
An IDEA: An Ingestion Framework for Data Enrichment
in AsterixDB

Xikui Wang
University of California Irvine

xikuiw@ics.uci.edu

Michael J. Carey
University of California Irvine

mjcarey@ics.uci.edu

ABSTRACT
Big Data today is being generated at an unprecedented rate
from various sources such as sensors, applications, and de-
vices, and it often needs to be enriched based on other ref-
erence information to support complex analytical queries.
Depending on the use case, the enrichment operations can
be compiled code, declarative queries, or machine learning
models with different complexities. For enrichments that
will be frequently used in the future, it can be advantageous
to push their computation into the ingestion pipeline so that
they can be stored (and queried) together with the data.
In some cases, the referenced information may change over
time, so the ingestion pipeline should be able to adapt to
such changes to guarantee the currency and/or correctness
of the enrichment results.

In this paper, we present a new data ingestion framework
that supports data ingestion at scale, enrichments requir-
ing complex operations, and adaptiveness to reference data
changes. We explain how this framework has been built on
top of Apache AsterixDB and investigate its performance at
scale under various workloads.

PVLDB Reference Format:
Xikui Wang, Michael J. Carey. An IDEA: An Ingestion Frame-
work for Data Enrichment in AsterixDB. PVLDB, 12(11): 1485-
1498, 2019.
DOI: https://doi.org/10.14778/3342263.3342628

1. INTRODUCTION
Traditionally, data to be analyzed has been obtained from

one or more operational systems, fed through an Extract,
Transform, and Load (ETL) process, and stored in a data
warehouse [11]. In today’s Big Data era, the data that peo-
ple work with is no longer limited to the operational data
from a company but also includes social network messages,
sensor readings, user click-streams, etc. Data from these
sources is generated rapidly and continuously. It becomes
increasingly undesirable to stage the data in large batches,
process it overnight, and then load it into a data warehouse

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342628

due to the volume of the incoming stream and the need to
analyze current data when making important decisions.

To support the ingestion of continuously generated data
and provide near real-time data analysis, streaming engines
have been introduced into the Big Data analysis architec-
ture [7, 14, 36]. The incoming data is collected by a stream-
ing engine and then pushed to (or periodically pulled by) a
warehouse for later complex data analysis. Adding a stream-
ing engine simplifies the ingestion process for the data ware-
house, but it introduces data routing overhead between dif-
ferent systems. To minimize this overhead and simplify the
architecture, some systems such as Apache AsterixDB [17]
have chosen to provide an integrated ingestion facility, data
feeds, to enable users to ingest data directly into the system.

The ingested data, such as sensor readings, is often not
useful alone in high-level data analysis. To reveal more
valuable insights, it needs to be enriched, e.g, by relating
it to reference information and/or applying machine learn-
ing models. When the enriched data needs to be queried
frequently, its computation is often pushed into the inges-
tion pipeline and the enriched data is then persisted [24].
This requires the ingestion framework to have the ability
to process incoming data efficiently and to access reference
data/machine learning models when needed.

Most streaming engines support incoming data process-
ing, but some only support a limited query syntax [9, 22]. If
a processing task requires existing data from a warehouse,
most streaming engines would need to query the warehouse
repeatedly, as otherwise they would have to keep a copy of
that data locally. Frequent queries to the warehouse would
increase the load on the system and incur latency, and main-
taining multiple copies of the data would require data mi-
gration to keep the data consistent [24]. Both choices would
slow down the enrichment/ingestion pipeline and increase
the complexity of building the overall analysis platform.

The data feeds in AsterixDB support data enrichment
during ingestion by allowing users to attach user-defined
functions (UDFs) to the ingestion pipeline. UDFs are a long-
standing and commonly available feature in databases. Data
enrichment operations can be encapsulated in UDFs and be
reused for different use cases. A Java UDF in AsterixDB can
be used on a data feed to enrich the incoming data using ex-
isting information from resource files. A SQL++ UDF on
a data feed can manipulate the incoming data declaratively
using a SQL++ query. Currently, however, such a SQL++
function in AsterixDB must be limited to only accessing the
content of a given input record, as the execution plan for
a SQL++ UDF in general can be stateful. If other data

1485

were accessed by a SQL++ function attached to an Aster-
ixDB data feed, its query plan could fail to be evaluated or
generate intermediate states that neglect changes in refer-
enced data. This limits the expressiveness (usefulness) of
data enrichment using SQL++ UDFs in AsterixDB today.

Considering the potential benefits of data enrichment dur-
ing ingestion, we believe that a data ingestion facility should
provide high-performance ingestion for incoming data, a full
query syntax support to data enrichment, efficient access
to existing data, and adaptiveness to changes in referenced
data. With these requirements in mind, we have built a
new ingestion framework for Apache AsterixDB. We have
improved the scalability and stability of its data feeds and
enabled users to attach declarative UDFs on data feeds with
support for a full query capability. We have decoupled the
ingestion pipeline into layers based on their functionality
and life-cycle to improve ingestion efficiency and to allow
ingestion pipelines to adapt to data changes dynamically.

The rest of this paper is organized as follows. We intro-
duce the background information about Apache AsterixDB,
its Hyracks runtime engine, and rapid data ingestion in Sec-
tion 2, and then we discuss how to enrich ingested data
at scale in Section 3. In Section 4, we investigate different
strategies for utilizing data enrichment for data analysis and
the current limitations of each for providing current and cor-
rect data enrichment in time. We explain how we built the
new ingestion framework and the techniques used in Sec-
tion 5, and we elaborate on the details of the new ingestion
framework in Section 6. We investigate its performance in
Section 7, review related work in Section 8, and conclude
our work in Section 9.

2. BACKGROUND

2.1 Apache AsterixDB
Apache AsterixDB [2] is an open source Big Data Man-

agement System (BDMS). It provides distributed data man-
agement for large-scale, semi-structured data. It aims to re-
duce the need for gluing together multiple systems for Big
Data analysis. AsterixDB uses SQL++ [10, 27] (a SQL-
inspired query language for semi-structured data) for user
queries and the AsterixDB Data Model (ADM) to manage
the stored data. ADM is a superset of JSON and supports
complex objects with nesting and collections.

2.2 Hyracks
Hyracks [6] is a partitioned parallel computation plat-

form that provides runtime execution support for Aster-
ixDB. Queries from users are compiled into Hyracks jobs.
A “job” is a unit of work that can be executed on Hyracks.
A “job specification” describes how data flows and is pro-
cessed in a job. It contains a DAG of operators, which
describe computational operations, and connectors, which
express data routing strategies. Data in a runtime Hyracks
job flows in frames containing multiple objects. An operator
reads an incoming data frame, processes the objects in it,
and pushes the processed data frame to another connected
operator through a connector. AsterixDB uses jobs to evalu-
ate user queries. A query submitted to AsterixDB is parsed
and optimized into a query plan and then compiled as a
job specification to run on the Hyracks platform. Figure 1
shows an example of how a user query can be represented
as a Hyracks job.

Scanner
(Partition 0)

Scanner
(Partition 1)

Scanner
(Partition 2)

SortGroupBy
(Local)

SortGroupBy
(Local)

SortGroupBy
(Local)

SortGroupBy
(Global)

SortGroupBy
(Global)

SortGroupBy
(Global)

Result
Writer

Result
Writer

Result
Writer

SELECT t.country AS country, COUNT(*) AS num
FROM Tweets t GROUP BY t.country;

Figure 1: Translating a user query to a Hyracks job

2.3 Data Ingestion
In many contemporary data analysis use cases, data no

longer stays on storage devices to be batched into a database
system later. Instead, it enters the system rapidly and con-
tinuously. The traditional bulk loading technique cannot
be applied due to the active nature of the incoming data.
Repeatedly issuing insert statements would be impractical
because of its low efficiency.

To untangle database systems and users from the han-
dling of rapidly incoming data, one popular solution is to
couple a streaming engine with a database system and use
the streaming engine to handle the data [24]. For example,
one can set up a Kafka instance to ingest data from exter-
nal sources, then create a program [26] or use the kafka-
mongodb-connector [16] to transmit the ingested data to a
MongoDB instance for later analysis.

While streaming engines provide scalable and reliable data
ingestion for database systems, they simultaneously intro-
duce additional data routing costs. For example, the incom-
ing data has to be persisted in Kafka first, then be pushed to
the connected database system. Writing the same piece of
data multiple times costs more resources and also delays the
demanding analytical queries awaiting the latest ingested
data. In addition, configuring multiple systems and wiring
them together can be challenging for data analysts, who
usually have little system management experience.

To simplify the process of ingesting data for end users
and improve ingestion efficiency for analytical systems, some
database systems provide integrated data ingestion facilities
for handling rapid incoming data. Apache AsterixDB, for
example, provides data feeds that allow users to assemble
simple data ingestion pipelines with DDL statements [17].
A data feed consists of two components: an adapter, which
obtains/receives data from an external data source as raw
bytes; and a parser, which translates the ingested bytes into
ADM records. Compared with the “glue” solution using
streaming engines, data feeds have no extra data routing
overheads, and a user can easily assemble a basic data in-
gestion pipeline with declarative statements.

