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ABSTRACT
Memory can consume a substantial amount of power in data-
base servers, yet memory power has received considerably
less attention than CPU power. Memory power consump-
tion is also highly non-proportional. Thus, memory power
becomes even more significant in the common case in which
a database server is either not completely busy or not com-
pletely full. In this paper, we study the application of two
memory power optimization techniques - rank-aware allo-
cation and rate-based layout - to database systems. By
concentrating memory load, rather than spreading it out
evenly, these techniques create and exploit memory idleness
to achieve power savings. We have implemented these tech-
niques in a prototype database system called DimmStore.
DimmStore is part of a memory power testbed which in-
cludes customized hardware with direct power measurement
capabilities, allowing us to measure the techniques’ effec-
tiveness. We use the testbed to empirically characterize the
power saving opportunities provided by these techniques, as
well as their performance impact, under YCSB and TPC-C
workloads. Under simple YCSB workloads, power savings
ranged up to 50%, depending on load and space utilization,
with little performance impact. Savings were smaller, but
still significant, for TPC-C, which has more complex data
locality characteristics.
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1. INTRODUCTION
A 2014 report [28] from the Lawrence Berkeley National

Laboratory estimates the annual power consumption of US
data centers to be about 70 billion kWh, and predicted
growth to 73 billion kWh by 2020. Much of this power
is consumed directly by servers, and CPUs and memory are
responsible for most of that. As major power consumers,
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CPUs have long been power optimization targets. Modern
CPUs include power saving features such as voltage and fre-
quency scaling and core- and package-level low-power idle
states, and a substantial amount of work has been devoted
to techniques for exploiting these features [21, 22, 23].

Memory power consumption, in contrast, has received
much less attention. This has made sense, because memory
was typically assumed to consume less server power than
CPUs. However, servers are being equipped with increasing
amounts of memory to support data-intensive in-memory
computing, and this affects servers’ power consumption pro-
files. As an example, one recent study [3] used a manufac-
turer’s server configuration tool to estimate CPU and mem-
ory power consumption of system configurations with vary-
ing amounts of memory, up to 6TB. For a loaded four proces-
sor server, estimated memory power consumption exceeded
CPU power consumption for memory sizes above 3TB. Of
course, this is a single example, but it serves as a useful
reminder that memory power grows with memory capacity.

As memories become larger and more power hungry, how
can we design database systems to reduce memory power
consumption? How much memory power can be saved by
doing so? In this paper, we present DimmStore, which repre-
sents a first step towards answering these questions. Dimm-
Store is an in-memory transactional database system, based
on H-Store [19], that is designed specifically to reduce mem-
ory power consumption.

DimmStore works by taking advantage of the power char-
acteristics of modern memory modules (DIMMs). Like
CPUs, DIMMs implement power saving features that al-
low them to reduce power consumption during periods of
light load. The reductions can be substantial (Section 2).
However, these features are not easy to exploit. For exam-
ple, a recent study [20] of several database systems demon-
strated that they had high memory power consumption even
when memory utilization was low, indicating that the DIMM
power saving features were not being exploited. DimmStore,
in contrast, is specifically designed to exploit them. It uses
rank aware memory allocation and rate-based data place-
ment to deliberately skew memory access rates across the
available DIMMs. This creates idleness on the least-loaded
DIMMs, reducing overall memory power consumption.

This paper makes the several research contributions.
First, through the design of DimmStore, we show how an
in-memory transactional database system can be designed
for memory power optimization by exploiting the charac-
teristics of modern DIMMs. To our knowledge, DimmStore
is the first attempt to build a database system designed to
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exploit DIMM power states. Second, we observe that the
rank-aware memory allocation and layout techniques used
by DimmStore are poorly supported by operating systems.
We describe how we work around these restrictions on our
Linux-based server so that we can test and evaluate Dimm-
Store. Our work-arounds are not suitable for production
deployments. However, they illustrate the issues that must
be addressed in order to enable DimmStore-style power opti-
mizations in database systems. Finally, we present an evalu-
ation of the power and performance characteristics of Dimm-
Store, in relation to a non-optimized baseline. Our testbed
includes custom direct memory power measurement capa-
bilities. Our results, using YCSB and TPC-C workloads,
show memory power reductions of nearly 50% in the best
cases, with relatively minor impact on system throughput
and latency. More importantly, measurements show how
these savings are affected by load and memory utilization,
and analyze DIMM behavior to show how the savings arise.

2. BACKGROUND
Modern servers commonly employ a Non Uniform Mem-

ory Architecture (NUMA). A NUMA system consists of a
number of nodes, each including a processor and directly
attached local memory. Access to memory on other NUMA
nodes (remote memory) is possible by communicating with
the corresponding remote node’s processor via an inter-
processor link.

Each processor accesses its local memory through one or
more memory controllers, which are often integrated into the
processor itself. Each controller, in turn, communicates with
its DRAM through an interface called a channel. There may
be multiple channels on a controller to increase total mem-
ory bandwidth and capacity. A memory channel is shared
by a number of logical memory units called ranks. On each
channel, the memory controller communicates to one rank at
a time. For power management purposes, each channel in-
cludes Clock Enable (CKE) signals, which the controller can
use to enable individual memory ranks to enter low power
states, which will be described below. A memory rank may
be implemented as a set of DRAM devices or as a logical
partition within a single set of high-density devices. Phys-
ically, a number of ranks are placed on a memory module
(DIMM), which is inserted into one of the memory slots on
the server’s motherboard.

To increase usable memory bandwidth, memory con-
trollers are often configured to interleave memory. This
means that memory addresses that are close together (in
the physical address space) are distributed across multiple
channels and ranks. Interleaving increases the likelihood
that multiple channels and ranks can be used for a single
memory transfer, reducing the duration of the transfer.

To support memory power management, DIMMs allow
their memory ranks to be placed in different power states.
In our work, we consider three of these states:

Stand By : Stand By is the normal operating state, and
the only state in which memory operations (reads and
writes) are possible. In the Stand By state, all interface
circuitry is enabled and clocked, and therefore the power
consumption is highest.

