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ABSTRACT
Database-as-a-service offerings enable users to quickly create and
deploy complex data processing pipelines. In practice, these pipelines
often exhibit significant overlap of computation due to redundant
execution of certain sub-queries. It is challenging for developers and
database administrators to manually detect overlap across queries
since they may be distributed across teams, organization roles, and
geographic locations. Thus, we require automated cloud-scale tools
for identifying equivalent queries to minimize computation overlap.

State-of-the-art algebraic approaches to automated verification of
query equivalence suffer from two limitations. First, they are unable
to model the semantics of widely-used SQL features, such as com-
plex query predicates and three-valued logic. Second, they have a
computationally intensive verification procedure. These limitations
restrict their efficacy and efficiency in cloud-scale database-as-a-
service offerings.

This paper makes the case for an alternate approach to determin-
ing query equivalence based on symbolic representation. The key
idea is to effectively transform a wide range of SQL queries into first
order logic formulae and then use satisfiability modulo theories to
efficiently verify their equivalence. We have implemented this sym-
bolic representation-based approach in EQUITAS. Our evaluation
shows that EQUITAS proves the semantic equivalence of a larger
set of query pairs compared to algebraic approaches and reduces
the verification time by 27×. We also demonstrate that on a set of
17,461 real-world SQL queries, it automatically identifies redundant
execution across 11% of the queries. Our symbolic-representation
based technique is currently deployed on Alibaba’s MaxCompute
database-as-a-service platform.
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1. INTRODUCTION
The proliferation of cloud computing has resulted in the availabil-

ity of a growing number of database-as-a-service (DBaaS) offerings
(e.g., Microsoft’s Azure Data Lake [9], Google’s BigQuery [11], and
Alibaba’s MaxCompute [1]). These DBaaS solutions enable users
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to quickly create and deploy complex data processing pipelines. In
practice, these pipelines may have significant overlap of computa-
tion (i.e., redundant execution of certain sub-queries). For example,
around 45% of the queries executed on Microsoft’s SCOPE ser-
vice have computation overlap with other queries [40]. This results
in increased consumption of computational resources, higher data
processing costs, and longer query execution times.

Developers and database administrators (DBAs) may resolve
these problems by increasing the modularity of their data processing
pipelines to reuse the results of frequently executed sub-queries.
However, in practice, it is challenging for developers and DBAs to
manually detect overlap across queries since they may be distributed
across teams, organization roles, and geographic locations. Thus,
we require automated cloud-scale tools for identifying semantically
equivalent queries to minimize computation overlap.

The fundamental problem of determining if two SQL queries
are semantically equivalent is undecidable [14, 18]. Given this
constraint, prior efforts have focused on identifying a subset of
relational algebra where it is feasible to determine equivalence of
queries under set and bag semantics 1 [22, 52, 29, 39]. This line of
research examined the theoretical underpinnings of this problem by
targeting only conjunctive queries thereby limiting their ability to
identify overlap in other types of SQL queries.

More recently, Chu et al. have proposed a pragmatic approach
to determining the semantic equivalence of queries [51, 26]. Their
COSETTE and UDP tools transform SQL queries to algebraic ex-
pressions and then use a decision procedure to compare the resultant
algebraic expressions. The decision procedure includes a set of
re-write rules for verifying the equivalence of algebraic expressions.
COSETTE and UDP tools vary with respect to the algebraic repre-
sentation to which they convert the given queries. While the former
tool uses K-relations, the latter leverages U -semirings. Their experi-
ments demonstrate that these algebraic structures are sufficient to
model the semantics of complex real-world SQL queries.

The algebraic approaches are geared towards verifying the cor-
rectness of rewrite rules in query optimizers. They can, therefore,
validate complex structural transformations of SQL queries. How-
ever, they suffer from two limitations. First, they are unable to
model the semantics of widely-used SQL features, such as complex
query predicates, arithmetic operations, and three-valued logic for
supporting NULL [47]. This limits their ability to support a wide
range of real-world SQL queries. Second, they have a computation-
ally intensive decision procedure. This is because they apply a series
of re-write rules on the given algebraic expressions to determine

1A bag (a.k.a. multi-set) is an unordered collection of elements
with duplicates [15]. In contrast, a set is an unordered collection of
elements without duplicates [44].
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their equivalence. These two limitations restrict their efficacy and
efficiency in cloud-scale DBaaS offerings.

In this paper, we propose to address these limitations by leverag-
ing an alternate approach for determining query equivalence (QE).
We derive the symbolic representation (SR)2 of SQL queries and
use satisfiability modulo theories (SMT) to determine their equiva-
lence [32]. This approach can model the semantics of widely-used
SQL features, such as complex query predicates, arithmetic opera-
tions, and three-valued logic. Reducing the problem of determining
the equivalence of queries to that of deciding the satisfiability of
formulae in first-order logic (FOL) enables the usage of computa-
tionally efficient SMT solvers. Deciding the satisfiability of FOL
formulae is an NP-complete problem. However, in practice, modern
solvers employ heuristics from satisfiability theory [30] to efficiently
solve FOL formulae [32, 34, 45].

The problem of deciding the equivalence of a pair of SELECT-
PROJECT-JOIN queries can be reduced to the constraint satisfiability
problem. This is because if these queries were equivalent, for all
possible inputs, every pair of equivalent tuples in their output tables
must be constructed from the same finite set of tuples in their input
tables. So, we can derive constraints between SR of these queries
and then determine the satisfiability of those constraints. However,
this approach is not sufficient for handling more complex SQL
queries containing aggregate functions and different types of OUTER
JOIN. Unlike SELECT-PROJECT-JOIN queries, in these complex
SQL queries, there is no fixed set of input tuples that contribute
to an arbitrary output tuple across all possible inputs. We address
this challenge by introducing a set of rules for decomposing the
equivalence proof into proving relational constraints between the
constituent sub-queries.

We implemented our SR-based approach in EQUITAS, a tool
for automatically verifying the equivalence of SQL queries under
set semantics [44]. We evaluate EQUITAS using a collection of
pairs of equivalent SQL queries available in the Apache CALCITE
framework [3]. Each pair is constructed by applying various query
optimization rules on complex SQL queries with a wide range of
features, including arithmetic operations, three-valued logic for sup-
porting NULL, sub-queries, grouping, and aggregate functions. Our
evaluation shows that EQUITAS can prove the semantic equiva-
lence of a larger set of query pairs (67 out of 232) compared to UDP
(34 out of 232). Furthermore, EQUITAS is 27× faster than UDP
on this benchmark. In addition to the Apache Calcite benchmark,
we evaluate the efficacy of EQUITAS on a cloud-scale workload
comprising of 17, 461 real-world SQL queries from Ant Financial
Services Group [2]. 11% of the queries in this workload are redun-
dantly being executed. These queries contain heavyweight relational
operators, such as aggregate functions. We demonstrate the impact
of redundant query materialization on runtime performance of this
production workload in a DBaaS platform.

In summary, we make the following contributions:
• We illustrate the limitations of algebraic approaches and mo-

tivate the need for an alternate approach to determining the
equivalence of SQL queries (Section 2).

• We introduce a symbolic representation-based approach that
enables the usage of computationally efficient SMT solvers
(Section 3).

• We propose a rule-based extension to this approach for handling
more complex SQL queries containing aggregate functions and
different types of OUTER JOIN (Section 3).

2The symbolic representation of a query Q is a set of formulae in
first-order logic that denote the relational operators, predicates, and
other components of Q.

• We implemented our SR-based approach in EQUITAS and
evaluated its efficacy and efficiency on two benchmarks. We
demonstrate that this approach proves the semantic equiva-
lence of a larger set of query pairs in the CALCITE benchmark
compared to UDP, the state-of-the-art QE verifier (Section 6).

• We illustrate the utility of EQUITAS in identifying computa-
tion overlap in 17, 461 production SQL queries from a financial
company and highlight the impact of redundant query material-
ization on runtime performance (Section 6).

2. BACKGROUND
We begin by highlighting the limitations of algebraic approaches

for determining query equivalence (QE) in Section 2.1. We then
illustrate how an alternate approach based on symbolic representa-
tions can reduce the problem of QE to that of verifying the satisfi-
ability of FOL formulae in Section 2.2. We conclude with a brief
overview of SMT solvers in Section 2.3.

2.1 Challenges for Algebraic Approaches
State-of-the-art automated tools for determining QE adopt alge-

braic approaches [51, 26]. While COSETTE uses K-relations for
representing SQL queries, UDP leverages U-semirings. The latter
tool covers a broader set of SQL features compared to COSETTE.
At a high level, the UDP algorithm performs query rewrites using
U-expressions reminiscent of the chase/back-chase procedure [46,
52]. After translating queries to algebraic expressions, it applies a
set of rules for canonizing and minimizing the expressions. Lastly,
it performs a sequence of tests to check for isomorphisms and homo-
morphisms between the rewritten algebraic expressions to determine
the equivalence of the original queries.

UDP can prove the equivalence of complex SQL queries by using
algebraic reasoning. However, it is unable to support certain widely-
used SQL features. We motivate the need for an alternate approach
to proving QE using three illustrative examples derived from the
CALCITE framework [3]. We explain why algebraic approaches are
unable to decide the equivalence of these semantically equivalent
query pairs. We will later present how an alternate approach based
on symbolic representation can address these limitations in Section 3.
These query pairs operate on two tables:
• Employee table (EMP): ⟨ EMP_ID, EMP_NAME, DEPT_ID ⟩
• Department table (DEPT): ⟨ DEPT_ID, DEPT_NAME ⟩.