3. BIG DATA ENRICHMENT

3.1 Motivation
Due to various restrictions, such as the limited bandwidth

of infield sensors and predefined data formats from API
providers, data coming from external sources may not con-
tain all the information needed for meaningful data analysis.
In these scenarios, one can enrich the ingested data with ex-
isting knowledge (reference data) or machine learning mod-
els to reveal more useful information. For example, the IP
address in a log record can be enriched by referencing IP rep-
utation data to see whether there is known threat activity

1486

associated with that IP address [21]. Tweets can be enriched
by utilizing linguistic processing, semantic analysis, and sen-
timent analysis techniques and can be used in societal event
forecasting systems [13]. Raw data collected by sensor net-
works can be enriched to support higher level applications,
such as improving training effects in sports [12] and building
health-care services for medical institutions [29].

One way of expressing data enrichment requests is to use
User-defined Functions (UDFs). This approach allows users
to create functions with queries or programs and to reuse
them. It enables users to modularize their data enrichment
operations and to easily scale their computations on Big
Data with the support of a BDMS, like AsterixDB. Since
UDFs are available in most databases, the user model and
system design around UDFs can be generalized to simi-
lar systems. In this paper, we use the UDF framework in
Apache AsterixDB for data enrichment.

3.2 UDFs for Data Enrichment
AsterixDB supports both Java and SQL++ in its UDF

framework. One can implement a Java UDF that utilizes
the provided API to manipulate an input record, or create
a SQL++ UDF to enrich input data using a declarative
query. For example, we might want to create a UDF that
checks whether a given tweet from the U.S. contains the
keyword “bomb”. If so, the UDF should add a new field,
“safety check flag”, to the tweet and sets it to “Red”. If
not, the UDF should add the same new field and sets it
to “Green”. Figure 2 shows an example of the Java UDF
implementation (Java UDF 1) of such a UDF.

...
public void evaluate(IFunctionHelper functionHelper)

throws Exception {
JRecord inputRecord =

(JRecord) functionHelper.getArgument (0);
JString countryCode =

(JString) inputRecord.getValueByName("country");
JString text =

(JString) inputRecord.getValueByName("text");

safetyCheckFlag.setValue(
countryCode.getValue (). equals("US") &&
text.getValue (). contains("bomb") ? "Red":"Green");

inputRecord.addField("safety_check_flag",
safetyCheckFlag);

functionHelper.setResult(inputRecord);
}
...

Figure 2: Java UDF 1 for tweet safety check

Although Java UDFs are powerful tools for enriching in-
coming data, especially when combined with machine learn-
ing models, constructing Java UDFs can be more compli-
cated than writing SQL++ queries when expressing the
same data enrichment requirements. In addition, a SQL++
UDF can be updated using an UPSERT statement instantly
while updating a Java UDF requires a recompilation and re-
deployment process. Figure 3 shows an equivalent SQL++
UDF that performs the safety check for a given tweet (SQL++
UDF 1).

3.3 Utilizing Existing Knowledge
In some use cases, a UDF needs to access existing knowl-

edge, such as machine learning models or relevant stored
information, for data enrichment. Both Java and SQL++
UDFs can support utilizing existing knowledge. A Java

CREATE FUNCTION USTweetSafetyCheck(tweet) {
LET safety_check_flag =

CASE tweet.country = "US"
AND contains(tweet.text , "bomb")

WHEN true THEN "Red" ELSE "Green"
END

SELECT tweet.*, safety_check_flag
};

Figure 3: SQL++ UDF 1 for tweet safety check

UDF in AsterixDB can load external files during its initial-
ization. A SQL++ UDF can access reference data stored
in datasets. To expand on our tweet safety check example
in Section 3.2, given a list of countries and their sensitive
keywords, suppose we want to flag a tweet from a country if
it contains one of the keywords associated with that coun-
try. For a Java UDF, we can put the country-to-keywords
mappings into a local resource file and load it during the
UDF initialization. For a SQL++ UDF, we can store the
mappings in a “SensitiveWords” dataset and use a SQL++
query to enrich the input data. A snippet of the Java imple-
mentation of this UDF is included in [35]. Figure 4 shows
its SQL++ implementation (SQL++ UDF 2).

CREATE FUNCTION tweetSafetyCheck(tweet) {
LET safety_check_flag = CASE

EXISTS(SELECT s FROM SensitiveWords s
WHERE tweet.country = s.country AND
contains(tweet.text , s.word))

WHEN true THEN "Red" ELSE "Green"
END

SELECT tweet.*, safety_check_flag
};

Figure 4: SQL++ UDF 2 for tweet safety check

Loading external files in a Java UDF is commonly used
for necessary configurations that are infrequently updated.
However, when an update occurs, such as new keywords
being added for a certain country, the resource files on every
node will also need to be updated. A reference dataset used
in a SQL++ UDF, in contrast, can easily be updated by
INSERT/UPSERT statements.

4. DATA ENRICHMENT FOR ANALYSIS
The goal of data enrichment is to allow analysts to use

the enriched information in analytical queries. One can en-
rich ingested data lazily, when constructing the analytical
queries, or eagerly at ingestion time and then store the en-
riched results. Enriching data in analytical queries is good
for one-time queries, while enriching and storing enriched
results allows faster responses for future analytical queries.
In this section, we show examples and discuss the implemen-
tation of both options.

4.1 Option 1 - Enrich during Querying
For data enrichment used in one-time analytical queries,

one can apply enrichment UDFs directly when querying the
data. A UDF in an analytical query can be optimized to-
gether with the query to produce an optimized query plan.
For example, to find out how many tweets in each coun-
try are marked as “Red”, a sample analytical query using
a SQL++ UDF 2 is shown in Figure 5. Since the data en-
richment is evaluated together with the analytical query, the
query response time can be long in the case of complex en-
riching UDFs. Also, as the enriched data is not persisted,
the same enrichment needs to be computed multiple times
for each incoming analytical query.

1487

SELECT tweet.country Country , count(tweet) Num
FROM Tweets tweet
LET enrichedTweet = tweetSafetyCheck(tweet)[0]
WHERE enrichedTweet.safety_check_flag = "Red"
GROUP BY tweet.country;

Figure 5: An analytical query using SQL++ UDF 2

4.2 Option 2 - Enrich during Data Ingestion
In common use cases, the enriched data may be used re-

peatedly in analytical queries at different points in time. In
such use cases, enriching data lazily in each analytical query
separately can be expensive, as it wastes time evaluating the
same UDF on the same data multiple times. In such cases,
it can be beneficial to instead persist the enriched data and
use it for all future analytical queries with similar needs. To
allow faster responses to those queries, data enrichment in
such use cases is often completed eagerly during the data
ingestion process. Here we discuss three different approaches
to enriching data during ingestion using Apache AsterixDB.

4.2.1 Approach 1 - External Programs
A naive approach to enrich data during ingestion would

be to set up an external program that obtains/receives data
from data sources, issues DML statements to enrich the
collected data, and then inserts the enriched data into a
dataset. A sample insert statement that enriches data using
SQL++ UDF 2 and inserts the result into a target dataset
“EnrichedTweets” is shown in Figure 6. However, as dis-
cussed in Section 2.3, issuing repeated insert statements has
significant overheads and would not scale well.

INSERT INTO EnrichedTweets(
LET TweetsBatch = ([{"id":0, ...},

{"id":1, ...}, ...])
SELECT VALUE tweetSafetyCheck(tweet)
FROM TweetsBatch tweet

);

Figure 6: Enrich and insert collected tweets

4.2.2 Approach 2 - External Programs w/ Data Feeds
A user can use the basic data feeds feature introduced

in Section 2.3 to improve ingestion performance. The data
can first be ingested into a dataset using data feeds, then
enriched and stored in another dataset by applying UDFs. A
user could set up an external program that repeatedly issues
the DML statement in Figure 7 to initiate data enrichment
for ingested data. Depending on the arrival rate of incoming
data, the user may issue a new DML statement as soon
as the previous one returns to catch up with the ingestion
progress when the arrival rate is high, or wait for a certain
period to batch the ingested data when the arrival rate is
low. Benefiting from data feeds, this approach consumes the
incoming data efficiently, even when the data comes in fast,
but a user still needs to set up an external program that
constantly initiates the data enrichment. In addition, the
data is unnecessarily materialized twice since all information
in the tweets is kept in the enriched tweets as well.

