 12(10): 1181-1194, 2019.
DOI: https://doi.org/110.14778/3339490.3339500

1. INTRODUCTION
In today’s digital world, there is instant availability of numerous

alternatives to cover the consumers’ daily needs, like purchasing a
product, finding a restaurant, booking accommodation, etc. Choos-
ing among available options (e.g., laptops) often involves multiple,
possibly conflicting criteria, such as speed, weight, and cost. To
support such multi-criteria decisions in a personalized manner and
at scale, the top-k query has emerged as the standard tool [23]. The
user’s preferences are expressed by specifying a weight for each
criterion to indicate its significance. These weights implicitly asso-
ciate each available option with a numeric score, i.e., the weighted

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 10
ISSN 2150-8097.
DOI: https://doi.org/110.14778/3339490.3339500

sum of its attribute values. The k highest-scoring options are pre-
sented to the user. This corresponds to a linear top-k query, which
is the most common in the literature, and whose linear scoring is
shown to capture closely the way real users make decisions [37].

Assuming a setting where users browse options via such top-k
queries, we take the standpoint of a business owner, and suggest
optimal placement strategies to maximize the competitiveness of
her product or service. Consider a computer manufacturer who is
planning to introduce a new laptop to the market, targeting a spe-
cific type of users (e.g., business users in need of moderately pow-
erful, yet highly portable laptops). In this work, we determine what
attribute values the laptop should have, so that it ranks consistently
high for any user in the targeted part of the consumer spectrum.

More formally, preferences in the top-kmodel are expressed by a
weight value per criterion (i.e., option attribute), together compris-
ing a weight vector w. We refer to the domain of w as the preference
space. Each option in the market can be viewed as a point pi in a
d-dimensional option space, where every axis corresponds to an at-
tribute. The targeted type of users is represented by a region wR in
preference space; choosing a target clientele is a business decision
supported by demographic information (e.g., income, profession,
and population statistics [39, 53]) that is orthogonal to our process-
ing framework. Given wR, we compute the region in option space
where an option o should be, so that it is in the top-k set for any
weight vector in wR. We call this the top-ranking region problem
(TopRR) and denote the computed region as oR. Note that oR must
be maximal, meaning that it includes all possible option placements
that would rank among the top-k for every preference in wR.
TopRR enables data-driven tools for market impact maximiza-

tion. Consider the creation of a new product (option) o. Placing o
in oR guarantees its presence in the top-k result for any user of the
targeted type. Moreover, if manufacturing cost is also a concern,
TopRR enables the cost-optimal placement of o. Manufacturing
cost is typically monotonic to o’s attribute values [43], e.g., propor-
tional to their summed squares. In this scenario, we may compute
the cost-optimal o using region oR (which we prove to be a convex
polytope) as the constraint to a quadratic programming solver [29].
In case the business owner’s profitability/manufacturing cost func-
tion is more complex, convex (or other types of mathematical) op-
timization [38] could be used to derive the cost-optimal o in oR.

In addition to option creation, TopRR also supports the optimal
modification (enhancement) of an existing option pi. Consider a
computer manufacturer who is revamping an existing laptop model
(option) pi so that it becomes highly appealing to a target customer
segment, represented by region wR in preference space. On the re-
quirement that the revamped version p′i is among the top-k for ev-
ery weight vector in wR, TopRR produces the region oR in option
space where p′i should lie. Furthermore, if the option modification

1181

cost is proportional to the Euclidean distance between pi and p′i (as
commonly assumed [33, 26]), the cost-optimal p′i can be identified
via quadratic programming with oR as the constraint.

Option creation and impact maximization problems have been
considered in the context of dominance/skyline operator (e.g., [25,
47, 27]), but such formulations are inapplicable to score-based
ranking and are not configurable to specific user types. Option cre-
ation and enhancement has also been studied in the context of top-k
queries, yet for finite sets of specific users/weight vectors [26, 50,
49]. Our problem is fundamentally different, because no specific
individual users (or distinct weight vectors) need to be known in
advance. Instead, a generic clientele type is specified, by means of
a region wR that includes infinite possible weight vectors. Some
recent studies do consider the (continuous) preference space of the
top-k query (e.g., [35, 41]), but none of them deals with the creation
or improvement of an option, i.e., all options are taken as is, and
their attributes are not to be decided or modified. The very need in
TopRR to deal concurrently with two continuous domains (i.e., the
option space and the preference space) is our major challenge, and
contribution. In summary, our contributions are as follows:
• We introduce TopRR, which enables data-driven market impact

maximization for options browsed by top-k queries.
• We make crucial observations that lead to a novel and insightful

interlinking of the two involved continuous domains, i.e., the
option space and the preference space.

• Based on that interlinking, we codify the conditions that define
oR (i.e., the output of TopRR), and develop a suite of algorithms
to exactly and efficiently compute it.

• We present a case study using real data, and empirically demon-
strate the efficiency of our methods, which take seconds even
for the largest benchmark datasets, outperforming by up to two
orders of magnitude a baseline constructed from previous work.

2. RELATED WORK
The top-k query reports the k options in a dataset that maximize

a scoring function. The most prevalent type of scoring function is
linear, where the user provides a weight per data attribute, and the
score of an option is the weighted sum of its attribute values [11,
22]. The literature focuses primarily on low-dimensional cases (a
few attributes), as ranking by score generally becomes meaningless
in high dimensions [52, 31]. Common processing approaches em-
ploy thresholding (on options organized by sorted lists) [17], the
branch-and-bound paradigm (on options indexed by spatial access
methods) [42], etc. A comprehensive survey is [23].

2.1 Considering Specific Weight Vectors
The proliferation of the top-k query has led to definitions of mar-

ket impact, as well as option creation/improvement strategies, cen-
tered on it. In this subsection, we review such definitions, which
however are customized for finite sets of specific weight vectors.

In [44], Vlachou et al. introduce the reverse top-k query. Given
a set of options D and a set of weight vectors Q, they identify
those weight vectors in Q that rank a specific option pi among the
top-k. Follow up work improved performance using branch-and-
bound techniques [46] and batch processing [18]. In related formu-
lations, [45] computes the options that belong to the top-k result
of most vectors in Q, while [24] selects m options from D (for an
input integer m), such that the largest number of vectors in Q are
covered, i.e., include at least one of the m options in their top-k
result. In a similar setting, the reverse k-ranks query [55] reports
the m query vectors inQ that rank a specific option pi the highest,
or (in another variant) that associate pi with the highest scores.

The why-not top-k query [21] computes the minimum perturba-
tion (in terms of Euclidean distance) required in the weight vector
w of a top-k query, so that a non-result option pi (or a set of non-
result options) is included in the top-k result. Specified a set of
weight vectors Q and an option pi that does not belong to any of
their top-k results, the why-not reverse top-k query [26] computes
the minimum perturbation required in pi or in the weight vectors in
Q, so that pi is included in all their results.

Assuming a known set of weight vectorsQ, Yang et al. [50] com-
pute the attribute values a new option o should have, so that (i) it
is the top-1 option in the dataset for at least m weight vectors, and
(ii) the cost to create o is minimized. The cost function is mono-
tonic to the attribute values, implying that the more competitive o is
made, the more expensive it is to create. Again for a known set of
weight vectors Q, and a cost function, Yang and Cai [49] compute
the minimum-cost “improvement vector” (that specifies an incre-
ment value for each dimension) for an existing option pi, so that
the enhanced pi is in the top-k result of at least m vectors inQ.

Studies in this subsection are intrinsically bound to a finite num-
ber of specific weight vectors. On the contrary, in our problem we
need to consider every possible weight vector in a continuous (part
of the) preference space. Take for example the why-not reverse
top-k query [26], which is related to our side-problem of modify-
ing (enhancing) an existing option pi, so that it belongs to the top-k
result of any weight vector in a region wR. To adapt [26], we could
apply it for a setQ of samples (weight vectors) randomly/uniformly
chosen within wR. For one, there is no guarantee that the modified
pi would be among the top-k for every possible vector in wR, i.e.,
the solution would be inexact. Second, it is not trivial (if possible
at all) to derive approximation bounds for the quality of the result,
e.g., to estimate the ratio of wR that is covered with respect to the
number of sample vectors. Our methodology respects the continu-
ous nature of the preference space and produces exact results, i.e.,
guarantees the complete coverage of wR (at minimum cost, when
the option creation/modification cost is a concern).

2.2 Processing in the Continuous Pref. Space
The first work to consider the continuous preference space as-

sumes 2-dimensional options, and maintains a subset of a (dy-
namic) dataset that is guaranteed to contain the answer to any top-k
query [15]. That is achieved by observations in a dual space (essen-
tially, the preference space), where options are mapped to lines and
queries to vertical rays. This approach is conceptually extended to
higher dimensions in the context of continuous top-k queries [51].

In [40], Soliman et al. identify the most probable score-based
ordering of a dataset when the weight vector is equally likely to
be anywhere in the preference space. This task entails considering
different partitions in preference space, and the respective order-
ings, although it resorts to sampling for more than 3 dimensions.
On regions and respective orderings, given a top-k result, Zhang et
al. [54] compute the region in preference space where any weight
vector produces the said result. That region’s volume could serve
as a sensitivity measure for the top-k result.

In [31], the market impact of an option pi is assessed by comput-
ing the best rank it could achieve for any weight vector. That en-
tails a progressive consideration of competing options and a gradual
pruning of unpromising partitions in the preference space. Tang et
al. [41] address the monochromatic version of the reverse top-k
query (originally defined and solved for 2-dimensional datasets
in [44]), i.e., they compute all regions in preference space where
a weight vector would rank a specific option pi among the top-k.

Assuming that the weight vector w may lie anywhere in a region
wR in preference space, [14] identifies all possible top-1 options.

1182

In a similar setting, [30] reports all possible top-k sets for any w in
wR, together with the specific partition in wR that produces each of
these top-k sets. Starting with an option pi as anchor, it computes
the rank of pi (and identifies all options that rank higher than it) in
different parts of wR. For each part where the rank of pi is not ex-
actly k, a different anchor is chosen, and the process is recursively
repeated (for the specific part and the new anchor). The recursion
in a part stops when the anchor has rank exactly k everywhere in it,
and thus the (order-insensitive) top-k set for that part is known.