EXAMPLE 1. COMPLEX ARITHMETIC EXPRESSIONS:
Q1: SELECT ∗ FROM

(SELECT ∗ FROM EMP WHERE DEPT_ID = 10) AS T
WHERE T.DEPT_ID + 5 > T.EMP_ID;

Q2: SELECT ∗ FROM
(SELECT ∗ FROM EMP WHERE DEPT_ID = 10) AS T
WHERE 15 > T.EMP_ID;

Q1 is a nested query where the inner query selects employees whose
DEPT_ID is 10. The outer query then applies another filter on the
results of the inner query by retrieving tuples where DEPT_ID + 5
is larger than EMP_ID. Q2 is another nested query where the inner
query retrieves tuples from EMP whose DEPT_ID is 10. The outer
query then selects a subset of those tuples whose EMP_ID is less than
15. Since the inner query in Q2 only selects tuples whose DEPT_ID
is 10, the outer predicates of both queries Q1 and Q2 are equivalent.
The algebraic representation of these queries are as follows:

Q1 : [t.DEPT_ID = 10]× [t.DEPT_ID+5 > t.EMP_ID]× EMP(t)
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Q2 : [t.DEPT_ID = 10]× [15 > t.EMP_ID]× EMP(t)

Each algebraic expression is a function that returns the number
of times a given tuple t is present in the output table. × represents
the arithmetic multiplication operation. For example, Q1 returns the
number of times a tuple t in EMP is returned. Each predicate is a
function that emits 1 when it holds, and returns 0 otherwise. For
example, [t.DEPT_ID = 10] returns one when t.DEPT_ID = 10.
EMP(t) is function that returns the number of times t is present in
EMP.

Algebraic approaches are unable to prove the equivalence of these
expressions since they do not model the semantics of arithmetic
expressions. The automated proof assistant must infer that the two
predicates [t.DEPT_ID + 5 > t.EMP_ID] and [15 > t.EMP_ID]
are equivalent when the predicate [t.DEPT_ID = 10] holds. It is
challenging for a proof assistant to infer this fact due to the inherent
complexity of arithmetic expressions. For instance, the predicate
[t.DEPT_ID + 5 > t.EMP_ID] can be rewritten as [t.DEPT_ID >
t.EMP_ID− 5].
EXAMPLE 2. THREE-VALUED LOGIC:
Q1: SELECT EMP_ID FROM EMP

WHERE EMP_ID = 10 AND EMP_ID IS NOT NULL;

Q2: SELECT EMP_ID FROM EMP
WHERE EMP_ID = 10;

Q1 selects all tuples from EMP whose EMP_ID is 10 and is not NULL.
Q2 retrieves employees whose EMP_ID is 10. With three-valued
logic, EMP_ID is not NULL when it is equal to 10. So these two
queries are equivalent. The algebraic representation of these queries
are as follows:

Q1 : [t.EMP_ID = 10]× [NOT-NULL(t.EMP_ID)]× EMP(t)

Q2 : [t.EMP_ID = 10]× EMP(t)

Algebraic approaches are unable to prove the equivalence of
these queries since they do not model the semantics of three-valued
logic [47]. The proof assistant must infer that t.EMP_ID cannot
be NULL if the predicate [t.EMP_ID = 10] holds. It is challenging
for the proof assistant to support this kind of inference due to the
inherent complexity of three-valued logic. For instance, t.EMP_ID
can be NULL even if the predicate [TRUE OR t.EMP_ID] holds.

EXAMPLE 3. LEFT OUTER JOIN:
Q1: SELECT EMP.EMP_ID, DEPT.DEPT_NAME FROM

EMP JOIN DEPT ON EMP.DEPT_ID = DEPT.DEPT_ID;

Q2: SELECT ∗ FROM
(SELECT EMP.EMP_ID, DEPT.DEPT_NAME FROM
EMP LEFT OUTER JOIN DEPT
ON EMP.DEPT_ID = DEPT.DEPT_ID

) WHERE DEPT.DEPT_ID IS NOT NULL;

Q1 retrieves the name and department of employees by perform-
ing an INNER JOIN of EMP and DEPT tables on DEPT_ID. Q2 is a
nested query where the inner query selects the name and department
of employees by performing a LEFT OUTER JOIN of EMP and DEPT
tables on DEPT_ID. The outer query then applies a filter on the re-
sults of the inner query by retrieving those tuples whose DEPT_ID is
not null. Application of the NOT-NULL predicate to the output tuples
of LEFT OUTER JOIN eliminates all tuples from DEPT_ID is NULL.
These queries are, therefore, equivalent. Algebraic approaches are,
however, unable to prove the equivalence of these queries since they
do not model the semantics of complex relational operators such as
LEFT OUTER JOIN.

These examples highlight the limitations of algebraic approaches.
First, they do not model the semantics of complex predicates (e.g.,
those containing arithmetic expressions). Next, they are unable to
support three-valued logic. Lastly, they cannot model the semantics
of certain SQL operators (e.g., aggregate functions and different
types of OUTER JOIN). These limitations restrict the set of queries
that can be supported by UDP’s proof assistant [26].

2.2 Symbolic Representation-Based Approach
We propose to address these limitations of algebraic approaches

using an alternate approach based on SR. With this approach, we
represent tuples in input tables using symbolic tuples. We construct
these symbolic tuples using a collection of symbolic variables that
represent an arbitrary tuple. The SR-based approach models the
semantics of SQL queries using FOL formulae. It enables the
usage of SMT solvers to determine QE by verifying the relationship
between the SR of the given queries under set semantics 3.

We can reduce the problem of verifying QE to that of verifying
the containment relationship between those queries. Q1 contains
Q2 if and only if for all valid input tuples, the tuples returned after
executing Q2 on the input tuples are a subset of those returned after
executing Q1 on the same set of input tuples. If Q1 contains Q2 and
Q2 contains Q1, then they are equivalent. We will formalize these
definitions in Section 3.
EXAMPLE 1. COMPLEX ARITHMETIC EXPRESSIONS: Con-
sider the example with complex arithmetic expressions shown in Sec-
tion 2.1. For each tuple returned by these queries, there exists a
corresponding input tuple in EMP that satisfies the predicate. More
generally, for SELECT-PROJECT-JOIN queries, each output tuple is
derived from a finite set of tuples chosen from the input tables, and
the size of this set can be determined for all valid inputs. Thus, we
can symbolically represent an arbitrary output tuple with a finite
number of symbolic tuples that represent arbitrary tuples from the
associated input tables. For instance, the SR of queries Q1 and Q2
are as follows:
Q1: <COND1, COLS1, ASSIGN1>
COND1: (v3 = 10 and !n3) and

((v3 + 5 > v1) and (!n3 and !n1))
COLS1: {(v1,n1),(v2,n2),(v3,n3)}
ASSIGN1: ---

Q2: <COND2, COLS2, ASSIGN2>
COND2: (v3 = 10 and !n3) and ((15 > v1) and !n1)
COLS2: {(v1,n1),(v2,n2),(v3,n3)}
ASSIGN2: ---

Here, {(v1, n1), (v2, n2), (v3, n3)} represents an arbitrary input
tuple in EMP. Each pair of symbolic variables represents a column of
the tuple in EMP. For example, (v1, n1) denotes EMP_ID in this sym-
bolic tuple. While v1 represents the value of EMP_ID, the boolean
symbolic variable n1 indicates if EMP_ID is NULL. This symbolic tu-
ple represents an arbitrary input tuple in EMP. For each tuple returned
by Q1 and Q2, there exists one input tuple in EMP.
COND1 and COND2 are FOL formulae that represent the constraints

that the EMP tuple must satisfy for it to be returned by Q1 and
Q2, respectively. For instance, the formula (v3 = 10)&& (!n3),
which is a part of COND1, encodes the semantics of the predicate
DEPT_ID = 10 in Q1. It is satisfied only when the value of DEPT_ID
in the tuple equals 10 and it is not NULL. COLS1 and COLS2 are the
symbolic tuples returned by Q1 and Q2 when the conditions COND1

3Under set semantics, two queries are semantically equivalent if
and only if for all valid input tuples, the output tuples obtained after
executing the queries on the input tuples and eliminating duplicates
are equivalent [44].

1278



and COND2 are satisfied, respectively. Since Q1 and Q2 only filter out
tuples in EMP and do not modify them, COLS1 and COLS2 are set to
be the input symbolic tuple. Lastly, we use ASSIGN1 and ASSIGN2
to specify relational constraints between symbolic variables while
handling complex SQL operators, such as aggregate functions. We
do not set these constraints in this example. We defer a discussion
on how to derive the SR of a query to Section 3.

