
Fast and Robust Distributed Subgraph Enumeration

Xuguang Ren
Griffith University, Australia

x.ren@griffith.edu.au

Junhu Wang
Griffith University, Australia

j.wang@griffith.edu.au

Wook-Shin Han
POSTECH, Public of Korea

wshan@dblab.postech.ac.kr

Jeffrey Xu Yu
The Chinese University of

Hong Kong

yu@se.cuhk.edu.hk

ABSTRACT
We study the subgraph enumeration problem under dis-
tributed settings. Existing solutions either suffer from se-
vere memory crisis or rely on large indexes, which makes
them impractical for very large graphs. Most of them follow
a synchronous model where the performance is often bot-
tlenecked by the machine with the worst performance. Mo-
tivated by this, in this paper, we propose RADS, a Robust
Asynchronous Distributed Subgraph enumeration system.
RADS first identifies results that can be found using single-
machine algorithms. This strategy not only improves the
overall performance but also reduces network communica-
tion and memory cost. Moreover, RADS employs a novel
region-grouped multi-round expand verify & filter frame-
work which does not need to shuffle and exchange the inter-
mediate results, nor does it need to replicate a large part of
the data graph in each machine. This feature not only re-
duces network communication cost and memory usage, but
also allows us to adopt simple strategies for memory control
and load balancing, making it more robust. Several opti-
mization strategies are also used in RADS to further improve
the performance. Our experiments verified the superiority of
RADS to state-of-the-art subgraph enumeration approaches.
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1. INTRODUCTION
Subgraph enumeration is the problem of finding all oc-

currences of a query graph in a data graph. Its solution is
the basis for many other algorithms and it finds numerous
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applications[11]. This problem has been well studied under
single machine settings [9][17]. However in the real world,
the data graphs are often fragmented and distributed across
different sites. This phenomenon highlights the importance
of distributed systems of subgraph enumeration. Also, the
increasing size of modern graph makes it hard to load the
whole graph into memory, which further strengthens the re-
quirement of distributed subgraph enumeration.

In recent years, many approaches have been proposed [1,
20, 12, 13, 5, 4, 16]. However all existing approaches are
facing one or more of the following problems: (1) Memory
crisis. Huge numbers of intermediate results are generated
in [20, 12, 13]. Lacking of effective pruning and compression
techniques results in a memory crisis to those approaches.
Approaches like [1, 5, 4] replicate large parts of the data
graph on each machine, which may be impractical for busy
or low-end computer clusters. (2) Heavy network communi-
cation. The large intermediate results of [20, 12, 13] need to
be shuffled through the network. A big network latency may
be generated when the data graph is distributed across dif-
ferent sites. (3) Heavy index. The index files of [16] can be
many times larger than the data graph as shown in Table 2
of Section 8, and computing/maintaining such big indexes
can be very expensive. (4) Synchronization delay. Most
of the current systems are synchronous, hence they suffer
from synchronization delay, making the overall performance
equivalent to that of the slowest machine.

Different approaches may be facing different problems but
may complement each other. One may argue that we can
design a better system by simply stacking their successful
ideas together. However this is very challenging across dif-
ferent system designs. For example, the compression strat-
egy proposed in [16] cannot be used in [13] since [13] requires
the intermediate results to be grouped by joining keys. The
asynchronous method used in [4] is not suitable for join-
based approaches [12, 13].

In this paper, we present RADS, a Robust Asynchronous
Distributed Subgraph enumeration system. RADS is asyn-
chronous, index free, with light communication cost, and
also significantly reduces and compresses intermediate re-
sults. RADS is a solution which employs a multi-round frame-
work and comprises several key ideas and optimization strate-
gies. To be specific, we make the following contributions:

(1) We propose a method to identify embeddings that can
be found on each local machine independent of other
machines, and use single-machine algorithm to find
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them. This strategy not only improves the overall
performance, but also reduces network communication
and memory cost.

(2) RADS employs a framework of region-grouped multi-
round expand verify & filter where the key ideas are
(i) to communicate undetermined edges and verifica-
tion results instead of exchanging intermediate results,
where the size of former is much smaller than that of
the latter; (ii) to exchange parts of data graph in a
region-grouped multi-round manner where the peak
size of data graphs replicated in each machine is re-
duced.

(3) We propose effective memory control strategies to min-
imize the chance of memory crash, making our system
more robust. Our strategy also facilitates workload
balancing.

(4) We propose optimization strategies to further improve
the performance. These include: (i) a set of rules to
compute an efficient execution plan; and (ii) a dynamic
data structure to compactly store intermediate results.

(5) We conduct extensive experiments which demonstrate
that our system is not only faster than existing solu-
tions (except for some queries using [16], which relies
on heavy indexes), but also more robust.

Paper Organization We first introduce the preliminaries
in Section 2. In Section 3, we present the architecture of
our system RADS. The core framework R-Meef of RADS is
given in Section 4. In Section 5, we present algorithms for
computing the execution plan. In Section 6, we present the
embedding trie data structure to compress our intermediate
results. Our memory control strategy is given in Section 7.
We present our experiments in Section 8, and discuss related
works in Section 9. We conclude the paper in Section 10.

2. PRELIMINARIES
Data Graph & Query Graph Both the data graph and
query graph (a.k.a query pattern) are assumed to be unla-
beled, undirected, and connected graphs. We use G = (VG,
EG) and P = (VP , EP ) to denote the data graph and query
graph respectively, where VG and VP are the vertex sets, and
EG and EP are the edge sets. We will use data (resp. query)
vertex to refer to vertices in the data (resp. query) graph.
Generally, for any graph g, we use Vg and Eg to denote its
vertex set and edge set respectively, and for any vertex v in
g, we use adj(v) to denote v’s neighbour set and use deg(v)
to denote the degree of v.

Subgraph Isomorphism Given a data graph G and a
query pattern P , P is subgraph isomorphic to G if there
exists an injective function f : VP → VG such that for any
edge (u1, u2) ∈ EP , there exists an edge (f(u1), f(u2)) ∈
EG. The injective function is also known as an embedding of
P in G, and it can be represented as a set of vertex pairs (u,
v) where u ∈ VP is mapped to v ∈ VG. We will use RG(P )
to denote the set of all embeddings of P in G.

The problem of subgraph enumeration is to find the set
RG(P ). In the literature, subgraph enumeration is also re-
ferred to as subgraph isomorphism search [14][9][17] and sub-
graph listing [11][20].

Partial Embedding A partial embedding of graph P in
graph G is an embedding in G of a vertex-induced subgraph
of P .

Symmetry Breaking A symmetry breaking method based
on automorphism is conventionally used to reduce duplicate
embeddings [7]. As a result the data vertices in the final
embeddings should follow a preserved order of the query
vertices. We apply this technique in this paper by default
and we will specify the preserved order when necessary.

Graph Partition & Storage Given a data graph G and
m machines {M1, . . . ,Mm} in a distributed environment, a
partition of G is denoted {G1, G2, . . . , Gm} where Gt is the
partition located in the tth machine Mt. In this paper, we
assume each partition is stored as an adjacency-list. For
any data vertex v, we assume its adjacency-list is stored in
a single machine Mt and we say v is owned by Mt (or v
resides in Mt). We call v a foreign vertex of Mt if v is not
owned by Mt.

For any v owned by Mt, we call v a border vertex if at
least one of its neighbors resides in other machines than Mt.
Otherwise we call it a non-border vertex. We use V bGt to
denote the set of all border vertices in Mt.