Power Down : If a memory rank is idle, the memory con-
troller can put it into the Power Down state by deacti-
vating its CKE signal. In the Power Down state, parts

Exit
State Power, W latency, ns

Stand By ∼ 1.5 0
Power Down 0.9 ∼ 5
Self Refresh 0.3 ∼ 500

Figure 1: DDR4 Memory States

of the interface are disabled, reducing its memory power
consumption. Before the rank can be used again, the
controller must first put it back into the Stand By state,
which introduces a small exit latency.

Self Refresh : In the deeper Self Refresh state, the rank’s
interface is completely disabled, and the memory’s con-
tents are refreshed autonomously. A rank in the Self Re-
fresh state has the lowest power consumption. However,
transitioning from the Self Refresh to the Stand By state
requires restarting and synchronizing the memory inter-
face, which makes its exit latency longer than that of the
Power Down state.

The power and latency characteristics of these power states
are summarized in Figure 1.

Memory controllers are responsible for driving power state
transitions for the memory ranks on their channels. Because
of the power/performance tradeoff that power state transi-
tions present, there is no single best state switching strategy.
In our testbed’s server, the memory controllers implement
a timeout-based switching policy. A memory rank is tran-
sitioned into a low power state once there have been no
operations on that rank for a configured amount of time.

The total power consumed by a memory rank consists of
two components. The first is background power, which is
determined solely by the rank’s power state (Figure 1). In
addition, while a rank is in the Stand By power state, addi-
tional operation power is consumed by each operation (such
as a read or write) performed on that rank. Operation power
increases in proportion to the frequency of memory opera-
tions performed by the rank. In contrast, background power
is also affected by the workload’s burstiness, the power poli-
cies of the memory controller, and other factors. Decreas-
ing the load on a memory rank may lead to decreases in
background power consumption (because of creation or ex-
tension of idle periods) in addition to workload-proportional
decreases in operational power.

3. DimmStore
DIMM power states present an opportunity for memory

power optimization, but how can we actually exploit this op-
portunity in a database system? How much memory power
can actually be saved?

To answer these questions, we developed DimmStore.
DimmStore is an extension of H-Store [19], an in-memory
database system that targets transactional workloads.
DimmStore, like H-Store, logically partitions the database,
and gives a single worker thread responsibility for each parti-
tion. Single-partition transactions are handled sequentially
by a worker. Cross-partition transactions involve multiple
coordinated workers.

H-Store was designed to support transactional workloads,
with many small, short operations which typically access
data from a single partition. Since DimmStore is based
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Figure 2: DimmStore With a Small Database
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Figure 3: DimmStore After Spilling to the Data Re-
gion

on H-Store, our focus in this paper is also on transactional
workloads. Similar memory power optimization opportuni-
ties may exist in database systems targeting analytical or
hybrid workloads, but we do not consider them here.

In typical server configurations, memory load is dis-
tributed more-or-less evenly across the DIMMs (see Sec-
tion 4.1). As a result, all DIMMs are busy and there is
little opportunity for memory controllers to move DIMMs
into low power states. DimmStore’s power-saving strategy
is to unbalance the memory load, shifting it away from some
DIMMs and concentrating it on others. This creates idle-
ness on the least-loaded DIMMs, and provides opportunities
for them to enter low-power states.

To shift load, DimmStore controls memory allocation and
data placement. The virtual address space in which Dimm-
Store runs is divided into two regions, which we refer to as
the system region and the data region. The formation of
DimmStore’s regions is rank-aware. This means that the
virtual memory in the system region is backed by physi-

cal memory located on a subset of the available memory
DIMMs. These are called the system DIMMs. The data re-
gion is backed by physical memory located on the remaining
DIMMs, called the data DIMMs. In Section 4.2, we describe
how this rank-aware memory partitioning is accomplished.

If possible, DimmStore uses only memory from the system
region. This is illustrated by the DimmStore configuration
shown in Figure 2. This has the effect of concentrating all
memory accesses on the system DIMMs, leaving the data
DIMMs completely idle and allowing them to sink into the
deepest low-power state. This can save considerable power,
as we show in Section 5. However, this situation is possi-
ble only if the entire database fits within the system region.
When the database does not fit, DimmStore allocates mem-
ory from the data region and spills part of the database into
it. DimmStore spills only as much data as it must to relieve
memory pressure in the system region, and it places that
data on as few of the data DIMMs as possible, as illustrated
in Figure 3. Furthermore, it tries to spill only infrequently
accessed (cold) data. The overall goal is to use as few of the
data DIMMs as possible, and to access those that are used
as infrequently as possible, to encourage the data DIMMs
to spend as much time as possible in low power states.

In the remainder of this section, we present a more de-
tailed description of memory power optimization in Dimm-
Store. DimmStore’s memory management requires support
from the underlying operating system, since the operating
system controls the mapping of DimmStore’s virtual address
space into physical memory. In Section 4.2, we describe the
operating system support that is required, and how we im-
plemented it in our testbed.

3.1 DimmStore’s System Region
As we have described, DimmStore’s power optimization

strategy is to squeeze as much of the memory workload as
possible onto the DIMMs that back the system region, so
that power can be saved in the data region. DimmStore
maintains separate memory allocators for the system and
data regions. Whenever it requires memory, DimmStore
must choose which region to allocate it in. DimmStore al-
ways chooses to allocate in the system region, except when
it is spilling database tuples to the data region, as described
in Section 3.3. This means that all of DimmStore’s internal
data structures, including all of its database indexes, are al-
located in the system region. All newly-inserted database
tuples are also located in the system region, although they
may eventually spill out. Memory allocation in the system
region is rank-unaware, i.e., DimmStore does not control
which of the system region DIMMs a new memory alloca-
tion will map to.

The size of the system region is an important DimmStore
parameter. It must be a multiple of the capacity of a sin-
gle DIMM. In the examples shown in Figures 2 and 3, the
system region occupies three of the server’s eight DIMMs.
DimmStore saves memory power by creating idleness in the
data region DIMMs. If the system region is too large, then
the number of data region DIMMs will be small, and this
will limit the memory power savings that DimmStore can
achieve. If the system region is too small, then DimmStore
may be forced to spill hot data to the data region. This will
reduce data region DIMM idleness and limit power savings.