INSERT INTO EnrichedTweets(
SELECT VALUE tweetSafetyCheck(tweet)
FROM Tweets tweet WHERE tweet.id NOT IN

(SELECT VALUE enrichedTweet.id
FROM EnrichedTweets enrichedTweet)

);

Figure 7: Enrich and insert ingested tweets

4.2.3 Approach 3 - Data Feeds w/ UDFs
In order to avoid the unnecessary materialization of in-

coming data and make the enriched data available to users
as soon as possible, we may attach the data enrichment op-
eration directly to the ingestion pipeline so that the ingested
data is enriched before it arrives at storage. Apache Aster-
ixDB allows users to attach certain UDFs to data feeds. As
an example, a user could attach SQL++ UDF 1 (in Figure 3)
to a data feed using the DDL statement in Figure 8. Incom-
ing tweets are first received by the feed adapter, then parsed
by the feed parser, and then enriched by the attached UDF.
Finally, they are stored in the connected dataset. A Java
UDF, such as the UDF in Figure 2, can also be attached to
a data feed.

CONNECT FEED TweetFeed
TO DATASET EnrichedTweets
APPLY FUNCTION USTweetSafetyCheck;

Figure 8: Attach a SQL++ UDF to a data feed

4.3 More Complex Enrichment

4.3.1 Challenges
In AsterixDB today, UDF 1 can be attached to a data feed

directly, as it only accesses the incoming record and does not
create any intermediate states. We call this kind of UDF a
stateless UDF. UDF 2 is different from UDF 1, as UDF
2 accesses external resources (the “SensitiveWords” dataset
in the case of SQL++, or the equivalent local resource files
in the case of Java) and creates intermediate states (such as
in-memory hash tables) used for data enrichment. We call
this kind of UDF a stateful UDF.

Attaching a stateful UDF to a data feed can be problem-
atic since in some cases the referenced data can itself be
modified during the ingestion process, in which case the in-
termediate states based on the referenced data need to be
refreshed accordingly. Also, not all complex and stateful
SQL++ UDFs can be applied to a continuously incoming
data stream directly. To illustrate the challenges of apply-
ing complex and stateful SQL++ UDFs in the ingestion
pipeline, here we discuss three possible computing models
for attaching UDF 2 to a data feed.

4.3.2 Model 1 - Evaluate UDF per Record
A simple computing model for applying a stateful UDF to

a feed is to evaluate the attached UDF against each incom-
ing record separately. An incoming record is received and
parsed by the feed adapter and parser first, then enriched
and persisted in storage. An equivalent insert statement for
enriching and persisting one record is shown in Figure 9. In
this model, each collected datum is treated as a new constant
record. The attached UDF evaluates each record separately,
and any intermediate states will be refreshed from record to
record. This allows the UDF to see data changes during
the ingestion process, and it imposes no limitations on the
applicable query constructs in attached UDFs. However,
evaluating the UDF on a per-record basis may introduce a
lot of execution overhead. This model cannot be applied in
situations where the data arrives rapidly.

INSERT INTO EnrichedTweets(
LET tweet = { "id": ... }
SELECT VALUE tweetSafetyCheck(tweet));

Figure 9: Enrich and insert a constant record

1488

4.3.3 Model 2 - Evaluate UDF per Batch
To mitigate the execution overhead, one alternative is to

batch the collected incoming records, apply the UDF to the
batch, and store the enriched records. An equivalent in-
sert statement for enriching a batch of records was shown
in Figure 6. The records within one batch are enriched us-
ing the same reference data, and reference data changes are
captured between batches. A larger batch leads to lower ex-
ecution overhead but less immediate sensitivity to reference
data changes; the converse is also true. A user may choose
a balance between ingestion performance and sensitivity to
reference data changes by tuning the batch size.

4.3.4 Model 3 - Stream Datasource
To further reduce execution overheads, the system could

attempt to treat the incoming data stream as an infinite
dataset and evaluate the attached UDF as if the stream is
a normal dataset. An equivalent insert statement is shown
in Figure 101.

INSERT INTO EnrichedTweets(
SELECT VALUE tweetSafetyCheck(t)
FROM FEED Tweets t);

Figure 10: Enrich and insert records from a feed

This model would be more efficient than the previous two,
as the attached UDF is initialized once for all incoming data.
Any pre-computation for enriching the incoming data occurs
only once and is used for all incoming data. Although this
model would provide the best ingestion performance since it
has the smallest execution overhead, it cannot be used when
the attached UDF is stateful. Taking SQL++ UDF 2 as
an example, when we attach this UDF to a data feed and
use this model to compute it, the evaluation would become
a join operation between the “SensitiveWords” dataset and
the never-ending feed data source. When there is a more
complicated UDF, such as multi-level join and group-by,
the evaluation could create more intermediate states and be-
come even harder to evaluate using this model. Here we list
three different scenarios of evaluating UDF 2 using Model
3, depending on the join algorithm and the size of the “Sen-
sitiveWords” dataset.

1. Hash Join with a small “SensitiveWords” dataset

The evaluation of a hash join operation consists of two
phases: build and probe [32]. In the build phase, the
“SensitiveWords” dataset would be built into a hash
table. In the probe phase, the data coming from the
Twitter feed would then use the hash table to find the
matching records in the “SensitiveWords” dataset.

When the “SensitiveWords” dataset is small, the cre-
ated hash table can be kept in memory. This allows
incoming data to continuously probe the in-memory
hash table for enrichment while the ingestion contin-
ues as shown in Figure 11. This appears to be a perfect
model for this case, but it cannot incorporate the new
changes to the “SensitiveWords” dataset, as the in-
memory hash table would be built once and then used
throughout the streaming ingestion process.

1The keyword “FEED” is not an actual supported data-
source in SQL++, so one cannot run this DDL statement
in the Apache AsterixDB system. Here we use it to concep-
tually denote a continuous feed datasource.

In-mem
Hash
Table

Twitter Feed

(1) Build
Enriched
Tweets

New Data

Enrich

Sensitive
Keywords

(2)Probe

Figure 11: Case 1: Small SensitiveWords dataset

2. Hash Join with a big “SensitiveWords” dataset

When the “SensitiveWords” dataset is large, part of
its data will be spilled to disk for the next round of
the join [32]. This is shown in Figure 12. The hash
join algorithm expects to process such spilled data re-
cursively, after reading “all” data from Twitter, but
of course the tweets will not stop coming. Thus, this
model cannot be used in this case.

In-mem
Hash
Table

Twitter Feed

(1) Build
Enriched
Tweets

New Data

Enrich

Sensitive
Keywords

(2)Probe
Spilled Data Partitions

Figure 12: Case 2: Big SensitiveWords dataset

3. Index Nested Loops Join

If there is an index on the “country” attribute of the
“SensitiveWords” dataset, the SQL++ query compiler
may choose the index nested loop join algorithm to
compute the join. In this case, the incoming data can
be used to look in the index first, then find the matched
records for enrichment, as shown in Figure 13. By
choosing this join algorithm manually for this specific
join case, one could avoid creating intermediate states
during the enrichment operation and thus see the new
data changes directly. However, this approach is not
applicable to more general use cases where the indexes
on referenced datasets may not always exist, and/or
where an enrichment UDF contains other operations
that create intermediate states.

Enriched
Tweets

Enrich

Sensitive
Keywords

Index
(country)

Lookup

Figure 13: Case 3: Enrich with an available index

In the current Apache AsterixDB release, data feeds actu-
ally use this streaming model to evaluate any attached UDFs
on an ingestion pipeline, so the attached UDFs are limited
to be stateless. In order to support stateful data enrich-
ment UDFs and allow users to use the full power of SQL++
in more complex data enrichment use cases, we need to cre-
ate a new data ingestion framework that evaluates attached
complex stateful UDFs properly.

1489

5. FRAMEWORK BUILDING BLOCKS
As discussed in Section 4.3, only models 1 and 2 support

complex data enrichment during data ingestion and capture
any reference data changes at the same time. We have thus
built a new data ingestion framework based on model 2, as
it provides flexibility by allowing users to choose the right
batch sizes for their use cases. In this section, we describe
the design of this new framework and the optimization tech-
niques that we used for improving its performance.

5.1 Predeployed Jobs
Following model 2, our new ingestion pipeline consists of

two independent Hyracks jobs: an intake job and an insert
job. A sample ingestion pipeline on a three-node cluster is
shown in Figure 14. The intake job contains the feed adapter
and parser, and this job runs continuously throughout the
lifetime of the ingestion process. The insert job takes a batch
of records from the intake job, enriches them by applying
the attached UDFs, and inserts the enriched records into a
dataset. It runs repeatedly, being invoked once per batch,
during ingestion. In each invocation, the insert job sees the
updates to a referenced data record before it is first accessed.
Updates after that are picked up by the next invocation2.

The insert job in Figure 14 is constructed using the query
in Figure 6. For every collected batch of records from the in-
take job, we replace the array of constant records (in Tweets-
Batch) with the collected batch and execute it. As discussed
in Section 2.2, a query in AsterixDB is optimized and com-
piled into a job specification first, then distributed to the
cluster for execution. Since the insert job is executed re-
peatedly, we utilize parameterized predeployed jobs to avoid
redundant query compilation and job distribution costs.