3. RADS ARCHITECTURE
In this section, we present the architecture of RADS as

shown in Figure 1.

Figure 1: RADS Architecture

Given a query pattern P , within each machine, RADS first
launches a process of single-machine enumeration (SM-E)
and a Daemon thread, simultaneously. After SM-E fin-
ishes, RADS launches a R-Meef thread subsequently. Note
that the R-Meef threads of different machines may start at
different time.

• Single-Machine Enumeration The idea of SM-E is to
try to find a set of local embeddings using a single-machine
algorithm, such as TurboIso[9], which does not involve any
distributed processing. The subsequent distributed pro-
cess only has to find the remaining embeddings. This
strategy can not only boost the overall enumeration effi-
ciency but also significantly reduce the memory cost and
communication cost of the subsequent distributed process.
Moreover the local embeddings can be used to estimate
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the space cost of a region group, which will help to effec-
tively control the memory usage (see Section 7).

We first define the concepts of border distance and span,
which will be used to identify embeddings that can be
found by SM-E.

Definition 1. Given a graph partition Gt and data ver-
tex v in Gt, the border distance of v w.r.t Gt, denoted
BDGt(v), is the minimum shortest distance between v and
any border vertex of Gt, that is

BDGt(v) = min
v′∈V b

Gt

dist(v, v′) (1)

where dist(v, v′) is the shortest distance between v and v′.

Definition 2. Given a query pattern P , the span of
query vertex u, denoted SpanP (u), is the maximum short-
est distance between u and any other vertex of P , that is

SpanP (u) = max
u′∈VP

dist(u, u′) (2)

Proposition 1. Given a data vertex v of Gt and a
query vertex u of P , if SpanP (u) ≤ BDGt(v), then there
will be no embedding f of P in G such that f(u) = v and
f(u′) is not owned by Mt, where u′ ∈ P , u′ 6= u.

Proposition 1 states that if the border distance of v is
not smaller than the span of query vertex u, there will
be no cross-machine embeddings (i.e., embeddings where
the query vertices are mapped to data vertices residing
in different machines) which map u to v. The proof of
Proposition 1 can be found in the extended version of this
paper [18].

Let ustart be the starting query vertex (namely, the first
query vertex to be mapped) and C(ustart) be the candi-
date vertex set of ustart in Gt. Let C1(ustart) ⊆ C(ustart)
be the subset of candidates whose border distance is no
less than the span of ustart. According to Proposition 1,
all embeddings that map ustart to a vertex in C1(ustart)
can be found using a single-machine subgraph enumera-
tion algorithm over Gt, independent of other machines.
In RADS, the candidates in C1(ustart) will be processed
by SM-E, and the other candidates will be processed by
the subsequent distributed process. The SM-E process is
simple, and we will next focus on the distributed process.
For presentation simplicity, from now on when we say a
candidate vertex of ustart, we mean a candidate vertex in
C(ustart)− C1(ustart), unless explicitly stated otherwise.

The distributed process consists of a daemon thread and
a subgraph enumeration thread R-Meef:

• Daemon Thread listens to requests from other machines
and supports four functionalities:
(1) verifyE is to return the edge verification results for
a given request consisting of vertex pairs. For exam-
ple, given a request {(v0, v1), (v2, v3)} posted to M1, M1

will return {true, false} if (v0, v1) is an edge in G1 while
(v2, v3) is not.
(2) fetchV is to return the adjacency-lists of the requested
vertices of the data graph. The requested vertices sent to
machine Mi must reside in Mi.
(3) checkR is to return the number of unprocessed region
groups (which is a group of candidate data vertices of the

starting query vertex, see Section 4) of the local machine
(i.e., the machine on which the thread is running).
(4) shareR is to return an unprocessed region group of the
local machine to the requester machine. shareR will also
mark the region group sent out as processed.

• R-Meef Thread is the core subgraph enumeration thread.
When necessary, the local R-Meef thread sends verifyE
requests and fetchV requests to the Daemon threads of
other machines, and the other machines respond to these
requests accordingly. We present the details of R-Meef
in next Section.

Once a local machine finishes processing its own region
groups, it will broadcast a checkR request to the other
machines. Upon receiving the numbers of unfinished re-
gion groups from other machines, it will send a shareR
request to the machine with the maximum number of un-
processed region groups. Once it receives a region group,
it will process it on the local machine. checkR and shareR
are for load balancing purposes only, and they will not be
discussed further in this paper.

4. THE R-Meef FRAMEWORK
Before presenting the details of the R-Meef framework,

we need the following definitions.

Definition 3. Given a partition Gt of data graph G lo-
cated in machine Mt and a query pattern P , an injective
function fGt : VP → VG is called an embedding candidate
(EC) of P w.r.t Gt if for any edge (u, u′) ∈ EP , there exists
an edge (fGt(u), fGt(u

′)) ∈ EGt provided either fGt(u) ∈
VGt or fGt(u

′) ∈ VGt .

We use R̃Gt(P ) to denote the set of ECs of P w.r.t Gt.
Note that for an EC fGt and a query vertex u, fGt(u) is
not necessarily owned by Gt. That is, the adjacency-list of
fGt(u) may be stored in other machines. For any query edge
(u, u′), an EC only requires that the corresponding data edge
(fGt(u), fGt(u

′)) exists if at least one of fGt(u) and fGt(u
′)

resides in Gt. Therefore, an EC may not be an embedding.
Intuitively, the existence of the edge (fGt(u), fGt(u

′)) can
only be verified in Gt if one of its end vertices resides in
Gt. Otherwise the existence of the edge cannot be verified
in Mt, and we call such edges undetermined edges.

Definition 4. Given an EC fGt of query pattern P , for
any edge (u, u′) ∈ EP , we say (fGt(u), fGt(u

′)) is an un-
determined edge of fGt if neither fGt(u) nor fGt(u

′) is in
Gt.

Example 1. Consider a partition Gt of a data graph G
and a triangle query pattern P where VP = {u0, u1, u2}. The
mapping fGt = {(u0, v0), (u0, v1), (u0, v2)} is an EC of P
in G w.r.t Gt if v0 ∈ VGt , v1 ∈ adj(v0) and v2 ∈ adj(v0) and
neither v1 nor v2 resides in Gt. (v1, v2) is an undetermined
edge of fGt .

Obviously if we want to determine whether fGt is actually
an embedding of the query pattern, we have to verify its un-
determined edges in other machines. For any undetermined
edge e, if its two end vertices reside in two different ma-
chines, we can use either of them to verify whether e ∈ EG
or not. To do that, we need to send a verifyE request to one
of the machines.
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Note that it is possible that an undetermined edge is
shared by multiple ECs. To reduce network traffic, we do
not send verifyE requests once for each individual EC, in-
stead, we build an edge verification index (EVI) and use it
to identify ECs that share undetermined edges. We assume
each EC is assigned an ID (to be discussed in Section 6).

Definition 5. Given a set R̃Gt(P ) of ECs, the edge ver-

ification index (EVI) of R̃Gt(P ) is a key-value map I where

(1) for any tuple (e, IDs) ∈ I, the key e is a vertex pair
(v, v′); and the value IDs is the set of IDs of the ECs

in R̃Gt(P ) of which e is an undetermined edge.

(2) for any undetermined edge e of fGt ∈ R̃Gt(P ), there
exists a unique tuple in I with e as the key and the ID
of fGt in the value.