In [35], specified the probability density function of the weight
vector, the objective is to select m options from D, such that the
top-1 answer has the highest probability to be among the chosen
options. That problem is related to regret minimizing sets [32, 13,
7, 48], e.g., selecting a subset ofm options fromD, so that the top-1
option in the subset does not score much lower than the top-k-th
option in the entire D for any possible weight vector.

The methods described in this subsection work for a continuous
(part of the) preference space. However, they do not consider the
creation of a new option or the improvement of an existing one.
That is, the options are taken as is, and no deciding on their values is
possible. This renders them inapplicable to our problem, although
in Section 3 we build a (inefficient, as we show in the experiments)
baseline that relies on [30] as a building block.

2.3 Option Creation and Enhancement
Creating competitive options and improving existing ones has

been considered in the context of the skyline, an one-size-fits-all
operator that (unlike top-k) does not take personalized preferences
into account. An option dominates another if it has no smaller value
in any dimension, and has a larger value in at least one dimension.
The skyline ofD is the set of options that are not dominated by any
other [10]; more generally, the k-skyband includes options that are
dominated by fewer than k others. The standard approach for sky-
line (and k-skyband) computation applies the branch-and-bound
paradigm to options indexed by a spatial access method [34].

Dominance has been used as a guide to create or enhance op-
tions. E.g., [25] and [19] aim to create a competitive option, on the
assumption that it will be more marketable if it dominates many ex-
isting options but is dominated by few, subject to several constraints
(e.g., creation budget). Wan et al. [47] choose options to create
(from a combinatorial set of candidates), so that they all belong to
the skyline of a greater set of alternatives. Peng et al. [36] consider
a similar problem, where the creation cost and the potential earn-
ings of each candidate are taken into account. Assuming that some
options are upgradable (at a cost), [27] identifiesm of them that can
be enhanced at the lowest total cost, so that they all appear in the
skyline. Skyline-based methods are inapplicable to our problem, as
they do not deal with score-based ranking. Application-wise, due
to the non-personalizable nature of dominance, they are not suitable
when the target is a specific type of clientele.

Miah et al. [28] propose techniques to publicize only a subset
of an option’s attributes in order to increase the number of queries
(from a known set) that would include it in their result. Asudeh
et al. [6] determine which additional services/amenities an option
should offer, so that the cost of the additions does not exceed a bud-
get, and a gain function (defined in relation to other available op-
tions) is maximized. In a marketplace where options receive (pos-
itive and negative) tags from users, Das et al. [16] use past corre-
lations between option attributes and tags, in order to create new
options that are most likely to attract a set of desirable tags. Prob-
lem definitions in these studies are fundamentally different from
TopRR and their methods are inapplicable to it. Moreover, they
focus on Boolean option attributes, or ordinal at best.

3. PRELIMINARIES & FUNDAMENTALS

3.1 Problem Definition
Our problem involves a dataset D with d attributes, where each

option pi ∈ D is represented as pi = (pi[1], pi[2], · · · , pi[d]). The
attributes (dimensions) define a continuous option space, denoted
by O, in which each option can be regarded as a d-dimensional
point. Without loss of generality, we assume that larger values are
preferable for every attribute. The top-k query takes as input a
weight vector w = (w[1], w[2], · · · , w[d]) and the dataset D, and
retrieves the k options with the highest scores. The score of an
option pi ∈ D according to w is defined as Sw(pi) = w · pi =∑d

j=1 w[j] · pi[j]. We assume that each weight vector w is nor-
malized such that

∑d
j=1 w[j] = 1. Note that this does not af-

fect the ranking of options, since the ranking does not depend on
the magnitude of w, but only on its direction [23]. Consequently,
we may drop the last weight in w, because it can be derived as
w[d] = 1 −

∑d−1
j=1 w[j]. We refer to the (d − 1)-dimensional do-

main of the weight vector as the preference spaceW .
Specified value k and a preference region wR ⊂ W , an option

is deemed as a top-ranking option if it is among the top-k in D for
every weight vector w ∈ wR. TopRR is defined as follows.

DEFINITION 1 (TOP-RANKING REGION PROBLEM). Given
a datasetD, a positive integer k, and a preference region wR ⊂ W ,
compute the maximal region oR in option space where a new option
o should lie, so that it is a top-ranking option.

Choosing a target clientele/region wR is a business decision [39,
53] that is orthogonal to our work. Our methodology requires that
wR is a convex polytope inW (for easy presentation, we illustrate
wR as an axis-aligned hyper-rectangle). However, our framework
indirectly addresses non-convex polytopes too; given that any non-
convex polytope can be partitioned into convex ones [8], the lat-
ter could be processed independently, and the intersection of their
TopRR solutions reported as overall oR. Similarly, closed regions
with curved sides can be approximated infinitely well by polytopes.

Maximality in Definition 1 asserts that oR includes all possible
placements that would render o a top-ranking option. As we show
later, oR is a convex polytope that includes the top-corner of the
option space (i.e., the corner with maximum attribute values).

For example, consider the 2-dimensional dataset D in Fig-
ure 1(a), where the options are laptops with attributes speed and
battery life. Since d = 2, the preference space W is the
1-dimensional domain [0, 1]. Suppose that the target preference
region is wR = [0.2, 0.8] and k = 3. Figure 1(b) represents the
option space, and shows in gray the TopRR output, i.e., region oR.

If a new laptop o were to enter the market with the objective
to be consistently among the top-3 for user types represented by
wR, it should fall inside region oR. Similarly, if an existing model,
like p4, were to be revamped with the same top-3 requirement, it
should enter oR. If the redesign cost is proportional to the Eu-
clidean distance between the current and the new version of p4, the
cost-optimal top-ranking placement to go for is p′4 in Figure 1(c).

TopRR can additionally (albeit indirectly) address the problem
of maximizing market impact (i.e., ensuring a top-k guarantee for
the smallest possible k) subject to a specified redesign budget B.
From the problem definition it follows that the TopRR result re-
gion in Figure 1 for any k < 3 is a subset of the gray area. In other
words, the optimal redesign cost is certain to increase monotoni-
cally as we lower k. Thus, we may compute oR (and the respective
cost-optimal placement p′4) for progressively smaller values of k,

1183

Laptop Speed Battery
p1 0.9 0.4
p2 0.7 0.9
p3 0.6 0.2
p4 0.3 0.8
p5 0.2 0.3
p6 0.1 0.1

𝑝[1]

𝑝[2]

𝑝1

𝑝2

𝑝4

𝑝5

𝑝6

oR

oH(0.8)

𝑝3

𝑝[1]

𝑝[2]

𝑝1

𝑝2

𝑝4

𝑝3
𝑝5

𝑝6

oR

oH(0.8)

𝑝4
′

𝑆𝑤(𝑝)

𝑤[1]

𝑝1

𝑝2

𝑝4

𝑝5

0.2 0.8

𝑝3

𝑝6

0.4 0.67

(a) Dataset (b) oR region in option space (c) Enhancing option p4 (d) Scores in pref. space

Figure 1: TopRR example (k = 3)

and report the placement p′4 for the smallest k that requires a re-
design cost within the available budget B.

Although we focus on option attributes with continuous do-
mains, our work also applies when some attributes take values from
a finite domain. An option is still top-ranking if and only if it falls
in region oR, exactly as we define/compute it. The finiteness of an
attribute’s domain is an extra condition, applied after oR compu-
tation. Similarly, possible manufacturing constraints and attribute
interdependencies (e.g., p[1] + p[2] ≤ 1.5) could subsequently be
imposed on (i.e., intersected with) oR.

3.2 Main Challenge
The main challenge in TopRR is the continuity of both the op-

tion space and the preference space. To elaborate, assume that we
are to create a top-ranking option o for a specific weight vector
w ∈ wR. Let TopK(w) denote the k-th highest score in D accord-
ing to w currently. Any top-ranking option should have a score no
smaller than TopK(w). The part of the option space that satisfies
that condition is a halfspace, called impact halfspace for w.

DEFINITION 2 (IMPACT HALFSPACE FOR w). Given a
weight vector w (and problem inputs k and D), the impact
halfspace for w is defined as:

oH(w) = {o ∈ O : Sw(o) ≥ TopK(w)}

It follows that if we wish to create a top-ranking option o for a
set of weight vectors {w1,w2, · · · ,wm}, option o should fall in the
intersection of their impact halfspaces, i.e., in oH(w1)∩ oH(w2)∩
· · · ∩ oH(wm). Applying that to TopRR definition, we get:

oR =
⋂

w∈wR

oH(w)

which, although theoretically valid, by itself is of little practical
use, because the preference region wR includes infinite possible
weight vectors. The main challenge is to define oR exactly, yet in
a form of finite terms.

3.3 Crucial Theorem
Our way to define oR in manageable terms passes through the

definition of rank-k invariant preference region (kIPR), and two
lemmata that lead to the core theorem in our methodology.

DEFINITION 3 (RANK-k INVARIANT PREFERENCE REGION).
A region wRi in preference space is a rank-k invariant preference
region (kIPR) if the top-k result for every weight vector w ∈ wRi

(i) comprises the same k options, and (ii) the top-k-th option is
always the same.

The definition disregards any score reordering among the top
(k − 1) options for different weight vectors, but requires that the

k-th be the same. To illustrate, in Figure 1(d) the x-axis represents
the preference space in our running example, and the plotted lines
indicate the scores of options. Region [0.67, 0.8] on the x-axis is
a kIPR, because every weight vector w ∈ [0.67, 0.8] yields (i) the
same top-3 set1 {p1, p2, p3}, and (ii) the same top-3-rd option p3.
In contrast, regions [0.2, 0.8] and [0.2, 0.67] are not kIPR.

To perceive the shape of a (maximal) kIPR region, observe that
conditions (i) and (ii) in Definition 3 are each equivalent to a num-
ber of pairwise inequalities of the form Sw(pi) ≥ Sw(pj). Specifi-
cally, condition (i) requires for each option pi in the top-k set, that
Sw(pi) ≥ Sw(pj) for every non-result option pj . Condition (ii)
additionally requires for each of the top (k − 1) options pi, that
Sw(pi) ≥ Sw(pk), where pk is the top-k-th option. Since each of
the pairwise inequalities corresponds to a halfspace in preference
space, a maximal kIPR is the intersection of the respective halfs-
paces, i.e., it is a convex polytope [8].