Node 0 Node 1 Node 2

Adapter

Parser Parser Parser

Intake Job

Storage
Partition 0

Storage
Partition 1

Storage
Partition 2

UDF Evaluator UDF Evaluator
Insert Job

UDF Evaluator

Figure 14: Ingestion pipeline using insert jobs

SELECT *
FROM Tweets t
WHERE t.id = $x

Node 1

Job Specification
(Parameter $x)

Node 0

Cached Job
Specification

Node 2

Cluster Controller
Query

Optimizer

Cached Job
Specification

Cached Job
Specification

Invoke
($x = 97)

SELECT *
FROM Tweets t
WHERE t.id = 97

Figure 15: Parameterized predeployed job

Parameterized predeployed jobs are not unlike prepared
queries in relational databases. As shown in Figure 15,
a user can choose to predeploy a query with specified pa-
rameters. This query is optimized and compiled normally,
and then the compiled job specification is predeployed to all
nodes in the cluster. This job specification is then cached
on the cluster nodes. When a user wants to run this query
with a particular parameter, instead of repeating the entire

2This follows the record-level consistency model provided in
AsterixDB (and most other NoSQL databases).

Node 0 Node 1 Node 2
Intake Job

Storage Job
Computing Job

Figure 16: Decoupled ingestion framework

query compilation and distribution process, an invocation
message with the new invocation parameter is sent. Using
this technique, Figure 14’s insert job is distributed as a pre-
deployed job in the cluster before the feed starts. When the
intake job obtains a new batch of records, it invokes a new
insert job with the collected batch as the parameter.

5.2 Layered Ingestion Pipeline
Repeatedly executing the insert job allows any intermedi-

ate states created in the UDF evaluation to be refreshed so
that any data changes will be used for enriching the incom-
ing data. It should be noted that the evaluation of an insert
job, similar to the evaluation of an insert query, will have to
wait for the storage log to be flushed to finish properly. Also,
since the UDF evaluation and storage operations work se-
quentially in an insert job, UDF evaluation can be blocked
while waiting for the downstream data to be written into
storage. To fully utilize the cluster’s computing resources
and improve overall throughput, we further decompose the
insert job into a computing job and a storage job so they
can work concurrently. The decoupled ingestion framework
is shown in Figure 16.

In the decoupled ingestion framework, the intake job han-
dles data from external data sources, the computing job
evaluates the attached UDFs, if any, and the storage job
writes the enriched data into storage. The intake job and
storage job begin to run when the data feed starts, while
the computing job in between them is run repeatedly as
data batches come in. As in the previous discussion, the
computing job is distributed as a predeployed job to reduce
execution overhead. Similar to the insert job in Section 5.1,
an invocation of the computing job will see the updates to
a referenced record before it is first accessed by the job.

5.3 Partition Holders
In the decoupled ingestion framework, data frames are

passed from the intake job to a computing job, and then
from the computing job to the storage job. Currently, data
exchanges in Hyracks are limited to being within the scope
of a job; one job cannot access data frames from another job
at runtime. As data exchanges between jobs in the decou-
pled framework are frequent, we needed to add an efficient
mechanism to allow data to be exchanged between jobs.

Considering that the operators in a job each work on data
partitions, by aligning the output partitions of one job with
the input partitions of the other job, data frames can be
shipped from one job to the other efficiently through in-
memory structures. For this, we introduce a new type of
operator in Hyracks - a partition holder - to enable efficient
data exchanges between jobs.

A partition holder operator “guards” a runtime partition
by holding the incoming data frames in a queue with a lim-
ited size. There are two types of partition holders, active
and passive, as shown in Figure 17. An active partition
holder follows the default push strategy in Hyracks; it re-
ceives data frames from other jobs and pushes them to its

1490

downstream operators actively. A passive partition holder
implements a pull strategy; it receives data frames from its
upstream operators and waits for other jobs to pull them.
Each partition holder has a unique ID that is associated
with its partition number. When a new partition holder is
created, it registers with the local partition holder manager.
Jobs sending/receiving data to/from another job can locate
the corresponding partition holders through local partition
holder managers. In the decoupled ingestion framework, we
add a passive partition holder to the tail of the intake job
so that the computing jobs can request and receive data in
batches. An active partition holder is added to the head of
the storage job so that computing jobs can push the enriched
data on to the storage job.

Active Partition Holder
Job 0

…

Passive Partition Holder

Job 0 ……

…

Job 1 Job 2

Job 1 Job 2

Figure 17: Partition holders

6. THE NEW INGESTION FRAMEWORK
Following the high-level design in Section 5, we now detail

the new ingestion framework in AsterixDB to support data
enrichment with reference data updates. We describe how
we orchestrate different components in the new ingestion
framework in Section 6.1, and we delve into the lower-level
constructs of the framework in Section 6.2.

6.1 Ingestion Life Cycle
As we discussed earlier, AsterixDB is a parallel data man-

agement system that runs on a cluster of commodity ma-
chines. In an AsterixDB cluster, one (and only one) node
runs the Cluster Controller (CC) that takes in users’ queries
and translates them into Hyracks jobs. Only the CC can
start new jobs, and it keeps track of the progress of the
running jobs in case of any failures. All worker nodes in
the cluster run a Node Controller (NC) that takes comput-
ing tasks from the CC. The CC and NC can coexist on the
same node.

In the new ingestion framework, there are two long run-
ning jobs, the intake and storage jobs; there is one short
lived, but repeatedly invoked, computing job. When there
are multiple data feeds running concurrently, each of them is
compiled and executed independently. In order to monitor
data feed jobs, we created an Active Feed Manager (AFM)
on the CC to manage the lifecycle of data feeds. The AFM
tracks all active data feeds and helps them to invoke new
computing jobs when new data batches arrive.

When a user submits a start feed request, the CC creates
the intake, computing, and storage jobs based on a compiled
job specification that is generated from a query template
similar to Figure 6. The intake and storage job run directly,
and the computing job is predeployed into the cluster for
later invocations. The AFM maintains the mappings of data
feeds to predeployed computing jobs so that it can invoke
new computing jobs for each data feed separately.

When an intake job starts, it asks the AFM on the CC
to invoke the first computing job and to keep invoking new
computing jobs when the previous one finishes. After that,
the intake job begins ingesting data from an external data
source, adding data records into its queue, and waiting for

the computing job to collect the ingested data. The cur-
rent computing job takes a data batch from the intake job,
enriches its records with an attached UDF if any, and then
pushes the enriched data batch to the storage job. When
this computing job finishes, the AFM on the CC will then
start a new computing job to continue the processing.

When the user stops a feed, the intake job first stops tak-
ing new data and then adds a special “EOF” data record
into its queue. When a computing job sees this record, it
will finish its current execution with the collected data with-
out waiting for a complete batch. The intake job finishes
when all ingested data has been consumed. When the in-
take job finishes, it notifies the AFM to stop invoking new
computing jobs for this feed. When the last computing job
for the feed finishes, the storage job stops accordingly.

6.2 New Ingestion Architecture
The new ingestion framework consists of the intake, com-

puting, and storage jobs. All jobs run on all nodes in an
AsterixDB cluster. As explained in Section 2.2, a Hyracks
job contains operators and connectors. In order to demon-
strate how data is processed and transported in the new
ingestion framework, Figure 18 shows the composition of
the framework running on three nodes at the operator and
connector level:

• The intake job obtains/receives data from external
data sources. The data enters the system through the
Adapter. The Adapter collects data as raw bytes and
arranges them into data frames for transportation pur-
poses in the system. A user may choose to activate the
Adapter on one or more nodes depending on the ex-
pected load. The ingested data frames are then fed
through the Round-robin Partitioner to be distributed
in a round-robin fashion. Since the attached UDFs can
be expensive, distributing the incoming data evenly
can help to minimize the overall execution time of the
computing job. The partitioned data is forwarded to
the Intake Partition Holder, which is implemented as
a passive partition holder, which then waits for com-
puting jobs to pull the data.

• The computing job evaluates the attached UDF to
enrich data batches. A computing job starts by collect-
ing a data batch from a local intake partition holder.
The obtained data batch is first parsed by the Parser
and then fed to the UDF Evaluator for data enrich-
ment. Depending on the attached UDF, the UDF eval-
uator could be a Java program that runs on each node
independently, or it could be a group of operators pro-
duced by compiling a complex SQL++ UDF. In either
case, local resource files (for Java UDFs) or reference
datasets (for SQL++ UDFs) may be accessed, and/or
intermediate states might be created as well. After be-
ing enriched, the data is pushed to the Feed Pipeline
Sink to be forwarded to the storage job.