Intuitively, the EVI groups the ECs that share each un-
determined edge together. It is straightforward to see:

Proposition 2. Given data graph G, query pattern P
and an edge verification index I, for any (e, IDs) ∈ I, if
e /∈ EG, then none of the ECs corresponding to IDs can be
an embedding of P in G.

Like SEED [13] and TwinTwig [12], we decompose the
pattern graph into small decomposition units.

Definition 6. A decomposition of query pattern P is a
sequence of decomposition units DE = (dp0, . . . , dpl) where
every dpi ∈ DE is a subgraph of P such that

(1) The vertex set of dpi consists of a pivot vertex piv and
a non-empty set LF of leaf1 vertices, all of which are
vertices in VP ; and for every u′ ∈ LF , (piv, u′) ∈ EP .

(2) The edge set of dpi consists of two parts, Estardpi
and

Esibdpi , where Estardpi
=

⋃
u′∈LF {(dpi.piv, u

′)} is the set
of edges between the pivot vertex and the leaf vertices,
and Esibdpi =

⋃
u,u′∈dpi.LF {(u, u

′) ∈ EP } is the set of
edges between the leaf vertices.

(3)
⋃
dpi∈DE(Vdpi) = VP , and for i < j, Vdpi∩dpj .LF = ∅.

Note condition (3) in the above definition says the leaf
vertices of each decomposition unit do not appear in the
previous units. Unlike the decompositions in SEED [13]
and TwinTwig [12], our decomposition unit is not restricted
to stars and cliques, and

⋃
dpi∈DE(Edpi) may be a proper

subset of EP .

Example 2. Consider the query pattern in Figure 2 (a),
we may have a decomposition (dp0, dp1, dp2, dp3) where
dp0.piv = u0, dp0.LF = {u1, u2, u7 }, dp1.piv = u1, dp1.LF
= {u3, u4}, dp2.piv = u2, dp2.LF = {u5, u6}, and dp3.piv =
u0, dp3.LF = {u8, u9}. Note that the edge (u4, u5) is not
in any decomposition unit.

In the above example, the edge (u4, u5) is between ver-
tices that belong to different units. We call such edges
cross-unit edges. More formally, let PL = (dp0, . . . , dpl)
be a decomposition. For each i ∈ [0, l], we define Ecrodpi

=
{(u1, u2) ∈ EP |u1 ∈

⋃
j<i Vdpj − {dpi.piv}, u2 ∈ dpi.LF},

1In an abuse of the word “leaf”.

and call the edges in Estardpi
, Esibdpi and Ecrodpi

the expansion
edges, sibling edges, and cross-unit edges respectively. The
sibling edges and cross-unit edges are both called verifica-
tion edges. Note that the expansion edges of all the units
form a spanning tree of P , and the verification edges are
the edges not in the spanning tree. Consider dp2 in Exam-
ple 2, we have Estardp2

={(u2, u5), (u2, u6)}, Esibdp2={(u5, u6)},
Ecrodp2

={(u4, u5)}.

Figure 2: Running Example

Given a decomposition DE = (dp0, . . . , dpl) of pattern P ,
we define a sequence of sub-query patterns P0, . . . , Pl, where
P0 = dp0, and for i > 0, Pi consists of the union of Pi−1 and
dpi together with the edges across the vertices of Pi−1 and
dpi, that is, VPi =

⋃
j≤i Vdpj , EPi =

⋃
j≤i (Edpj∪ Ecrodpj

).

Note that (a) none of the leaf vertices of dpi can be in Pi−1;
and (b) Pi is the subgraph of P induced by the vertex set
VPi , and Pl = P . We say DE forms an execution plan if for
every i ∈ [1, l], the pivot vertex of dpi is in Pi−1.

Definition 7. A decomposition DE = (dp0, . . . , dpl) of
P is an execution plan (PL) if dpi.piv ∈ VPi−1 for all i ∈
[1, l].

For example, the decomposition in Example 2 is an execu-
tion plan.

Now we are ready to present the details of R-Meef as
shown in Algorithm 1.

Algorithm 1: R-Meef Framework

Input: Query pattern P , partition Gt on machine Mt,
execution plan PL

Output: RGt (P )

1 RG = {rg0 . . . rgk} ← regionGroups
(
C(dp0.piv,Mt)

)
2 for each region group rg ∈ RG do
3 init embedding trie ET with size |VP |
4 init edge verification index I
5 for each data vertex v ∈ rg do
6 f ← (dp0.piv, v)
7 updated (ET , I) ←

expandEmbedTrie(f,Mt, dp0, ET )
8 R← verifyForeignE(I)
9 filterFailedEmbed(R, I, ET )

10 for Round i = 1 to |PL| do
11 clear I
12 fetchForeignV (i)
13 for each f ∈ I do
14 I ← expandEmbedTrie(f,Mt, dpi, ET )
15 R← verifyForeignE(I)
16 filterFailedEmbed(R, I, ET )
17 RG(P ) ← RG(P ) ∪ ET
18 clear ET

Within each machine, we group the candidate data ver-
tices of dp0.piv within Mt into region groups (Line 1). For
each region group rg, a multi-round mapping process is con-
ducted (Line 2 to 18). Within each round, we use a data
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structure ET (embedding trie) to save the generated inter-
mediate results, i.e., embeddings and embedding candidates
(Line 3). The EVI I is initialized in Line 4, which will be
reset for each round of processing (line 11).

(1) First Round (round 0). Starting from each candidate
v of rg, we match v to dp0.piv in the execution plan.
After the pivot vertex is matched, we find all the ECs
of dp0 with respect to Mt and compress them into ET .
We use a function expandEmbedTrie to represent this
process (Line 7). For each EC compressed in ET , its
undetermined edges need to be verified in order to de-
termine whether this EC is an embedding of dp0. We
record this information in the edge verification index I,
which is constructed in the expandEmbedTrie function.
After we have the EVI I in Mt, we send a verifyE re-
quest to verify those undetermined edges within I in
the machine which has the ability to verify it (function
verifyForeignE in Line 8). After the edges in I are all
verified, we remove the failed ECs from ET (Line 9).

(2) Other Rounds. For each of the remaining rounds of
the execution plan, we first clear the EVI I from the
previous round (Line 11). In the ith round, we want
to find all the ECs of Pi based on the embeddings in
RGt(Pi−1) (where dpi.piv has been matched). The pro-
cess is to expand every embedding f of RGt(Pi−1) with
each embedding candidate of dpi within the neighbour-
hood of f(dpi.piv). If not all the data vertices matched
to dpi.piv by the ECs in RGt(Pi−1) reside in Mt, we
will have to fetch the adjacency-lists of those foreign
vertices from other machines in order to expand from
them. A sub-procedure fetchForeignV is used to rep-
resent this process (Line 12). After fetching, for each
embedding f of RGt(Pi−1), we find all the ECs of Pi
by expanding from f(dpi.piv) (Line 14). The found
ECs are compressed into ET . Then verifyForeignE
and filterFailedEmbed are called to make sure that
the failed ECs are filtered out from the embedding trie,
which will only contain the actual embeddings of Pi, i.e.,
RGt(Pi) (Line 15, 16).

After all the rounds of this region group have finished, we
have a set of embeddings of P compressed into ET . The
results obtained from all the region groups are put together
to obtain the embeddings found by Mt.

One important thing to note is that if a foreign vertex is
already cached in the local machine, for the undetermined
edges attached to this vertex, we can verify them locally
without sending requests to other machines. Also we do not
re-fetch any foreign vertex if it is already cached previously.

