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ABSTRACT
Schema mappings express the relationships between sources
in data interoperability scenarios and can be expressed in
various formalisms. Source-to-target tuple-generating de-
pendencies (s-t tgds) can be easily used for data transfor-
mation or query rewriting tasks. Second-order tgds (SO
tgds) are more expressive as they can also represent the
composition and inversion of s-t tgds. Yet, the expressive
power of SO tgds comes with the problem of undecidability
for some reasoning tasks. Nested tgds and plain SO tgds
are mapping languages that are between s-t tgds and SO
tgds in terms of expressivity, and their properties have been
studied in the recent years. Nested tgds are less expressive
than plain SO tgds, but the logical equivalence problem for
nested tgds is decidable. However, a detailed characteriza-
tion of plain SO tgds that have an equivalent nested tgd is
missing. In this paper, we present an algorithmic solution for
translating plain SO tgds into nested tgds. The algorithm
computes one or more nested tgds, if a given plain SO tgd
is rewritable. Furthermore, we are able to give a detailed
characterization of those plain SO tgds for which an equiva-
lent nested tgd exists, based on the structural properties of
the source predicates and Skolem functions in the plain SO
tgd. In the evaluation, we show that our algorithm covers
a larger subset of plain SO tgds than previous approaches
and that a rewriting can be computed efficiently although
the algorithm has the exponential complexity.

PVLDB Reference Format:
Rihan Hai, Christoph Quix. Rewriting of Plain SO Tgds into
Nested Tgds. PVLDB, 12(11): 1526-1538, 2019.
DOI: https://doi.org/10.14778/3342263.3342631

1. INTRODUCTION
Schema mappings are high-level specifications that de-

scribe the relationship between different schemas, and have
been intensively studied for data exchange and data inte-
gration. In this work, we focus on the problem of rewrit-
ing schema mappings between different classes of mappings
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to enable reasoning and improve the understandability of
mappings. We first give an overview of existing classes of
mappings, before we define our research questions.

1.1 Background: Mapping Dependencies
Schema mappings are often expressed as logical sentences,

e.g., source-to-target tuple generating dependencies (s-t tgd),
which are also known as Global-Local-as-View (GLAV) as-
sertions [22]. A s-t tgd is a first-order (FO) sentence in the
form of ∀x (ϕ(x) → ∃y ψ(x,y)), where ϕ(x) is a conjunc-
tion of atomic formulas over the source schemas, and ψ(x,y)
is a conjunction of atoms over the target schema.

By allowing the “nesting” of tgds, we obtain a more pow-
erful mapping language, nested tuple-generating dependen-
cies (nested tgds) [12, 26]. In the Clio system [12], nested
GLAV mappings (expressible by nested tgds) are proven to
be more accurate for describing the relationship between
source and target schemas, and also more efficient for data
transformation in data exchange systems. The following FO
formula λ is an example of a nested tgd.

∀x1 (S1(x1)→ ∃y1 (T1(x1, y1)∧
∀x2 (S2(x2)→ ∃y2 T2(x2, y1, y2) ) ) )

Another well-known mapping language is the class of second-
order tgds (SO tgds) [10]. The composition of two GLAV
mappings expressed as tgds, may be only expressible as an
SO tgd. Moreover, SO tgds are also a good abstraction
for data transformation, as they are rules with Skolem func-
tions. Skolem functions have been used earlier (independent
of SO tgds) for the creation of object identifiers in the con-
text of practical applications such as data integration, data
exchange, and ontology-based data access [19, 20, 8].

An SO tgd is a second-order formula, including existen-
tially quantified function symbols, followed by a conjunction
of FO formulas similar to tgds. SO tgds allow nested func-
tion terms and equalities between different terms. Besides
their semantics (FO vs. SO), the main difference between
(nested) tgds and SO tgds is how they express the missing
information. For instance, in a data exchange scenario, there
might be elements in the target schema without correspond-
ing elements in the source schema. The missing values are
represented by existentially quantified variables in (nested)
tgds (e.g., y1, y2 in λ), whereas SO tgds use function terms.

By forbidding the usage of nested function terms and
equalities in SO tgds, we obtain the class of plain SO tgds.
They are a good alternative to SO tgds, especially with map-
ping composition and inversion tasks [3]. The following for-
mula µ is an example of a plain SO tgd, which is logically
equivalent to the nested tgd λ.
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Source Schema
Department(DeptName)
Group(GroupID, DeptName)
Budget(BudgetID, DeptName)
Target Schema
Department(DeptName, DeptID)
Group(GroupID, DeptID, Leader)
Budget(BudgetID, DeptID, Amount)

(a)

Schema mapping as a plain SO tgd µ1:

∃fd, fl, fa ∀n, g, b
σ1 : [D(n)→ D′(n, fd(n))]∧
σ2 : [D(n) ∧G(g, n)→ G′(g, fd(n), fl(n, g))]∧
σ3 : [D(n) ∧B(b, n)→ B′(b, fd(n), fa(n, b))]