• The storage job receives enriched data and stores it
to disk. The enriched data is first received by the
Storage Partition Holder, which is implemented as an
active partition holder. A feed pipeline has one Stor-
age Partition Holder on each node, and the Storage
Partition Holder receives the enriched data from all
local partitions of the collocated computing job. The
Storage Partition Holder pushes the received enriched
data actively to the connected Hash Partitioner. The

1491

Node 0 Node 2

Adapter

Storage Partition 0

Node

Hash Partitioner

Collector + Parser
UDF Evaluator

Round-robin Partitioner
Intake Partition Holder Intake Partition Holder Intake Partition Holder

Collector + Parser Collector + Parser

Feed Pipeline Sink Feed Pipeline Sink Feed Pipeline Sink

Storage Partition Holder

Storage Partition 1

Storage Partition Holder

Storage Partition 2

Storage Partition Holder

Adapter AdapterIntake
Job

Computing
Job

Storage
Job

Operator Connector Job Deployed Job

Node 1

Figure 18: The new ingestion framework

Hash Partitioner partitions the enriched data records
by their primary keys so they can be stored in the
appropriate Storage Partitions.

7. EXPERIMENTS
In this section, we present a set of experiments that we

have conducted to evaluate the new ingestion framework.
We compared the basic ingestion performance of the new
ingestion framework with that of the existing Apache As-
terixDB ingestion framework. We examined the data en-
richment performance of the new ingestion framework using
various Java and SQL++ UDFs. Finally, we investigated
the speed-up and scale-out performance of the new inges-
tion framework for more complex data enrichment work-
loads. Our experiments were conducted on a cluster which
is connected with a Gigabit Ethernet switch. Each node had
a Dual-Core AMD Opteron Processor 2212 2.0GHz, 8GB of
RAM, and a 900GB hard disk.

7.1 Basic Data Ingestion
When ingesting data without an attached UDF, the com-

puting job in the new ingestion framework simply moves
data from the intake job to the storage job. By comparing
the data ingestion performance of the new ingestion frame-
work to that of the current AsterixDB ingestion framework
without UDFs, we can examine the execution overhead in-
troduced by managing and periodically refreshing the com-
puting job in the new ingestion framework.

For this purpose, we compared the throughput of both
the current and new frameworks for continuous tweet in-
gestion. We continuously fed tweets into both ingestion
frameworks and measured the throughput of each while con-
suming 10,000,000 tweets. Each tweet record is around 450
bytes. The results are shown in Figure 19. To make sure
a single intake node did not become a bottleneck for the
ingestion performance, we also tested a “balanced version”
of both the current and new ingestion framework by having
all nodes in the cluster act as intake nodes. We refer to
the experiments on the current framework as “Static Inges-
tion”, on the new framework as “Dynamic Ingestion”, on
the balanced version of the current framework as “Balanced
Static Ingestion”, and on the balanced version of the new
framework as “Balanced Dynamic Ingestion”.

To explore how batch size affects the ingestion perfor-
mance of the new ingestion framework, we experimented

0 1 2 3 4 5 6 12 18 24

of Nodes

0

50

100

150

 T
h
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s

o
f

re
co

rd
s/

se
co

n
d
)

Static Ingestion

Balanced Static Ingestion

Dynamic Ingestion 1X

Dynamic Ingestion 4X

Dynamic Ingestion 16X

Balanced Dynamic Ingestion 1X

Balanced Dynamic Ingestion 4X

Balanced Dynamic Ingestion 16X

2 3

5

10

15

Figure 19: 10M tweets ingestion speed-up over 24 nodes

with three different batch sizes in Dynamic Ingestion, in-
cluding 420 records/batch (1X), 1680 records/batch (4X),
and 6720 records/batch (16X). Also, we varied the size of
the cluster from 1 node to 24 nodes to see how ingestion
performance varies with increased cluster sizes.

As we can see in Figure 19, the ingestion performance
of Static Ingestion remained the same as the cluster size in-
creased. This is because data intake and parsing are coupled
in the current ingestion pipeline. In this case, the ingestion
performance was limited by the parsing bottleneck on a sin-
gle intake node. In contrast, Balanced Static Ingestion kept
improving as more nodes participated in parsing and ingest-
ing the data. In the new ingestion framework, data parsing
and intake are decoupled, so even for a single intake node
(Dynamic Ingestion), the intake performance increased as
more nodes participated when the cluster size is small.

Focusing on the results for Dynamic Ingestion, the in-
gestion performance improved as the batch size increased
since there were fewer computing jobs initiated for data en-
richment; different batch sizes’ throughputs eventually con-
verged to the same level, as they were limited by the avail-
able resources on the single intake node. For the Balanced
Dynamic Ingestion, the intake load is split onto all nodes,
so its throughput kept growing as nodes were added.

Comparing the performance difference of Balanced Static
Ingestion and Balanced Dynamic Ingestion, we can see the
execution overhead introduced by repeatedly invoking com-
puting jobs in the new ingestion framework. The execu-
tion overhead of invoking computing job increased with the
cluster size. As a result, Balanced Dynamic Ingestion had
similar throughput as Balanced Static Ingestion when the
cluster size is small but started to fall behind as the cluster
continued growing. Note that given 24 nodes, the refresh

1492

rates (number of computing jobs per second) were 68, 27,
and 10 for batch sizes of 1X, 4X, and 16X respectively. We
will further explore this with UDFs attached in next section.

7.2 Data Enrichment with UDFs
We now turn to the performance of the new ingestion

framework in enriching data during data ingestion. We de-
signed four sample use cases where the attached UDFs cover
several common operations used in database queries, includ-
ing join, group-by, order-by, similarity join, and spatial join.
The four use cases are as listed below, and their complete
queries can be found in [35]. The reference datasets are
SafetyRatings, with 500,000 records and 74 bytes each, Re-
ligiousPopulations, with 500,000 records and 137 bytes each,
SuspectsNames, with 5,000 records and 150 bytes each, and
MonumentList, with 500,000 records and 94 bytes each.

1. Safety Rating: Given a list of countries and their cor-
responding safety ratings, enrich a tweet with a safety
rating based on its “country” field value. (Hash join)

2. Religious Population: Given the population of each re-
ligion in every country, enrich a tweet with the overall
religious population based on its “country” field value.
(Group-by)

3. Largest Religions: Given the population of each reli-
gion in every country, enrich a tweet with the three
largest religions according to its “country” field value.
(Order-by)

4. Fuzzy Suspects: Given a list of suspects’ names, enrich
a tweet with the possible suspects whose name’s edit
distance to the tweet user’s screen name, after remov-
ing all special characters, is less than five characters.
(Java string processing, Similarity join)

5. Nearby Monuments: Given a list of monuments and
their coordinates, enrich a tweet with the monuments
within 1.5 degrees of the tweet’s location. (Index nested
loop spatial join)

All of these enrichment UDFs are stateful, and their evalu-
ations involve the challenges that we discussed in Section 4.3.
As we have mentioned, the current ingestion pipeline of As-
terixDB doesn’t support such stateful SQL++ UDFs on its
ingestion pipeline. Java UDFs attached on the current As-
terixDB ingestion pipeline can only handle reference data
without updates. For comparison purpose, we experimented
with Java UDFs in current AsterixDB and denote the results
as “Static Enrichment w/ Java”.

The new ingestion framework supports both Java and
SQL++ UDFs and reference data with updates. We tested
both Java and SQL++ UDFs and varied the batch sizes from
420 records/batch to 1680 records/batch to 6720 records/-
batch to see how batching in the new ingestion framework
affects performance. We denote the Java cases as “Dynamic
Enrichment w/ Java 1X”, “Dynamic Enrichment w/ Java
4X”, and “Dynamic Enrichment w/ Java 16X ” and the
SQL++ cases as “Dynamic Enrichment w/ SQL++ 1X”,
“Dynamic Enrichment w/ SQL++ 4X”, and “Dynamic En-
richment w/ SQL++ 16X” respectively.

In order to measure the performances of both Static En-
richment and Dynamic Enrichment, we deployed the sys-
tem on a 6-node cluster and fed tweets to the ingestion
pipeline for data enrichment continuously. We measured
the throughput (records / second) of the system spent while

enriching 1,000,000 tweets, as shown in Figure 20 (in log
scale). The refresh periods (i.e., execution time per batch)
of Dynamic Enrichment w/ SQL++ are shown in Figure 21.

In most of the use cases, except for Nearby Monuments
(to be discussed shortly), Static Enrichment offered higher
throughput than Dynamic Enrichment. This is because
Static Enrichment only loaded reference data once and then
reused its stale intermediate states throughout the whole
ingestion process. Dynamic Enrichment, however, refreshed
and reconstructed those intermediate states from batch to
batch. This allowed Dynamic Enrichment to capture data
changes to reference data but with the overhead of repeat-
edly invoking computing jobs. For both Java and SQL++
UDFs, the throughput increased with larger batch sizes since
they led to fewer computing jobs and a smaller execution
overhead. Accordingly, the refresh periods grew, as there
were more records to be enriched in larger batches.