Example 3. Consider the data graph G in Figure 2, where
the vertices marked with dashed border lines reside in M1

and the other vertices reside in M2. Consider the pattern P
and execution plan PL given in Example 2. We assume the
preserved orders due to symmetry breaking are: u1 < u2, u3

< u6, u4 < u5 and u8 < u9.
There are two vertices {v0, v2} in M1 and two vertices
{v1, v10} in M2 with a degree not smaller than that of dp0.piv.
Therefore in M1, we have C(dp0.piv) = {v0, v2} and in M2

we have C(dp0.piv) = {v1, v10}. After grouping, assume we
have RG = {rg0, rg1} where rg0 = {v0} and rg1 = {v2} in
M1, and RG = {rg0} where rg0 = {v1, v10} in M2.

Consider the region group rg0 in M1. In round 0, we
first match v0 to dp0.piv. Expanding from v0, we may have
ECs including by not limit to (we lock u7 to v7 for easy
demonstration):
fG1 = {(u0, v0), (u1, v1), (u2, v2), (u7, v7)}
f ′G1

= {(u0, v0), (u1, v1), (u2, v9), (u7, v7)}
f ′′G1

= {(u0, v0), (u1, v9), (u2, v11), (u7, v7)}
These ECs are compressed into ET . Note that a mapping
such as {(u0, v0), (u1, v1), (u2, v11), (u7, v7)} is not an
EC of dp0 w.r.t M1 since (v1, v11) can be locally verified
to be non-existent. Since the undetermined edge (v1, v9) of
f ′G1

cannot be determined in M1, we put {(v1, v9), < f ′G1
>}

into the EVI I. We then ask M2 to verify the existence of the
edge. M2 returns false, therefore f ′G1

will be removed from
ET .

In round 1, we have two embeddings RG1(P0)= {fG1 , f ′′G1
}

to start with. To expand fG1 and f ′′G1
, we need to fetch the

adjacency-lists of v1 and v9 respectively. We send a single
fetchV request to fetch the adjacency-lists of v1 and v9 from
M2. After expansion from v1, we get a single embedding
{(u0, v0), (u1, v1), (u2, v2), (u3, v3), (u4, v4), (u7, v7) }
in RGt(P1). There is no embedding of P1 expanded from v9.
Hence f ′′G1

will be removed from the embedding trie.
In round 2, we expand from v2 to get the ECs of P2.

dp2.piv was already mapped to v2 as seen above, and v2 has
neighbors v5, v6 and v10 that are not matched to any query
vertices. Since there are sibling edge (u5, u6) and cross-unit
edge (u4, u5) in P2, we need to verify the existence of (v4, v5)
and (v5, v6) if we want to map u5 to v5 and map u6 to v6.
The existence of both (v4, v5) and (v5, v6) can be verified lo-
cally. Similarly if we want to map u5 to v5, u6 to v10, we will
have to verify the existence of (v5, v10), and so on. It can
be locally verified that (v5, v10) does not exist, and remotely
verified that (v6, v10) does not exist. Therefore, at the end
of this round, we will get a single embedding for P2 which
extends the embedding for P1 by mapping u5, u6 to v5, v6
respectively. We expand the embedding trie accordingly.

Following the above process, after we process the last round,
we have an embedding of P starting from region group rg0
in machine M1, which will be saved in ET :
fG1 = {(u0, v0), (u1, v1), (u2, v2), (u3, v3), (u4, v4), (u5,

v5), (u6, v6), (u7, v7), (u8, v9), (u9, v11)}

In order to achieve the best performance, each component
of Algorithm 1 should be carefully designed. In the following
sections, we address the issues one by one.

5. COMPUTING EXECUTION PLAN
It is obvious that we may have multiple valid execution

plans for a query pattern and different execution plans may
have different performance. The challenge is how to find the
most efficient one among them? In this section, we present
some heuristics to find a good execution plan.

5.1 Minimizing Number of Rounds
Given query pattern P and an execution plan PL, we

have |PL|+1 rounds for each region group, and once all the
rounds are processed we will get the set of final embeddings.
Also, within each round, the workload can be shared. To be
specific, a single undetermined edge e may be shared by
multiple ECs. If these embedding candidates are generated
in the same round, the verification of e can be shared by
all of them. The same applies to the foreign vertices where
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the cost of fetching and memory space can be shared among
multiple embedding candidates if they happen to be in the
same round. Therefore, our first heuristic is to minimize the
number of rounds (namely, the number of decomposition
units) so as to maximize the workload sharing.

Here we present a technique to compute a query execution
plan, which guarantees a minimum number of rounds. Our
technique is based on the concepts of maximum leaf spanning
tree [6] and minimum connected dominating set.

Definition 8. A maximum leaf spanning tree (MLST) of
pattern P is a spanning tree of P with the maximum number
of leafs (a leaf is a vertex with degree 1). The number of leafs
in a MLST of P is called the maximum leaf number of P ,
denoted lP .

Definition 9. A connected dominating set (CDS) of P
is a subset D of VP such that (1) D is a dominating set of P ,
that is, any vertex of P is either in D or adjacent to a vertex
in D, and (2) the subgraph of P induced by D is connected.
A minimum connected dominating set (MCDS) is a CDS
with the smallest cardinality among all CDSs. The number
of vertices in a MCDS is called the connected domination
number, denoted cP .

It is shown in [3] that |VP | = cP + lP .

Theorem 1. Given a pattern P , any execution plan of
P has at least cP decomposition units, and there exists an
execution plan with exactly cP decomposition units.

Proof. Suppose {dp0, . . . , dpk} is an execution plan with
k+ 1 decomposition units. The pivot vertices of the decom-
position units form a connected dominating set of P . There-
fore, k+1 ≥ cP . This proves any execution plan has at least
cP decomposition units.

Suppose T is a MLST of P . From |VP | = cP + lP we know
the number of non-leaf vertices in T is cP . We can construct
an execution plan by choosing one of the non-leaf vertices
v0 as dp0.piv, and all neighbors of v0 in T as the vertices in
dp0.LF . Regarding v0 as the root of the spanning tree T , we
then choose each of the non-leaf children vi of v0 in T as the
pivot vertex of the next decomposition unit dpi.piv, and all
children of vi as the vertices in dpi.LF . Repeat this process
until every non-leaf vertex of T becomes the pivot vertex
of a decomposition unit. This decomposition has exactly cP
units, and it forms an execution plan. This shows that there
exists an execution plan with cP decomposition units.

Theorem 1 indicates that cP is the minimum number of
rounds of any execution plan. The above proof provides a
method to construct an execution plan with cP rounds from
a MLST.

Example 4. Consider the pattern P in Figure 2, it can
be easily verified that the tree obtained by erasing the edges
(u1, u2), (u3, u4), (u4, u5), (u5, u6) and (u8, u9) is a MLST
of P . Choosing u0 as the root, we will get a minimum
round execution plan PL1={dp0, dp1, dp2} where dp0.piv
= u0, dp0.LF = {u1, u2, u7, u8, u9}, dp1.piv = u1, dp1.LF
= {u3, u4} and dp2.piv = u2, dp2.LF = {u5, u6}. If we
choose u1 as the root, we will get a different minimum-round
execution plan PL2={dp0, dp1, dp2}, where dp0.piv = u1,
dp0.LF = {u0, u3, u4}, dp1.piv = u0, dp1.LF = {u2, u7

u8, u9}, dp2.piv = u2, dp2.LF = {u5, u6}.