(b)

Nested tgd λ1 :

σ1 : [∀n D(n)→ ∃yd D′(n, yd)∧
σ2 : [∀g G(g, n)→ ∃yl G′(g, yd, yl)]∧
σ3 : [∀b B(b, n)→ ∃ya B′(b, yd, ya)]]

(c)

Figure 1: Running example

µ : ∃f1, f2 ∀x1, x2 (S1(x1)→ T1(x1, f1(x1)))∧
(S1(x1) ∧ S2(x2)→ T2(x2, f1(x1), f2(x1, x2)))

Many existing data exchange and integration applications
[27, 12, 23, 7, 1] generate mappings with Skolem functions
as grouping keys for set elements, and the specification of
their schema mappings can be expressed in plain SO tgds.

There is a strict inclusion hierarchy between the different
classes of mappings, i.e., tgds are a strict subset of nested
tgds; nested tgds are a strict subset of plain SO tgds; and
plain SO tgds are a strict subset of SO tgds. For every
nested tgd, we can find an equivalent plain SO tgd (e.g., λ
is logically equivalent to µ), but not vice versa.

1.2 Motivation and Problem Definition
Although SO tgds and plain SO tgds have stronger expres-

sive power, they are less desirable specifications in practice
compared to dependencies with FO semantics. To begin
with, FO and SO logics correspond to algorithmic behaviors
with different complexities [21]. For example, in a data ex-
change system the source data needs to be checked whether
it satisfies the given mappings, which corresponds to the
problem of model-checking. It is proven that the data com-
plexity of the model checking problem for plain SO tgds is
NP-complete while the same problem is merely LOGSPACE
for nested tgds [25, 21]. Moreover, some reasoning tasks are
undecidable for SO tgds, such as logical equivalence [11],
which plays a fundamental role in mapping optimization [9].
The decidability of the logical equivalence problem for plain
SO tgds is an open question. Yet, logical equivalence for
nested tgds is decidable. In addition, FO tgds are more
user-friendly and can be easily translated to SQL [24, 21].

Given schema mappings generated from data exchange
applications as plain SO tgds, it would be desirable if we
can tell whether there are equivalent nested tgds.

Q1: Given a schema mapping expressed as a plain SO tgd
µ, is there a single nested tgd λ or a set of nested tgds Λ
logically equivalent to µ?

Simplification of schema mappings with SO semantics has
been addressed in various ways [24, 25, 6]. The main intu-
ition of these approaches is to discover an ordering of the ar-
guments of the functions in a plain SO tgd, and replace the
function quantifiers with existential variables. This is a com-
mon procedure for transforming SO to FO formulas, known
as de-Skolemization. However, Q1 is more complicated than
the de-Skolemization problem studied in the aforementioned
works. This leads to the problem that although some plain
SO tgds have FO semantics, and can be expressed by nested
tgds, they cannot be discovered by the existing approaches.

We demonstrate the insufficiency of existing works and mo-
tivate our work with the following example.

Example 1.1. Consider the data exchange scenario with
source schema and target schema given in Fig. 1a. The
source schema with Department (D), Group (G), and Bud-
get (B) should be mapped to the target schema with cor-
responding relations but additional attributes. The plain
SO tgd µ1 in Fig. 1b is the logical representation of such a
schema mapping, either generated by mapping systems [12,
16] or defined by a mapping designer [1]. There are certain
target values missing in the source schema and need to be
represented by Skolem functions. For instance, DeptID (d)
does not exist in the source schema, thus the Skolem func-
tion fd(n) specifies that the new target instances of d depend
on the source instance values of DeptName (n). Similarly,
fl(n, g) indicates that Leader (l) depends on the source val-
ues of department name n and GroupID (g), and all the
tuples with the same values of n and g should have the iden-
tical value for l. Likewise the third Skolem function fa(n, b)
specifies values for Amount (a). We use labels σ1, σ2 and
σ3 to distinguish the three implications in µ1.

A direct application of the approaches based on de-Sko-
lemization [24, 25] is not feasible for answering Q1 given
µ1. In µ1, there is an ordering between fd and fl since the
argument of fd is a subset of the arguments of fl. There
also exists an ordering between fd and fa, but no ordering
between fl and fa since their argument sets do not have
a containment relationship. Thus, µ1 is not rewritable by
[24, 25]. The state-of-the-art approach [6] has proposed a
partitioning method that “cuts” the given plain SO tgd into
smaller blocks based on the disjoint sets of Skolem functions,
then performs the de-Skolemization in each block. Since all
three implications in µ1 contains fd, [6] considers µ1 as a
whole block and tries to order fd, fl, and fa, which fails for
the same reason and gives a negative answer to Q1.