In our current DimmStore implementation, the size of the
system region is fixed at system boot time. An improved
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implementation would allow the system region to grow and
shrink dynamically according to the characteristics of the
workload and the database. This is feasible, but we have
left this extension to future work. Our primary goal in
this paper is to characterize the power savings potential of
DimmStore’s memory power optimizations, assuming that
the system region is properly sized.

3.2 DimmStore’s Data Region
If space becomes tight in the system region, DimmStore

workers can spill database tuples into the data region, as will
be described in Section 3.3. The available capacity of the
data region is sliced and distributed among DimmStore’s
worker threads. Each worker uses its slice to spill tuples
from the logical database partition that it is responsible for.

Each worker’s slice is distributed across all of the data
region DIMMs. When workers spill tuples into the data re-
gion, they fill their slices one DIMM at a time, in a common
predefined order, as illustrated in Figure 3. The objective
of this layout strategy is to leave some DIMMs completely
or mostly unused in situations in which the data region is
not completely filled.

To manage memory in this way, DimmStore’s data re-
gion memory allocator must be rank-aware, i.e., it must un-
derstand how to allocate memory on a specific data region
DIMM. We describe how this is accomplished in Section 4.2.

3.3 Tuple Eviction
When the system region is under space pressure, Dimm-

Store spills database tuples to the data region. It evicts
(spills) cold tuples, and only as many as needed to relieve
the space pressure. The goal is to keep the data region
DIMMs as lightly loaded as possible, while minimizing the
performance and power overheads associated with eviction.

DimmStore adapts H-Store’s anti-caching [10] mechanism
to implement tuple eviction. As originally conceived, H-
Store’s anti-cache was tuple repository located on secondary
storage. H-Store evicted cold tuples to the anti-cache when
main memory was full. Anti-caching allowed H-Store to han-
dle databases that would not fit into memory, while main-
taining performance close to that of a fully in-memory sys-
tem. In DimmStore, the data region serves as the anti-
cache. The goal of DimmStore’s anti-cache is to keep mem-
ory power consumption close to what can be achieved when
the database fits entirely in the system region, and the data
region is fully idle.

In DimmStore, tuple eviction is controlled independently
in each logical database partition, and is implemented by
the partition’s worker thread. Each worker is given a ca-
pacity threshold, which depends on the size of the system
region and the number of partitions. Every tevict millisec-
onds, each worker checks the total system region size of the
data and indexes in its partition. If the total exceeds the
capacity threshold, the worker pauses transaction execution
and normally evicts Nevict bytes worth of tuples from the
system region to the data region, although this amount may
increase if memory pressure does not abate. Normal transac-
tion processing stalls in the worker’s partition until eviction
is complete. The two eviction parameters (tevict and Nevict)
control a tradeoff between eviction stalls (which can impact
performance) and the maximum rate with which tuples can
be evicted.

DimmStore workers use per-partition LRU lists to identify
cold tuples to evict. A partition’s LRU list includes all of
that partition’s unevicted tuples. When eviction is required,
the worker evicts Nevict bytes worth of LRU tuples and re-
moves them from the list. To evict a tuple, the worker must
allocate space in the data region, move the tuple, deallocate
space in the system region, and update database indexes to
reflect the new tuple location.

The original implementation of anti-caching in H-Store
used a global memory monitoring thread and per-table
LRU lists. DimmStore uses per-partition monitoring, imple-
mented directly in the worker threads, to reduce the over-
head of monitoring and eviction. H-Store’s original per-table
LRU list required an additional policy to determine how
much to evict from each table, but also provided the admin-
istrative flexibility of completely avoiding monitoring tables
that are known to be hot. DimmStore uses multi-table LRU
because it is simpler, but it could easily be modified to use
per-table LRU lists in each partition.

3.4 Cold Tuple Access
In H-Store, any attempt to access an anti-cached tuple

results in that tuple being unevicted from the anti-cache
in secondary storage and returned to main memory. Since
DimmStore’s anti-cache is located in memory, it has more
flexibility. Like H-Store, DimmStore can unevict cold tuples
on access. Alternatively, DimmStore can access cold tuples
directly in the data region, without first unevicting them.

Tuple uneviction is less expensive in DimmStore than it
is in H-Store, because H-Store must read a block of tuples
from secondary storage to retrieve the tuple. However, un-
eviction in DimmStore is still significantly more expensive
than accessing the tuple directly. Uneviction is essentially
the reverse of eviction. Like eviction, it requires memory al-
location and deallocation, a memory-to-memory tuple copy,
and index updates.

To avoid these overheads, DimmStore prefers to access
cold tuples directly in the data region, without unevicting
them. For cold evicted tuples that are rarely accessed, this is
a good strategy. However, workloads can change, and tuples
that had been cold may become warm. If a cold evicted
tuple becomes warm, uneviction is preferable to frequent,
on-going tuple accesses in the data region, which is supposed
to remain cold.

DimmStore manages this dilemma using a simple ran-
domized approach. Each time an evicted tuple is accessed,
DimmStore unevicts the tuple with probability punevict,
which is a system parameter. Otherwise, it simply accesses
the tuple in place in the data region, without uneviction.
This approach does not require any tracking of access re-
cency or frequency for evicted tuples. It also has the desired
property that cold tuples that become warm will, with high
probability, eventually be unevicted.

4. SYSTEM SUPPORT FOR DimmStore
DimmStore requires that its two memory regions be placed

on separate DIMMs. Within its data region, DimmStore
also needs to be able to fill the underlying DIMMs one at a
time as it spills out cold tuples. These capabilities require
support from the operating system for rank aware memory
allocation, i.e, the ability to allocate memory on specific
DIMMs. Unfortunately, although rank-aware memory allo-
cation has been explored in a variety of research settings [16,
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17, 18, 32], we are not aware of any production operating
system that supports rank-aware allocation.

In this section, we describe how we worked around this
deficiency to allow DimmStore to run on our Linux-based
testbed server. Our workarounds are not suitable for pro-
duction use, but they do allow us to run DimmStore, and
hence to gauge the power savings that could be achieved in
production if suitable kernel support were available. The
design of kernel support for rank-aware allocation is beyond
the scope of our current work. However, we expect that an
API similar to those currently provided by Linux (and other
systems) for NUMA-aware memory allocation could be used.
In addition, the workarounds described in this section pro-
vide some insight into the technical issues that would need
to be addressed by a kernel implementation of such an API.