We first attempt to solve TopRR for a kIPR region wRi, before
extending to general input regions. Key to that attempt is Lemma 1.

LEMMA 1. Let p and p′ be two options, and wRi be a convex
polytope in preference space. Let also V be the vertex set that de-
fines wRi, i.e., the set of the polytope’s extreme vertices. If it holds
that Sv(p) ≥ Sv(p′) for every vertex v ∈ V , then Sw(p) ≥ Sw(p′)
also holds for every weight vector w ∈ wRi.

PROOF. Consider a weight vector w ∈ wRi. Since wRi is a
convex polytope, w can be expressed as:

w =
∑
v∈V

λvv (1)

for some positive λv coefficients, where
∑

v∈V λv = 1.
Since Sv(p) ≥ Sv(p′) for each vertex v ∈ V , it follows that

λvSv(p) ≥ λvSv(p′) too. By summing across all v ∈ V , we get:∑
v∈V

λvSv(p) ≥
∑
v∈V

λvSv(p′)

⇒
∑
v∈V

λv(v · p) ≥
∑
v∈V

λv(v · p′)

⇒ p ·
∑
v∈V

λvv ≥ p′ ·
∑
v∈V

λvv . applying Equation (1)

⇒ p · w ≥ p′ · w

Thus, ∀ w ∈ wRi, it holds that Sw(p) ≥ Sw(p′).

The following lemma defines (in finite terms) the TopRR solu-
tion for a kIPR convex polytope.
1We follow the convention that “top-k set” refers to the (order-
insensitive) collection of the top k options, while “top-k result” to
their score-sorted list.

1184

LEMMA 2. The TopRR solution for a kIPR convex polytope
wRi is option region

oRi =
⋂
v∈V

oH(v)

where V is the vertex set that defines wRi, and impact halfspaces
oH(v) are as defined in Definition 2.

PROOF. Since wRi is a kIPR, the top-k-th option pk is the same
everywhere in it. If a new option o scores higher than pk according
to all weight vectors (vertices) v ∈ V , Lemma 1 guarantees that
o also scores higher than pk for every w ∈ wRi, i.e., it is a top-
ranking option for wRi.

The option region oRi is also maximal, i.e., any option o outside
of it cannot be a top-ranking option. To see this, if o falls outside
oRi =

⋂
v∈V oH(v), there is a vertex v ∈ V for which o is outside

oH(v), i.e., Sv(o) < Sv(pk), thus o is not among the top-k for v,
and consequently not a top-ranking option in wRi.

With a manageable definition of the TopRR solution for a kIPR
region, we frame the core theorem for general target wR regions
(convex polytopes) in preference space. Assuming that a partition-
ing of wR into kIPRs is given, Theorem 1 provides an exact defini-
tion (in finite terms) of the TopRR solution oR.

THEOREM 1. Given the partitioning of wR into kIPRs, let Vall
be the set of all vertices that define those kIPRs. The TopRR solu-
tion for wR is option region

oR =
⋂

v∈Vall

oH(v)

PROOF. For any of the kIPR partitions wRi, the vertex set V
that defines wRi is a subset of Vall. Hence, any new option o that
falls in

⋂
v∈Vall

oH(v) must also fall in
⋂

v∈V oH(v), and therefore
(by Lemma 2) it is a top-ranking option for wRi. As the union of
all kIPR partitions is the entire wR, option o is a top-ranking option
for any w ∈ wR.

On the maximality of oR, if an option o is outside⋂
v∈Vall

oH(v), there is a v ∈ Vall such that o is outside oH(v).
This means that o scores lower than the top-k-th option for weight
vector v, and since v ∈ wR, option o is not top-ranking in wR.

Returning to our running example, in Figure 1(d) the kIPRs
are [0.2, 0.4], [0.4, 0.67], and [0.67, 0.8]. Set Vall includes ver-
tices (i.e., values in the 1-dimensional preference space) 0.2, 0.4,
0.67, and 0.8. The respective impact halfspaces in option space
are shown in Figure 1(b), and their intersection (gray area) is the
TopRR solution oR.

Based on Theorem 1, our algorithmic design is centered on ef-
ficiently partitioning wR into kIPRs, and forming Vall from their
defining vertices. In the next subsection, we adapt a method from
existing work to perform that partitioning.

3.4 Baseline Solution
A straightforward first step (which applies across the board) is

to disregard options that cannot be among the top-k for any w in
wR, since it is evident from our problem definition that they cannot
affect the TopRR solution. The literature includes several alterna-
tives to do this (e.g., k-skyband [34], k-onion layers [11], etc); we
review and choose the most suitable among them in Section 6.3.

As elaborated in Section 2.2, given a dataset D and a prefer-
ence region wR ⊂ W , the uncertain top-k problem (UTK) in [30]
computes all possible top-k sets (order-insensitive) for any w in
wR, together with a partitioning of wR into regions (convex poly-
topes), each associated with one of the reported top-k sets. While

UTK outputs top-k sets and regions in the preference space (as
opposed to TopRR reporting a region in option space), the specific
algorithm in [30] can serve as a building block in a baseline TopRR
solution. In particular, recall that its termination condition is that
the anchor (i.e., a specific option) of each output region has rank ex-
actly k in the region. In other words, every region in the produced
partitioning of wR is a kIPR (albeit most likely far from being a
maximal kIPR). Although the number of output regions (kIPRs)
may be exceeding, we can apply Theorem 1 on the union of their
defining vertices to produce the TopRR result region oR in option
space. We call the described baseline partition-and-convert (PAC).

3.5 Notation
Before we present our algorithms, we summarize important no-

tation in Table 1.

Table 1: Notation
Notation Description
D Option dataset
pi An (existing) option inD
W Continuous preference space
w A weight vector inW
wR Region in preference space
O Continuous option space
o New option to be placed inO
oR Region in option space (output of TopRR)

Sw(pi) The score of pi according to w (equal to pi · w)
TopK(w) k-th highest score inD according to w
oH(w) Impact halfspace for w (Definition 2)

wHP(pi, pj) Hyperplane for Sw(pi) = Sw(pj) in preference space
wH(pi, pj) Halfspace for Sw(pi) ≥ Sw(pj) in preference space

4. TEST-AND-SPLIT APPROACH
The performance of PAC suffers due to the high computation

cost of the UTK component, and the numerous kIPRs it produces.
In this section, we design an approach directly for our problem,
called test-and-split (TAS). As explained in Section 3.3, our design
is centered around the efficient partitioning of wR into kIPRs.

Initially, we test whether the input preference region wR is a
kIPR. If not, we split it into sub-regions. We recursively repeat
that test-and-split procedure on the sub-regions, until each of them
is verified as a kIPR. Hence, the fundamental modules in our al-
gorithm are (i) testing whether a region is kIPR, and (ii) splitting
a non-kIPR region. These modules are described in Sections 4.1
and 4.2, respectively, before brought together in the complete TAS
in Section 4.3.

4.1 kIPR Testing
The testing module receives a preference region (convex poly-

tope) wRi as input and determines whether it is kIPR. To deal with
the challenge that wRi contains infinite possible weight vectors,
Lemma 3 establishes an exact, yet practical condition to perform
the test.

LEMMA 3. Let V be the vertex set that defines a convex poly-
tope wRi in preference space. wRi is kIPR if and only if all vertices
in V have the same top-k set and the same top-k-th option.

PROOF. Consider first the “if” direction of the lemma, and let pk

be the top-k-th option, and Lk be the top-k set (order-insensitive)
at all vertices in V . The “if” direction can be proven by showing
that the following two statements hold for any w ∈ wRi:
(1) For each pj ∈ Lk − {pk}, we have Sw(pj) ≥ Sw(pk).
(2) For each pj ∈ D − Lk, we have Sw(pk) ≥ Sw(pj).

1185

Table 2: Dataset
Laptop Speed Battery Portability

p1 0.32 0.72 0.96
p2 0.85 0.91 0.65
p3 0.25 0.94 0.88
p4 0.81 0.65 0.72
p5 0.92 0.98 0.99

wR𝑖

0.1

0.2

𝑤[1]

𝑤[2]

𝑣1

𝑣2

𝑣3

𝑣4

𝑣3

0.2 0.3 0.2 0.3

0.1

0.2

𝑤[1]

𝑤[2]

𝑣5

𝑣6

wR<

𝑣5

𝑣6

wR>

wH(𝒑𝟑, 𝒑𝟒) wH(𝒑𝟒, 𝒑𝟑)

𝑣1

𝑣2

𝑣3

𝑣4

…

(a) wRi (b) wR< and wR>

Figure 2: Preference region splitting

For (1), each option pj ∈ Lk − {pk} satisfies Sv(pj) ≥ Sv(pk)

at each vertex v ∈ V . Using pj , pk in Lemma 1 instead of p, p′
proves the statement true.

For (2), each option pj ∈ D − Lk satisfies Sv(pk) ≥ Sv(pj) at
each vertex v ∈ V . Using pk, pj in Lemma 1 instead of p, p′ proves
that statement true as well.

Since both (1) and (2) hold, every w ∈ wRi yields Lk as the
top-k set, and pk as the top-k-th option. Thus, wRi is kIPR.

The “only if” direction is trivially true according to the definition
of kIPR, since the vertices in V are also in wRi.

Lemma 3 enables a simple procedure to verify whether wRi is
kIPR by simply computing the top-k result at each vertex in V .
Clearly, testing may terminate early (with negative result) when it
encounters the first pair of vertices in V with different top-k set or
different top-k-th option.

To exemplify, assume that k = 3, and consider the dataset in
Table 2 and the preference region wRi in Figure 2(a). In Table 3 we
show the top-3 set and the top-3-rd option at each defining vertex
of wRi. The test returns false because v1 and v3 have different
top-3-rd options.