For determining QE, we must prove that Q1 and Q2 contain each
other. To show that Q1 contains Q2, we must prove two properties:
(1) Every tuple in EMP returned by Q2 is also returned by Q1. In
other words, if COND2 is satisfied, then COND1 also holds. (2) If
a given tuple in EMP is returned by both queries, then they must
emit the same output tuple. In other words, the symbolic tuple
COLS2 is equivalent to COLS1 when the conditions COND1 and COND2
are met. In this example, the latter condition trivially holds since
neither query modifies the input symbolic tuple. More generally, we
use SMT solvers to verify these two properties between the SR of
queries. We adopt the same technique to determine if Q2 contains
Q1, and thereby conclude if they are equivalent. In this manner, the
SR-based approach determines equivalence of queries with complex
arithmetic expressions.
EXAMPLE 4. AGGREGATE FUNCTIONS:
Q1: SELECT COUNT(∗) FROM

(SELECT ∗ FROM
(SELECT ∗ FROM EMP WHERE DEPT_ID = 10) AS T

WHERE T.DEPT_ID + 5 > T.EMP_ID);

Q2: SELECT COUNT(∗) FROM
(SELECT ∗ FROM
(SELECT ∗ FROM EMP WHERE DEPT_ID = 10) AS T

WHERE 15 > T.EMP_ID);

Q1 and Q2 calculate the number of employees that satisfy certain
predicates. As shown in Section 2.1, these predicates are equivalent.
Algebraic approaches are, however, unable to prove the equivalence
of these queries with aggregate functions since they do not model
the semantics of arithmetic expressions. The SR of queries Q1 and
Q2 are as follows:
Q1: <COND1, COLS1, ASSIGN1>
COND1: (v3 = 10 and !n3) and

(v3 + 5 > v1) and (!n3 and !n1) )
COLS1: {(v4,n4)}
ASSIGN1: ---

Q2: <COND2, COLS2, ASSIGN2>
COND2: (v3 = 10 and !n3) and ((15 > v1) and !n1 )
COLS2: {(v5,n5)}
ASSIGN2: ---

Unlike SELECT-PROJECT-JOIN queries, each output tuple of these
queries is not derived from a finite set of tuples in EMP. Furthermore,
the size of this set of input tuples cannot be statically determined
across all valid inputs. Thus, we cannot build the SR of Q1 and Q2
using the same input symbolic tuple in EMP.

We address this problem by introducing a two pairs of inde-
pendent symbolic variables (v4, n4) and (v5, n5) to represent the
values of the aggregate function COUNT(EMP_ID) returned by Q1
and Q2. We set COLS1 and COLS2 to these pairs, respectively. These
symbolic variables do not depend on each other and can take up
arbitrary values.

To prove the equivalence of Q1 and Q2, we need to prove two
properties between their SR as we discussed in Section 2.2. For
the first property, we use the same approach as in the previous
example. However, we cannot do so for the second property (i.e.,
COLS1 is equivalent to COLS2 when COND1 and COND2 hold). This is
because (v4, n4) and (v5, n5) are independent variables that have

no relationship with each other. For proving the second property, we
formulate a set of rules to derive relational constraints for the given
pair of queries. We defer a discussion on how we derive relational
constraints to Section 4.

In this example, (v4, n4) and (v5, n5), the two pairs of indepen-
dent symbolic variables representing aggregate values, are equiva-
lent if and only if: (1) their sub-queries are equivalent, (2) the set
of expressions in their GROUP BY clauses are equivalent, and (3)
they use the same aggregate function. We leverage an SR-based
approach to verify these constraints. If all these conditions are met,
we verify the equivalence of COLS1 and COLS2 under these addi-
tional relational constraints that encode the equivalence of aggregate
values:

(v4 = v5) && (n4 = n5)

along with the COND1 and COND2 constraints. In this manner, the
SR-based approach models the semantics of SQL operators when
coupled with complex predicates.

2.3 SMT Solvers
We now present a brief overview of SMT solvers [32]. An SMT

solver is a tool that decides if a given FOL formula has a solution
(i.e., a collection of values that satisfy the formula). If the formula
is satisfiable, then the solver returns a model of variables that meet
the constraints in the formula. For example, when we feed in the
formula [x > 0] && [x < 5] to the SMT solver, it determines that
this formula is satisfiable (e.g., x = 1 is a solution). However, the
solver decides that the formula [x> 10] && [x< 5] is not satisfiable
since there is no value of x that satisfies these constraints.

To verify the properties of SR of queries, we first encode these
properties as FOL formulae, and then use the SMT solver to deter-
mine the satisfiability of these constraints.
EXAMPLE 5. SMT SOLVER: Consider the queries in Example
1 (Section 2.2). We leverage the SMT solver to verify that COND1
implies COND2, and that COLS2 is equivalent COLS2 under COND1
and COND2 conditions.
1: To verify that COND1 implies COND2, We feed in these constraints
to the SMT solver:

COND1 ∧ ¬COND2

The solver determines that this formula is not satisfiable, which
implies that there is no counterexample to the fact that COND1 implies
COND2. Thus, COND1 =⇒ COND2.
2: To verify that COLS1 is equivalent COLS2 under the COND1 and
COND2 conditions, we feed in these constraints to the solver:

(COND1 ∧ COND2) ∧ ¬(COLS1 = COLS2)

The SMT solver decides that this formula is not satisfiable, thus
proving the property the tuples returned by Q1 and Q2 are equivalent.
Thus, Q1 contains Q2.

3. SPJ QUERIES
In this section, we discuss how EQUITAS determines the equiv-

alence and containment relationships between queries. We begin
with a formal definition of query equivalence in Section 3.1. We
then describe how EQUITAS verifies the relationship between SRs
of tables returned by a pair of queries in Section 3.2. We then dis-
cuss how to construct an SR for SELECT-PROJECT-JOIN queries
in Section 3.3. We present techniques for handling three-valued
logic, user-defined functions, complex predicates, complicated ex-
pressions, and arithmetic operations in Section 3.4.
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3.1 Query Equivalence
We define the QE relationship in terms of the query containment

relationship. We now formally define the latter relationship.

DEFINITION 1. CONTAINMENT: Given a pair of SQL queries
Q1 and Q2, Q1 contains Q2 if and only if, for all valid inputs T ,
T1 and T2 are the output tables of executing Q1 and Q2 on T re-
spectively, for each tuple in T2 is present in T1. We denote this
containment relationship by Q1 ⊆ Q2.

This definition is under set semantics. In other words, if tuple x
appears three times in T2 and only once in T1, Q1 still contains Q2
based on our definition. We next define the QE relationship.

DEFINITION 2. EQUIVALENCE: Two queries are semanti-
cally equivalent if and only if they contain each other. Q1 is equiv-
alent to Q2, if and only if Q1 ⊆ Q2 and Q2 ⊆ Q1. We denote this
equivalence relationship by Q1 ≡ Q2.

Since we define the containment relationship under set semantics,
this definition is also under set semantics (rather than bag semantics).
Having formalized the problem of determining the equivalence
relationship between a pair of SQL queries, we next describe how to
automatically deduce that a given pair of SQL queries are equivalent
under set semantics.

3.2 Verifying the Equivalence of Queries
We begin by defining the SR of a table constructed by executing

an SQL query. We will discuss how to determine the relationship
between queries using the representations of tables that they return
in Section 3.2.1. The SR of a query Q is a tuple:

⟨COND, ⃗COLS, ASSIGN⟩

COND is an FOL formula that represents the constraint(s) that must
be satisfied for the symbolic tuple ⃗COLS to be valid (i.e., a condition
that an arbitrary tuple needs to satisfied in the output table).
⃗COLS is a vector of pairs of FOL formulae that represent an arbitrary

tuple that can be returned by Q. Each element (Val, Is-Null) ∈
⃗COLS represents a column, where Val constrains the value of the

column and Is-Null constrains whether the column is null.
ASSIGN is another formula that models the relationship between
the symbolic variables used in COND and ⃗COLS. We use this for-
mula to handle complex SQL features. For example, the SR of a
pair of queries with arithmetic expressions is shown in Example 1
(Section 2.2).

We observe that for SELECT-PROJECT-JOIN queries, an arbitrary
tuple ⃗COLS in the output table is derived from a finite number of
tuples present in the input tables referred to in Q. In Section 4,
we discuss how EQUITAS handles queries that contain aggregate
functions and different types of OUTER JOIN.

3.2.1 Verifying Equivalence
Given the definition of QE in Definition 2, to verify the equiva-

lence of two queries Q1 and Q2, EQUITAS needs to assert that they
have a containment relationship. We next describe how to prove
that Q1 contains Q2. To prove that Q1 contains Q2, EQUITAS must
verify that all tuples that are in the output table of Q2 are also present
in that of Q1. This is equivalent to proving that for an arbitrary tuple
T in Q2’s output table, there exists a corresponding tuple in Q1’s
output table. EQUITAS attempts to prove that there exists a tuple
in Q1’s output table, which is derived from the same set of tuples
in the input tables, that is equivalent to t. This is sufficient to show
that Q1 contains Q2.

EQUITAS validates that Q1 contains Q2 in two steps. It first con-
structs the SR of the output tables obtained by running the queries.
It then verifies two formal properties between these representations
using a decision procedure. We next describe these two steps.

EQUITAS first attempts to show that for an arbitrary tuple T in
the output table of Q2, the tuple derived by executing Q1 on the same
set of input tuples is equivalent to T. For this proof, EQUITAS uses
the Construct procedure to build the symbolic representation of
their output tables: (COND1, ⃗COLS1, ASSIGN1) and (COND2, ⃗COLS2,
ASSIGN2) respectively. We defer a discussion of the Construct
procedure to Section 3.3. Since EQUITAS only needs to consider
tuples that are derived from the same set of input tuples and the size
of this set is bounded4, the SR of output tables of Q1 and Q2 share
the same set of variables.

To show that Q1 contains Q2, EQUITAS must prove two proper-
ties between the SR of the output tables of these queries.
1: When a tuple ⃗COLS2 exists in the output table of Q2, a corre-
sponding tuple constructed from the same set of input also exists
in Q1’s output table. EQUITAS proves this property by showing
that whenever COND2 is satisfied, COND1 is also met. This property
is formalized as the constraint: COND1 =⇒ COND2.
2: When both tuples ⃗COLS2 and ⃗COLS1 are present in their respec-
tive output tables, they are equivalent. This property is formalized
as the constraint: (COND1 ∧ COND2) =⇒ ( ⃗COLS1 = ⃗COLS2).