For Fuzzy Suspects and Nearby Monuments, the through-
put did not improved that much with increased batch size.
The reason was that the computation costs of edit distance
and spatial join were high and proportional to the cardi-
nality of the incoming data. Job initialization and manage-
ment overheads were small relative to these costs. Thus,
increasing the batch size didn’t improve the throughput sig-
nificantly. In Fuzzy Suspects in particular, the attached
SQL++ UDF not only computed edit distance but also in-
voked a Java UDF for removing special characters. This
introduced extra data serialization/deserialization and shuf-
fling cost. In Nearby Monuments, we created an R-Tree
index for the monuments’ location in the reference dataset.
The use of the index allowed the SQL++ UDF to outper-
form the Java UDF in this case by performing index lookups
on partitioned reference data.

7.3 Data Enrichment with Updates
During data ingestion and enrichment, as the referenced

data is being updated, the update rate may affect the in-
gestion performance. In order to further investigate this,
we conducted an additional experiment. For each of the
use cases (Safety Rating, Religious Population, Largest Re-
ligions, Fuzzy Suspects, Nearby Monuments), we created
a client program that sends reference data updates to As-
terixDB through a data feed. We measured the resulting
throughput impact by varying the update rate (records/sec-
ond) on a 6-node cluster during 100,000 tweets’ ingestion
and enrichment.

As we can see from Figure 22, reference data updates af-
fect the ingestion and enrichment performance differently
depending on the cardinality of the referenced dataset and
the access method used in data enrichment operations. The
throughputs of all cases dropped when the update rate first
changed from none to one record per second. This was due to
the resulting increased cost in accessing reference data. As-
terixDB uses log-structured merge-trees (LSM Trees) in its
storage [3]. Updates to a dataset will activate the in-memory
component of its LSM structure and thereby change how the
system accesses data even at the low rate of one record per
second. This added additional data fetching, locking, and
comparison costs to reference data access in computing jobs,
which then slowed down the ingestion throughput. Since
Fuzzy Suspect had the smallest reference dataset among all,
it was the least affected by the updates. When increasing the
update rate from there, the throughput then decreases grad-

1493

1
4

16
64

256
1024
4096

16384

Safety Rating Religious Population Largest Religions Fuzzy Suspects Nearby Monuments

Th
ro

ug
hp

ut

(re
co

rd
s

/ s
ec

on
d,

 lo
g

sc
al

e)

Static Enrichment w/ Java
Dynamic Enrichment w/ Java 1X
Dynamic Enrichment w/ Java 4X
Dynamic Enrichment w/ Java 16X
Dynamic Enrichment w/ SQL++ 1X
Dynamic Enrichment w/ SQL++ 4X
Dynamic Enrichment w/ SQL++ 16X

Figure 20: 1M tweets Ingestion with UDFs (log scale)

1.02 1.20 1.29

21.97 22.65

0.52 0.65 0.65 1.71 1.81
0.66 0.74 0.82

5.72 6.36

0

5

10

15

20

25

Safety Rating Religious
Population

Largest
Religions

Fuzzy
Suspects

Nearby
Monuments

R
ef

re
sh

 P
er

io
d

(s
ec

on
ds

)

Dynamic Enrichment w/ SQL++ 1X
Dynamic Enrichment w/ SQL++ 4X
Dynamic Enrichment w/ SQL++ 16X

Figure 21: Refresh periods under different batch sizes

0110 50 100 200 400
Update Rate (records/second)

0

200

400

600

800

T
h

ro
u

g
h

p
u

t
(r

ec
o

rd
s/

se
co

n
d

) Safety Rating

Largest Religion

Religious Population

Fuzzy Suspects

Nearby Monuments

Figure 22: Reference data update

ually. For Nearby Monuments, the referenced dataset was
probed throughout a computing job (index join) for data en-
richment whereas in other cases, the referenced dataset was
scanned once at the beginning of each computing job (hash
join). As a result, Nearby Monuments’ performance was less
affected at low update rates but started to slip when the up-
date rate was high. The throughput of Nearby Monuments,
under the 400 records/second update rate, was only 24% of
that without updates. Compared with Safety Rating, the
most affected among the other cases, the ratio was 52%.

7.4 Scale-out Experiments
7.4.1 Reference Data Scale-out

In the new ingestion framework, since the intermediate
states are refreshed repeatedly, the size of the reference data
could become a important factor for the data ingestion and
enrichment performance. In this section, we explore how
the new ingestion framework scales with the size of the ref-
erence datasets. We started with the reference datasets in
Section 7.2 and increased their sizes to 2X, 3X, and 4X, to-
gether with increasing the cluster size to 12 nodes, 18 nodes,
and 24 nodes correspondingly. Similarly, we continuously
fed tweet data for data enrichment using the same set of
SQL++ UDFs and measured the throughput after 1,000,000
tweets with 6720 records/batch. As we can see from the re-
sults in Figure 23, the throughput dropped slightly when
we increased the size of the cluster due to the increasing
execution overhead on a larger cluster. The new ingestion
framework scaled well with the reference data size.

7.4.2 Ingestion Data Scale-out

6 12 18 24
of Nodes

0

2000

4000

6000

T
h

ro
u

g
h

p
u

t
(r

ec
o

rd
s/

se
co

n
d

)

Safety Rating

Largest Religion

Religious Population

Fuzzy Suspects

Nearby Monuments

Figure 23: Reference data scale-out

0
50

100
150
200
250
300
350

Nearby
Monuments

Suspicious
Names

Tweet Context Worrisome
Tweets

Th
ro

ug
hp

ut
 (r

ec
or

ds
 /

se
co

nd
) Dynamic Enrichment 1X

Dynamic Enrichment 4X
Dynamic Enrichment 16X

Figure 24: UDF complexity comparison

In order to further investigate the performance of the new
ingestion framework for large scale data enrichment, we de-
signed three new complex data enrichment use cases that
add more information to the incoming tweets. The more
complex a data enrichment function is, the more perfor-
mance impact it will have on the whole ingestion framework.
We tested the new framework with these new cases to see
how it scales. The additional use cases are listed below, and
their complete queries can be found in [35]. The reference
datasets are ReligiousBuildings, with 10,000 records and 205
bytes each, Facilities, with 50,000 records and 142 bytes
each, SensitiveNames, with 1,000,000 records and 155 bytes
each, AverageIncome, with 50,000 records and 99 bytes each,
DistrictArea, with 500 records and 121 bytes each, Resi-
dents, with 1,000,000,000 records and 124 bytes each, and
AttackEvents, with 5,000 records and 179 bytes each.

6. Suspicious Names: Include the number of nearby facil-
ities grouped by their types, the three closest religious
buildings within three degrees of the tweet’s location,
and information about suspicious users who have the
same name as the tweet’s author.

7. Tweet Context : Include the average income for the
district where the tweet was posted, the number of
facilities in this district grouped by their types, and the
ethnicity distribution of the residents in this district.

8. Worrisome Tweets: Include the religion names of the
religious buildings within three degrees of the tweet
and the number of terrorist attacks in the past two
months that were related to that religion.

To demonstrate the complexity of these additional use
cases, we compared their enrichment performance with that
of “Nearby Monuments”, the most complex UDF from the
previous experiment. We measured their throughput on the

1494

0
1
2
3
4
5
6
7
8
9

Safety Rating Largest
Religion

Religious
Population

Fuzzy
Suspects

Nearby
Monuments

Suspicious
Names

Tweet Context Worrisome
Tweets

Sp
ee

d-
up

1X Batch Size
4X Batch Size
16X Batch Size

Ideal Speed-up

Figure 25: 100K tweets ingestion speed-up for 24 vs. 6 Nodes with different batch sizes

new ingestion framework for 100,000 tweets enrichment on a
6-node cluster. As shown in Figure 24, the added use cases
had different complexities, and different use cases benefited
from batch size changes differently. In the Tweet Context
use case, there were multiple expensive spatial joins between
the referenced datasets before joining with the tweets. In-
creasing the batch size reduced the computation cost and
thus increased the overall ingestion throughput. In the other
cases, the tweets mostly joined with the reference datasets
sequentially. Thus, increasing the batch sizes offered limited
improvements in the Nearby Monuments, Suspicious Names,
and Worrisome Tweets use cases.

The performance of scaling out the new framework is de-
termined by the cluster size, batch size, and UDF complex-
ity. Although increasing the number of nodes for computa-
tion can reduce the execution time of a computing job, it
also introduces additional execution overhead for executing
jobs on a larger cluster, so adding more resources may not
always improve the overall ingestion time. Given a simple
enrichment UDF, a small batch size, and a large cluster, the
speed-up performance might be bounded by the batch exe-
cution overhead. To explore the relationship of these three
factors, we experimented with the speed-up performance us-
ing different batch and cluster sizes.

We let the framework ingest and enrich 100,000 tweets us-
ing all seven UDFs. For each UDF, we measured its through-
put on a 6-node cluster and a 24-node cluster separately and
computed the resulting speed-up. We repeated this compu-
tation for each UDF for three different batch sizes, namely
420 records/batch (1X), 1680 records/batch(4X), and 6720
records/batch (16X), and we show the speed-up of each
batch size in Figure 25.