Applications (like DimmStore) request allocations of vir-
tual memory from the kernel. In response, the kernel al-
locates physical memory to back the virtual memory, and
establishes a mapping from virtual to physical addresses.
Rank-aware allocation involves going one step further, be-
cause it is necessary to understand and manage the mapping
from physical memory to the underlying DIMMs. In the re-
mainder of this section, we first discuss physical-to-DIMM
mapping, and then describe how we supported DimmStore’s
rank-aware allocation needs in Linux.

4.1 Physical Memory Mapping
The mapping from physical addresses to DIMMs is con-

trolled by low-level configuration settings in the system
BIOS. A common configuration is to interleave physical
memory across the DIMMs, or across the DIMMs attached
to a single memory controller in a multi-socket NUMA sys-
tem. Memory interleaving stripes each page of physical
memory across the DIMMs at a fine granularity. As a re-
sult, each page in an application’s virtual address space will
also be striped across all DIMMs. Memory interleaving is
a performance optimization that can parallelize sequential
memory accesses. However, it is incompatible with rank-
aware memory allocation, which seeks to map virtual mem-
ory allocations to specific DIMMs. Thus, as a first step, we
disable memory interleaving on our testbed system through
BIOS settings.

Once interleaving has been disabled, the next challenge
is to discover the (non-interleaved) mapping from physi-
cal memory addresses to DIMMs, a process we refer to as
DIMM mapping. There is no existing mechanism that we
are aware of that can reliably report this information to
software. However, there are several indirect ways to infer
the mapping. We used a method that takes advantage of
the RAPL performance counters1 in our server’s Intel pro-
cessors. In this method, the system is booted with a mini-
mum amount of memory allocated for the kernel. We then
run a program that sequentially probes physical memory
addresses while monitoring RAPL counters. Depending on
the version of the Intel platform, different RAPL counters
are available, some offering per-channel or per-rank resolu-
tion. As the probing program probes a memory location,
the counter associated with that location’s physical mem-
ory channel or rank will be incremented, which is detected
by the probing program. In our system, with an Intel E5 v3

1Intel processors estimate power consumption using models
driven by hardware-maintained counts of events, such as
memory accesses. These counts are accessible to software.
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Figure 4: Physical Memory Management in the
DimmStore Testbed

processor and single DIMM populated in each channel, we
used the per-channel CAS COUNT event, which reports the
number of reads and writes on a channel. Using this method
we can build a complete map from physical addresses to
DIMMs. By applying this method to our testbed server, we
learned that most of the DIMMs are laid out sequentially
in the physical address space according to their hardware
numbering on the motherboard, with the exception of the
very first DIMM, which stores two discontiguous physical
address ranges.

4.2 Rank-Aware Allocation
Once the physical-to-DIMM mapping is known, we use

kernel boot parameters to restrict the physical memory avail-
able to the kernel to a subset of the DIMMs. We refer to
this as kernel-managed memory. All memory allocations
performed by the kernel occur within the kernel-managed
memory. The physical memory on the remaining DIMMs
is visible to the kernel, but is unmanaged. We limit the
kernel-managed memory in Linux by setting the mem and
memmap kernel parameters. The mem parameter sets the ini-
tial limit on the available memory at the beginning of the
physical address space. The memmap parameters are used to
add physical memory regions to the memory available to the
kernel.

DimmStore’s system region is mapped to kernel-managed
memory, as shown in Figure 4. As was noted in Section 3.1,
DimmStore uses separate memory allocators for its two re-
gions. The system region memory allocator obtains mem-
ory from the kernel in the usual way, and the kernel sat-
isfies these requests using kernel-managed physical mem-
ory. Hence, the entire system region will be confined to
the kernel-managed DIMMs. Any other processes running
on the server also obtain virtual memory from the kernel in
the usual way, and hence they, too, will be confined to the
kernel-managed DIMMs.
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The physical memory that is not managed by the ker-
nel is managed directly by DimmStore, and forms its data
region. To take control of the unmanaged memory, Dimm-
Store uses Linux’s /dev/mem special device, which represents
all of physical memory (including the unmanaged memory)
as a file. DimmStore’s rank-aware data region memory allo-
cator uses Linux mmap calls to allocate virtual memory that
is backed by the unmanaged parts of /dev/mem. We pro-
vide the data region allocator with the complete physical-to-
DIMM mapping so that it can allocate memory on specific
DIMMs by targeting specific parts of /dev/mem. For obvi-
ous security reasons, /dev/mem is only usable by privileged
processes in Linux. Therefore, absent any operating system
support for rank-aware allocation, DimmStore must run as
a privileged process for the purposes of our experiments.

5. EVALUATION
In this section, we present an empirical study of memory

power optimization, using DimmStore. Our goal is to answer
two questions. First, how effective are the power optimiza-
tion techniques presented in Section 3 at reducing memory
power consumption? Second, do these techniques have a
significant impact on performance? We consider two trans-
actional workloads. The first is the Yahoo! Cloud Serving
Benchmark (YCSB) [8], which has simple and easily control-
lable data access patterns. The second is TPC-C [1], which
exhibits more complex and dynamic patterns.

5.1 Evaluation Platform
All experiments were performed using our testbed server,

which has two 8-core Intel Xeon E5-2640 v3 processors work-
ing at nominal 2.6 GHz. Each CPU socket is provided with
four memory channels and two DDR4 DIMM slots per chan-
nel. We populated only half of the DIMM slots to leave room
for our memory power measurement apparatus. As a result,
each channel has a single 16 GB DDR-4 DIMM, and the
server overall has 8 DIMMs, for a total of 128 GB of mem-
ory. The number of DIMMs in the system and data regions
varies between experiments, and is specified in the relevant
sections below.

Our testbed server includes custom instrumentation for
memory power measurement. We directly measure the
power consumed by each individual DIMM using a current-
sensing DIMM riser card, providing analog current readings
separately on the Vdd and Vpp power buses. These read-
ings are captured by a 16-channel data acquisition system.
Using these real-time current measurements, we calculate
per-DIMM power consumption assuming nominal voltages
(Vdd = 1.2V and Vpp = 2.5V), as per the DDR4 specifica-
tion [2].