Table 3: Top-3 set at each defining vertex of wRi

Weight vector Top-3 options Top-3-rd option
v1 p5, p1, p3 p3
v2 p5, p1, p3 p3
v3 p5, p1, p4 p4
v4 p5, p2, p4 p4

4.2 Splitting Non-kIPR Regions
If a preference region (convex polytope) wRi is not kIPR, it

should be split recursively until all sub-regions are kIPR. Two is-
sues arise in splitting wRi:
(Q1) How to determine the splitting hyperplane?
(Q2) How to perform the split?

4.2.1 Determining the Splitting Hyperplane
The basic requirement for this module is a guarantee that the

splitting hyperplane cuts through wRi. That is essential, because
invoking the splitting module (in Section 4.2.2) for a hyperplane
that does not cut through wRi would waste computations, without
partitioning wRi at all. Our strategy is as follows.

We first identify two among the defining vertices of wRi that
violate the kIPR requirements, say vertices va and vb. This can be
done during the execution of the kIPR testing procedure for wRi.
Next, we identify two options pz1 and pz2 (from the top-k sets at
va and vb, respectively) that lead to the violation. These options
will indicate the splitting hyperplane for wRi. We distinguish two
cases in choosing a suitable pair pz1, pz2:

• Case 1: va, vb have different top-k sets. In this case, we choose
as pz1 an option that appears in the top-k set at va but not in
the top-k set at vb. Similarly, we choose as pz2 an option that
appears in the top-k set at vb but not in the top-k set at va. If
there are multiple pairs (pz1, pz2) that satisfy this requirement,
one of them is chosen at random.

• Case 2: va, vb have the same top-k set but different top-k-th
options. In this case, we choose as pz1 and pz2 the respective
top-k-th options at va and vb.

After identifying pair pz1, pz2, we use the representation of equal-
ity Sw(pz1) = Sw(pz2) in preference space as the splitting hyper-
plane for wRi, i.e.,

wHP(pz1, pz2) = {w ∈ W : Sw(pz1) = Sw(pz2)}

Continuing the example in Figure 2(a), vertices v1 and v3 vio-
late the requirement of kIPR, because they yield different top-k-th
options. Falling under Case 2, we choose options p3 and p4 as
the violating pair from the respective top-k sets, and determine
wHP(p3, p4) as the splitting hyperplane for wRi. Lemma 4 proves
that the described strategy fulfills our fundamental requirement.

LEMMA 4. The chosen splitting hyperplane wHP(pz1, pz2) is
guaranteed to cut through wRi, i.e., to divide it into non-empty
parts.

PROOF. In both Case 1 and Case 2 of our strategy for choos-
ing pair pz1, pz2, the score order between them is sure to
change inside wRi, i.e., there is a (non-empty) part of wRi

where Sw(pz1) > Sw(pz2), and another (also non-empty) where
Sw(pz1) < Sw(pz2).

4.2.2 Performing the Split
Hyperplane wHP(pz1, pz2) enables us to split wRi into two sub-

regions, namely, wR< and wR>. Figure 2(b) demonstrates these
sub-regions in our example. To a great extent, the efficiency of this
operation depends on the representation model for convex poly-
tope wRi. We first describe the two standard preference space in-
dexing/representation models in existing literature (employed by
methods in Section 2.2), and then present our custom approach that
is optimized for particular operations required by our algorithms.

A common model is vertex-based representation [51, 31], which
stores the defining vertices of wRi. For example, in Figure 3(a), re-
gion wRi is represented by vertices v6, v7, v9, v10. This model can
readily support kIPR verification, as the latter operates on vertices.
It also supports splitting a region, but requires two steps: (i) com-
puting the exact geometry of wRi by a convex hull algorithm [8], in
order to derive the edges of wRi (generally, the facets of the poly-
tope), and (ii) computing the intersection points between the edges
of wRi and the splitting line (generally, the intersections between
polytope facets and the splitting hyperplane). Step (i) is the most
expensive, taking O(nbd/2c) time [12].

Another standard model is halfspace-based representation [41,
30], which stores the halfspaces that bound wRi. Let wH(pi, pj)
denote the halfspace corresponding to Sw(pi) ≥ Sw(pj) in pref-
erence space, and consider Figure 3(b). Convex polytope wRi is

1186

0.2 0.3

0.1

0.2

𝑤[1]

𝑤[2]

wR𝑖

𝑣6

𝑣10

𝑣7
𝑣9

0.2 0.3

0.1

0.2

𝑤[1]

𝑤[2]

wR𝑖

wH(𝒑𝟑, 𝒑𝟒)

(a) Vertex-based (b) Halfspace-based

Figure 3: Standard convex polytope representations

0.2 0.3

0.1

0.2

𝑤[1]

𝑤[2]
𝑤[2] ≤ 0.2, 𝑓𝑤[2]≤0.2

wR𝑖
wH(𝒑𝟐, 𝒑𝟑), 𝑓2,3

𝑣6

𝑣10

𝑣7
𝑣9

wH(𝒑𝟑, 𝒑𝟒), 𝑓3,4

wH(𝒑𝟏, 𝒑𝟐), 𝑓1,2

𝑤[1]

𝑤[3]

𝑤[2]

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5 𝑣6

𝑣7𝑣8

0.2

0.3

0.30

0.1

(a) Facet-based (2-D) (b) Facet-based (3-D)

Figure 4: Facet-based representation

expressed implicitly as the intersection of 7 halfspaces: 3 by op-
tion comparison (i.e., wH(p1, p2),wH(p2, p3),wH(p3, p4)), and
4 by wRi’s boundaries (i.e., w[1] ≥ 0.2, w[1] ≤ 0.3, w[2] ≥
0.1, w[2] ≤ 0.2). Since this representation does not store vertices,
it cannot readily support kIPR verification.

To avoid the above limitations, we consider a hybrid model to
represent wRi, the facet-based representation. A facet fi,j is ex-
pressed as a hyperplane wHP(pi, pj), augmented with those defin-
ing vertices of wRi that fall on the facet. Figure 4(a) shows wRi

in the 2-dimensional preference region. It is represented by 4
facets: f1,2, f2,3, f3,4, fw[2]≤0.2. Facet f3,4, for instance, cor-
responds to hyperplane (line, in 2 dimensions) wHP(p3, p4) and
is augmented with vertices v6 and v10. Figure 4(b) illustrates
a 3-dimensional preference region wRi. It is represented by 6
facets: fw[1]≥0.2, fw[1]≤0.3, fw[2]≥0, fw[2]≤0.3, fw[3]≥0, fw[3]≤0.1.
For example, facet fw[1]≤0.3 is augmented with 4 vertices
{v1, v2, v5, v6}.

When considering a preference region wRi, the facet representa-
tion offers fast kIPR testing (by applying Lemma 3 directly). In ad-
dition, since the facet representation stores bounding facets only, it
excludes irrelevant hyperplanes (unlike halfspace-based represen-
tation, where a fraction of the halfspaces kept for wRi are not truly
bounding it, as detailed in [41]).

Having elaborated on our representation model for preference re-
gions (convex polytopes), we next describe the splitting operation
on a region wRi according to the (already decided) splitting hyper-
plane wHP(pz1, pz2). Let V be the set of vertices that define wRi.
We first classify them into the following sets:

V< = {v ∈ V : Sv(pz1) < Sv(pz2)} (2)
V> = {v ∈ V : Sv(pz1) > Sv(pz2)} (3)

Then, we assign each facet f of wRi to sub-regions as follows:
1. If all vertices of f are in V<, then f is assigned to wR<.
2. If all vertices of f are in V>, then f is assigned to wR>.
3. Otherwise, f contains vertices in both V< and V>. In this case,

it is necessary to intersect f with wHP(pz1, pz2), splitting f into

two facets, f< and f>, and assigning them to wR< and wR>,
respectively.

After this process, the data structure of wRi can be released to free
resources, since recursive testing-and-splitting will be applied to its
sub-regions (convex polytopes) wR< and wR>.

In Figure 2(a), for example, wRi is represented by 4 facets:

fw[1]≥0.2 : {v1, v2}
fw[1]≤0.3 : {v3, v4}
fw[2]≥0.1 : {v1, v3}
fw[2]≤0.2 : {v2, v4}

Continuing from Section 4.2.1, the splitting hyperplane was de-
cided to be wHP(p3, p4). We illustrate the splitting steps in Ta-
ble 4. Steps 1 and 2 correspond to the simple cases. In step 3, facet
fw[2]≥0.1 : {v1, v3} is split into two parts and a new vertex v5 is
produced. Step 4 is similar to step 3. Finally, the facets for the
splitting hyperplane wHP(p3, p4) are assigned to wR< and wR>.

Table 4: Splitting steps for wRi in Figure 2(a)

Step Facet of wRi Case Action
1 fw[1]≥0.2 : {v1, v2} (1) assign it to wR<

2 fw[1]≤0.3 : {v3, v4} (2) assign it to wR>

3 fw[2]≥0.1 : {v1, v3} (3) assign fw[2]≥0.1 : {v1, v5} to wR<

assign fw[2]≥0.1 : {v5, v3} to wR>

4 fw[2]≤0.2 : {v2, v4} (3) assign fw[2]≤0.2 : {v2, v6} to wR<

assign fw[2]≤0.2 : {v6, v4} to wR>

5 assign f3,4 : {v5, v6} to wR<

assign f3,4 : {v5, v6} to wR>

4.3 Algorithm
Algorithm 1 summarizes the recursive test-and-split approach

(TAS), which is initially invoked for preference region wR (input
to TopRR), and partitions it into kIPRs. It maintains as global vari-
able a set Vall to keep the union of vertices that define confirmed
kIPRs. When the process terminates, we apply Theorem 1 on Vall
to produce option region oR (TopRR output). Note that line 2 and
lines 6-7 invoke the test and the split modules described in Sec-
tions 4.1 and 4.2, respectively.