Yet, there exists a nested tgd λ1 (Fig. 1c) which is logi-
cally equivalent to µ1. The reason why existing solutions fail
to answer Q1 is two-fold. (i) A deeper analysis of structural
properties of nested tgds, and a characterization of plain SO
tgds which have equivalent nested tgds are missing. Intu-
itively, plain SO tgds have a ‘flat’ structure with regard to
the implications, e.g., µ1 is the conjunction of three non-
nested implications. When existing works try to construct
the new FO mappings, the transformation is limited to flat
structures. However, nested tgds are FOs with a specific
hierarchical structure, which we elaborate in Sec. 2.2. For
instance, λ1 has a two-level hierarchy with σ2 and σ3 nested
under σ1. (ii) As a direct adaption of de-Skolemization
from mathematical logic, existing works focus on Skolem
functions and overlook the remaining components of schema
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mappings. We will show that the source relations in map-
pings (e.g., D(n) in σ1, D(n)∧G(g, n) in σ2 of µ1) also play
an important role in rewriting plain SO tgds to nested tgds.

Therefore, we propose a novel approach which partitions
the given plain SO tgd in a “divide and conquer” manner,
and tries to discover whether the given plain SO tgd has a
tree-like structure similar to nested tgds. For Q1, we are also
able to find multiple solutions, i.e., several sets of nested tgds
equivalent to the input plain SO tgd, which is not discussed
in existing works.

Plain SO tgds are more expressive than nested tgds. It
implies that there exist plain SO tgds not logically equivalent
to any nested tgd, e.g., the below plain SO tgd µ′:

∃f1, f2∀x1, x2, x3 (S(x1, x2, x3)→ T (f1(x1, x2), f2(x1, x3)))

It would be convenient to have a set of conditions to dif-
ferentiate the plain SO tgds that have equivalent nested tgds
(e.g., µ), with the ones that have not (e.g., µ′).

Q2: How can we characterize the class of plain SO tgds,
for which a rewriting to nested tgds is possible?

We will propose a sufficient condition and show that it re-
veals the native structural characterization of plain SO tgds
rewritable to nested tgds, which is more general than the
conditions given in [6]. There is also a theoretical tool given
in [21] to tell when a plain SO tgd does not have equivalent
nested tgds, but it is difficult to be directly applied in an
algorithmic approach.

Q3: Can we define and implement an efficient algorithm
that is able to translate a relevant subset of plain SO tgds
into logically equivalent nested tgds?

We provide a checking condition which can be efficiently
implemented. Finally, we need to verify that our algorithms
and their implementation are correct and complete with re-
spect to the identified class of rewritable plain SO tgds. We
designed an evaluation procedure to address the final re-
search question.

Q4: How can we evaluate the correctness, completeness,
and performance of the algorithms to rewrite plain SO tgds
into nested tgds?

We summarize our main contributions as below:
• We propose a novel approach for rewriting plain SO tgds

into logically equivalent nested tgds. We refine our ap-
proach such that it can support more general cases, which
covers a wider range of plain SO tgds than the state-of-
the-art approach (addressing Q1 and Q3).
• We provide a sufficient condition to tell when plain SO

tgds have logically equivalent nested tgds (addressing Q2).
• We design an evaluation procedure, based on configurable

generators for nested tgds and plain SO tgds, to process
generated mappings with our algorithms. By intensive ex-
periments, we demonstrate the correctness, completeness,
and performance of our approach (addressing Q4).

The remainder of the paper is organized as follows: first
we introduce preliminary concepts in Sec. 2. Then, we dis-
cuss our basic approach in Sec. 3. Some refinements of the
algorithms, the theoretical analysis, definition of the suffi-
cient condition, and a complexity analysis are addressed in
Sec. 4. The extensive evaluation of our solutions is presented
in Sec. 5. Finally, we compare our results with related works
(Sec.6) and conclude the paper in Sec. 7.

2. PRELIMINARIES

2.1 Schema and Schema Mapping
A relational schema R is a finite sequence of relation

symbols R = 〈R1, . . . , Rk〉, where each Ri has a fixed arity.
An instance I over R, is a k-tuple (RI

1, . . . , R
I
k), where each

finite relation RI
i has the same arity as Ri.

Let S and T be a source and a target schema sharing no
relation symbols. A schema mapping M between S and
T is a tripleM = 〈S,T,Σ〉, where Σ is a set of dependencies
over (S,T). The dependencies Σ can be expressed as logical
formulas (e.g., tgds) over the source and target schemas. Let
I be an instance and θ be a first-order formula (e.g., tgds,
nested tgds), or a second-order formula (e.g., plain SO tgds,
SO tgds). We denote I satisfying θ as I |= θ. Let Θ be a
finite set of formulas, we use I |= Θ to denote that I |= θ
holds for every θ ∈ Θ. For a quantifier Q ∈ {∀, ∃} in θ, the
scope of Q is the range in θ controlled by Q.