It is worth noting that the total absolute memory power
consumption in our testbed server is not high: normally in
the range of 5-15 watts. Thus, absolute power savings are
not high either. This is a limitation of the test server, which
has only 16 DIMM slots, only half of which are populated.
Eight is the maximum number of DIMMs that our measure-
ment infrastructure will allow us to measure simultaneously.
Thus, while most of the figures in the paper present abso-
lute power numbers, our discussion will focus primarily on
the power consumption DimmStore relative to that of the H-
Store baseline, as this is a quantity that can be extrapolated
to larger systems.

Param Values Default Notes

s 0.5-1.2 0.95 Zipf skew param
DB size 10GB-100GB 60 GB YCSB table size

trans rate 22.5-180 Ktps 90 Ktps offered load
Sys size 32 GB 32 GB Sys Region Size
tevict 1 ms 1 ms Eviction interval
Nevict 64 KB 64 KB Eviction volume
punevict

1
64

1
64

Uneviction prob.

Figure 5: YCSB Experiment Parameters

In addition to these direct power measurements, we use
RAPL counters to measure the number of memory read and
write operations in each memory channel, and hence on each
DIMM. We also use RAPL counters to measure memory
power state residencies, i.e., the amount of time each DIMM
spends in each memory power state. These counters are pro-
vided by the integrated memory controller in our Xeon pro-
cessors. Finally, we measured application-level performance
statistics, such as transaction response times, in DimmStore.

5.2 YCSB Experiments
Our first set of experiments uses YCSB workloads, which

have relatively simple and controllable skewed data access
patterns. We used the existing YCSB benchmark imple-
mentation from H-Store.

The YCSB database consists of a single table and a single
index on the integer primary key. The size of the tuples is ap-
proximately 1000 bytes. We used a read/write mix with the
ratio of 80% READ RECORD to 20% UPDATE RECORD
transactions. Each YCSB transaction chooses a single pri-
mary key value, and either reads the corresponding record or
reads and then updates the record, depending on the trans-
action type. Keys are selected independently and randomly,
according to a Zipf distribution with skew parameter s.

In each experimental run, transactions are generated at a
fixed rate, which we control. We ran experiments at eight
settings of offered load, up to 180 Ktps, which is about 80%
of the peak load sustainable by the baseline H-Store sys-
tem. The size of DimmStore’s system region was set to
two DIMMs (32 GB) for all YCSB experiments. Figure 5
summarizes the other YCSB workload and DimmStore pa-
rameter settings.

Each experimental run consists of three phases: database
loading, warmup, and measurement. We ignore measure-
ments collected during the loading and warmup phases. The
warmup and measurement phases are each 5 minutes long
at the peak load we tested. For lower loads, we scale both
intervals up so that the same amount of work is performed
at every load level during each phase.

5.2.1 Effects of Power Optimizations
We begin with an experiment that is intended to illus-

trate how the memory power optimization techniques im-
plemented in our testbed affect memory usage and power
consumption. For this experiment, we fix the database size
at 60GB, and use the YCSB workload at 90 Ktps. We com-
pare per-DIMM memory access rates and power consump-
tion under DimmStore with those of the baseline H-Store
system. Later in this section, we look at what happens to
power consumption and performance as the load and data-
base size are varied.
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Figure 6: YCSB: Individual DIMM access rate, 60
GB database, 90 Ktps. For DimmStore, the system
region consists of DIMMs 0 and 4, with the others
making up the data region.

Figure 6 shows total memory access rates (read and writes
combined) per DIMM for DimmStore and H-Store, as well as
the average per-DIMM access rate across all DIMMs. This
figure illustrates two key properties of the memory power
optimizations in DimmStore. First, the average per-DIMM
memory access rate in DimmStore is very close to that of
the baseline. This indicates that the memory overhead of
DimmStore’s anti-cache, including tracking frequently ac-
cessed tuples and migration of tuples between the system
and data regions, is very low for this workload. Second,
DimmStore shifts memory accesses away from the data re-
gion, and into the system region (DIMMs 0 and 4), resulting
in a very skewed load distribution across the DIMMs. In
contrast, the baseline system, which uses memory interleav-
ing, is not rank-aware, and does not attempt to separate hot
and cold data, spreads the memory workload more evenly
across the DIMMs.

Does the skewed access distribution created by Dimm-
Store actually reduce memory power consumption? Figure 7
shows measured power consumption per DIMM for Dimm-
Store and for the baseline H-Store system. Although both
systems are handling approximately the same memory load,
the average power consumption per DIMM is about 30%
lower in DimmStore. DIMMs in the system region (DIMMs
0 and 4) consume more power in DimmStore than the corre-
sponding DIMMs in the baseline system, due to the shifted
workload. However, that is more than offset by power sav-
ings in DimmStore’s data region DIMMs.

In this experiment, the server’s memory capacity is not
fully utilized. In its data region, DimmStore is rank-aware,
and uses as few DIMMs as possible to store data. Thus, in
this experiment, DIMMs 2, 6, and 7 are essentially empty,
allowing them to sink into low-power states. DIMMs 1, 3,
and 5 contain data, but it is cold data. Power consumption
in DIMMs 1 and 3 is higher than that of the empty DIMMs,
but still substantially lower than power consumption in the
baseline. DIMM 5 also contains cold data but consumes
more power than DIMMs 1 and 3, for reasons we discuss
next.
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Figure 7: YCSB: Individual DIMM power consump-
tion, 60 GB database, 90 Ktps load. For Dimm-
Store, the system region consists of DIMMs 0 and
4, with the others making up the data region.

The memory load shifting performed by DimmStore cre-
ates longer idle periods on the less-loaded DIMMs. If idle
periods are long enough, those DIMMs can shift into low-
power states, which reduces background power consump-
tion. These background power savings are the reason for
the net memory power savings in DimmStore. Figures 8
and 9 illustrate this effect. Figure 8 shows the memory
power state residencies for each DIMM for the baseline sys-
tem. All DIMMs spend at least half of their time in the
full-power Stand By state, and almost never enter the very
low power Self Refresh state. We can also observe that the
memory controller on our server’s second socket (which con-
trols DIMMs 4-7) makes much less use of low power states
than the controller on the other socket, although both sock-
ets’ DIMMs experience similar loads. We are uncertain of
the reason for this, but it affects both DimmStore and the
baseline.