Algorithm 1 Test-and-Split (D, k, wRi)
Global var. Vall: union of defining vertices of confirmed kIPRs

1: V ← the set of vertices that define wRi

2: flag ← apply kIPR testing . test by Section 4.1
3: if flag is true then
4: Vall ← Vall ∪ V
5: else . spit by Section 4.2
6: identify options pz1, pz2 that lead to violation
7: split wRi into wR< and wR> by hyperplane wHP(pz1, pz2)
8: Test-and-Split (D, k,wR<)
9: Test-and-Split (D, k,wR>)

There are rudimentary dominance-based approaches to quickly
eliminate options that could never be in the top-k for any w in wR.
These methods are discussed in Section 6.3, and are applied before
TopRR processing. Let n′ be the number of remaining options
(generally, n′ � n, with several analyses available to estimate it,
e.g., [20, 56]). In the worst case, during TopRR processing, all
TAS pruning may fail, yielding a worst case complexity equal to
that of the k-level of n′ hyperplanes [5], i.e., O(n′bd/2ckdd/2e).
The k-level is a standard notion in computational geometry [8].

1187

5. OPTIMIZED TAS APPROACH
In this section, we propose optimized test-and-split (TAS∗).

Specifically, we enhance the TAS approach by (i) safely pruning
additional options, (ii) optimizing region testing, and (iii) making
more effective splitting hyperplane selections.

5.1 Disregarding Consistent Top-λ Options
In Section 3.4 we mentioned that there are standard techniques to

prune uncompetitive options that cannot be among the top-k any-
where in wR, and therefore cannot affect TopRR solution. Like-
wise, here we show that we can also disregard options that are so
competitive that they score higher than the top-k-th option every-
where in wR. Lemma 5 paves the way for said pruning and proves
that it is safe, i.e., it does not threaten algorithm correctness.

LEMMA 5. Let V be the vertex set that defines a convex poly-
tope wR in preference space. If the top-λ set for a value λ < k at
every vertex v ∈ V is the same, and letting Φ be that top-λ set, then
TopRR(D, k,wR) is equivalent to TopRR(D−Φ, k−λ,wR), i.e.,
they output the same option region oR.

PROOF. Let p be an option in Φ, and p′ be an option in D − Φ.
Since Sv(p) ≥ Sv(p′) for every vertex v ∈ V , Lemma 1 guarantees
that Sw(p) ≥ Sw(p′) everywhere in wR. That it, Φ is also the top-λ
set for every w ∈ wR.

Since λ < k, no option in Φ could be the top-k-th anywhere in
wR. As elaborated in Section 3.2, the TopRR result (option region
oR) depends only on TopK(w) (i.e., the k-th highest score) for
vectors w ∈ wR, and therefore no option in Φ can affect it. In other
words, the output of TopRR(D, k,wR) is the same as TopRR(D−
Φ, k − λ,wR).

In effect, Lemma 5 suggests that set Φ can be disregarded, sub-
ject to parameter k being reduced by λ. To illustrate, consider the
dataset in Table 2, preference region wR in Figure 2(a), and k = 3.
The top-3 results of the vertices defining wR are shown in Table 3.
They all share a common top-1 set Φ = {p5}. By Lemma 5, we
can safely ignore Φ = {p5} from D, and decrement k by 1.

In our experiments, Lemma 5 reduces the number of considered
options up to 2.8 times (see Section 6.5).

5.2 Optimized Region Testing
The TAS approach relies on kIPR testing (in Section 4.1). If a

preference region wRi fails the test, it requires splitting and invokes
further recursive calls of the algorithm. In this section, we propose
an optimized testing technique that might allow wRi to go unsplit,
despite being a non-kIPR region!

To begin the discussion, assume that the TopRR input comprises
the dataset in Figure 1(a), k = 2, and wR = [0.2, 0.6]. Figure 5(a)
plots the scores of top-2 options for w ∈ wR; other options are
omitted for clarity. Region wR is not a kIPR, because sub-regions
[0.2, 0.4] and [0.4, 0.6] yield different top-2-nd options. Therefore,
the TAS approach would split wR (i.e., split it at 0.4).

Interestingly, in this example, the result option region oR (shown
in Figure 5(b)) depends on the boundary preferences (i.e., 0.2, 0.6)
but not on the splitting position (i.e., 0.4). Specifically, the result
option region oR is equivalent to oH(0.2) ∩ oH(0.6), which does
not involve oH(0.4). This motivates us to develop an optimized
testing technique to avoid such inconsequential splitting (and thus
save computations). Before generalizing, an important stepping
stone is Lemma 6 that applies to the special case of k = 1.

𝑤[1]

𝑝1

𝑝2

𝑝4

0.2 0.60.4 Speed

oH(0.2)

oH(0.6)

oH(0.4)

oR

Battery𝑆𝑤(𝑝)

𝑤[1]

𝑝1

𝑝2

𝑝4

0.2 0.60.4 Speed

oH(0.2)

oH(0.6)

oH(0.4)

oR

Battery𝑆𝑤(𝑝)

(a) Scores in 1-D pref. space (b) Option space (d = 2)

Figure 5: Optimized region testing example

LEMMA 6. The TopRR solution for k = 1 and preference re-
gion (convex polytope) wRi is option region

oR =
⋂
v∈V

oH(v)

where V is the vertex set that defines wRi, and impact halfspaces
oH(v) are as defined in Definition 2.

PROOF. In this proof, we abbreviate the notation TopK(w) by
Top(w), since k = 1.

Let o be any option in region
⋂

v∈V oH(v). It follows that, for
each vertex v ∈ V , Sv(o) ≥ Top(v), i.e., Sv(o) ≥ Sv(p) for every
p ∈ D. This implies (by Lemma 1) that Sw(o) ≥ Sw(p) for every
p ∈ D and w ∈ wRi, i.e., o is a top-ranking option.

The option region defined by the lemma is also maximal. To see
this, if o falls outside oR =

⋂
v∈V oH(v), there must be a vertex

v ∈ V for which o is outside oH(v), which would mean that o
scores below Top(v) and is thus not a top-ranking option.

We utilize the above lemma (for general values of k) to prove
that, if all vertices that define a preference region (convex polytope)
wRi share the same top (k−1) options, then the impact halfspaces
oH(v) at those vertices alone are enough to define the option region
oRi (i.e., the TopRR solution for wRi). In that case, further split-
ting/partitioning wRi into kIPRs is unnecessary, and its defining
vertices can be directly included into set Vall of Theorem 1.

LEMMA 7. Let V be the vertex set that defines a convex poly-
tope wRi in preference space. If every vertex v ∈ V yields the same
top-(k − 1) set, then the TopRR solution for wRi is option region

oRi =
⋂
v∈V

oH(v)

PROOF. Since every vertex v ∈ V yields the same
top-(k − 1) set, we may apply Lemma 5 (for preference region
wRi) to reduce k down to 1. This renders Lemma 6 applicable
to wRi, thus completing the proof.

Our evaluation in Section 6.5 reveals that Lemma 7 leads to 1.9
to 4.2 times fewer vertices in Vall. An important remark is that the
lemma also eliminates Case 2 in Section 4.2.1, since splitting is no
longer necessary in that scenario. The next subsection improves
splitting in the remaining (i.e., Case 1) violations.

5.3 Effective Splitting Hyperplane Selection
The TAS approach may choose a splitting hyperplane that is

unnecessary for computing kIPRs. To illustrate, consider the scores
of options in the 1-dimensional preference space in Figure 6(a), and
assume that k = 2 and wR = [v1, v2]. The red curve indicates
the score of the top-2-nd option, i.e., TopK(w), for any weight

1188

𝑤[1]

𝑝1

𝑝3

𝑣1 𝑣2

𝑝2

𝑥1 𝑥2𝑥3 𝑥4 𝑥5

𝑝4

𝑆𝑤(𝑝)

𝑤[1]𝑣1 𝑣2𝑥1 𝑥2𝑥3 𝑥4 𝑥5

𝑆𝑤(𝑝)

𝑝1

𝑝3

𝑝2

𝑝4

𝑤[1]

𝑝1

𝑝3

𝑣1 𝑣2

𝑝2

𝑥1 𝑥2𝑥3 𝑥4 𝑥5

𝑝4

𝑆𝑤(𝑝)

𝑤[1]𝑣1 𝑣2𝑥1 𝑥2𝑥3 𝑥4 𝑥5

𝑆𝑤(𝑝)

𝑝1

𝑝3

𝑝2

𝑝4

(a) wHP(p2, p3), split at x3 (b) wHP(p2, p4), split at x1

Figure 6: Scores in 1-dimensional preference space

w ∈ wR. The partitioning of wR into maximal kIPRs is indicated
by the blue splitting points, i.e., regions [v1, x1], [x1, x2], [x2, x4],
[x4, x5], and [x5, v2].

TAS first obtains the top-2 sets of v1 and v2, which are {p1, p2}
and {p3, p4}, respectively. Since the top-2 sets are different, wR
is not kIPR. The pairs of options that violate the kIPR require-
ment are: (p1, p3), (p1, p4), (p2, p3), (p2, p4). TAS chooses one
of these pairs randomly, say (p2, p3), to form the splitting hyper-
plane wHP(p2, p3). That hyperplane splits wR into [v1, x3] and
[x3, v2]. None of those sub-regions is a kIPR. Moreover, the max-
imal kIPR [x2, x4] will eventually be output in the form of two
non-maximal kIPRs (namely, [x2, x3] and [x3, x4]). Such splitting
does not threaten algorithm correctness (since Theorem 1 does not
require maximality of the kIPRs) but it wastes computations and
unnecessarily increases the number of vertices in Vall. Hence, we
want to avoid it as much as possible.

To reduce the chances of splitting poorly a non-kIPR region
wRi, we introduce the concept of k-switch hyperplane, which ap-
plies to Case 1 in Section 4.2.1, i.e., when two defining vertices
va, vb of wRi have different top-k sets. Among the option pairs
pz1, pz2 responsible for the violation, instead of a random choice,
we select the pair where pz1 is the top-k-th at va, and pz2 scores
lower, but as close as possible to pz1 at va. The intuition is that this
way pz2 is very likely to be the top-(k + 1)-th option at va, and
thus the produced splitting hyperplane wHP(pz1, pz2) to leave an
entire maximal kIPR on its side facing va. Formally:

DEFINITION 4 (k-SWITCH HYPERPLANE). Given a non-
kIPR preference region wRi, let va, vb be a pair of its defining
vertices that violate the kIPR requirement. We call wHP(pz1, pz2)
a k-switch hyperplane if (i) pz1 is the top-k-th option of va, and (ii)
pz2 = argminp∈LC |Sva(pz1) − Sva(p)| where set LC is defined
as:

LC = {pz ∈ Lvb : Sva(pz) < Sva(pz1) ∧ Svb(pz) > Svb(pz1)}

and Lvb is the top-k set at vb.