Let Λ and Λ′ be two finite sets of source-to-target con-
straints, expressed in a certain class of mapping dependen-
cies. We only consider the case that the set of instances
is finite. If for every source instance I and every target in-
stance J such that (I, J) |= Λ, we have that (I, J) |= Λ′ then
Λ implies Λ′, denoted as Λ |= Λ′. Λ and Λ′ are logically
equivalent, iff Λ |= Λ′ and Λ′ |= Λ, denoted as Λ ≡ Λ′ [21].

2.2 Nested Tgds
Nested GLAV mappings can be expressed by a finite set

of nested tgds. Nested tgds [26] are often considered as the
best choice for describing the correlation of mappings [14].

Definition 2.1 ([21]). A nested tuple-generating de-
pendency is a first-order sentence that can be generated
by the following recursive definition (the variables are parti-
tioned into two disjoint sets X and Y representing the uni-
versally and existentially quantified variables, respectively):

φ ::= α | ∀~x (β1 ∧ · · · ∧ βk → ∃~y (φ1 ∧ ... ∧ φl))

where each xi ∈ X, each yi ∈ Y , α is an atomic formula over
the target schema, and each βj is an atomic formula over the
source schema containing only variables from X such that
each xi occurs in some βj .

In this work, we use parts [21, 14] marked by inline labels
σi to indicate the nesting order, as shown in Fig. 2. We
use square brackets to make the nesting hierarchy clearer.
If a part σi is nested inside another part σj , then we refer
to σj as the parent of σi, and σi as a child of σj . For
instance, parent(σ2) = parent(σ3) = σ1 and child(σ3) = σ4.
With transitive closure of parents, the ancestor of a part is
defined. For instance, ancestor(σ4) = {σ1, σ3}. A pattern
of a nested tgd is a tree with its nodes marked by the inline
labels of parts. If two parts in a nested tgd have a parent-
child relationship, then there is an edge between the nodes
presenting these two parts. The pattern of λ2 is also shown
in the right part of Fig. 2.

2.3 From Nested Tgds to Plain SO Tgds
To prepare for the definition of plain SO tgds, we first

introduce the notion of plain terms. Given a collection x
of variables and a collection f of function symbols, a plain
term (based on x and f) is defined as: (1) Each variable x
in x is a plain term; (2) Assume f is a k-ary function symbol
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σ1 : [∀x1 S1(x1)→∃y1
σ2 : [∀x2 S2(x2)→ R2(y1, x2)]∧
σ3 : [∀x3 S3(x1,x3)→ R3(y1, x3)∧

σ4 : ∀x4 [S4(x3, x4)→ ∃y2 R4(y2, x4)]]]

σ1

σ2

σ4

σ3

Figure 2: Nested tgd λ2 and its pattern [21]

in f of the form f(u1, . . . , uk), where each ui (1 6 i 6 k) is
a variable in x, then f(u1, . . . , uk) is a plain term.

Definition 2.2 ([3]). Given schemas S and T with no rela-
tion symbols in common, a plain second-order tgd (plain
SO tgd) from S to T is a formula of the form:

∃f (∀x1(ϕ1 → ψ1)) ∧ . . . ∧ ∀xn(ϕn → ψn)), where

(1) each member of f is a function symbol,
(2) each formula ϕi (1 ≤ i ≤ n) is a conjunction of relational
atoms S(y1, . . . , yk), where S is a k-ary relation symbol of
schema S and y1, . . . , yk are (not necessarily distinct) vari-
ables in xi,
(3) each ψi is a conjunction of relational atomic formulas
over T mentioning plain terms built from xi and f , and
(4) each variable in xi (1 ≤ i ≤ n) appears in some relational
atom of ϕi.

Skolemization is the process of replacing every existen-
tially quantified variable y in a first-order formula λ with a
new Skolem function in the form of f(x) (also referred to as
a Skolem term), where x is the vector of universal variables
in the scope of y. That is, when performing Skolemization
over a nested tgd, the arguments of f are the universal vari-
ables from the part where ∃y appears, and its ancestors. For
instance, ∃y2 is in the part σ4 of λ2, the universal variables
from σ4 and its ancestors are 〈x1, x3, x4〉. Thus, y2 is re-
placed by the Skolem function f2(x1, x3, x4). The following
example shows the Skolemized nested tgd δ2, which is the
Skolemized form of λ2.

Example 2.1. δ2: the Skolemized form of λ2 [21].