Figures 9 shows the corresponding memory power state
residencies for DimmStore. DIMMs 2, 6, and 7, which are
empty, spend all of their time in Self Refresh state, reducing
power consumption to about 0.3W per DIMM. Out of three
DIMMs that do contain data, DIMMs 1 and 3 spend about
80% of their time in the Power Down state and about 10%
in the Self Refresh state, and little time in the full power
Stand By state. This is because these DIMMs hold only cold
data. Thus, using both rank-aware allocation and access-
rate-based layout, DimmStore is able to reduce background
memory power consumption throughout the data region.

5.2.2 Effects of Database Size
Next, we show how memory power consumption is affected

by the database size (Figure 10). With the largest (100GB)
database, when memory is fully utilized, DimmStore saves
roughly 11% of memory power, relative to the baseline sys-
tem. DimmStore’s power savings come from concentrating
cold tuples in the data region, so that data region DIMMs
have low access rates and reduced background power con-
sumption.
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Figure 8: YCSB: Average Power State residency in
the Baseline, 60 GB database, 90 Ktps load
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Figure 9: YCSB: Average Power State residency in
DimmStore, 60 GB database, 90 Ktps load

In experiments with smaller databases, memory accesses
are “funnelled” to a smaller number of tuples while the to-
tal transaction rate stays the same. The baseline cannot
take advantage of this, because the tuples are spread across
all DIMMs. Hence, memory power consumption is insen-
sitive to database size. In DimmStore, smaller database
reduce memory power consumption. At the smallest data-
base size we tested (10GB), memory power consumption in
DimmStore was about half of that in the baseline. Smaller
databases lead to reduced power consumption in DimmStore
because of rank-aware allocation, which leaves some DIMMs
completely unused when their space is not needed.

5.2.3 Effects of Workload Intensity
To study the effects of YCSB workload intensity, we fixed

the database size at 60GB and varied the transaction re-
quest rate. Figure 11 shows total memory power consump-
tion as a function of the request rate. Both the baseline and
DimmStore show nearly linear increases in power consump-
tion with increasing loads. However, DimmStore consumes
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Figure 10: YCSB: Memory power consumption by
database size, 90 Ktps load.
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Figure 11: YCSB: Memory power consumption by
load, 60 GB database

roughly 30% less power across all load levels. Active mem-
ory power grows in proportion to memory access rate and
is partially responsible for the power consumption increase
in both systems. However, the contribution of active power
to total memory power consumption is small, even at high
transaction loads. The primary reason that power increases
with load is background power. To explain this, we show the
average DRAM power state residencies for all DIMMs, for
baseline and DimmStore, in Figures 12 and 13, respectively.
Figure 12 shows that increasing load increases time spent in
the full-power Stand By state, largely at the expense of the
Power Down state. For DimmStore, Figure 13 shows a sim-
ilar increase in Stand By state residency, but at the expense
of both Self Refresh and Power Down states combined.

5.2.4 Effects of Access Skew
We ran experiments in which the workload skew was var-

ied, for a fixed database size (60 GB) and offered load (90
Ktps). Workloads with higher skew have more power sav-
ing potential because tuple accesses are more concentrated
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Figure 12: YCSB: Average Power State Residency
in the Baseline by Load, 60 GB database
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Figure 13: YCSB: Average Power State Residency
of Non-Empty Data Region DIMMs in DimmStore
by Load, 60 GB database.

towards the hot side of the distribution. As shown in Fig-
ure 14, this has only a small impact on power consumption.
The effect is not large because access rates in the data region
are already quite low at the default skew level.

5.2.5 Performance
The memory power optimizations implemented in our

testbed may introduce some performance degradation. At
the architectural level, concentrating memory load on a
small number of DIMMs may introduce contention for those
DIMMs. At the application level, DimmStore itself incurs
costs to maintain the LRU list for identification of cold data,
and for evicting and unevicting tuples from the data region.
However, for the YCSB workload, we observed little perfor-
mance impact from these optimizations.

We measured the peak throughput sustainable by Dimm-
Store and the baseline by offering each system a very high
load while placing the benchmark client in the blocking
mode. In the blocking mode, the client senses backpressure
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Figure 14: YCSB: Memory power consumption by
access skew, 60 GB database, 90 Ktps load
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Figure 15: YCSB: Average transaction latency by
load, 60 GB database

in the transaction queue, and throttles the load queue when
backpressure is detected. We measured a peak sustainable
throughput of 224 Ktps for the baseline H-Store system and
219 Ktps for DimmStore (using a 60 GB database), a degra-
dation of about 2%. We also measured transaction latency
at a range of off-peak loads. Figure 15 shows mean trans-
action latency as a function of load. Latencies in the two
systems are very similar under this workload.

5.2.6 CPU Power Consumption
The overhead of detecting hot data and evicting and un-

evicting tuples translates to additional power consumed by
the CPU. To estimate the additional CPU power consump-
tion, we collected CPU power reports from the RAPL coun-
ters. For the YCSB workload, the overhead and resulting
additional CPU power consumption are small. On average,
over a set of 16 YCSB experiments with varying loads and
database sizes, we observed that CPU power in DimmStore
was less than 1% higher than baseline CPU power, with a
worst case increase of 2.7%.
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5.3 TPC-C Experiments
TPC-C is a widely used transactional benchmark that

simulates an order-processing system. TPC-C exhibits more
complex, time-varying memory access patterns than YCSB.
We repeated our YCSB experiments using TPC-C. In par-
ticular, we compared the memory power consumption and
transaction performance of DimmStore and the H-Store
baseline across various database sizes and load levels.

5.3.1 Methodology
We used the TPC-C implementation from H-Store, with

several modifications. First, since DimmStore requires that
all indexes reside within the system region, we removed re-
dundant indexes and dropped foreign key constraints. Sec-
ond, we switched most indexes from hash to B-Tree, since
the latter are more space efficient. As a result of these
changes, the index-to-data ratio decreased from above 40%
to about 22%, allowing us to test with larger databases.
Finally, we disabled out-of-line data storage for large at-
tributes, so that entire tuples are stored together. In TPC-
C, only two columns were affected: S DATA in the STOCK
table (size 64) and C DATA in the CUSTOMER table (size
500). The change did not increase the effective database
footprint because these columns are assigned values of the
maximum size.