5.2 Minimizing the span of dp0.piv
Given a pattern P , multiple execution plans may exist

with the minimum number of rounds, while their dp0.piv
can be different. Our second heuristic is to choose the
plan(s) whose dp0.piv have the smallest span. This strategy
will maximize the number of embeddings that can be found
using SM-E. Recall the RADS architecture where dp0.piv is
the starting query vertex ustart, based on Proposition 1, we
know that the more candidate vertices of dp0.piv can be pro-
cessed in SM-E, the more workload can be separated from
the distributed processing, and therefore the more commu-
nication cost and memory usage can be reduced.

Figure 3: A Query Pattern

Consider the pattern in
Figure 3, the bold edges
demonstrate a MLST based
on which both u3 and u4 can
be chosen as dp0.piv. The
execution plans from them
have the same number of
rounds. However, SpanP (u3) = 2 while SpanP (u4) = 3.
Therefore we choose the plan with u3 as the dp0.piv.

5.3 Maximizing Filtering Power
Given a pattern P , multiple execution plans may exist

with the minimum number of rounds and their dp0.piv have
the same smallest span. Here we use the third heuristic
which is to choose plans with more verification edges in the
earlier rounds. The intuition is to maximize the filtering
power of the verification edges as early as possible. To this
end, we propose the following score function SC(PL) for an
execution plan PL = {dp0, . . . , dpl}:

SC(PL) =
∑

dpi∈PL

1

(i+ 1)ρ
× (|Esibdpi |+ |E

cro
dpi |) (3)

|Esibdpi |+ |E
cro
dpi
| is the number of verification edges in round i,

and ρ is a positive parameter used to tune the score function.
In our experiments we use ρ = 1. The function SC(PL) cal-
culates a score by assigning larger weights to the verification
edges in earlier rounds (since 1

(i+1)ρ
> 1

(j+1)ρ
if i < j).

Example 5. Consider the query plans PL1 and PL2 in
Example 4. The total number of verification edges in these
plans are the same. In PL1, the number of verification edges
for the first, second and third round is 2, 1, 2 respectively.
In PL2, the number of verification edges for the three rounds
is 1, 2, and 2 respectively. Therefore, we prefer PL1. Using
ρ = 1, we can calculate the scores of the two plans as follows:
SC(PL1) = 2/1 + 1/2 + 2/3 ≈ 3.2
SC(PL2) = 1/1 + 2/2 + 2/3 ≈ 2.7.

When several minimum-round execution plans have the
same score, we use another heuristic rule to choose the best
one from them: the larger the degree of the pivot vertex, the
earlier we process the unit. The pivot vertex with a larger
degree has a stronger power to filter unpromising candidates.

6. EMBEDDING TRIE
In this section we present the data structure used for com-

pressing the intermediate results as well the algorithms to
maintain it. We first define a matching order, following
which the query vertices are matched. It is also the order
the nodes in the embedding trie are organized.
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Definition 10. Given a query execution plan PL = {dp0,
. . ., dpl} of pattern P , the matching order w. r. t PL is a
relation ≺ defined over the vertices of P that satisfies the
following conditions:

(1) dpi.piv ≺ dpj .piv if i < j;

(2) For any two vertices u1 ∈ dpi.LF and u2 ∈ dpj .LF ,
u1 ≺ u2 if i < j.

(3) For i ∈ [0, l]:

(i) dpi.piv ≺ u for all u ∈ dpi.LF ;

(ii) for any vertices u1, u2 ∈ dpi.LF that are not the
pivot vertices of other units, u1 ≺ u2 if deg(u1) >
deg(u2), or deg(u1) = deg(u2) and the vertex ID
of u1 is less than that of u2;

(iii) if u1 ∈ dpi.LF is a pivot vertex of another unit,
and u2 ∈ dpi.LF is not a pivot vertex of another
unit, then u1 ≺ u2.

It is easy to verify ≺ is a strict total order over VP . Follow-
ing the matching order, the vertices of P can be arranged
into an ordered list. Consider the execution plan PL1 in
Example 4. The vertices in the query can be arranged as
(u0, u1, u2, u7, u8, u9, u3, u4, u5, u6) according to the match-
ing order.

Let PL = {dp0, . . ., dpl} be an execution plan, Pi be the
subgraph of P induced from the vertices in dp0 ∪ · · · ∪ dpi
(as defined in Section 4), and R̃ be a set of results (i.e.,
embeddings or embedding candidates) of Pi. For easy pre-
sentation, we assume the vertices in Pi have been arranged
into the list u0, u1, . . . , un by the matching order, that is,
the query vertex at position j is uj . Then each result of Pi
can be represented as a list of corresponding data vertices.

Next we formally define embedding trie and present the
algorithms for the maintenance of the embedding trie.

6.1 Structure of the Embedding Trie
Definition 11. Given a set R̃ of results of Pi, the em-

bedding trie of R̃ is a collection of trees used to store the

results in R̃ such that:

(1) Each tree represents a set of results that map u0 to the
same data vertex.

(2) Each tree node N has

• v: a data vertex

• parentN: a pointer pointing to its parent node
(the pointer of the root node is null).

• childCount: the number of child nodes of N .

(3) If two nodes have the same parent, then they store dif-
ferent data vertices.

(4) Every leaf-to-root path represents a result in R̃, and

every result in R̃ is represented as a unique leaf-to-root
path.

(5) If we divide the tree nodes into different levels such that
the root nodes are at level 0, the children of the root
nodes are at level 1 and so on, then the tree nodes at

level j (j ∈ [0, 1]) store the set of values {f(uj)|f ∈ R̃}.

Figure 4: Example of Embedding Trie

Example 6. Consider P0 in Example 3, where the ver-
tices are ordered as u0, u1, u2 according to the matching or-
der. There are three ECs of P0: (v0, v1, v2), (v0, v1, v9) and
(v0, v9, v11). These results can be stored in a tree shown in
Figure 4(a). When the second EC is filtered out, we have
RGt(P0) compressed in a tree as shown in Figure 4(b). The
first EC can be expanded to an EC of P1 (where the list of
vertices of P1 are (u0, u1, u2, u3, u4), which is as shown in
Figure 4(c).

Although the structure of embedding trie is simple, it has
some nice properties: (1) Compression Storing the results
in the embedding trie saves space than storing them as a
collection of lists. (2) Unique ID For each result in the em-
bedding trie, the address of its leaf node in memory can
be used as the unique ID. (3) Retrieval Given a particu-
lar ID represented by a leaf node, we can easily follow its
pointer parentN step-by-step to retrieve the corresponding
result. (4) Removal To remove a result with a particular ID,
we can remove its corresponding leaf node and decrease the
childCount of its parent node by 1. If ChildCount of this
parent node reaches 0, we remove this parent node. This
process recursively affects the ancestors of the leaf node.

6.2 Maintaining the embedding trie
Recall that in Algorithm 1, given an embedding f of

Pi−1, the function expandEmbedTrie is used to search for
the ECs of dpi within the neighbourhood of the mapped
data vertex vpiv, where vpiv = f(dpi.piv). Moreover, the
expandEmbedTrie function handles the task of expanding
the embedding trie ET by concatenating f with each newly
found EC of dpi. If an EC is filtered out or if an embed-
ding cannot be expanded to a final result, the function must
remove it from ET .