Since the UDFs in the Safety Rating, Religious Popula-
tion, and Largest Religions use cases were relatively simple
and their refresh period is already very low as shown in Fig-
ure 21, adding more resources yielded limited improvements
to the execution times of their computing jobs. At the same
time, their execution overhead grew as the cluster size in-
creased. As a result, their speed-up is relatively poor. In
Nearby Monuments, the Index Nested Loop Join didn’t ben-
efit from the batch size much as the overall index probing
cost is not related to the batch size but mainly to the in-
coming data cardinality. In contrast, the other UDFs (Fuzzy
Suspects, Suspicious Names, Tweet Context, and Worrisome
Tweets) each improved with more resources. For Tweet
Context in particular, not only were there 4x as many nodes
participating in the computation, but the added resources
(particularly memory) also allowed the join process to finish
earlier. This enabled the system to obtain more than the
ideal 4x speed-up. For a given volume of tweets, the bigger
the batch size is, the fewer computing job invocations are
needed for enriching these tweets, so the speed-up perfor-
mance is better as the execution overhead increase from the
cluster size growth is smaller.

6 12 18 24
of Nodes

0

200

400

600

800

T
h
ro

u
g
h
p
u
t

(r
ec

o
rd

s/
se

co
n
d
)

Nearby Monuments

Naïve Nearby Monuments

Suspicious Names

Tweet Context

Worrisome Tweets

(a) Throughput

6 12 18 24
of Nodes

0

1

2

3

4

5

6

7

S
p
ee

d
-u

p

Nearby Monuments

Naïve Nearby Monuments

Suspicious Names

Tweet Context

Worrisome Tweets

(b) Speed-up

Figure 26: 100K tweets ingestion speed-ups

In order to see how ingestion performance improves when
adding more resources, we also evaluated the speed-up be-
havior of the four most complex UDFs (Nearby Monuments,
Suspicious Names, Tweet Context, and Worrisome Tweets).
To avoid the use of index in Nearby Monuments becoming
a performance bottleneck, we used a query hint to add one
Naive Nearby Monument use case that enriches the tweets
with the same information without using the index. We fed
the new ingestion framework 100,000 tweets and varied the
cluster size from 6 nodes up to 24 nodes to see how through-
put changes with at batch size of 6720 records/batch. The
experimental results are shown in Figure 26.

As shown, the ingestion and enrichment performance im-
proved, as more available computing resources were added.
The performance gain started to level off when the cluster
size kept increasing, as the query execution overhead of a
larger cluster started to take away the speed-up benefits for
the given reference data sizes. For Nearby Monuments in
particular, the Index Nested Loop Join algorithm needed to
broadcast the incoming tweets to all nodes to look for in-
tersecting monuments. This limited its speed-up when the
cluster size becomes large. In contrast, Naive Nearby Mon-
uments started with a very low throughput which gradually
increased as we grew the cluster. The reason was that its ref-
erence data monument list was split across more nodes that
can then be joined with the incoming tweets concurrently.

8. RELATED WORK
Data enrichment has been widely used in data anal-

ysis applications in which the collected data contains lim-
ited information and needs to be correlated with existing
knowledge to revealing higher-level insights. Abel et al. pro-
posed to construct Twitter user profiles by extracting se-
mantics from tweets and relating them with collected news
articles [1]. Moraru et al. introduced a framework for enrich-

1495

ing sensor measurements with semantic concepts to generate
new features [25]. In the Big Active Data project [19], no-
tifications delivered to users can be enriched with other ex-
isting data in order to provide actionable notifications that
are individualized per user; for example, emergency notifi-
cations could be enriched with shelter information to help
affected users. Our work here is aimed at providing a scal-
able framework that users can employ to perform such data
enrichment operations in the ingestion pipeline so that the
enriched data can be used as soon as it is persisted.

User-defined functions have been a long standing fea-
ture of database systems [23, 33]. UDFs allow users to
register their own functions with the database system for
customized data processing and then invoke them in declar-
ative queries. Hellerstein and Stonebraker designed a pred-
icate migration algorithm for moving expensive functions
in a query plan to minimize the total cost of a query [18].
Rheinländer et al. surveyed optimization techniques for op-
timizing complex dataflows with UDFs [31]. In our work, we
use the UDF feature as a tool for users to use to express their
data enrichment operations. Prepared queries are a mech-
anism that caches compiled plans to improve query perfor-
mance. The predeployed jobs technique that we employed
here for reducing the execution time of computing jobs was
inspired by this technique.

The traditional ETL process defines a workflow in-
cluding data collection, extraction, transformation, cleans-
ing, and loading that is performed for moving data from
an operational system into a data warehouse [11]. Data is
extracted from an operational system, cleaned and trans-
formed into a defined schema for analysis, and loaded into a
periodically refreshed data warehouse for querying and data
analysis. The refreshment process is often executed in an
off-line mode with a relatively long period in order to mini-
mize the burden on the operational systems [34]. Bruckner
et al. proposed a near real-time architecture which minimizes
the delay of new data being loaded into the data warehouse
after being created in the operational system [8]. In our
work, our focus was building an efficient and succinct frame-
work aimed at ingesting and enriching data at the same time.
Note that a user can achieve part of the ETL functionality
by constructing appropriate UDFs, we do not consider the
new ingestion framework to be a tool for solving general ETL
problems. (Similarly, using a complex ETL suite for data
enrichment would be overkill.) Our data feeds feature is re-
lated to the continuous data loading technique commonly
used in near-real-time data warehouses [20].

The emerging category of hybrid transactional/ana-
lyitical processing (HTAP) aims to serving fast transac-
tional data for analytical requests from large-scale real-time
analytics applications. Özcan et al. recently reviewed emerg-
ing HTAP solutions and categorized HTAP systems based
on different design options [28]. Some use the same engine
to support both OLTP and OLAP requests [15, 30]. Other
systems choose to couple two separate OLTP and OLAP
systems to handle the different workloads separately. Wild-
fire [4], for example, provides the Wildfire Engine for ingest-
ing fast transactional data, and integrates it with Spark for
supporting analytical requests. HTAP systems, and similar
data analytics services [5], focus on enabling data analyt-
ics on recent data. On the other hand, our system looks
generally at improving data enrichment performance during
the ingestion process so that later analytical queries can be

evaluated more efficiently. The techniques that we used in
this paper can be adapted to HTAP systems for accelerating
their OLAP requests as well.

Streaming engines were introduced to address a need
for stream data processing and real-time data analysis. They
can handle streaming data sources and provide stream data
processing on-the-fly. Many streaming engines also allow
users to access reference data during processing. Kafka [22]
uses “change data capture” in combination with its Con-
nect API to access reference data in databases. Flink [9]
supports registering external resources as Tables and offers
a DataStream API to process the streaming data. Spark
Streaming [37] uses Discretized Streams to discretize an in-
coming stream into Resilient Distributed Datasets and allow
users to transform the data using normal Spark operations.
Since streaming engines are designed for stream processing
but not for complex data analysis queries, the processed re-
sults are often stored in connected data warehouses [24]. In
this paper, we have focused on data enrichment use cases
where the reference data may be frequently accessed and
changed, and where the enriched data needs to be stored in
a data warehouse for timely data analysis. We sought to
minimize the effort from users so they can create a data in-
gestion pipeline easily, with declarative statements, and ap-
ply enrichment UDFs without limitations. To achieve these
goals, we have chosen to build a new ingestion framework
that supports the full power of SQL++ for data enrichment
operations inside AsterixDB . The batch processing model
that we chose is commonly used in streaming engines as well.

9. CONCLUSIONS
In this paper, we have investigated how to enrich incom-

ing data during the data ingestion process. We discussed the
challenges in data ingestion, presented possible computing
models for evaluating stateful UDFs for data enrichment,
and discussed the problems that may occur in different sce-
narios. We believe that an ingestion pipeline that supports
efficient data ingestion and enrichment should be able to
capture reference data changes during the ingestion process,
maintain intermediate states properly, and support differ-
ent enrichment operations with a full query language. To
achieve these goals, we created a new ingestion framework
with multiple optimization techniques. Its layered architec-
ture allows the ingestion pipeline to better utilize the clus-
ter resources. Repeatedly executing computing jobs in the
framework allows incoming data to be enriched correctly,
and predeployed jobs and partition holders improve the ex-
ecution efficiency of computing jobs. We implemented the
proposed framework in an open-source DBMS - Apache As-
terixDB - and conducted a series of experiments to examine
its performance with different workloads and various scales.
The results showed that the new ingestion framework can
indeed be scaled to support a variety of data enrichment
workloads involving reference data and/or stateful opera-
tions. The techniques and designs illustrated in this paper
could also be applied in other systems to accelerate their
analytical requests based on enriched data.

10. ACKNOWLEDGMENTS
We would like to thank Chen Luo and Vassilis J. Tsotras

for their feedback on this paper. The work reported in this
paper was supported by the Donald Bren Foundation (via a
Bren Chair) and the NSF CNS award 1305430.