For each experimental run, we choose a database scale
factor, load the database, and then run the TPC-C work-
load. The scale factor in TPC-C, which is measured in
“warehouses”, determines the initial size of the database.
We experiment with scale factors from 100 to 900 ware-
houses. Each 100 warehouses translates to about 10 GB of
data. To leave some head room for the client processes and
background tasks, we configured both DimmStore and the
H-Store baseline to use 12 database partitions and 12 work-
ers, which use 12 of the 16 cores available on our testbed
server. In DimmStore, the size of the system region is set to
three DIMMs (48 GB) for all experiments. The remaining
DimmStore configuration parameters were set as for YCSB,
as shown in Figure 5.

Each experimental run has loading, warmup, and mea-
surement phases, as for YCSB. The warmup and measure-
ment phases lasted 2.5 and 5 minutes, respectively, at the
highest offered load level. During each run, the TPC-C
database grows. We extended the warmup and measure-
ment phases when testing below peak loads so that the
actual database size (after growth) was approximately the
same during the measurement period, regardless of the load.
We performed runs with offered loads up to about 65 Ktps,
which is about 90% of the peak load sustainable by the base-
line H-Store system.

5.3.2 Effects of Database Size
In our first set of experiments, we fixed a medium offered

load level (36 Ktps) and compared the memory power con-
sumption of DimmStore and the baseline as the initial data-
base size is varied. Figure 16 shows the result of these ex-
periments. The results here are similar to what we observed
for YCSB (Figure 10). Memory power consumption in the
baseline is insensitive to the database size, while DimmStore
is able to translate smaller databases into memory power
reductions. The maximum power savings we observed was
about 43%, for the smallest database.
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Figure 16: TPC-C: Memory power consumption by
database scale factor, 36 Ktps load
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Figure 17: TPC-C: Memory power consumption by
load, 350 warehouse DB

5.3.3 Effects of Workload Intensity
In our second set of experiments, we fixed the initial data-

base scale factor at 350 warehouses, and varied the offered
load. Figure 17 shows memory power consumption as func-
tion of the offered load. As was the case for YCSB (Fig-
ure 11), the memory power gap between DimmStore and
the baseline is maintained across the load spectrum.

5.3.4 Performance Effects
Finally, we consider DimmStore’s effect on TPC-C perfor-

mance. We measured peak throughput of DimmStore and
the baseline H-Store system with different initial database
sizes, using the same methodology as in the YCSB exper-
iments. Figure 18 shows the results of those experiments.
The DimmStore’s peak throughput is approximately 6% be-
low H-Store’s when the database is small enough to fit in the
system region. As the database becomes larger, the addi-
tional overhead of data eviction and uneviction comes into
play and throughput gap grows to about 10%.
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Figure 18: TPC-C: Peak throughput by database
size
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Figure 19: TPC-C: Average transaction latency by
load, 350 warehouse DB

We also measured transaction latency for both systems at
offered loads below peak. Figure 19 shows the mean trans-
action latency (averaged over all TPC-C transaction types)
as a function of the offered load. At low to medium loads,
DimmStore’s memory optimizations have little to no effect
on transaction latencies, but the gap was larger at the high-
est load levels. Since memory load is relatively light in these
experiments, even at high transaction rates, we attribute
this primarily to overheads within DimmStore, and not to
memory contention. Overheads include maintenance of the
LRU list and eviction and uneviction of tuples. While these
overheads are not very significant at low load, their impact
increases as load gets higher. In particular, tuple eviction in
each database partition monopolizes that partition’s worker
for short periods of time, during which pending transaction
work must queue. We believe the impact of these overhead
can be reduced in DimmStore, e.g., by using lighter-weight
access frequency estimation and by doing finer-grained tuple
evictions, but we leave improvements of these mechanisms
in DimmStore to future work.

5.3.5 CPU Power Consumption
As for YCSB, we used RAPL performance counters to

measure CPU power. Due to the more complex workload,
DimmStore’s overhead is higher in TPC-C than in YCSB.
Over all of our TPC-C experiments, with various offered
loads and database sizes, we observed that DimmStore’s
CPU power consumption ranged from about 3% to 6% larger
than the baseline’s.

6. RELATED WORK
A small body of work has looked specifically at memory

power optimization for database systems. Bae and Jamel [5]
argue for DBMS-controlled memory management to achieve
a good balance between memory power and performance.
They use a heuristic algorithm to dynamically adjust the
database buffer pool size according to changes in the work-
load. Unlike our work, this work targets disk-based DBMS.
Appuswamy et al [3] predict that the significance of mem-
ory power consumption will grow. They study the effects of
DRAM frequency scaling and power states on DBMS power
efficiency and conclude that power states have a greater ef-
fect on memory power consumption. They also envision
several directions towards memory power optimization in
main-memory database systems, including the use of hot-
cold data classification to direct data allocation on DRAM
ranks. This is one of the power-saving techniques realized
in DimmStore. In our previous work [20], we character-
ized memory power consumption in databases over a range
of load and memory utilization settings. We found that
memory power consumption was dominated by background
power, and that memory power consumption was insensitive
to both load and data size.

A larger body of work has considered memory power con-
sumption across a wider variety of applications. These ap-
proaches are application-oblivious and typically work at the
operating system, compiler, or hardware level. In most
cases, memory power states are the primary mechanism for
controlling power consumption, and it has been established
that the lengths of memory access idle intervals are the key
to using power states effectively. Delaluz et al [11] achieve
memory power reductions using compiler-optimized access
to memory locations residing in different memory ranks. In
other work, Delaluz et al [12] rely on process scheduling to
maximize the duration of idle intervals. Similarly, Jia et
al [18] consider rank-aware allocation of memory to Linux
thread groups.