The details of the expandEmbedTrie function are given
in Algorithm 2. Lines 3 to 7 set the candidate set for
each u ∈ dpi.LF as the intersection of the neighbour set
of vpiv = f(dpi.piv) and the neighbour set of each f(u′),
where (u′, u) is a cross-unit edge and f(u′) is in Mt. If any
of the candidate sets is empty, it removes the corresponding
trie node N from ET . Otherwise it picks the first leaf vertex
u and calls a recursive subroutine adjEnum (Line 11, 12).
By expanding any f of Pi−1, adjEnum finds the ECs of Pi
within the neighbourhood of vpiv. If f cannot be expanded
into an EC of Pi, we will remove N from ET (Line 13).

The details of the adjEnum function are presented in Al-
gorithm 3. In each round of adjEnum, we try to match
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Algorithm 2: expandEmbedTrie

Input: an embedding f of Pi−1, local machine Mt, unit
dpi, embedding trie ET

Output: expanded ET and an edge verification index I
1 vpiv ← f(dpi.piv)
2 get N corresponding to f
3 for each u ∈ dpi.LF do
4 C(u)← adj(vpiv)
5 for each (u, u′) ∈ Ecrodpi

do

6 if f(u′) resides in Mt then
7 C(u)← adj(f(u′)) ∩ C(u)

8 if C(u) = ∅ then
9 remove N from ET

10 return

11 u ← first leaf vertex in dpi.LF
12 if adjEnum(N , u) is false then
13 remove N from ET

u′ to a candidate vertex v, where u′ is a query vertex in
dpi.LF . If v can pass the local verification (Line 4,5), we
add (u, v) to f and create a trie node N ′ for v (Line 6 to
9). If all leaf vertices have been verified, we add all unde-
termined edges of f to I[e] (Line 11, 12). Otherwise, we call
a deeper adjEnum. If the current f can be expanded to an
EC, we chain N ′ to the corresponding node N of ET (Line
17, 19).

Algorithm 3: adjEnum

Input: Trie node N representing embedding f of Pi−1 ,
leaf vertex u of dpi

Output: true or false
1 Fcurrent ← false
2 for each v ∈ C(u) do
3 E ← true
4 if v resides in Mt then
5 E ← isJoinable(u, v)
6 if E is true then
7 add (u, v) to f
8 create a trie node N ′
9 N ′.v ← v, N ′.parentN ← N

10 if |f | = |VPi | then
11 for each undetermined edge e of f do
12 add N ′ to I[e]
13 Fcurrent ← true
14 else
15 u′ ← next vertex in dpi.LF
16 Fdeeper ← adjEnum(N ′, u′)
17 if Fdeeper is true then
18 N .childCount + +
19 add N ′ as a child node of N in ET
20 remove (u, v) from f

21 return Fcurrent

7. MEMORY CONTROL STRATEGIES
This section focuses on the robustness of R-Meef. Since

R-Meef still caches fetched foreign vertices and intermedi-
ate results in memory, memory consumption is still a critical
issue when the data graph is large. We propose a grouping
strategy to keep the peak memory usage under the memory
capacity of the local machine.

Our idea is to divide the candidate vertices of the first
query vertex dp0.piv into disjoint groups and process each
group independently. In this way, the overall cached data
on each machine will be divided into several parts, where
each part is no larger than the available memory Φ.

Figure 5: Grouping Example

A naive way of grouping the candidate vertices is to divide
them randomly. However, random grouping of the vertices
may put vertices that are “dissimilar” to each other into the
same group, potentially resulting in more network commu-
nication cost. Consider the data graph in Figure 5. Suppose
the candidate vertex set is {v0,v1,v2,v3}. If we divide it into
two groups {v0, v1} and {v2, v3}, then because v0 and v1
share most neighbours, there is a good chance for the ECs
of dp0 generated from v0 and v1 to share common verifica-
tion edges, and share common foreign vertices that need to
be fetched (e.g., if dp1.piv is mapped to v5 by ECs origi-
nated from v0 and v1, and v5 is not on the local machine).
However, if we partition the candidate set into {v0, v2} and
{v1, v3}, then there is little chance for such sharing.

Our goal is to find a way to partition the candidate ver-
tices into groups so that the chance of edge verification shar-
ing and foreign vertices sharing by the results in each group
is maximized.

Let C ≡ C(dp0.piv) be the candidate set of dp0.piv, and
Φ be the available memory. Our method is to generate the
groups one by one as follows. First we pick a random vertex
v ∈ C and let rg = {v} be the initial group. If the estimated
memory requirement of the results originated from rg, de-
noted φ(rg), is less than Φ, we choose another candidate
vertex in C − rg that has the greatest proximity to rg and
add it to rg; if φ(rg) > Φ we remove the last added vertex
from rg. This generates the first group. For the remaining
candidate vertices we repeat the process, until all candidate
vertices are divided into groups. Here an important concept
is the proximity of a vertex v to a group of vertices, and
we define it as the percentage of v′s neighbors that are also
neighbors of some vertex in rg, that is,

proximity(v, rg) =
|adj(v) ∩

⋃
v′∈rg adj(v

′)|
|adj(v)| (4)

Intuitively the vertices put into the same group are within
a region - each time we will choose a new vertex that has a
distance of at most 2 from one of the vertices already in the
group (unless there are no such vertices). Therefore we call
the group a region group.

Estimating memory usage In our system, the main mem-
ory consumption comes from the intermediate results and
the fetched foreign vertices. The space cost of other data
structures is trivial.

Consider the set of intermediate results originated from
the group rg ⊆ C. Recall that all results originated from
the same candidate vertex of dp0.piv are stored in the same
tree, while any results originated from different candidate
vertices are stored in different trees. Therefore, if we know
the space cost of the results originated from every candidate
vertex, we can add them together to obtain the space cost
of all results originated from rg.

To estimate the space cost of the results originated from
a single vertex, we use the average space cost of local em-
beddings of a candidate vertex v ∈ C1(ustart) in embedding
trie format, which can be obtained when we conduct SM-E.
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Recall that for each v of C1(ustart) in SM-E, we find the
local embeddings originated from v following a backtrack-
ing approach. In each recursive step of the backtracking
approach, we may record the number of candidate vertices
that are matched to the corresponding query vertex. The
sum of all steps will be the number of trie nodes if we group
the those local embeddings into embedding trie. Based on
the sum, we know the space cost of local embeddings origi-
nating from v in the format of embedding trie.

Next, we consider the space cost of the fetched foreign
vertices in each round. Recall that when expanding the em-
beddings of Pi−1 to ECs of Pi, we only need to fetch vertex
v if there exists f ∈ RGt(Pi−1) such that f(dpi.piv) = v.
In the worst case, for every candidate vertex v of dpi.piv,
there exists some f ∈ RGt(Pi−1) which maps dpi.piv to v,
and none of these candidate vertices of dpi.piv resides lo-
cally. Therefore the number of data vertices that need to be
fetched equals to |C(dpi.piv)| in the worst case.

8. EXPERIMENTS
In this section, we present our experimental results. We

focus on performance comparsion with four state-of-the-art
distributed subgraph enumeration approaches:

• PSgL [20], the algorithm using graph exploration orig-
inally based on Pregel.

• TwinTwig [12], the algorithm using joining approach
originally based on MapReduce.

• SEED [13], an upgraded version of TwinTwig while sup-
porting clique decomposition unit.

• Crystal [16], the algorithm relying on clique-index and
compression and originally using MapReduce.

We will also compare the communication cost. In addition,
we will test the impact of our execution plan and our com-
pression strategy. For scalability, we will follow the approach
of [13] and test the effect on query time by varying the num-
ber of machines in the distributed cluster, the number of
data vertices, and the average degree of the data vertices.