EQUITAS checks these two properties using an SMT solver.
1: For the first property, COND2 =⇒ COND1, EQUITAS feeds this
formula to the solver: (ASSIGN1 ∧ ASSIGN2) ∧ (COND2 ∧ ¬ COND1).
If the solver determines that the formula cannot be satisfied, that
shows that there exists no input tuple T that satisfies COND2 while
not meeting COND1. In other words, COND2 =⇒ COND1 within the
context of ASSIGN1 and ASSIGN2 for a given input tuple.
2: For the second property, EQUITAS feeds this formula to the
solver: (ASSIGN1 ∧ ASSIGN2) ∧ (COND2 ∧ COND1) ∧ ¬ ( ⃗COLS1 =
⃗COLS2). If the solver determines that the formula cannot be satisfied,

that demonstrates that there exists no input tuple T for which the
queries Q2 and Q1 return different output tuples when both condi-
tions are satisfied. This implies that given an arbitrary input tuple T,
Q1 and Q2 return the same tuple in their output tables.

To summarize, EQUITAS determines whether Q1 contains Q2
by validating the properties between the SR of their output tables
using the SMT solver. It uses the same approach to determine if
Q2 contains Q1. It finally combines the results of these containment
relationship checks to prove the equivalence of Q1 and Q2.

3.3 Symbolic Representation Construction
We now describe a recursive algorithm for constructing the SR of

the output table of a query. We begin by presenting the Construct
algorithm that supports SELECT-PROJECT-JOIN queries. We will
extend this algorithm to handle more advanced SQL features in Sec-
tion 4. Table 1 presents an overview of the SR of different types of
SQL queries and highlights the fields modified.

As shown in Algorithm 1, the inputs for the Construct procedure
include the query Q and the schemata of its input tables S. The
Construct procedure synthesizes different structures depending on
the query type.
SCAN: If the given query Q is a SELECT operator on table T, then
Construct creates a set of symbolic variables to represent a tuple
in T based on the table’s schema (T-Schema). This sub-procedure
is denoted by Init. It sets the COND and ASSIGN constraints to TRUE.
The reasons for this are twofold. First, the SCAN operator returns all

4The size of this set can be arbitrarily large for queries with aggre-
gate functions and different types of OUTER JOIN.
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Algorithm 1: Procedure for constructing the SR of a given Q and the
schemata of its input tables S.

Input :Query Q, Schemata of its input tables schemas S
Output :SR of the output table returned by Q

1 Procedure Construct(Q, S)
2 switch Q do
3 case Scan(n)
4 return (TRUE, Init(T-Schema(S[n])), TRUE)
5 end
6 case Filter(ps, Qs)
7 (CONDs, ⃗COLSs, ASSIGNs)← Construct(Qs, S)
8 COND← CONDs ∧ ConstructPred(ps, ⃗COLSs)

9 return (COND, ⃗COLSs, ASSIGNs)

10 end
11 case Proj(⃗e, Qs)
12 (CONDs, ⃗COLSs, ASSIGNs)← Construct(Qs, S)
13 ⃗COLS← ConstExpr′ (⃗e, ⃗COLSs)

14 return (CONDs, ⃗COLS, ASSIGNs)

15 end
16 case Join(Inner, k⃗1 = k⃗2, Q1, Q2)
17 (COND1, ⃗COLS1, ASSIGN1)← Construct(Q1, S)
18 (COND2, ⃗COLS2, ASSIGN2)← Construct(Q2, S)
19 ⃗COLS← ⃗COLS1 : ⃗COLS2

Key ← ConstructPred(k⃗1 = k⃗2, ⃗COLS)
20 COND← COND1 ∧ COND2 ∧Key
21 ASSIGN← ASSIGN1 ∧ ASSIGN2
22 return (COND, ⃗COLS, ASSIGN)

23 end
24 endsw

Table 1: SR of SQL queries - ✓indicates that the particular field is re-
constructed instead of being inherited from those in the SR of constituent
sub-queries.

SQL Query COND ⃗COLS ASSIGN

SELECT

Filter ✓
PROJECT ✓
INNER JOIN ✓ ✓
OUTER JOIN ✓ ✓ ✓
Aggregate ✓

tuples in T. Second, since SCAN is a trivial constructor, there are no
additional assignment constraints for constructing the output tuples.
FILTER: If the given query Q is a SELECT operator with a filter,
then Construct represents the SELECT operator as a sub-query Qs
and applies the filter on the results of Qs. It first recurses onto the
sub-query and creates an SR of Qs (CONDs, ⃗COLSs,ASSIGNs). We
denote the filter by Filter(ps, Qs). This indicates that this operation
consists of applying the predicate ps on the results of Qs. Construct
creates an SR of the filter by invoking the ConstructPred proce-
dure on ps and the symbolic tuple ⃗COLSs. We defer a discussion of
the ConstructPred procedure to Section 3.4.2. It then derives COND
by combining the SR of the filter with CONDs using a conjunction
operator. Lastly, it returns (COND, ⃗COLSs, ASSIGNs) as the represen-
tation of Q. As shown in Table 1, only the condition formula differs
between Q and Qs. This is because ps filters out a subset of tuples in
Qs and otherwise does not alter the semantics of Qs.
PROJECTION: Similar to the filter operator, if the given query
Q is a PROJECT operator, then Construct represents the SELECT
operator as a sub-query Qs and applies the projection on the results
of Qs. It first recurses onto the sub-query Qs and creates its symbolic
representation. We denote the projection operator by Proj(e⃗, Qs).
The Construct procedure materializes an SR of the projected tuple

⃗COLS by invoking the ConstExpr′ procedure on the columns in
⃗COLSs. This ConstExpr′ procedure applies a set of transformations

using a vector of expressions e⃗. Internally, it calls the ConstExpr
procedure on each expression in e⃗ on the symbolic tuple ⃗COLSs and
then collects the returned variables to materialize ⃗COLS.

Given a symbolic tuple and an expression e, the ConstExpr pro-
cedure applies the transformation associated with e on the tuple.
We defer a description of the ConstExpr procedure to Section 3.4.1.
Lastly, Construct returns (CONDs, ⃗COLS, ASSIGNs) as the represen-
tation of Q. Since the PROJECT operator only applies transformations
on the columns of the input tuples, the CONDs and ASSIGNs remain
unchanged, as shown in Table 1.
INNER JOIN: If the given query Q is a JOIN, then Construct re-
curses into two sub-queries Q1 and Q2 that represent the tables that
are being joined. We denote the JOIN operator by Inner Join(k⃗1 =
k⃗2, Q1, Q2). After deriving the SR of the sub-queries (COND1,
⃗COLS1, ASSIGN1) and (COND1, ⃗COLS2, ASSIGN2), it constructs the

output symbolic tuple ⃗COLS by concatenating ⃗COLS1 and ⃗COLS2. It
combines the COND1 and COND2 constraints along with the SR of the
join predicate (k⃗1 = k⃗2) to derive COND. Similarly, it coalesces the
ASSIGN1 and ASSIGN2 constraints using the conjunction operator to
materialize ASSIGN. In this manner, the JOIN operator is realized by
combining the output tuples of the sub-queries Q1 and Q2 using the
join predicate. We note that Construct relies on ConstructPred
procedure to encode filter and join predicates.

3.4 Encoding Expressions and Predicates
We next describe how EQUITAS encodes expressions, pred-

icates, and the CASE statement. We begin with a description of
how EQUITAS represents expressions, including arithmetic opera-
tions and user-defined functions (UDFs), in Section 3.4.1. We then
discuss how EQUITAS encodes predicates in Section 3.4.2. In par-
ticular, we detail how it uses three-valued logic for supporting NULL.
Lastly, we describe how we combine these techniques to handle the
CASE statement in Section 3.4.3.

3.4.1 Expression
We define the syntax of an expression as follows:

e ::= Column i|Const v|NULL|Bin e op e|Fun N (e⃗)
op ::= +| − | × | ÷ |mod

An expression can be: (1) a reference to a column, (2) a constant
value, (3) a NULL value, (4) a binary arithmetic operator combining
the values of two expressions, or (5) a UDF operating on a vector of
expressions.

Algorithm 2 presents the ConstExpr procedure for deriving the
SR of an expression e based on the input symbolic tuple ⃗COLS.
EQUITAS represents an expression as a pair of FOL formulae
(Val, Is-Null). Here, the first formula denotes the value and the
second one Is-Null indicates if the value is NULL. The input sym-
bolic tuple ⃗COLS, that is referred to by e, is a vector of pairs of FOL
formulae, as detailed in Section 3.2. The ConstExpr procedure
synthesizes different structures depending on the expression type.
COLUMN REFERENCE: If e is a reference to the ith column in the
symbolic tuple, then ConstExpr returns the corresponding element
in ⃗COLS.
CONSTANT: If e is a constant value Const v, then ConstExpr
returns (v, FALSE) since the v is not NULL. In contrast, if e is NULL,
then it emits (0, TRUE). EQUITAS sets the type of 0 to be that of
the associated column.
BINARY ARITHMETIC OPERATOR: If e contains a binary arith-
metic operator combining two expressions Bin e1 op e2, then
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Algorithm 2: Procedure for deriving the SR of an expression e based
on the input symbolic tuple ⃗COLS.