In the example of Figure 6 (with preference region wR = [v1, v2]
and k = 2), vertices v1 and v2 fall under Case 1, i.e., have differ-
ent top-k sets. Figure 6(b) illustrates how to compute a k-switch
hyperplane. We set pz1 = p2 (i.e., the top-2-nd option at v1). We
form set LC = {p3, p4} by options that (i) belong to the top-k set
at v2, and (ii) score lower than p2 at v1, but higher at v2. Among
the options in LC , we pick pz2 = p4, because its score at vertex
v1 is the closest to p2. The chosen pair (p2, p4) forms a k-switch
hyperplane wHP(p2, p4), which splits wR into sub-regions [v1, x1]
and [x1, v2]. Observe that the former is a maximal kIPR. A remark

is that it is possible for LC to be empty, in which case we reverse
the role of va and vb and repeat the process.

Our experiments confirm that the k-switch optimization reduces
drastically the number of poor/unnecessary splits, offering alone an
almost 10-fold reduction in the overall number of vertices in Vall
(see Section 6.5).

5.4 Algorithm
In the optimized test-and-split approach (TAS∗), we invoke the

recursive Algorithm 2 forD′, value k′, and input preference region
wR; note that D′ and k′ = k − λ refer to the updated dataset and
the possibly decremented value of k after pruning by Lemma 5 in
Section 5.1. Algorithm 2 performs region testing in a cascading
manner, applying first our original kIPR testing (from Section 4.1)
and, in case of failure, the optimized testing (from Section 5.2). If
the region passes any of these tests, its defining vertices are inserted
into set Vall (global variable). Otherwise, the algorithm selects a
splitting hyperplane in line 9 (enhanced by the optimization in Sec-
tion 5.3), splits the region into two sub-regions, and executes re-
cursively on them. Note that pruning top options by Lemma 5 is
applicable at every recursion (line 2), since options that were not
pruned for wRi, could be pruned for a sub-region. When Algo-
rithm 2 terminates, we apply Theorem 1 on Vall to produce option
region oR (TopRR output).

Algorithm 2 Optimized Test-and-Split (D′, k′, wRi)
Global var. Vall: union of defining vertices of valid regions

1: V ← the set of vertices that define wRi

2: D′, k′ ← apply top option pruning by Lemma 5
3: flag ← apply kIPR testing . test by Section 4.1
4: if flag is false then
5: flag ← apply optimized testing . test by Section 5.2
6: if flag is true then
7: Vall ← Vall ∪ V
8: else . spit must be performed
9: identify wHP(pz1, pz2) . enhanced by Section 5.3

10: split wRi into wR< and wR> by hyperplane wHP(pz1, pz2)
11: Optimized-Test-and-Split (D′, k′,wR<)
12: Optimized-Test-and-Split (D′, k′,wR>)

The worst case analysis for TAS at the end of Section 4.3 applies
to TAS∗ too. In practice, however, value n′ is expected to be even
smaller, and k reduced to k′, both due to Lemma 5. Also, Lemma 7
makes the worst case reduction to k-level even more unlikely.

6. EXPERIMENTAL EVALUATION
We describe the experimental setting in Section 6.1. In Sec-

tion 6.2, we conduct a case study on a real laptop dataset to demon-
strate the applicability of the TopRR problem. In Section 6.3, we
review standard techniques to use as a fast filtering step in TopRR
processing. In Section 6.4, we evaluate all TopRR methods on syn-
thetic and real datasets. Lastly, in Section 6.5, we investigate the
effectiveness of each optimization technique described in Section 5.

6.1 Experimental Setting
We conducted all experiments on a machine with Intel Xeon E5-

2620, 2.1 GHertz CPU and 64 GBytes memory, running on Cen-
tOS. We implemented all methods in C++: (i) partition-and-covert
(PAC), i.e., the baseline in Section 3.4, (ii) test-and-split (TAS),
as described in Section 4, and (iii) optimized test-and-split (TAS∗),
which enhances TAS by the techniques in Section 5. The methods
call on the qhull library (from qhull.org) for halfspace intersection.

1189

Table 5: Tested parameters

Parameter Tested values
Dataset size n 0.1M, 0.2M, 0.4M, 0.8M, 1.6M

Dimensionality d 2, 4, 6, 8, 10, 12
Value k 1, 5, 10, 20, 40

Pref. region’s side-length σ 0.1%, 0.5%, 1.0%, 5%, 10%
Data distribution COR, IND, ANTI

The real datasets are (i) HOTEL, with 418,843 options and 4
attributes (stars, price, number of rooms, and number of facili-
ties) [1], (ii) HOUSE, with 315,265 options and 6 attributes (gas,
electricity, water, heating, insurance, and tax) [2], and (iii) NBA,
with 21,960 options and 8 attributes (e.g., rebounds, points, assists,
etc) [4]. The synthetic datasets are standard benchmarks [10] by
a data generator, which takes 3 input parameters, namely (1) the
number of options n, (2) the number of attributes d, and (3) the type
of data distribution, i.e., Independent (IND), Correlated (COR),
and Anticorrelated (ANTI).

Table 5 summarizes the experiment parameters and their tested
values. Each input region wR is an axis-aligned hyper-cube, ran-
domly generated in a preference space with unit axes. Parameter σ
controls the size of wR, and denotes the side-length of wR as a frac-
tion of the respective axis of the preference space. In each experi-
ment, we vary one parameter in its tested range and fix the remain-
ing ones to their default values (typed in boldface in Table 5). The
processing times reported represent the average wall-clock running
time of 50 TopRR queries.

6.2 Case Study
We start by demonstrating the usefulness of TopRR with a case

study on real data. Inspired by the first example we used in the
paper (Figure 1), we crawled a major tech-product review portal,
CNET [3], and formed a dataset of ratings for 149 laptops. For ease
of demonstration, we kept only performance and battery life ratings
(i.e., d = 2), and normalized the dataset to a unit option space. For
2-dimensional options, the preference space is 1-dimensional. That
is, weight w = (1) implies preference based only on performance,
while w = (0) preference based only on battery life.

Suppose that a laptop manufacturer is targeting designers, i.e., a
clientele that traditionally has a strong preference for performance
over battery life. Modeling its target user type by preference region
wR = [0.7, 0.8], the manufacturer aims for the new laptop to rank
consistently among the top-3 options for the said user type. Fig-
ure 7(a) illustrates the actual TopRR output (i.e., region oR) as the
gray area. That area covers all possible options that will always be
among the top-3 for any user preference within wR, and indicates to
the manufacturer what characteristics the new laptop should have.

As typically production cost increases with both involved crite-
ria, oR can help determine the ideal laptop placement to attain a
guaranteed top-3 ranking at the smallest manufacturing cost. For
example, if production cost is proportional to the summed squares
of the option attributes, it could be modeled as

cost(product) = performance2 + battery2

The cost-optimal placement can be found by convex optimiza-
tion [38] within the gray area and, in our scenario, it is shown as the
black square in Figure 7(a). If we apply the cost formula to existing
products in the gray area, the new laptop is cheaper to produce by
18.6%–27.1%. That allows for a competitive pricing with a wide
profit margin for the manufacturer.

We conduct a similar study, assuming this time that the manu-
facturer is targeting a business crowd with strong demand for long

Apple MacBook Pro

Lenovo ThinkPad X201

0 10

1

Performance

Acer Predator 15

Optimal (1.0,0.43)

Battery

Asus Chromebook Flip

0 10

Battery Optimal (0.4,1.0)

Apple MacBook Pro

Asus Chromebook Flip

Lenovo ThinkPad X201

Acer Predator 15

1

Performance

(a) wR = [0.7, 0.8] (b) wR = [0.1, 0.2]

Figure 7: Introducing a new laptop to the market, k = 3

battery life and little need for performance. Modeling that clientele
by preference region wR = [0.1, 0.2], the optimal laptop placement
is shown as the black square in Figure 7(b). In addition to a guaran-
teed top-3 ranking, that laptop is also cheaper to build than its direct
competitors (i.e., existing laptops in the gray area) by 7.2%–27.1%.
The scenario of revamping an existing laptop is similar.

6.3 Fast Pruning of Non-top-k Options
As mentioned in Section 3.4, a straightforward first step in

TopRR processing is to disregard options that cannot be among
the top-k for any w in wR, since by definition they cannot affect the
TopRR solution. The literature includes 4 approaches to compute a
subset D′ ⊂ D such that D′ is a guaranteed superset of all options
that could rank among the top-k for any w in wR:
(i) k-skyband [34]: Defined in Section 2.3, it is guaranteed to in-
clude the top-k result for any weight vector in the preference space.
Options in the k-skyband serve as set D′.
(ii) k-onion layers [11]: It offers the same, general weight vector
guarantee as the k-skyband, by placing into D′ the first k layers of
the convex hull of D.
(iii) r-skyband: [14] defines that an option r-dominates another
when it scores higher for any w in a given preference region wR.
The r-skyband includes those options of D that are r-dominated by
fewer than k others, and thus forms a set D′ guaranteed to include
the top-k result for any w ∈ wR.
(iv) UTK [30]: Reviewed in Section 2.2, UTK computes exactly
those options that may appear in the top-k result for any w ∈ wR.

All 4 approaches takeD and k as input, but r-skyband and UTK
additionally take wR. The first 3 approaches produce a superset of
the options that may appear in the top-k result for w ∈ wR, while
UTK reports exactly those that do appear among the top-k for
some w ∈ wR.

For our fast filtering purposes, the ideal choice would produce
a small D′ and yet take little computation time. To choose among
the 4 alternatives, we conduct an experiment on our default dataset
(IND) for default parameter values. Figure 8 illustrates the num-
ber of retained options, i.e., |D′|, versus the computation time for
each method, normalized by the maximum size and time taken, to

0 1
0

1

Time

|D′|
k-skyband

k-onion layers

UTK

r-skyband

Figure 8: Trade-offs

provide perspective. The k-
skyband and k-onion layers are
unable to incorporate the con-
straint expressed by wR, thus
failing to effectively reduce the
dataset size and also taking
more time. UTK achieves the
optimal size reduction, but its
computation time is two times
higher than r-skyband. As
such, we use r-skyband for fast
filtering in all TopRR methods.