Environment We conducted our experiments in a cluster
platform where each machine is equipped with Intel CPU
with 16 Cores and 16G memory. In our performance com-
parison we used 10 machines in the cluster. For scalability
test on varying data graph size and vertex degree we used a
larger cluster of 20 machines since the time taken on larger
and denser graphs is much longer. The operating system of
the clusters is Red Hat Enterprise Linux 6.5.

We implemented our approach in C++ with the help of
Mpich2 [8] and Boost library [19]. We used Boost.Asio to
achieve the asynchronous message listening and passing. We
used TurboIso [9] as our SM-E processing algorithm. We
implemented PSgL, TwinTwig and SEED using C++ with MPI
library as well. For Crystal, we used the code provided by
the authors.

Dataset & Queries We used five real datasets: DBLP,
RoadNet, LiveJournal, UK2002 and Friendster, whose pro-
files are given in Table 1. DBLP is a small data graph which
is to test whether the approaches can fully utilize the mem-
ory when there is enough space available. RoadNet is a
sparse data graph, which is used to illustrate whether a sub-
graph enumeration solution has good filtering power to filter

out false embeddings early. Two denser data graphs, Live-
Journal and UK2002, are used to test the algorithms’ ability
to handle denser graphs with larger numbers of embeddings.
Friendster is a super large data graph (32.4GB), where many
queries will fail to complete in a reasonable time for all al-
gorithms. We only used it in the scalability test against the
graph size and average degree.

Table 1: Profiles of datasets, M– milion, B– billion

Dataset(G) |V | |E| Avg. degree Diameter

RoadNet 1.9M 2.7M 2.81 849
DBLP 0.3M 1.0M 6.62 21

LiveJournal 4.8M 42.9M 18 17
UK2002 18.5M 298.1M 32 22

Friendster 65M 1.8B 55 32

On disk, our data graphs are stored in plain text format
where each line represents an adjacency-list of a vertex. We
used Metis [10] to partition the data graphs and each ma-
chine randomly picks up one partition and no duplication
is allowed. The approach of Crystal relies on the clique-
index of the data graph which should be pre-constructed and
stored on disk. In Table 2, we present the disk space cost of
the index files generated by the program of Crystal. The
index file for Frienster is not included since it takes too long
to compute. As can be seen, the index files are more than
10 times larger than the original data graph. The queries we
used are shown in Figure 6. Experiments using additional
queries can be found in the long version of this paper [18].

Table 2: Illustration of the Size of Index Files of Crystal

Dataset(G) Data Graph File Size Index File Size

RoadNet 43.1MB 569MB
DBLP 13MB 210MB

LiveJournal 501MB 6.5GB
UK2002 4.1GB 60GB

Figure 6: Query Set

8.1 Performance Comparison
We compared the performance of the five subgraph enu-

meration approaches by measuring the time elapsed (in sec-
onds) and the volume of exchanged data during the pro-
cessing of each query. The results of RoadNet, DBLP, Live-
Journal and UK2002 are given in Figures 7, 8, 9 and 10,
respectively. We mark the result as empty when the test
fails due to memory crash. When any bar reaches the up-
per bound, it means the corresponding values is beyond the
upper bound value shown in the chart.

Exp-1:RoadNet The results over the RoadNet dataset are
given in Figure 7. As can be seen from the figure, RADS and
PSgL are significantly faster than the other three methods
(by more than 1 order of magnitude). RADS and PSgL are us-
ing graph exploration while the others are using join-based
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Figure 7: Performance over RoadNet

methods. Therefore, both RADS and PSgL demonstrated ef-
ficient filtering power for this sparse graph. The join-based
methods need to group the intermediate results based on
keys so as to join them together, their performance was sig-
nificantly dragged down when dealing with sparse graphs
compared with RADS and PSgL.

It is worth noting that PSgL was shown to be slower than
SEED and TwinTwig in [12][13]. This may be because the
datasets used in TwinTwig and SEED are much denser than
RoadNet, hence a huge number of embeddings will be gen-
erated. The grouped intermediate results of TwinTwig and
SEED significantly reduced the cost of network traffic. An-
other interesting observation is that although Crystal has
heavy indexes, its performance is much worse than PSgL and
RADS. The reason is that the number of cliques in RoadNet
is relatively small considering the graph size. Moreover,
there are no cliques with more than two vertices in queries
q1, q3, q6, q7 and q8. In such cases, the clique index cannot
help to improve the performance.

As shown in Figure 7(b), the communication cost is not
large for any of the approaches (less than 5M for most queries).
In particular, for RADS, the communication cost is almost 0,
which is mainly because most data vertices can be processed
by SM-E, as such little network communication is required.

Exp-2:DBLP The result over DBLP is shown in Figure 8.
As aforementioned, DBLP is smaller but much denser than
RoadNet. The number of intermediate results generated
in DBLP are much larger than that in RoadNet, as im-
plied by the data communication cost shown in Figure 8 (b).
Since PSgL does not consider any compression or grouping
of intermediate results, the communication cost of PSgL is
much higher than that of the other approaches (more than
200M for queries after q4). Consequently, the time delay
due to shuffling the intermediate results caused bad perfor-
mance for PSgL. However, PSgL is still faster than SEED and
TwinTwig. This may be because the time cost of grouping
intermediate results of TwinTwig and SEED is high as well.
It is worth noting that the communication cost of our RADS

is quite small (less than 5M). The time efficiency of RADS is
better than Crystal even for queries q2,q4 and q5 where the
triangle crystal can be directly loaded from index without
any computation.
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Figure 8: Performance over DBLP

Exp-3:LiveJournal As shown in Figure 9, for LiveJour-
nal, SEED, TwinTwig and PSgL start becoming impractical
for queries from q3 to q8. Due to the huge number of
intermediate results generated, the communication cost in-
creased significantly as well, especially for PSgL whose com-
munication cost was beyond control when the query vertices
reach 6. The method of Crystal achieved good performance
for queries q2, q4 and q5. This is mainly because Crystal

simply retrieved the cached embeddings of the triangle to
match the vertices (u0, u1, u2) of those 3 queries. However,
when dealing with the queries with no good crystals (q6,
q7 and q8), our method significantly outperformed Crystal.
One important thing to note is that the other three methods
(SEED, TwinTwig and PSgL) are sensitive to the end vertices,
such as u5 in q5. Both time cost and communication cost
increased significantly from q4 to q5. RADS processes those
end vertices last by simply enumerating the combinations
without caching any results related to them. The end ver-
tices within Crystal will be bud vertices which only requires
simple combinations. As indicated by query q5 where their
processing time increased slightly from that of q4, RADS and
Crystal are nicely tuned to handle end vertices.
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Figure 9: Performance over LiveJournal
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Figure 10: Time cost over UK2002

Exp-4:UK2002 As shown in Figure 10, TwinTwig, SEED

and PSgL failed the tests of queries after q2 due to memory
failure caused by huge number of intermediate results. The
communication cost of all other methods are significantly
larger than RADS (more than 2 orders of magnitude), we
omit the chart for communication cost here. Similar to that
of LiveJournal, the processing time of Crystal is slightly
better than that of RADS for q4 and q5 (which have triangles).
This is because Crystal directly retrieves the embeddings
of the triangles from the index. However, for q2 and queries
without good crystals, our approach demonstrates better
performance. Note that the index file of Crystal is more
than 10 times larger than the original data graph, as shown
in Table 2.