σ1 : [∀x1 S1(x1)→ ∃f1
σ2 : [∀x2 S2(x2)→ R2(f1(x1), x2)]∧
σ3 : [∀x3 S3(x1, x3)→ R3(f1(x1), x3)∧

σ4 : [∀x4 S4(x3, x4)→ ∃f2 R4(f2(x1, x3, x4), x4)]]]

A Skolemized nested tgd is not necessarily a plain SO tgd,
since it may still contain nested implications, e.g., δ2. In
[14], a normalization procedure performed on Skolemized
nested tgds is introduced, which is referred to as “nested-
to-so”. A first-order formula ϕ → (ψ ∧ [ϕ1 → ψ1]) can be
equivalently rewritten to [ϕ → ψ] ∧ [ϕ ∧ ϕ1 → ψ1]. By ap-
plying this procedure recursively from the outermost nesting
level to the root level of the Skolemized nested tgd, we can
obtain its normalized form, as in the following example.

Example 2.2. Plain SO tgd µ2: the normalized form of δ2.

∃f1, f2
σ1 : [S1(x1)→ true]∧
σ2 : [S1(x1) ∧ S2(x2)→ R2(f1(x1), x2)]∧
σ3 : [S1(x1) ∧ S3(x1, x3)→ R3(f1(x1), x3)]∧
σ4 : [S1(x1)∧S3(x1, x3)∧S4(x3, x4)→R4(f2(x1, x3, x4), x4)]

Note that Skolemization and normalization, as well as
their inverse processes de-Skolemization and de-normaliza-
tion, are transformations which preserve logical equivalence.
For instance, λ2, δ2 and µ2 are logically equivalent to each
other. Along the lines of nested tgds, we refer to each im-
plication of a plain SO tgd as a part. The part σ1 of µ2 is a
tautology which could be removed, but we keep it for clar-
ity. For simplicity, we often suppress writing the universal
quantifiers ∀x in plain SO tgds.

3. BASIC APPROACH
In this section, we introduce the basic method to rewrite

plain SO tgds to logically equivalent nested tgds. It has
two steps: (i) Nest (Sec. 3.1) that analyses the logical struc-
ture of the plain SO tgd and generates a Skolemized nested
tgd, and (ii) DeSkolemization (Sec. 3.2) which considers the
Skolem functions and aims at replacing them with existen-
tial variables. We omit some details to focus first on the
basic ideas of the approach. In Sec. 4, we will discuss some
refinements of the algorithms to make them more general.

3.1 Reverse Logical Normalization
Our approach is based on the observation on Example 2.2.

That is, on the left-hand sides of the implications of plain SO
tgd µ2, the subset hierarchy of the sets of relational atoms
forms a tree. In the following, LH(σ) (resp., RH(σ)) refers
to the set of relational atoms on the left-hand (resp., right-
hand) side of a part, e.g., in Example 2.2 LH(σ1) = S1(x1).
parts(µ) denotes all parts of a plain SO tgd or nested tgd.
Since in µ2 LH(σ1) ⊂ LH(σ2) and LH(σ1) ⊂ LH(σ3) ⊂
LH(σ4), it implies a tree structure shown in Fig. 2. Thus,
we first aim at recognizing this tree structure based on the
left-hand sides. Note that some plain SO tgds might have
more than one tree structure for their left-hand sides.

Example 3.1. Consider the following plain SO tgd µ3:

σ1 : [ S1(x1)→ T1(x1, f1(x1))]∧
σ2 : [ S1(x1) ∧ S2(x1, x2)→ T2(x2, f1(x1))]∧
σ3 : [ S3(x3) ∧ S4(x3, x4)→ T3(x3, f2(x3, x4))]

This plain SO tgd is equivalent to two nested tgds with
S1(x1) and S3(x3)∧S4(x3, x4), respectively, at the root lev-
els. The corresponding pattern has two unconnected sub-
graphs: σ1 → σ2, and σ3 as a separate node.

Thus, our nesting approach for plain SO tgds has to take
into account that multiple nested tgds may have to be cre-
ated. Our algorithm Nest (cf. Alg. 1) works recursively. Its
input is a parent part (for recursive calls, null in the ini-
tial invocation) and a plain SO tgd separated into its parts.
The input plain SO tgd is also checked for consistency [6,
24], which means that Skolem functions can be used only
with the same list of arguments, and variables may not be
repeated in the argument list of a Skolem function. Plain SO
tgds generated by Skolemization procedure in Sec. 2.3 are
consistent; for inconsistent tgds, the replacement of Skolem
terms with existential variables would not be possible. We
have implemented the method checking consistency before
calling Alg. 1, which is not the focus of this work.