1190

6.4 Performance Evaluation
This is the main part of our experimental evaluation. First, we

investigate the performance of TopRR methods (PAC,TAS,TAS∗)
with respect to different problem parameters, i.e., value k, prefer-
ence region side-length σ, dataset size n, and dimensionality d.

Effect of value k: Figure 9(a) presents the average running time of
the methods when varying k. TAS∗ achieves the best performance,
beating PAC by up to two orders of magnitude. This is expected,
as PAC relies on a UTK building block that was designed for a
different problem, is computationally expensive, and produces nu-
merous kIPRs. Since TAS∗ employs all optimization techniques
in Section 5 (i.e., consistent top-scorer pruning, optimized region
testing, smart splitting), it performs better than TAS, and the dif-
ference between them widens with k; the comparison attests to the
strength and effectiveness of these optimizations (their individual
effect is investigated in depth in Section 6.5). For completeness, in
the chart embedded into Figure 9(a), we closer investigate small k
values (i.e., k ≤ 5); TAS∗ performs the best and PAC the worst in
all cases, the former being 2.2 to 3.4 times faster than the latter.

Effect of preference region side-length σ: In Figure 9(b), we
evaluate the TopRR methods when varying σ, i.e., the side-length
of the preference region wR. When σ increases, the volume of
wR grows polynomially, and thus the number of kIPRs also rises
quickly. Since both PAC and TAS require computing kIPRs, their
performance degrades significantly with σ. In contrast, TAS∗ can
terminate before reaching kIPRs, thanks to the optimized region
testing in Section 5.2 (recall that it stops partitioning regions which
meet the conditions of Lemma 7, without having to reduce them to
kIPRs). TAS∗ also benefits from the effective splitting hyperplane
selection technique in Section 5.3. The performance gap between
TAS∗ and the other two methods widens with σ.

Effect of dataset size n: In Figure 9(c), we vary the dataset size n
and report the running time of PAC, TAS and TAS∗. All methods
scale reasonably with n, with TAS∗ performing significantly better
than its competitors. To provide some insight, at default setting,
the number of processed options in TAS∗ is only 47.2% of those
processed in TAS, which is attributed to the effectiveness of the
techniques in Sections 5.1 and 5.2.

Effect of dimensionality d: We investigate the effect of dataset
dimensionality d in Figure 9(d). The running time increases with
d, as is commonly the case for problems that have a computational
geometric nature [8]. PAC cannot terminate within 24 hours for
d ≥ 8. Nevertheless, our advanced method, TAS∗, offers rea-
sonable response times in all cases. That said, the standard top-k
problem, and thus its derivatives too, suffer from the dimension-
ality curse [9], and are not meaningful for more than a handful of
dimensions (except for hugely skewed or sparse datasets) because
as d grows, the scores of all options inD quickly converge [52, 31].

Next, we study the robustness of TAS∗ with respect to differ-
ent data distributions (COR, IND, ANTI), henceforth omitting the
weaker methods TAS and PAC.

Effect of data distribution: Figure 10(a) examines the perfor-
mance of TAS∗ on different data distributions as a function of k.
The running time of TAS∗ is generally linear to k, regardless of
the data distribution. For COR data, the option attributes are posi-
tively correlated, producing a small subsetD′ (since uncompetitive
and consistent top-scoring options are easy to single out and disre-
gard), thus requiring the fewest computations. On the other hand,
for ANTI data, the remaining subset D′ is large, hence requiring
longer processing time.

10-1

100

101

102

103

104

1 5 10 20 40

R
un

ni
ng

 ti
m

e
(s

ec
)

k

PAC
TAS

TAS*

10-1

100

1 2 3 4 5

100

101

102

103

0.1 1 5 10

R
un

ni
ng

 ti
m

e
(s

ec
)

σ (%)

PAC
TAS

TAS*

(a) Effect of k (b) Effect of σ

 0

 10

 20

 30

0.1 0.2 0.4 0.8 1.6

R
un

ni
ng

 ti
m

e
(s

ec
)

n (millions)

PAC
TAS

TAS*

100

101

102

103

104

2 4 6 8 10 12

R
un

ni
ng

 ti
m

e
(s

ec
)

d

PAC
TAS

TAS*

(c) Effect of n (d) Effect of d

Figure 9: Collective performance evaluation

10-1

100

101

1 5 10 20 40

R
un

ni
ng

 ti
m

e
(s

ec
)

k

ANTI
IND

COR
10-1

100

101

102

103

0.1 1 5 10

R
un

ni
ng

 ti
m

e
(s

ec
)

σ (%)

ANTI
IND

COR

(a) Effect of k (b) Effect of σ

10-1

100

101

0.1 0.2 0.4 0.8 1.6

R
un

ni
ng

 ti
m

e
(s

ec
)

n (millions)

ANTI
IND

COR
10-1

100

101

102

103

104

2 4 6 8 10 12

R
un

ni
ng

 ti
m

e
(s

ec
)

d

ANTI
IND

COR

(c) Effect of n (d) Effect of d

Figure 10: Performance of TAS∗ vs. data distribution

In Figure 10(b), we plot the running time of TAS∗ on different
data distributions while varying σ. The running time increases at
a faster rate on ANTI data, due to the factors explained in the pre-
vious paragraph. Figure 10(c) varies the dataset size n. For COR
data, the running time is almost insensitive to n. Even for ANTI
data, the running time grows sub-linearly; TAS∗ takes only 15.3
seconds for a dataset of 1.6 million options. Next, in Figure 10(d),
we investigate the effect of dimensionality d for different data dis-
tributions. Although the running time increases with d, it remains
practical even at the extremes tested.

Experiments on real datasets: We proceed by evaluating TAS∗

on the real datasets too, i.e., on HOTEL, HOUSE, and NBA, with
dimensionality 4, 6, and 8, respectively. In Figure 11(a), we present
the running time of TAS∗ when varying k. The comparison be-
tween HOUSE and NBA is the most interesting; when k is small
(i.e., k ≤ 10), TAS∗ performs slower on HOUSE because it is
larger than NBA, yet for larger k, the situation is reversed due
to the higher dimensionality of NBA. Using the same datasets, in
Figure 11(b) we vary σ. Its effect is similar to Figure 10(b). Al-
though we omit charts on space requirements for brevity, we note
that TAS∗ has a very manageable footprint, requiring at maximum
648 MBytes in Figure 11(a), and 565 MBytes in Figure 11(b).

1191

100

101

102

103

1 5 10 20 40

R
un

ni
ng

 ti
m

e
(s

ec
)

k

HOTEL
HOUSE

NBA
100

101

102

103

0.1 1 5 10

R
un

ni
ng

 ti
m

e
(s

ec
)

σ (%)

HOTEL
HOUSE

NBA

(a) Effect of k (b) Effect of σ

Figure 11: Performance of TAS∗ on real datasets

In Table 6, we compare the running time of TAS∗ on real versus
synthetic data. Each row corresponds to a real dataset, and to COR,
IND, ANTI data of the same cardinality and dimensionality (for
the default k and σ). Although the distribution of the real datasets
does not necessarily follow a standard synthetic distribution, purely
based on performance, HOTEL and HOUSE behave as slightly
anticorrelated, while NBA as relatively correlated. However, they
do not reach the extremes of ANTI and COR, respectively, which
indicates that the synthetic benchmarks represent a broad spectrum
of correlation degrees that encloses real data behavior.

Table 6: Comparison between real and synthetic datasets (TAS∗)

Dataset Data characteristics COR IND ANTI Real
HOTEL n = 418,843; d = 4 0.35s 2.76s 7.42s 3.02s
HOUSE n = 315,265; d = 6 10.58s 21.27s 393.53s 26.87s

NBA n = 21,960; d = 8 8.25s 101.23s 1068.21s 11.01s

In Table 7, we generate wR hyper-rectangles, where a (randomly
chosen) side has length γ · σ (for a parameter γ), and the rest are
equal but accordingly adjusted so that wR has the same volume as
in the default setting. We vary γ from 0.25 to 4, and observe that
TAS∗ is not significantly affected. We hence deem our experiments
for hyper-cubic wR (i.e., γ = 1) representative of the general case.

Table 7: Effect of wR elongation (TAS∗)

γ HOTEL HOUSE NBA
0.25 3.05s 26.93s 11.06s
0.5 3.13s 26.81s 11.12s
1 3.02s 26.87s 11.01s
2 3.17s 28.29s 11.23s
4 3.22s 26.89s 11.10s

6.5 Effect of Optimizations
The next few experiments examine the individual effectiveness

of the optimizations in Section 5.
First, we consider Section 5.1 and assess the power of Lemma 5,

by comparing the number of options inD′ after filtering the dataset
only by r-skyband, versus r-skyband+Lemma 5. We use the default
dataset (IND) for the default n and d. Figures 12(a) and 12(b) show
the average |D′| when varying k and σ, respectively. Pruning by
r-skyband+Lemma 5 is much more effective than r-skyband alone.
At k = 40, for example, r-skyband+Lemma 5 produces a set D′
that is 2.8 times smaller than r-skyband, i.e., Lemma 5 lets through
2.8 times fewer options for subsequent processing.

Next, we consider the optimized region testing in Section 5.2.
We compare TAS∗ with Lemma 7 enabled, versus TAS∗ with
Lemma 7 disabled. Figures 13(a) and 13(b) plot |Vall| (i.e., the fi-
nal number of vertices in Vall) when varying k and σ, respectively.
Lemma 7 reduces |Vall| by 1.9 to 4.2 times, indicating that it indeed
avoids the unnecessary splitting of many non-kIPR regions.