Input :Expression e, Input symbolic tuple ⃗COLS
Output :SR of e

1 Procedure ConstExpr(e, ⃗COLS)
2 switch e do
3 case Column i return ⃗COLS[i] ;
4 case Const v return (v, FALSE) ;
5 case NULL return (0, TRUE) ;
6 case Bin e1 op e2

7 (Val1, Is-Null1)← ConstExpr(e1, ⃗COLS)

8 (Val2, Is-Null2)← ConstExpr(e2, ⃗COLS)
9 Val← ConstBin(op, Val1, Val2)

10 return (Val, Is-Null1 ∨ Is-Null2)
11 end
12 case Fun n (e⃗1)
13 ⃗sym-e1 ← ConstExpr′(e⃗1, ⃗COLS)
14 (F-Val, F-Null)← GetFun (n)

15 return (F-Val( ⃗sym-e1), F-Null( ⃗sym-e1))

16 end
17 endsw

ConstExpr recursively derives the representations of e1 and e2.
It then invokes the ConstBin procedure to construct an FOL for-
mula that combines Val1 and Val2 using the binary operator op.
ConstBin handles addition and subtraction operations by append-
ing the SR of e1 and e2 with the corresponding binary operator.
ConstBin supports multiplication, division, and modulo operations
in two ways depending on whether both Val1 and Val2 are vari-
ables or not. In the former case, it represents the operation as an
uninterpreted function since the problem of deciding the satisfia-
bility of a quantifier-free non-linear integer arithmetic formula is
undecidable[43]. EQUITAS can decide the equivalence of formula
containing uninterpreted functions only when the operands of these
functions are equal. For instance, for a non-linear operator ×, EQ-
UITAS determines that (a × b) = (c × d) only when a = c and
b = d. When either Val1 or Val2 is not a variable, then ConstBin
derives a formula with the corresponding operator.
USER-DEFINED FUNCTION: If e is a UDF Fun F (e⃗1) that op-
erates on a vector of expressions e⃗1, then ConstExpr first invokes
the ConstExpr′ procedure on e⃗1 to derive the SR of all the expres-
sions in the vector ( ⃗sym-e1). It then obtains the representation of
function F using the GetFun procedure which returns a pair of
uninterpreted functions F-Val and F-Null. While the former func-
tion models the value computed by F , the latter function represents
if F returns NULL values.

GetFun disambiguates functions based on names. Given a func-
tion named F , it always returns the same pair of uninterpreted
functions. EQUITAS can decide the equivalence of these unin-
terpreted functions if and only if their arguments take the same
values. This encoding captures the semantics of deterministic UDFs
that can contain arbitrary logic. EQUITAS does not support non-
deterministic UDFs. However, it can be extended to allow users to
define properties of UDFs. ConstExpr applies the pair of uninter-
preted functions F-Val and F-Null on the UDF’s inputs ( ⃗sym-e1)
to derive the SR of e.

3.4.2 Predicate
We define the syntax of a predicate as follows:

p ::= BinE e cp e|BinL p logic p|Not p|IsNull e
cp ::= > | < | = | ≤ | ≥
logic ::= AND| OR

A predicate can be: (1) a comparison of two expressions, (2) a
combination of two predicates using Boolean logic, (3) negation of

Algorithm 3: Procedure for deriving the SR of a predicate p that repre-
sents its satisfiability when evaluated on an input tuple ⃗COLS.

Input :Predicate p, Input symbolic tuple ⃗COLS
Output :SR of p

1 Procedure ConstPred(p, ⃗COLS)
2 Procedure ConstPredAux(p, ⃗COLS)
3 switch p do
4 case BinE e1 cp e2

5 (Val1, Is-Null1)← ConstExpr(e1, ⃗COLS)

6 (Val2, Is-Null2)← ConstExpr(e2, ⃗COLS)
7 Val← ConstComp(Val1, Val2, cp)
8 return (Val, Is-Null1 ∨ Is-Null2)
9 end

10 case BinL p1 l1 p2
11 (Val1, Is-Null1)← ConstPredAux(p1, ⃗COLS)

12 (Val2, Is-Null2)← ConstPredAux(p2, ⃗COLS)
13 (Val, Is-Null)←

ConstLogic(l1, Val1, Val2, Is-Null1, Is-Null2)
14 return (Val, Is-Null)

15 end
16 case Not p1
17 (Val1, Is-Null1)← ConstPredAux(p1, ⃗COLS)
18 return (¬Val1, Is-Null1)
19 end
20 case IsNull e
21 (Val1, Is-Null1)← ConstExpr(e, ⃗COLS)
22 return (Is-Null1,FALSE)
23 end
24 endsw
25 (Val, Is-Null)← ConstPredAux(e, ⃗COLS)
26 return (Val ∧ ¬Is-Null)

another predicate, or (4) a Boolean representing if an expression is
NULL or not.

Algorithm 3 presents the ConstPred procedure that derives a an
FOL formula to represent the satisfiability of a given predicate p
when evaluated on an input symbolic tuple ⃗COLS. ConstPred inter-
nally invokes an auxiliary ConstPredAux procedure that constructs
a pair of FOL formulae. This pair represents the result of evaluating
p on ⃗COLS. While the first formula denotes the boolean value of
the predicate, the second one indicates if the predicate is NULL (i.e.,
UNKNOWN). EQUITAS leverages the latter information to support
three-valued logic [47]. ConstPredAux synthesizes different pairs
of FOL formulae depending on the type of the predicate.
EXPRESSIONS: If p compares two expressions, then procedure
ConstPredAux first obtains the representations of e1 and e2 using
ConstExpr. It then invokes the ConstComp procedure on the
comparison operator cp and the SR of Val1 and Val2. ConstComp
derives a Boolean formula Val to represent the comparison of Val1
and Val2 using cp. Lastly, it returns (Val, Is-Null1 ∨ Is-Null2)
as the SR of p. It uses the disjunction operator to combine Is-Null1
and Is-Null2 because if either of these expressions is NULL, then
the value of p is unknown.
BINARY LOGICAL OPERATOR: If p is a combination of two pred-
icates using a binary logic, then ConstPredAux first recursively de-
rives the SR of predicates p1 and p2. The base cases of this recursive
procedure are the non-recursive rules for comparing expressions and
determining whether an expression is NULL or not. ConstPredAux
then uses the auxiliary ConstLogic procedure to derive the SR of
p by using the associated logical operator (AND, OR) to combine
(Val1, Is-Null1) and (Val2, Is-Null2). ConstLogic employs
three-valued logic to derive the SR of the combination of p1 and p2.
NEGATION: If p is the negation of another predicate p1, then
ConstPredAux first derives the SR of p1. It returns the logical
negation of Val1 and sets Is-Null based on Is-Null1.
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NULL: If p is a boolean predicate representing if an expression e1

is NULL or not, then ConstPredAux invokes ConstExpr to obtain
the SR of e1. The value of p is given by the boolean Is-Null1 that
indicates if e1 is NULL. Since it is impossible for the p to be NULL,
ConstPredAux sets Is-Null to be false.

Lastly, we describe how ConstPred transforms the results ob-
tained from its auxiliary ConstPredAux procedure. Given a predi-
cate p, procedure ConstPredAux returns a pair of FOL formulae
(Val, Is-Null). While the first formula represents the Boolean
value of p, the second one indicates whether the predicate is NULL.
By three-valued logic, ConstPred holds if and only if it is true and
it is not unknown. Thus, ConstPred returns the conjunction of Val
and the negation of Is-Null to represent the satisfiability of p.

3.4.3 Case Constructor
EQUITAS handles more complex features of SQL by leverag-

ing the ConstExpr and ConstPred procedures presented in Sec-
tions 3.4.1 and 3.4.2. We next detail how it supports the CASE
expression in this manner.

We define the syntax of the CASE expression as follows:

CASE := WHEN p1 e1; . . . WHEN pn en; ELSE ed;

A CASE expression consists of a list of predicates (p1, . . . , pn). It
returns one of multiple possible result sub-expressions (e1, . . . , en)
depending on the first predicate in the list that holds. If none of the
predicates hold, it returns the final sub-expression (ed). All of these
expressions must have the same type.

Similar to other structures, EQUITAS creates a pair of symbolic
variables (Val, Is-Null) to represent the CASE expression. Since
the CASE expression may return any sub-expression, EQUITAS
captures the relationship between the predicates and sub-expressions
using an FOL formula (ASSIGN). EQUITAS combines this ASSIGN
formula with that already present in the symbolic representation of
query containing the CASE expression using a conjunction operator.

Given a CASE expression ec, EQUITAS first uses the ConstExpr
and ConstPred procedures to obtain the SR of the predicates and
sub-expressions. The SR of ec is then given by:

(p1, (Val1, Is-Null1); . . . (pn, (Valn, Is-Nulln));

(TRUE, (Vald, Is-Nulld)))

This representation captures the semantics of the CASE expression.
If p1 holds, then (Val, Is-Null) is given by (Val1, Is-Null1). If
all predicates prior to pn do not hold and pn holds, then (Val, Is-Null)
is given by (Valn, Is-Nulln). EQUITAS models the relationship
between ec and (Val, Is-Null) as follows:∨
i⩽n

[pi ∧
∧
s<i

¬ps =⇒ (Val = Vali ∧ Is-Null = Is-Nulli)]

EXAMPLE 7. CASE: Consider the following query and its SR:
SELECT CASE
WHEN EMPNO < 10 THEN DEPTNO + 1 ELSE DEPTNO END

FROM EMP;

COND: ---
COLS: {(v4,n4)}
ASSIGN: (v1 < 10 => (v4 = v3 +1 ) and (n4 = n3))

or ((v1 >= 10) => (v4 = v3) and (n4 = n3))

In this example, (v1,n1),(v2,n2), and (v3,n3) represents a symbolic
tuple from EMP table. Given the CASE expression, we represent the
output column using new variables (v4,n4). ASSIGN encodes the
relationship between (v4,n4) and (v3,n3) based on the conditions
in the CASE expression.