Huang et al [17] observe that idle periods are very short
in real workloads, which prohibits memory from entering
deeper low power states. They introduce a data migration
technique that migrate data between hot and cold memory
ranks, guided by page-level access counts managed by the
operating system. Wu et al [32] describe a related technique
in which memory pages are mapped to hot or cold ranks
according to the MQ algorithm, and the number of page
migrations to realize this mapping is minimized. Finally,
Huang et al [16] describe the concept of power-aware virtual
memory, which minimizes the set of memory ranks used by
each process. In contrast to these system-level approaches,
we use the DBMS-specific information about data access
to infer data hotness and manage migration. In addition,
the units of data allocation and migration in DimmStore
are logical rather than physical, allowing for more effective
separation of hot and cold data.
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Memory power optimization at the hardware level is also
a popular research direction. Zheng et al [34] attribute
the lack of power state effectiveness in reducing memory
power to the large granularity at which power states are ap-
plied. They propose to partition a memory rank into mul-
tiple “mini-ranks” consisting of individual DRAM chips so
that each “mini-rank” can sink into low power states in-
dependently. Malladi et al [24] argue that existing hard-
ware support for memory power management is not well
suited to handle access patterns with low idleness. They
propose to redesign DRAM interfaces to make exiting from
low power states much faster, which would reduce memory
power consumption without explicit software optimization.
Although we agree that the existing hardware mechanisms,
e.g. deep low power states, are underused, we see opportu-
nities to increase the amount of memory idleness through
software. Another potential mechanism to control memory
power is Dynamic Frequency Scaling (DFS), which is dis-
cussed by David et al [9], Deng et all [13], and Sharifi et
al [27]. This approach is complementary to idleness-based
techniques, such as those in DimmStore.

Looking at the problem more generally, Zhang et al [33]
discuss essential features of a power-efficient system, such
as non-interleaved memory access, use of DRAM low power
states, powering down of DRAM modules and NUMA nodes,
and migration of hot data to a subset of the modules. They
argue that significant amounts of energy can be saved by
taking advantage of these features. Tsirogannis et al [31]
analyzed the impact of system configuration on the power
efficiency of database systems. However, in that work the
contribution of DRAM was assumed to be constant, due to
the lack of tools or models to estimate its consumed power.

Our work relies on the idea of classifying data as hot
or cold. Our system is based on H-Store’s anti-cache [10]
implementation. The anti-cache work considers several ap-
proaches to data classification, including LRU and times-
tamp based methods. Several other techniques have also
been proposed. Stoica and Ailamaki [29] described an ex-
tension to VoltDB (also a derivative of H-Store) that of-
floads the processing of access logs to a dedicated thread or
even a different machine to offset the performance effects
on the transaction execution. Project Siberia [30], part of
Microsoft Hekaton, identifies hot and cold data using a back-
ward algorithm with low overhead. Similar problems arise
in storage systems, in which it is also critical to detect fre-
quently used items with low space and CPU overhead. For
example, mechanisms based on hash functions [15] or bloom
filters [6] have been shown to perform better than variants of
LRU. Efficiency of hot tuple classification is not the focus of
our current work, but we believe that the CPU overhead of
DimmStore can be significantly reduced by utilizing a more
sophisticated approach.

Power optimizations like DimmStore’s have also been ex-
plored in the context of storage systems. Much as DIMMs
can be put into low power states, magnetic disks can be spun
down or completely shut off to save power. Power policies
based solely on idle intervals in individual drives are not suc-
cessful because these intervals are shorter than the break-
even time [14]. Some strategies for extending idle periods
in storage systems can be applied to main memory as well.
For example, power-aware scheduling of I/O requests [7],

temporary redirection of writes from powered down disks to
active disks [25], and power-aware disk cache replacement
policies [26], aim at extending disk idle intervals to save
power. Similar ideas can be transferred to DimmStore to
extend intervals between evictions and unevictions, further
reducing the residual heat in the data region.

7. CONCLUSION AND DISCUSSION
In this paper, we explore opportunities for memory power

optimization in database systems. We focus on two power
optimization techniques: rank-aware allocation and access-
rate-based data placement. They reduce memory power con-
sumption by increasing memory idleness, allowing memory
to spend more time in low power states. We implemented
both techniques in DimmStore, which is based on H-Store.

For YCSB workloads, DimmStore reduces memory power
consumption by up to 50% relative to H-Store, with larger
savings for smaller databases. DimmStore produces power
savings across all system load levels, and performance over-
head is small. For TPC-C workloads, which have more com-
plex memory access patterns, memory power savings still
approached 50% for small databases. However, these gains
disappeared at the largest database sizes.

Although DimmStore was able to deliver significant mem-
ory power savings, we were forced to rely on ad hoc tech-
niques to work around a lack of operating support for rank-
aware memory management. We identified some of the tech-
nical issues that will need to be addressed before the kernel
can provide such support, e.g., the need to discover the map-
ping between physical addresses and DIMMs. DimmStore
could also potentially benefit from additional hardware ca-
pabilities. For example, fine-grained, run-time control of
interleaving would make it easier to dynamically size Dimm-
Store’s system and data memory regions. In addition, mem-
ory controllers could provide configurable scheduling policies
that could be used to trade request latency for extended idle
periods and increased power savings.

One issue that we have left for future work is sizing of
DimmStore’s memory regions. Ideally, it should be possi-
ble adjust these sizes dynamically in response to workload
changes. For example, if memory pressure forces DimmStore
to spill warm tuples to the data region, it would be better
to increase the size of the system region instead, to ensure
that the remainder of the data region remains cold.

Another related issue is the arrival of new non-volatile
memories in DIMM form-factors, such as Intel’s Optane
DIMMs [4]. One interesting question is whether Dimm-
Store’s power optimization techniques will apply. We do
not yet have access to detailed power specifications for these
DIMMs. However, one relevant observation is that most of
the background power consumption of our server’s current
DRAM DIMMs comes from their channel interface electron-
ics, and not from refreshing the contents of the memory cells.
As shown in Figure 1, refresh accounts for only about 20%
of the DIMM’s background power consumption. Since non-
volatile DIMMs will also require channel interfaces, we ex-
pect them to have similar power-state profiles, and thus be
amenable to the same techniques that DimmStore applies
to DRAM DIMMs. Non-volatile DIMMs may expose addi-
tional power optimization opportunities, e.g., an imbalance
between the active power consumption of reads and writes.
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