In Alg. 1, we first take an arbitrary part pi (we will see in
an example in the next section, that this choice might make
a difference, and that we backtrack over this choice to find
all alternative results). The sets C and S separate the parts
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Algorithm 1: Nest

Input: A parent part parent, and a set of parts
P = {p1, . . . , pn} of a consistent plain SO tgd

Output: A set of Skolemized nested tgds, identified
by the root parts

1 if P = ∅ then Return ∅ // Stop recursion

2 lh← LH(pi) for an arbitrary pi ∈ P
3 C, S ← ∅ // Children and sibling parts

4 pr ← null
5 foreach p ∈ P do
6 if lh ∩ LH(p) 6= ∅ then
7 lh← lh ∩ LH(p); C ← C ∪ {p}
8 if lh = LH(p) then pr ← p

9 else S ← S ∪ {p}
// If pr cannot be the root of the new subtree, create a

new part pr with empty right-hand side as root

10 if lh 6= LH(pr) then pr ← [lh→ true]
11 if parent 6= null then add pr to parent.children
12 C ← C\{pr}
13 Nest(pr, P repareChildren(C, pr))

// Nest remaining parts as siblings & return all roots

14 return Nest(parent, S) ∪ {pr}

into two disjoint sets: C holds parts which have overlapping
antecedents with pi and will be an element in the subtree
rooted at pr; S has the parts which will be represented in
sibling trees of the tree rooted at pr (note that in a recursive
call, pr and its siblings have the same parent).

The separation of the parts in C and S is controlled by
the check in line 6 which checks whether there is an overlap
on the left-hand sides of the parts in C so far (lh is the in-
tersection of all LH(p) for each part p in C) and the current
part. If this is not the case, then the current part p will be
added to S, otherwise it will be added to C. The condition
in line 8 checks whether the current part p can be the root
of the subtree for all parts in C.

After all parts have been processed, we need to check
whether pr still represents the intersection of all parts in
C, and, thus, can be used as the root of the new tree. If
that is not the case, then we need to create a new ‘virtual’
root part with an empty right-hand side (line 10).

We add pr to the children of the given parent, and call the
algorithm recursively with pr as parent and the rest parts in
C (obtained by removing pr from C in line 12) as children.
The procedure PrepareChildren removes the left-hand side
of pr from the left-hand sides of the parts in C. The final
step (line 14) then processes the sibling nodes.

Example 3.2. Suppose we apply the algorithm to µ3 from
Example 3.1. Let’s assume, we randomly take σ2 as the
initial part, and take σ1 as the first element p in the for-loop.
σ1 will be considered as the root element pr, as LH(σ1) =
LH(σ2) ∩ LH(σ1). σ3 will be inserted into S as it does
not have an overlap with σ1. The recursive call in line 13
is Nest(σ1, {[S2(x1, x2)→ T2(x2, f1(x1))]}), i.e., S1(x1) has
been removed in σ2. This will result in a nested tgd δ31
with the pattern tree σ1 → σ2. The processing of σ3 with
the recursive call in line 14 will lead to a second Skolemized
‘nested’ tgd δ32.

δ31 : [S1(x1)→ T1(x1, f1(x1))∧
[S2(x1)→ T2(x2, f1(x1))]]

δ32 : S3(x3) ∧ S4(x4)→ T3(x3, f2(x3, x4))

Algorithm 2: DeSkolemization

Input: A Skolemized nested tgd δ
Output: A nested tgd λ if successful; null if failed

1 Initialization: λ← δ
2 foreach Skolem term f ∈ λ do
3 replaced← false
4 p ← FirstPart(f)
5 P ← Ancestors(p) ∪ {p}
6 foreach pi ∈ P do
7 X ← GetUniversalV ars(pi)
8 if Arg(f) = X then
9 replace every appearance of f in λ with yf

10 append yf to the exist. variable list of pi
11 replaced← true; break

12 if replaced = false then return null

13 return λ

3.2 Reverse Skolemization
Since the result of the Nest procedure might still contain

Skolem functions, these have to be replaced with existential
variables. Alg. 2 performs the de-Skolemization. Its input is
a single Skolemized nested tgd δ generated by Alg. 1. Alg. 2
replaces the Skolemized nested tgd δ with Skolem functions
into a nested tgd with existential variables. To illustrate the
algorithm, we use the following example which is known to
have a logically equivalent nested tgd [14].

Example 3.3. Given is a plain SO tgd µ4 which describes
the schema mapping between source schemas Department
(D), Group (G), Employees (E) and the corresponding tar-
get schemas. Variables d, g, e are the keys of each relation.

∃fd, fg
σ1 : [D(d)→ D′(fd(d))]∧
σ2 : [D(d) ∧G(d, g)→ G′(fd(d), fg(d, g))]∧
σ3 : [D(d) ∧G(d, g) ∧ E(d, g, e)→ E′(fd(d), fg(d, g), e)]

The Nest algorithm will produce the following output δ4.