 0

 30

 60

 90

1 5 10 20 40

N
o.

 o
f o

pt
io

ns

k

r-skyband
r-skyband + Lemma 5

 0

 100

 200

 300

 400

0.1 1 5 10

N
o.

 o
f o

pt
io

ns

σ (%)

r-skyband
r-skyband + Lemma 5

(a) Varying k (b) Varying σ

Figure 12: Effect of pruning consistent top-scorers (Section 5.1)

101

102

103

1 5 10 40

N
o.

 o
f v

er
tic

es

k

Lemma 7 disabled
Lemma 7 enabled

101

102

103

104

0.1 1 5 10

N
o.

 o
f v

er
tic

es

σ (%)

Lemma 7 disabled
Lemma 7 enabled

(a) Varying k (b) Varying σ

Figure 13: Effect of optimized region testing (Section 5.2)

Finally, we investigate the effectiveness of the splitting hyper-
plane selection technique in Section 5.3. We compare two ver-
sions of TAS∗, with the k-switch strategy enabled/disabled. Fig-
ures 14(a) and 14(b) plot |Vall| for different values of k and σ, re-
spectively. The results reveal that the k-switch strategy leads to 8.9
times fewer vertices in Vall, attesting to its effectiveness in avoiding
poor splitting, and in turn, reducing the number of splits performed.

7. CONCLUSION
In this paper, we introduce the top-ranking region problem

(TopRR), which computes the maximal region oR in option space
where any new option o would rank among the top-k for every
weight vector in a target preference region wR. The problem finds
application in competitive product placement and competitiveness
enhancement. We propose a test-and-split approach, enhanced with
a suite of powerful optimizations, and demonstrate the practicality
and effectiveness of our techniques on large benchmark datasets.
As future work, we plan to develop pre-computation techniques to
further expedite processing, as well as to explore parallelism.

8. ACKNOWLEDGMENTS
Bo Tang was supported by the Science and Technology

Innovation Committee Foundation of Shenzhen (Grant No.
JCYJ20180302174301157) and the National Science Foundation
of China (NSFC No. 61802163). Kyriakos Mouratidis was sup-
ported by the Singapore Management University Lee Kong Chian
Fellowship. Man Lung Yiu was supported by grant P0009703
(YBXT) from the Hong Kong Polytechnic University.

101

102

103

1 5 10 20 40

N
o.

 o
f v

er
tic

es

k

k-switch disabled
k-switch enabled

101

102

103

104

0.1 1 5 10

N
o.

 o
f v

er
tic

es

σ (%)

k-switch disabled
k-switch enabled

(a) Varying k (b) Varying σ

Figure 14: Effect of k-switch hyperplane selection (Section 5.3)

1192

9. REFERENCES

[1] Hotel dataset, 2018. www.hotels-base.com.
[2] House dataset, 2018. www.ipums.org.
[3] Laptop dataset, 2018. www.cnet.com.
[4] NBA dataset, 2018. www.basketball-reference.com.
[5] P. K. Agarwal, B. Aronov, T. M. Chan, and M. Sharir. On

levels in arrangements of lines, segments, planes, and
triangles. Discrete & Computational Geometry,
19(3):315–331, 1998.

[6] A. Asudeh, A. Nazi, N. Koudas, and G. Das. Assisting
service providers in peer-to-peer marketplaces: Maximizing
gain over flexible attributes. arXiv preprint
arXiv:1705.03028, 2017.

[7] A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient
computation of regret-ratio minimizing set: A compact
maxima representative. In SIGMOD Conference, pages
821–834, 2017.

[8] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars.
Computational geometry: algorithms and applications.
Springer-Verlag TELOS, 2008.

[9] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In ICDT, pages
217–235, 1999.

[10] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421–430, 2001.

[11] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,
and J. R. Smith. The onion technique: Indexing for linear
optimization queries. In SIGMOD Conference, pages
391–402, 2000.

[12] B. Chazelle. An optimal convex hull algorithm in any fixed
dimension. Discrete & Computational Geometry,
10(4):377–409, 1993.

[13] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides.
Computing k-regret minimizing sets. PVLDB, 7(5):389–400,
2014.

[14] P. Ciaccia and D. Martinenghi. Reconciling skyline and
ranking queries. PVLDB, 10(11):1454–1465, 2017.

[15] G. Das, D. Gunopulos, N. Koudas, and N. Sarkas. Ad-hoc
top-k query answering for data streams. In VLDB, pages
183–194, 2007.

[16] M. Das, G. Das, and V. Hristidis. Leveraging collaborative
tagging for web item design. In KDD, pages 538–546, 2011.

[17] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. JCSS, 66(4):614–656, 2003.

[18] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Efficient all
top-k computation - A unified solution for all top-k, reverse
top-k and top-m influential queries. IEEE Trans. Knowl.
Data Eng., 25(5):1015–1027, 2013.

[19] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Dominance
relationship analysis with budget constraints. Knowl. Inf.
Syst., 42(2):409–440, 2015.

[20] P. Godfrey. Skyline cardinality for relational processing. In
FoIKS, pages 78–97, 2004.

[21] Z. He and E. Lo. Answering why-not questions on top-k
queries. IEEE Trans. Knowl. Data Eng., 26(6):1300–1315,
2014.

[22] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER:
A system for the efficient execution of multi-parametric
ranked queries. In SIGMOD Conference, pages 259–270,
2001.

[23] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. ACM Comp. Surveys, 40(4), 2008.

[24] J. Koh, C. Lin, and A. L. P. Chen. Finding k most favorite
products based on reverse top-t queries. VLDB J.,
23(4):541–564, 2014.

[25] C. Li, B. C. Ooi, A. K. H. Tung, and S. Wang. DADA: a data
cube for dominant relationship analysis. In SIGMOD
Conference, pages 659–670, 2006.

[26] Q. Liu, Y. Gao, G. Chen, B. Zheng, and L. Zhou. Answering
why-not and why questions on reverse top-k queries. VLDB
J., 25(6):867–892, 2016.

[27] H. Lu and C. S. Jensen. Upgrading uncompetitive products
economically. In ICDE, pages 977–988, 2012.

[28] M. Miah, G. Das, V. Hristidis, and H. Mannila. Determining
attributes to maximize visibility of objects. IEEE Trans.
Knowl. Data Eng., 21(7):959–973, 2009.

[29] R. D. C. Monteiro and I. Adler. Interior path following
primal-dual algorithms. part II: convex quadratic
programming. Math. Program., 44(1-3):43–66, 1989.

[30] K. Mouratidis and B. Tang. Exact processing of uncertain
top-k queries in multi-criteria settings. PVLDB,
11(8):866–879, 2018.

[31] K. Mouratidis, J. Zhang, and H. Pang. Maximum rank query.
PVLDB, 8(12):1554–1565, 2015.

[32] D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. J.
Xu. Regret-minimizing representative databases. PVLDB,
3(1):1114–1124, 2010.

[33] V. Padmanabhan, S. Rajiv, and K. Srinivasan. New products,
upgrades, and new releases: A rationale for sequential
product introduction. Journal of Marketing Research,
34(4):456–472, 1997.

[34] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[35] P. Peng and R. C. Wong. k-hit query: Top-k query with
probabilistic utility function. In SIGMOD Conference, pages
577–592, 2015.

[36] Y. Peng, R. C. Wong, and Q. Wan. Finding top-k preferable
products. IEEE Trans. Knowl. Data Eng., 24(10):1774–1788,
2012.

[37] L. Qian, J. Gao, and H. V. Jagadish. Learning user
preferences by adaptive pairwise comparison. PVLDB,
8(11):1322–1333, 2015.

[38] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM
Review, 35(2):183–238, 1993.

[39] R. Simons. Choosing the right customer. Harvard Business
Review, 92(3):48–55, 2014.

[40] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and
M. Tagliasacchi. Ranking with uncertain scoring functions:
semantics and sensitivity measures. In SIGMOD Conference,
pages 805–816, 2011.

[41] B. Tang, K. Mouratidis, and M. L. Yiu. Determining the
impact regions of competing options in preference space. In
SIGMOD Conference, pages 805–820, 2017.

[42] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou.
Branch-and-bound processing of ranked queries. Inf. Syst.,
32(3):424–445, 2007.

[43] J. Viner. Cost curves and supply curves. Journal of
Economics, 3(1):23–46, 1931.

[44] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg.

1193

Monochromatic and bichromatic reverse top-k queries. IEEE
Trans. Knowl. Data Eng., 23(8):1215–1229, 2011.

[45] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis.
Identifying the most influential data objects with reverse
top-k queries. PVLDB, 3(1):364–372, 2010.

[46] A. Vlachou, C. Doulkeridis, K. Norvag, and Y. Kotidis.
Branch-and-bound algorithm for reverse top-k queries. In
SIGMOD Conference, pages 481–492, 2013.

[47] Q. Wan, R. C. Wong, I. F. Ilyas, M. T. Özsu, and Y. Peng.
Creating competitive products. PVLDB, 2(1):898–909, 2009.

[48] M. Xie, R. C. Wong, J. Li, C. Long, and A. Lall. Efficient
k-regret query algorithm with restriction-free bound for any
dimensionality. In SIGMOD Conference, pages 959–974,
2018.

[49] G. Yang and Y. Cai. Querying improvement strategies. In
EDBT, pages 294–305, 2017.

[50] J. Yang, Y. Zhang, W. Zhang, and X. Lin. Influence based
cost optimization on user preference. In ICDE, pages

709–720, 2016.
[51] A. Yu, P. K. Agarwal, and J. Yang. Processing a large

number of continuous preference top-k queries. In SIGMOD
Conference, pages 397–408, 2012.

[52] A. Yu, P. K. Agarwal, and J. Yang. Top-k preferences in high
dimensions. IEEE Trans. Knowl. Data Eng., 28(2):311–325,
2016.

[53] V. A. Zeithaml, R. T. Rust, and K. N. Lemon. The customer
pyramid: creating and serving profitable customers.
California Management Review, 43(4):118–142, 2001.

[54] J. Zhang, K. Mouratidis, and H. Pang. Global immutable
region computation. In SIGMOD Conference, pages
1151–1162, 2014.

[55] Z. Zhang, C. Jin, and Q. Kang. Reverse k-ranks query.
PVLDB, 7(10):785–796, 2014.

[56] Z. Zhang, Y. Yang, R. Cai, D. Papadias, and A. K. H. Tung.
Kernel-based skyline cardinality estimation. In SIGMOD

Conference, pages 509–522, 2009.

1194