Algorithm 4: Extended version of the Construct procedure that sup-
ports queries containing OUTER JOIN and aggregate functions.

Input :Query Q, Schemata of its input tables schemas S
Output :SR of the output table returned by Q

1 Procedure Construct(Q, S)
2 switch Q do
3 case Join(Left, k⃗1 = k⃗2, Q1, Q2)
4 (COND1, ⃗COLS1, ASSIGN1)← Construct(Q1, S)
5 (COND2, ⃗COLS2, ASSIGN2)← Construct(Q2, S)
6 Key ← ConstructPred( ⃗COLS1, ⃗COLS2, k⃗1 = k⃗2)

7 (B, COND, ⃗COLS)← Fresh()
8 cstr1 ← Asg(COND1, COND2,Key,B, COND)

9 cstr2 ← Asg( ⃗COLS1, ⃗COLS2, ⃗COLS, B)
10 ASSIGN← ASSIGN1 ∧ ASSIGN2 ∧ cstr1 ∧ cstr2
11 return (COND, ⃗COLS, ASSIGN)

12 end
13 case Join(Full, k⃗1 = k⃗2, Q1, Q2)
14 . . . . . .
15 end
16 case Aggregate( ⃗agg, g⃗, Qs)
17 (CONDs, ⃗COLSs, ASSIGNs)← Construct(Qs, S)
18 ⃗COLS← Fresh( ⃗agg)

19 return (CONDs, ⃗COLS, ASSIGNs)
20 end
21 . . . . . .
22 endsw

We next discuss how EQUITAS supports SQL queries with
advanced features, such as aggregate functions and different types
of OUTER JOIN.

4. BEYOND SPJ QUERIES
A distinctive feature of queries containing OUTER JOIN and ag-

gregate functions is that, across all possible input tables, a tuple
in the final output table is not derived from a fixed number of
tuples from the input tables. This differentiates them from SELECT-
PROJECT-JOIN queries that we covered in Section 3.3.

Consider the queries in Example 4 (Section 2.2). Q1 and Q2
calculate the number of employees in the EMP table that satisfy
certain constraints. The output tuples depend on all the input tuples
in EMP that meet these constraints.

Thus, there is no bounded number k such that for all possible input
tables, tuples returned by Q1 and Q2 are guaranteed to be derived
from k tuples in the input tables. Hence, EQUITAS cannot use the
variables present in the symbolic tuples of the input tables to derive
the SR of queries containing OUTER JOIN and aggregate functions.
We next discuss how EQUITAS overcomes this challenge using
independent variables in SRs (Section 4.1) and relational constraints
for proving QE (Section 4.2).

4.1 Independent Variables
Algorithm 4 illustrates the extended version of the Construct

procedure that supports queries containing OUTER JOIN and aggre-
gate functions. The procedure for handling SELECT-PROJECT-JOIN
queries, that we covered in Section 3.3, remains unchanged. We
next discuss how EQUITAS supports other types of queries.

LEFT OUTER JOIN: If Q is ⟨Join(Left, k⃗1 = k⃗2, Q1, Q2)⟩, then
Construct first recursively operates on the sub-queries Q1 and Q2 to
derive their SR (COND1, ⃗COLS1) and (COND2, ⃗COLS2), respectively.
Given the semantics of the left outer join, a tuple in the output table
can be constructed either: (1) by concatenating a pair of tuples from
left and right tables if they satisfy the join predicate (k⃗1 = k⃗2), or
(2) by concatenating a tuple from the left table with a vector of NULL
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values in the shape of the right table when the left tuple does not
match with any tuple in the right table.

We now explain why it is challenging to derive an SR that handles
the latter case. Q1 and Q2 symbolically represent one arbitrary tuple
in the left and right tables, respectively. In the former case, we only
need to construct a one-to-one mapping between Q1 and Q2 using
the join predicate. However, in the latter case, we need to derive
an SR of all tuples in the right table that do not match Q1. It is not
possible to encode this constraint using Q1 and Q2.

We address this challenge using independent symbolic variables.
Construct creates an independent Boolean variable B that indicates
if a given tuple in the left table has no match in the right table. Unlike
SELECT-PROJECT-JOIN queries, Construct returns two different
expressions for representing the output tuple depending on whether
there is a match or not. Fresh() creates a vector of variables ⃗COLS
to represent the output symbolic tuple and an associated Boolean
condition variable COND.

Since the output tuple can be one of two expressions, Construct
constructs cstr1 to model the relationship between the new condi-
tion COND and the old conditions as follows:

(B∧(COND = COND1))∨(¬B∧(COND = (COND1∧COND2∧Key)))

cstr1 indicates that if the Boolean variable B holds (i.e., there
is no match for the left tuple in the right table), then COND only
needs to satisfy the left condition COND1. Otherwise, then COND is
the same as the INNER JOIN condition.

Construct constructs cstr2 to model the relationship between
the new symbolic tuple ⃗COLS and the old symbolic tuples as follows:

(B ∧ ( ⃗COLS = ⃗COLS1 : ⃗NULL))∨
(¬B ∧ ( ⃗COLS = ⃗COLS1 : ⃗COLS2))

cstr2 indicates that if B holds, then ⃗COLS is given by the concatena-
tion of ⃗COLS1 and a vector of NULL values in the shape of the right
table. Otherwise, if B not holds, we construct the new symbolic
tuple by appending the old tuples ⃗COLS1 and ⃗COLS2.

It derives ASSIGN by combining ASSIGN1 and ASSIGN2 with
cstr1 and cstr2. (COND, ⃗COLS, ASSIGN) represents the output of
the LEFT OUTER JOIN query. Without loss of generality, a similar
procedure is used for handling a RIGHT OUTER JOIN query.

FULL OUTER JOIN: If Q is ⟨Join(Full, k⃗1 = k⃗2, Q1, Q2)⟩, the
procedure used by Construct to derive the query’s SR is similar
to that used for a query containing a LEFT OUTER JOIN. The key
difference is that EQUITAS must handle an additional case due
to the semantics of FULL OUTER JOIN. The third scenario arises
when the right tuple does not match with any tuple in the left table.

Construct supports these three scenarios by introducing two
Boolean independent variables B1 and B2. While B1 indicates
whether there are no matches in Q2 for a given tuple in Q1, B2

denotes whether there are no matches in Q1 for a given tuple in Q2.
Besides this difference, the procedure is similar to that used for a
query containing a LEFT OUTER JOIN.
AGGREGATE FUNCTIONS: If Q contains an aggregate function
⟨Aggregate( ⃗agg, g⃗, Qs)⟩, then Construct first derives the SR of
the sub-query Q1. The aggregation function performs a calculation
on a set of values in the input tuples, and returns a single aggregate
value (e.g., SUM). Aggregate functions may be used with the GROUP
BY clause. In this case, the aggregation function returns a value
for every group of tuples that have the same set of values for the
columns listed in the GROUP BY clause.

Since the SR of Q1 can only represent one arbitrary output tuple,
Construct creates a vector of variables ⃗COLS that correspond to
the expressions containing aggregate functions in the select list
denoted by ⃗agg. These variables indicate that these expressions

can take up arbitrary values. For every input tuple in Q1, there is a
corresponding aggregate output tuple. Hence, as shown in Table 1,
the condition formula for the aggregation function is the same as that
of Q1 (CONDs). Thus, Construct returns (CONDs, ⃗COLS, ASSIGNs)
as the SR of Q.

In this manner, EQUITAS introduces independent variables in
the symbolic representations of queries containing OUTER JOIN and
aggregate functions. For instance, Section 2.2 presents the SR of a
pair of queries with aggregate functions. The two pairs of variables,
(v4, n4) and (v5, n5), do not depend on the input tuples in EMP.

To determine the equivalence of queries containing independent
variables, EQUITAS must deduce that these variables are equiv-
alent. It derives relational constraints to model the relationship
between independent symbolic variables. We next describe how EQ-
UITAS uses inference rules to construct these relational constraints
and thereby deduce the equivalence of independent variables.

4.2 Relational Constraints
EQUITAS contains a set of inference rules for deriving relational

constraints. While verifying the relationship between the SR of two
queries using the SMT solver, EQUITAS appends the relational
constraints to determine the equivalence of independent variables.
LEFT OUTER JOIN: While comparing two queries:

Q1 : ⟨Join(Left, k⃗1 = k⃗2, Q3, Q4)⟩
Q2 : ⟨Join(Left, k⃗3 = k⃗4, Q5, Q6)⟩

EQUITAS uses Boolean independent variables B1 and B2 in the
SR of Q1 and Q2, respectively. These variables indicate if there are
no matches for a left tuple in the right table in the respective queries.

EQUITAS derives relational constraints between B1 and B2

using the following inference rule. If sub-queries Q5 contains Q3 and
Q4 contains Q6, then B1 implies B2. This is because if Q5 contains
Q3, then for an arbitrary tuple in Q3, there is a corresponding tuple
in Q5. Since Q4 contains Q6, if there is no match for a Q5 tuple in Q3,
then there will be no match for corresponding Q6 tuple in Q4. Thus,
B2 holds whenever B1 holds (i.e., B1 =⇒ B2). EQUITAS uses
the algorithm described in Algorithm 1 to determine the containment
relationship between two queries. It follows a similar inference rule
for handling FULL OUTER JOIN queries.
AGGREGATE FUNCTIONS: While comparing two queries:

Q1 : ⟨Aggregate( ⃗agg1, g⃗1, Q3)⟩
Q2 : ⟨Aggregate( ⃗agg2, g⃗2, Q4)⟩

EQUITAS uses two vectors of independent variables ⃗COLS1 and
⃗COLS2 in the SR of Q1 and Q2, respectively. These variables denote

the expressions containing aggregate functions in the select lists of
these queries.