∃fd, fg
σ1 :D(d)→ D′(fd(d))∧

σ2 : [G(d, g)→ G′(fd(d), fg(d, g))∧
σ3 : [E(d, g, e)→ E′(fd(d), fg(d, g), e)]]

After initialization, for each Skolem term f in λ the pro-
cedure FirstPart(f) finds the part p where f first appears.
For instance, in Example 3.3 fd appears in all three parts
σ1, σ2 and σ3 of δ4. However, its corresponding existential
variables should belong to only one part in a nested tgd, i.e.,
the first part where it appears in the pattern tree. In δ4, the
first part in the hierarchy where fd appears is σ1. Similarly,
the first part of fg is σ2. Recall that when we Skolemize
a nested tgd, the Skolem function arguments are the set of
universal variables from the ancestors and current part of
the existential variable. Therefore, to transform a Skolem
function f back to an existential variable, we need to check
the universal variables of the part where it first appears (p in
line 4) and all ancestors of this part (Ancestors(p)), whose
union we denote as P in line 5. We iterate each part pi in P ,
and check its universal variables by GetUniversalV ars(pi)
in line 7. When we find a part pi with the same set of uni-
versal variables as the arguments of f (if-statement in line
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8), we can replace every occurrence of f in λ with a new
existential variable yf , which is also inserted into the exis-
tential variable list of pi. For δ4 we replace fd(d) with yd in
σ1 as d is the only universal variable in σ1, and we replace
fg(d, g) with yg in σ2 as d and g are the universal variables
of σ2. If such a replacement is impossible, then a nested tgd
cannot be generated and the algorithm fails.

Example 3.4. The output of Alg. 2 applied to δ4 from
Example 3.3 (for clarity, now we include all quantifiers).

σ1 : [∀d D(d)→ ∃yd D′(yd)∧
σ2 : [∀g G(d, g)→ ∃yg G′(yd, yg)∧

σ3 : [∀e E(d, g, e)→ E′(yd, yg, e)] ] ]

4. EXTENSION AND ANALYSIS OF THE
APPROACH

In this section, we will extend the basic algorithms, study
their theoretical properties, and give a better characteriza-
tion of the subset of plain SO tgds, which are rewritable into
a single nested tgd or a set of nested tgds.

4.1 Extension of Nest Algorithm
We consider first the Nest algorithm. It may generate dif-

ferent results because we take initially an arbitrary part pi.
Depending on the choice made, the resulting ‘Skolemized’
nested tgds might have different structures. Fig. 3 shows an
example. The input plain SO tgd µ5 in Fig. 3a have four
parts with only pairwise overlaps.

Fig. 3b, 3c and 3d show the possible results which are
generated by our approach. For simplicity, we just show
the relation names and omit the variables. Each solution is
a pair of nested tgds. In one nested tgd of each pair, the
root part is either S1, S2, or S3, depending on the sequence
in which the parts are processed (i.e., the arbitrary pick in
line 2 and the order of elements in the for-loop in line 5 of
Alg. 1). All results are obtained in principle by applying
classical boolean transformations, e.g., A→ (B ∧ (C → D))
is equivalent to (A → B) ∧ (A ∧ C → D), but they are not
logically equivalent as we ignore the Skolem functions.

Thus, to have correct results we also have to verify the
correct handling of Skolem functions in the transformation
procedure. Separating the parts of a plain SO tgd in the
Nest algorithm into the sets C and S results in multiple
nested tgds as output (as in Example 3.2). If two nested
tgds have the same Skolem term, then this set of nested
tgds is not a valid rewriting. In the example of Fig. 3, this
applies to {λ31, λ32} in Fig. 3d which share f1.

In the approach presented in [6], the concept of maximal
partitions is used to describe a similar situation. A plain
SO tgd is partitioned into several blocks with disjoint sets
of Skolem functions. In our approach, possible partitions
are created implicitly by the Nest procedure. To verify that
the partitions handle Skolem functions correctly, we defined
a ‘main’ procedure BuildNestedTGD (cf. Alg. 3).

After preparing the input and invoking the Nest algo-
rithm, in line 7 we test whether there is an overlap in Skolem
functions of Skolemized nested tgds in one result set (the
function skf(δ) returns all Skolem terms in δ). In that case,
we skip the current solution N and generate a new solu-
tion with Nest, if possible. For instance, in Fig. 3d λ31

Algorithm 3: BuildNestedTGD

Input: A consistent plain SO tgd µ
Output: A set of solutions, each solution is a set of
nested tgds; or ∅ in case of failure

1 P ← all parts of µ
2 R← ∅ // Result set

3 while not all possibilities have been considered in
Nest do

4 N← Nest(null, P )
5 N′ ← ∅
6 foreach δ ∈ N do
7 if ∃δ′ ∈ N with

δ 6= δ′ and skf(δ) ∩ skf(δ′) 6= ∅ then
8 Skip solution N and generate next result

for Nest
9 λ← DeSkolemization(δ)

10 if λ 6= null then Add λ to N′

11 else Skip solution N and generate next result
for Nest

12 Add N′ to R

13 return R

and λ32 share f1, thus they are not included in the final re-
sult. Please note that the implementation of the algorithms
which we evaluated in Sec. 5 is more efficient, as we sort
the parts by the number of source relations, and handle the
part with the lowest number of source relations first. The
optimizations on implementation level would make the al-
gorithm harder to understand; thus, we use a simpler way
to present the idea of the algorithm. We also check the re-
sult of the DeSkolemization algorithm to see whether the
Skolem functions could be correctly replaced by existential
variables. The final result R of BuildNestedTGD may con-
tain multiple solutions, i.e., each solution is a set of nested
tgds Λ = {λ1, . . . , λn}, and Λ is logically equivalent to the
input µ, which we formalize as the following theorem.1

Theorem 1.Given a plain SO tgd µ, if BuildNestedTGD(µ)
produces a nonempty result R = {Λ1, . . . ,Λm}, then each
solution in R is logically equivalent to the input µ, i.e.,
∀Λi ∈ R, Λi ≡ µ.