Another advantage of RADS over Crystal is our memory
control strategies ensures it is more robust: we tried to set
a memory upper bound of 8G and test query q6, Crystal
starts crashing due to memory leaks, while RADS successfully
finished the query.

8.2 Effectiveness of Compression
To show the effectiveness of our compression strategy, we

conducted an experiment to compare the space cost of the
simple embedding-list (EL) with that of our embedding trie
(ET). We use the RoadNet and DBLP data sets for this test.
The queries are as shown in Figure 6. We omit the test over
the other two data sets because the uncompressed volume
of the results are too large.

Table 3: Compression on RoadNet(Mb)

Query q1 q2 q3 q4 q5 q6 q7 q8

EL 264 13 65 81 136 183 - -
ET 163 5 33 40 63 73 - -

Table 4: Compression on DBLP (Gb)

Query q1 q2 q3 q4 q5 q6 q7 q8

EL 0.3 0.2 4.5 3.2 17.6 7.6 5.3 4
ET 0.08M 0.06 1.1 0.7 3.8 1.3 0.9 0.8

The results are as shown in Table 3 and Table 4, respec-
tively. For RoadNet the intermediate results generated by
Queries 7 and 8 are negligible, therefore they are not listed.
The results for both datasets demonstrate a good compres-
sion ratio. It is worth noting that the compression ratios of
all queries over RoadNet are smaller than that over DBLP.
This is because the embeddings of RoadNet are very diverse
and they do not share a lot of common vertices.

8.3 Effectiveness of Query Execution Plan
To validate the effectiveness of our strategy for choos-

ing query execution plan, we compared the processing time

of RADS with two other baseline plans which are generated
by replacing the execution plan of RADS with the execution
plans RanS and RanM , respectively. RanS represents a
plan consisting of random star decomposition units (no limit
on the size of the star) and RanM represents plan with min-
imum number of rounds without considering the strategies
in Sections 5.2 and 5.3. In order to cover more random query
plans, we run each test 5 times and report the average. The
queries are as shown in Figure 6. For queries q1 to q3, the
query plans generated in the above three implementations
are almost the same. Therefore, we omit the data for those
three queries.
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Figure 11: Effectiveness of Execution Plan

The results of Roadnet, DBLP, LiveJournal and UK2002
are shown in Figure 11. For RoadNet, it is not surprising
to see that the processing time are almost the same for the
3 execution plans. This is because most vertices of each
RoadNet partition can be processed by SM-E, and different
distributed query execution plans have little effect on the
total processing time. For all other three data sets, it is ob-
vious that our fully optimized execution plan is playing an
important role in improving the query processing time, es-
pecially when dealing with large graphs such as LiveJournal
and UK2002 where large volumes of network communication
are generated and can be shared.

8.4 Scalability Test
Varying graph size and average degree Following the
method of [13], we generated 5 subgraphs of Friendster by
extracting 20, 40, 60, 80 and 100% of the vertices. By fixing
100% of the vertices, we randomly sample 20, 40, 60, 80 and
100% of the edges to get another 5 subgraphs whose average
degrees range from 11 to 55. We compared the results of
PSgL, SEED, TwinTwig and RADS by testing two queries q2
and q4, the results are as shown in Figure 12. The index of
Crystal is too large on Friendster, therefore Crystal is not
included in this experiment.

As we can see in Figure 12, the time cost of all four meth-
ods significantly increases when we increase the graph size
and the average degree. However, RADS is consistently bet-
ter than the other 3 methods. For q4, the three previous
methods all failed to finish the processing on the complete
Friendster graph due to memory crash.

Varying the number of nodes in the cluster We com-
pared the five approaches by varying the number of nodes
in the cluster from 5 to 10 and 15. Instead of reporting the
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Figure 12: Results of varying graph size & avg.degree

processing time, here we report the ratio between the to-
tal processing time of all queries using 5 nodes and that of
the other two cases, which we call scalability ratio. Because
TwinTwig, SEED and PSgL failed some queries for LiveJour-
nal and UK2002, we omit them in the two datasets. The
result is shown in Figure 13. The most important thing
to observe is that our approach demonstrates linear speed-
up when the number of nodes is increased for Roadnet and
DBLP. For LiveJournal and UK2002 the difference between
Crystal and RADS is not much while RADS is better for both.
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Figure 13: Vary Number of Nodes

9. RELATED WORK
The works most closely related to ours are TwinTwig [12],

SEED [13] and PSgL [20]. Both [12] and [13] use multi-round
two-way joins. [12] uses the same data partitioning as in
our work, and it decomposes the query graph P into a set
of small trees dp0, . . . , dpk such that the union of these trees
is equal to P . The union of their embeddings on all ma-
chines is the set of all embeddings of dpi over G. [13] is
similar to [12], except that it allows decomposition units
to be cliques as well as trees, and it uses bushy join rather
than left-deep joins2. Both TwinTwig and SEED may generate
huge intermediate results, and shuffling, re-distribution and
synchronization cost a lost of time. Instead of using joins,
we follow expand-verify-filter on each machine, as such we

2There are different optimization strategies in each paper.

generate less intermediate results, and we do not need to
re-distribute them to different machines.
PSgL [20] is based on Pregel [15]. It maps the query ver-

tices one at a time following breath-first traversal. However,
there are important differences between PSgL and our sys-
tem (RADS). (1) In each step of expansion, PSgL needs to
shuffle and send the partial matches (intermediate results)
to other machines, while RADS does not need to do so. (2)
PSgL stores each (partial) match as a node of a static result
tree, while RADS stores the results in a dynamic and compact
data structure. (3) There is no memory control in PSgL.

Also closely related to our work are [5] and [4], which
introduce systems for parallelizing serial graph algorithms,
including (but not limited to) subgraph isomorphism search.
The work [1] treats the query pattern as a conjunctive query,
where each predicate represents an edge, and computes the
results as a multi-way join in a single round of map and
reduce. The problem with [5][4][1] is that a large part of
data graph have to be duplicated over all the machines which
limits their practicality when the query pattern is complex.

Qiao et al [16] represent the set IP of all embeddings
of pattern P in a compressed form, code(IP ), based on
a minimum vertex cover of P . It decomposes the query
graph P into a core core(P ) and a set of so-called crystals
{p1, . . . , pk}, such that code(IP ) can be obtained by join-
ing the compressed results of core(P ) and {p1, . . . , pk}. The
compressed results of core(P ) and the crystals can be ob-
tained from the compressed results of components of P . It
needs to build an index of all cliques of the data graph, as
shown in Table 2. Although no shuffling of intermediate
results is required, the indexes of [16] can be many times
larger than the data graph.

BigJoin, one of the algorithms proposed in [2], treats a
subgraph query as a join of |EP | binary relations where each
relation represents an edge in P . Similar to RADS and PSgL,
it generates results by expanding partial results a vertex at
a time, assuming a fixed order of the query vertices. Dif-
ferent from our work, it still needs to shuffle and exchange
intermediate results, and therefore synchronization before
that.

10. CONCLUSION
We presented a novel approach for distributed subgraph

enumeration. By processing the data vertices far away from
the border using the single-machine algorithms, we isolated
a large part of vertices which does not have to be involved
in the distributed process. By passing edge verification re-
quests/results and adjacency lists of foreign vertices, RADS
significantly reduced the network communication cost. We
also proposed a compact format to store the generated in-
termediate results. Our query execution plan and memory
control strategies helped to improve the efficiency and ro-
bustness. Our experiments verified the superiority of our
approach compared with several other approaches.
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