EQUITAS derives relational constraints between ⃗COLS1 and
⃗COLS2 using the following inference rule. If the aggregate func-

tion is dependent on the cardinality of input tuples (e.g., COUNT),
then the two symbolic tuples are equivalent if the sub-query Q3
is equivalent to Q4 under bag semantics. In this case, EQUITAS
can verify the equivalence only if both sub-queries are SELECT-
PROJECT-JOIN queries. In contrast, if the aggregate function is not
dependent on the cardinality of input tuples (e.g., MIN and MAX),
then the two symbolic tuples are equivalent if Q3 is equivalent to Q4
under set semantics. EQUITAS can verify this relationship for all
types of sub-queries. Example 4 in Section 2.2 illustrates how we
use relational constraints to prove QE.

5. SOUNDNESS AND COMPLETENESS
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We now show that the procedure used in EQUITAS for checking
the equivalence of two queries is sound under the set definition.
We then prove that the decision procedure is complete for SELECT-
PROJECT-JOIN queries that do not: (1) repeatedly scan the same
table, or (2) have predicates whose satisfiability cannot be deter-
mined by the SMT solver.

THEOREM 1. SOUNDNESS: Given two queries Q1 and Q2, if
the SMT solver decides that the following formulae are unsatisfiable
based on their SR:

(1)(ASSIGN1 ∧ ASSIGN2) ∧ (COND2 ∧ ¬COND1)
(2)(ASSIGN1 ∧ ASSIGN2) ∧ (COND2 ∧ COND1)

∧¬( ⃗COLS1 = ⃗COLS2)

then Q1 contains Q2.

PROOF. We prove this theorem using the method of contrapo-
sition. Suppose that Q1 does not contain Q2. By the definition of
containment relationship in Section 3, there exists a set of valid input
tables T such that there is an output tuple t obtained by executing Q1
on T that is not present in the output table derived by executing Q2
on T . Given the SR derived in EQUITAS, this implies that there ex-
ists a model (i.e., a set of concrete values for all symbolic variables)
that satisfies the SR of Q1 but does not satisfy that of Q2. Thus, there
exists a model that either satisfies the former formula: (ASSIGN1 ∧
ASSIGN2) ∧ (COND2 ∧ ¬ COND1), or the latter formula: (ASSIGN1 ∧
ASSIGN2) ∧ (COND2 ∧ COND1) ∧ ¬ ( ⃗COLS1 = ⃗COLS2). In this case,
the solver will not decide that both formulae are unsatisfiable. By
contraposition, this proves that Q1 contains Q2.

THEOREM 2. COMPLETENESS: Given two SELECT-PROJECT-
JOIN queries Q1 and Q2 that do not: (1) repeatedly scan the same
table, or (2) have predicates whose satisfiability cannot be deter-
mined by the SMT solver, if Q1 contains Q2, then EQUITAS can
prove that Q1 contains Q2.

PROOF. We prove this theorem using the method of contrapo-
sition. Suppose that EQUITAS cannot prove that Q1 contains Q2.
Since FOL formulae are decidable by the SMT solver [53], there
exists a model M that satisfies either the former formula: (ASSIGN1
∧ ASSIGN2) ∧ (COND2 ∧ ¬ COND1), or the latter formula (ASSIGN1
∧ ASSIGN2) ∧ (COND2 ∧ COND1) ∧ ¬ ( ⃗COLS1 = ⃗COLS2). Thus, we
can construct a set of valid input tables T such that each input table
only contains one tuple that matches the values in M . We require
that the queries do not repeatedly scan the same input table and
that the satisfiability of all the predicates can be determined by the
SMT solver. Given these constraints: (1): if M satisfies the former
formula, then executing Q1 and Q2 on T will return an empty and
a non-empty output table, respectively. In this case, Q1 does not
contain Q2. (2): If M satisfies the latter formula, then executing
Q1 and Q2 on T will return different tuples, and the corresponding
output tables will only contain those tuples. Again, in this case, Q1
does not contain Q2. Given these two scenarios, by contraposition,
this proves that EQUITAS can prove that Q1 contains Q2.

6. EVALUATION
In this section we describe our implementation and evaluation

of EQUITAS. We begin with a description of our implementation
in Section 6.1. Then, in Section 6.2, we report the results of a
comparative analysis of EQUITAS against UDP [26], the state-of-
the-art automated SQL QE verifier. We then examine the efficacy of
EQUITAS in identifying overlap across production SQL queries
in Section 6.3. We conclude with the limitations of the current
implementation of EQUITAS in Section 6.4.

Alibaba Internal Compiler

EQUITAS

SMT Solver: Z3

FOLs Satisfiable?

Logic Plan: Q1 = Q2?

SQL: Q1 = Q2?

Equivalent?

Figure 1: Query Equivalence Verification Pipeline - The pipeline for
determining the equivalence of SQL queries. EQUITAS internally uses the
Z3 SMT solver for determining the satisfiability of FOL formulae.

6.1 Implementation
We implemented EQUITAS as an SQL equivalence verification

tool in Java. Figure 1 illustrates the pipeline for determining QE.
Our implementation takes as input a pair of SQL queries to be
checked (Q1 and Q2) and returns a decision (TRUE or FALSE) that
indicates whether the given pair of queries are equivalent. The
pipeline consists of three stages.
1. The first stage is a compiler that takes the given pair of SQL
queries and converts them into logical query execution plans. Our
implementation is tailored for an Alibaba internal SQL compiler.
2. The second stage consists of EQUITAS which determines
the equivalence of the logical query execution plans emitted by the
compiler. EQUITAS is written in 3660 lines of Java.
3. The third stage is an SMT solver that is leveraged by EQUI-
TAS for determining the satisfiability of FOL formula. EQUITAS
leverages the open-source Z3 SMT solver [12].

6.2 Comparison against UDP
We now compare the efficacy of EQUITAS against UDP [26].

To the best of our knowledge, UDP is the state-of-the-art automated
SQL equivalence verifier. For this comparative analysis, we used
these tools to prove the equivalence of real-world SQL queries.

We use queries contained in the test suite of Apache Calcite [3], an
open-source query optimization framework. The reasons for using
this benchmark are twofold. First, the CALCITE optimizer pow-
ers many widely-used data processing engines, including Apache
Drill [4], Apache Flink [5], and others [6, 7, 8]. It contains 232 test
cases, each of which contains a pair of SQL queries, a set of input
tables, and the expected results. Every pair consists of a query and
its optimized variant that is generated by CALCITE. The test suite
validates the optimization rules in CALCITE and covers a wide range
of SQL features 5. Second, since UDP is evaluated on the queries
contained in the CALCITE test suite [26], we can quantitatively and
qualitatively compare the efficacy of these tools.

We send every pair of queries and the schemata of their input
tables to EQUITAS and ask it to prove QE. We conducted this
experiment on a commodity server (Intel Core i7-860 processor,
8 MB L3 Cache, and 16 GB RAM).

The results of this experiment are shown in Table 2. For com-
parative analysis against UDP, we present the results reported in
the corresponding paper [26] 6. The most notable observation from
this experiment is that EQUITAS is able to effectively prove the
equivalence of a larger set of query pairs (67 out of 232) compared
to UDP (34 out of 232).

Among the 232 pairs of SQL queries, 91 pairs use SQL features
that EQUITAS currently supports. The remaining pairs either: (1)
contain SQL features that are not yet supported by EQUITAS (e.g.,
EXIST and CAST), or (2) cannot be compiled by the SQL compiler at

5The test cases used in this experiment were obtained from the
open-sourced COSETTE repository [10].
6We were unable to conduct a comparative performance analysis un-
der the same environment since UDP is currently not open-sourced.

1285



Table 2: Comparative analysis of EQUITAS and UDP - The results include the number of SQL query pairs in the CALCITE benchmark that these tools
support, the number of pairs whose equivalence can be proved by these tools, and the average time taken by these tools to determine QE.

Tool
Number of Pairs

Supported
Number of Pairs

Proved
Average
Time(s)

Number of
SPJ Pairs

Average
Time(s)

Number of
Aggregate Pairs

Average
Time(s)

Number of
Outer Join Pairs

Average
Time(s)

EQUITAS 91 67 0.15 28 0.10 32 0.19 9 0.19
UDP 39 34 4.16 21 2.7 11 6.9 n/a n/a

Table 3: Efficacy of EQUITAS on Production Queries - The second column refers to number of query pairs that operate on the same set of input tables.
The fifth column reports the number of queries that exhibit at least one equivalence or containment relationship with another query in the same set. The sixth
column indicates the highest frequency of a query in equivalent and containment query pairs. Lastly, the seventh column reports the number of query pairs with
equivalence or containment relationships that contain advanced SQL features, such as aggregate functions and different types of join.