1496

11. REFERENCES
[1] F. Abel, Q. Gao, G.-J. Houben, and K. Tao. Semantic

enrichment of Twitter posts for user profile
construction on the social web. In Extended semantic
web conference, pages 375–389. Springer, 2011.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm,
V. R. Borkar, Y. Bu, M. J. Carey, I. Cetindil,
M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover,
Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and
T. Westmann. AsterixDB: A scalable, open source
BDMS. PVLDB, 7(14):1905–1916, 2014.

[3] S. Alsubaiee, A. Behm, V. R. Borkar, Z. Heilbron,
Y. Kim, M. J. Carey, M. Dreseler, and C. Li. Storage
management in AsterixDB. PVLDB, 7(10):841–852,
2014.

[4] R. Barber, M. Huras, G. M. Lohman, C. Mohan,

R. Müller, F. Özcan, H. Pirahesh, V. Raman, R. Sidle,
O. Sidorkin, A. J. Storm, Y. Tian, and P. Tözün.
Wildfire: Concurrent blazing data ingest and
analytics. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016, pages 2077–2080, 2016.

[5] S. Bharadwaj, L. Chiticariu, M. Danilevsky,
S. Dhingra, S. Divekar, A. Carreno-Fuentes, H. Gupta,
N. Gupta, S. Han, M. A. Hernández, H. Ho, P. Jain,
S. Joshi, H. Karanam, S. Krishnan, R. Krishnamurthy,
Y. Li, S. Manivannan, A. R. Mittal, F. Ozcan,
A. Quamar, P. Raman, D. Saha,
K. Sankaranarayanan, J. Sen, P. Sen,
S. Vaithyanathan, M. Vasa, H. Wang, and H. Zhu.
Creation and interaction with large-scale
domain-specific knowledge bases. PVLDB,
10(12):1965–1968, 2017.

[6] V. R. Borkar, M. J. Carey, R. Grover, N. Onose, and
R. Vernica. Hyracks: A flexible and extensible
foundation for data-intensive computing. In
Proceedings of the 27th International Conference on
Data Engineering, ICDE 2011, April 11-16, 2011,
Hannover, Germany, pages 1151–1162, 2011.

[7] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, L. Haas,
K. Kim, and N. Tatbul. Federated stream processing
support for real-time business intelligence
applications. In International Workshop on Business
Intelligence for the Real-Time Enterprise, pages
14–31. Springer, 2009.

[8] R. M. Bruckner, B. List, and J. Schiefer. Striving
towards near real-time data integration for data
warehouses. In International Conference on Data
Warehousing and Knowledge Discovery, pages
317–326. Springer, 2002.

[9] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache Flink: Stream
and batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[10] D. Chamberlin. SQL++ For SQL Users: A Tutorial.
Couchbase, Inc., 2018. (Available at Amazon.com).

[11] S. Chaudhuri and U. Dayal. An overview of data
warehousing and OLAP technology. SIGMOD Record,
26(1):65–74, 1997.

[12] K. Conroy and M. Roantree. Enrichment of raw sensor
data to enable high-level queries. In International
Conference on Database and Expert Systems
Applications, pages 462–469. Springer, 2010.

[13] A. Doyle, G. Katz, K. Summers, C. Ackermann,
I. Zavorin, Z. Lim, S. Muthiah, P. Butler, N. Self,
L. Zhao, et al. Forecasting significant societal events
using the embers streaming predictive analytics
system. Big Data, 2(4):185–195, 2014.

[14] L. Duan and Y. Xiong. Big Data analytics and
business analytics. Journal of Management Analytics,
2(1):1–21, 2015.

[15] F. Färber, N. May, W. Lehner, P. Große, I. Müller,
H. Rauhe, and J. Dees. The SAP HANA database –
an architecture overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

[16] H.-P. Grahsl. Kafka connect MongoDB sink, 2016.
[Online; accessed 23-December-2018].

[17] R. Grover and M. J. Carey. Data ingestion in
AsterixDB. In EDBT, pages 605–616, 2015.

[18] J. M. Hellerstein and M. Stonebraker. Predicate
migration: Optimizing queries with expensive
predicates. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington, DC, USA, May 26-28, 1993., pages
267–276, 1993.

[19] S. Jacobs, M. Y. S. Uddin, M. J. Carey, V. Hristidis,
V. J. Tsotras, N. Venkatasubramanian, Y. Wu,
S. Safir, P. Kaul, X. Wang, M. A. Qader, and Y. Li. A
BAD demonstration: Towards big active data.
PVLDB, 10(12):1941–1944, 2017.

[20] C. S. Jensen, T. B. Pedersen, and C. Thomsen.
Multidimensional databases and data warehousing.
Synthesis Lectures on Data Management, 2(1):1–111,
2010.

[21] E. D. Knapp and J. T. Langill. Industrial Network
Security (Second Edition). Syngress, Boston, 2015.

[22] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB, pages 1–7, 2011.

[23] V. Linnemann, K. Küspert, P. Dadam, P. Pistor,
R. Erbe, A. Kemper, N. Südkamp, G. Walch, and
M. Wallrath. Design and implementation of an
extensible database management system supporting
user defined data types and functions. In Fourteenth
International Conference on Very Large Data Bases,
August 29 - September 1, 1988, Los Angeles,
California, USA, Proceedings., pages 294–305, 1988.

[24] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and
J. Du. Data ingestion for the connected world. In
CIDR, 2017.

[25] A. Moraru and D. Mladenić. A framework for semantic
enrichment of sensor data. Journal of computing and
information technology, 20(3):167–173, 2012.

[26] A. Morgan. MongoDB & data streaming –
implementing a MongoDB Kafka consumer, 2016.
[Online; accessed 23-December-2018].

[27] K. W. Ong, Y. Papakonstantinou, and R. Vernoux.
The SQL++ query language: Configurable, unifying
and semi-structured. arXiv preprint arXiv:1405.3631,
2014.

1497

[28] F. Özcan, Y. Tian, and P. Tözün. Hybrid
transactional/analytical processing: A survey. In
Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD
Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1771–1775, 2017.

[29] S. Qanbari, N. Behinaein, R. Rahimzadeh, and
S. Dustdar. Gatica: Linked sensed data enrichment
and analytics middleware for IoT gateways. In 2015
3rd International Conference on Future Internet of
Things and Cloud, pages 38–43. IEEE, 2015.

[30] V. Raman, G. K. Attaluri, R. Barber, N. Chainani,
D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus,
R. Müller, I. Pandis, B. Schiefer, D. Sharpe, R. Sidle,
A. J. Storm, and L. Zhang. DB2 with BLU
acceleration: So much more than just a column store.
PVLDB, 6(11):1080–1091, 2013.

[31] A. Rheinländer, U. Leser, and G. Graefe. Optimization
of complex dataflows with user-defined functions.

ACM Comput. Surv., 50(3):38:1–38:39, 2017.

[32] L. D. Shapiro. Join processing in database systems
with large main memories. ACM Trans. Database
Syst., 11(3):239–264, 1986.

[33] M. Stonebraker, L. A. Rowe, and M. Hirohama. The
implementation of POSTGRES. IEEE Trans. Knowl.
Data Eng., 2(1):125–142, 1990.

[34] P. Vassiliadis. A survey of extract-transform-load
technology. IJDWM, 5(3):1–27, 2009.

[35] X. Wang and M. J. Carey. An IDEA: An ingestion
framework for data enrichment in AsterixDB. arXiv
preprint arXiv:1902.08271, 2019.

[36] H. J. Watson. Tutorial: Big Data analytics: Concepts,
technologies, and applications. CAIS, 34:65, 2014.

[37] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark:
A unified engine for Big Data processing. Commun.
ACM, 59(11):56–65, 2016.

1498

	Introduction
	Background
	Apache AsterixDB
	Hyracks
	Data Ingestion

	Big Data Enrichment
	Motivation
	UDFs for Data Enrichment
	Utilizing Existing Knowledge

	Data Enrichment for Analysis
	Option 1 - Enrich during Querying
	Option 2 - Enrich during Data Ingestion
	Approach 1 - External Programs
	Approach 2 - External Programs w/ Data Feeds
	Approach 3 - Data Feeds w/ UDFs

	More Complex Enrichment
	Challenges
	Model 1 - Evaluate UDF per Record
	Model 2 - Evaluate UDF per Batch
	Model 3 - Stream Datasource

	Framework Building Blocks
	Predeployed Jobs
	Layered Ingestion Pipeline
	Partition Holders

	The New Ingestion Framework
	Ingestion Life Cycle
	New Ingestion Architecture

	Experiments
	Basic Data Ingestion
	Data Enrichment with UDFs
	Data Enrichment with Updates
	Scale-out Experiments
	Reference Data Scale-out
	Ingestion Data Scale-out

	Related Work
	Conclusions
	Acknowledgments
	References