Query
Set

Number of
Queries

Compared
Query Pairs

Query Pairs
with Equivalence

Relationship

Query Pairs
with Containment

Relationship
Duplicate
Queries

Highest
Query

Frequency

Query Pairs
with Aggregate

Functions and Joins
Set 1 3285 122900 413 403 456 28 279
Set 2 3633 55311 432 259 442 22 366
Set 3 4182 61748 368 120 448 14 203
Set 4 3793 31774 249 100 427 13 165
Set 5 2568 15442 170 56 228 14 97

Total 17461 287175 1632 938 2001 (11%) NA 1110 (43%)

Alibaba due to syntactical issues. Among the 91 test cases supported
by EQUITAS, it can prove that 67 pairs (73%) are equivalent. In
contrast, UDP is able to prove the equivalence of 34 pairs. We
categorize the 67 proved pairs into three categories:
• SPJ Pairs: Queries that are SELECT-PROJECT-JOIN.
• Aggregate Pairs: Queries that have at least one aggregate.
• Outer Join Pairs: Queries that have at least one outer join.

We also report the number of pairs proved by UDP that have similar
characteristics of each categories. Specifically, UDP reporsts 21
proved equivalent pairs of queries that are conjunctive union of SPJ
queries, and 11 proved equivalent pairs of queries that have aggre-
gate. UDP did not report the number of proved pairs that contain
outer-join. UDP also reports that two proved cases require integrity
constraints, and one case contains the key word DISTINCT, which
requires reasoning about the query’s interpretation in a bag seman-
tics. We defer the discussion of supporting these two categories to
Section 6.4

We measured the average time taken by EQUITAS to prove
the equivalence of a pair of queries. This is an important metric
since EQUITAS will need to efficiently determine QE for it to
be deployed in cloud-scale DBaaS platforms. The average time is
computed from only pairs that were successfully proved by EQUI-
TAS and UDP. The average time taken by EQUITAS to prove the
equivalence of a pair of queries is 0.15s. In contrast, the average
execution time of UDP is 4.16s [26]. Thus, EQUITAS is 27× faster
than UDP on these benchmarks. For SPJ and Aggregate queries,
EQUITAS is consistently faster than UDP.

6.3 Efficacy on Production SQL Queries
We next examine the efficacy of EQUITAS in identifying over-

lap across production SQL queries. For this analysis, we curated
five sets of SQL queries from the risk control department in Ant
Financial Services Group [2]. These queries are used for detecting
fraud and assigning credit scores, and are representative of complex
production queries in business analytics. We investigate how EQ-
UITAS improves the computational efficiency of data processing
engines by identifying overlap across recurring resource-intensive
analytical queries.

Within each set, we pass every pair of queries that operate on
same set of input tables T to EQUITAS. In this experiment, EQ-
UITAS determines the equivalence and containment relationships
between the given pair of queries and their constituent sub-queries.

If EQUITAS determines that two queries Q1 and Q2 are not equiv-
alent but have a common sub-query Q3, then we materialize the
results of Q3 and execute Q1 and Q2 on top of the materialized re-
sults. We discard queries that only differ in the parameters passed
on to their predicates and those that only comprise of scans over ta-
bles. EQUITAS trivially identifies equivalence across such closely
related queries. We conducted this experiment on a development
server in Alibaba.

The results of this experiment, as shown in Table 3, demonstrate
that EQUITAS effectively identifies overlap across these diverse
real-world analytical queries. Among the 17461 queries, we found
that 11% of the queries exhibit at least one equivalence or contain-
ment relationship with another query in the same set. EQUITAS
reports that these queries or their constituent sub-queries are present
in at least one equivalent or containment query pair.

Certain SQL queries are repeatedly executed across the workload.
We measured the highest frequency of a query in equivalent and
containment query pairs. In the first set of queries, the result of
the most frequently executed query is used in 28 other queries
within the same set. In practice, the performance of production
workloads is often limited by the time spent on executing queries
that contain advanced SQL features, such as aggregate functions
and different types of join. 43% of the query pairs with equivalence
and containment relationships, that were identified by EQUITAS,
contain these heavyweight SQL operators. These metrics highlight
the utility of materializing the results of frequently executed queries,
especially those containing heavyweight SQL operators.

6.3.1 Impact on Runtime Performance
We next examine the performance impact of materializing the

results of queries identified by EQUITAS. For this analysis, we
chose ten representative query pairs from the first set of queries.
These pairs contain equivalent sub-queries with either aggregate
functions or different types of join.

We materialized the results of these common sub-queries and
manually rewrote the queries to operate on the materialized results.
If these results are not materialized, these sub-queries would have to
be executed twice. In contrast, they are executed only once if they
are identified by EQUITAS and their results are materialized.

We measure the execution time and memory footprint of these
query pairs in the two scenarios: (1) without materialization, and (2)
with materialization. The queries are executed on an internal DBaaS
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Without materialization With materialization

Figure 2: Impact on Runtime Performance - We examine the perfor-
mance impact of materializing the results of queries identified by EQUITAS.
We compare the execution time and memory footprint of these query pairs
without and with materialization, respectively.

platform at Alibaba. We report these metrics in terms of the compute
(virtual CPU-minutes) and memory resources (GB-minutes) con-
sumed. The results shown in Figure 2 illustrate that materialization
reduces the compute and memory resources consumed by 36% and
35%, respectively, among the examined query pairs.

6.4 Limitations
UNSUPPORTED SQL FEATURES: EQUITAS currently does not
support SQL features, such as EXIST and CAST. However, many of
these features can be supported using the existing framework. For
instance, we can model EXIST using the COUNT aggregate function
by ensuring that the resultant aggregate is greater than zero.
INTEGRITY CONSTRAINTS: EQUITAS currently does not sup-
port integrity constraints, such as primary key, foreign key and
not-null column. However, integrity constraints can be supported by
EQUITAS with additional engineering effort. For instance, when
EQUITAS converts a left outer join of two tables with foreign key
constraints into SR, EQUITAS can model it with additional con-
straints that each tuple in the left table has at least one match in the
right table.
QUERY PAIRS WITH STRUCTURAL DIFFERENCES: Since EQ-
UITAS relies on inference rules to handle aggregate functions and
different types of OUTER JOIN, it is unable to detect containment
and equivalence relationships in some query pairs with high-level
structural differences that contains aggregate functions and different
types of OUTER JOIN. For instance, EQUITAS cannot handle the
following query pair in Calcite [3]:
Q1: SELECT EMP.DEPTNO, SUM(EMP.SAL) FROM

EMP GROUP BY EMP.DEPTNO

Q2: SELECT t.DEPTNO, SUM(t.sum) FROM
(SELECT EMP.DEPTNO, SUM(EMP.SAL) FROM
EMP GROUP BY EMP.DEPTNO) AS t GROUP BY t.DEPTNO

To prove the equivalence relationship between Q1 and Q2, EQ-
UITAS must infer that the two aggregate functions in Q2 can be
reduced to a single aggregate function as in Q1. We must codify
structural transformation rules for EQUITAS to support such query
pairs with high-level structural differences. We plan to address this
limitation in future work.
SET SEMANTICS: EQUITAS proves QE under set semantics [44].
For SELECT-PROJECT-JOIN queries, it proves QE under bag seman-
tics. However, it cannot prove QE under bag semantics for complex
queries containing aggregate functions and different types of OUTER
JOIN. This is because we will need to model a table as an unbounded

data structure to handle these queries. Verifying properties of such
complex data structures is an active area of research [41, 19, 20].

7. RELATED WORK
CONTAINMENT AND EQUIVALENT OF QUERIES: Researchers
have recently proposed a pragmatic approach to determining the
semantic equivalence of queries based on an algebraic representa-
tion [51, 25, 27]. These include the COSETTE and UDP tools that
use K-relations and U-semirings. We highlighted the differences
between our SR-based technique and these techniques in Section 6.

In general, proving containment and equivalence relationships be-
tween queries is undecidable [14, 18]. Prior efforts have focused on
proving these properties for a subset of SQL queries: (1) conjunctive
queries [24], (2) conjunctive queries with additional constraints [21,
36, 31], and (3) conjunctive queries under bag semantics [37]. The
theoretical connection between containment of conjunctive queries
and constraint satisfaction has been pointed in [42]. Another line of
research focuses on constructing decision procedures for proving
equivalence of a subset of SQL queries under set [22, 52, 49] and
bag semantics [29, 39, 23]. Although these efforts have studied the
theoretical aspects of proving QE, they have rarely been prototyped
and applied on real-world SQL queries.

Prior work includes efficient procedures for deciding the equiva-
lence of conjunctive queries[33, 46, 52, 28]. These efforts are geared
towards query optimization transformations, and therefore cannot
prove equivalence of queries with complex semantically-equivalent
predicates. Another line of research focuses on proving equivalence
of database schema [16, 17] and entity SQL queries [48]. Another
line of research focuses on efficiently choosing effective equivalent
sub-queries to materialize, in order to accelerate the evaluation of
overlapping queries [40].
SMT SOLVER IN DATABASE SYSTEMS: Researchers have pro-
posed several applications of SMT solvers in database systems,
wherein a domain specific problem is reduced to logical constraints
and then solved using the SMT solver. These include: (1) tools for
automatically generating test cases for database applications [54,
55, 13], (2) tools that verify the correctness of database applica-
tions [56, 38, 35], (3) a tool for disproving the equivalence of SQL
queries [51], and (4) a tool for synthesizing big data queries [50].

8. CONCLUSION
This paper presented an alternate approach to determining the

equivalence of queries based on symbolic representation. We formu-
lated algorithms for deriving the symbolic representation of widely-
used SQL features, such as complex query predicates, three-valued
logic, and aggregate functions. Our evaluation of this approach
using EQUITAS showed that it proves the semantic equivalence
of a larger set of query pairs compared to state-of-the-art algebraic
approaches and reduces the verification time by 27×.
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