Summary. Theorem 1 answers the question Q1 raised in
Sec. 1. That is, BuildNestedTGD produces correct solutions
which are logically equivalent to the given plain SO tgd µ.
Notably, it also reveals the possibility that there may exist
multiple correct solutions, which is not studied in previous
works. For instance, in Fig. 3 the final results are two solu-
tions Λ1 = {λ11, λ12} in Fig. 3b and Λ2 = {λ21, λ22} in Fig.
3c with both equivalent to µ5. This gives the possibility to
choose the ‘better’ solution, e.g., in terms of performance for
mapping execution or in terms of understandability. We did
not yet examine this issue in detail, but the nesting depth
(height of pattern tree) and the size of nested tgds are good
indicators for their complexity.

4.2 Rewritability Conditions
In this section, we provide the formal checking condition

to tell whether a given plain SO tgd has an equivalent set of
nested tgds. We first give a deeper analysis of our approach
BuildNestedTGD.

1The proofs of Theorem 1, Theorem 2, and Theorem 3:
http://dbis.rwth-aachen.de/cms/staff/hai/proof
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∃f1, f2
σ1 : [S1(x1)→ T1(x1, f1(x1))]∧
σ2 : [S1(x1) ∧ S2(x1, x2)→ T2(x2, f1(x1))]∧
σ3 : [S2(x1, x2) ∧ S3(x1, x3)→ T3(x3, f2(x1, x2, x3))]∧
σ4 : [S1(x1) ∧ S3(x1, x3)→ T4(x1, x3)]

(a)

λ11 : [S1 → T1∧
[S2 → T2]∧
[S3 → T4] ]

λ12 : S2 ∧ S3 → T3

(b)

λ21 : [S1 → T1∧
[S2 → T2] ]

λ22 : [S3 →
[S2 → T3]∧
[S1 → T4] ]

(c)

λ31 : [S2 →
[S1 → T2]∧
[S3 → T3] ]

λ32 : [S1 → T1∧
[S3 → T4] ]

(d)

Figure 3: (a) An input plain SO tgd µ5; (b)-(d) three candidate results of Nest

As discussed, we require that the input to BuildNested-
TGD is a consistent plain SO tgd [24, 6]. Consistency re-
quires that every appearance of the same function has the
same arguments, and no variables in the argument list are
repeated. This condition is also required in general second-
order logic for de-Skolemization [13].

Hierarchical Ordering. Our goal is to answer the ques-
tion Q2, i.e., check when a plain SO tgd can be “nested
back” to nested tgds. A plain SO tgd µ has a set of parts,
and for each part there are source relations in the left-hand
(LH) of the implication and target relations in the right-
hand (RH) of the implication. If µ can be equivalently trans-
formed into a nested tgd with a tree pattern, then µ itself
should possess certain properties in its left-hand side and
right-hand side. More specifically, the source relations of a
plain SO tgd should form a tree structure. Moreover, the
Skolem function arguments should also form a correspond-
ing tree. For instance, we can observe that in Example 2.2
the containment of Skolem function arguments corresponds
to the tree pattern in Fig. 2.

A natural question is whether we should rely on left-hand
side (source relation overlaps) or right-hand side (Skolem
function argument inclusion) to build the pattern from the
given plain SO tgd. The Nest algorithm detects a tree-
structured pattern from left-hand side of a plain SO tgd.
The reason why we have chosen left-hand side to build the
tree structure rather than relying on Skolem functions is as
follows. Skolem functions can be used either as a replace-
ment for unknown values on the target side, or to structure
and group the data on the target side. The former type
of Skolem functions are not really helpful to identify the
nesting structure, while the latter might not be available in
the case of flat relational data. Nevertheless, after discover-
ing the tree pattern using source relations, we still need to
check whether the obtained pattern confirms to the right-
hand side of the given plain SO tgd. That is, for µ to be
qualified to be transformed into a nested tgd, the sets of ar-
guments of Skolem functions should also form a tree, whose
structure is ‘compatible’ with the discovered pattern of the
left-hand side. Alg. 2 checks this condition, i.e., whether the
arguments of a Skolem function are equal to the universal
variables in some node (part) in the tree.

In what follows we summarize the above discussion, and
provide the formalizations for our rewritability conditions.
First, we characterize the result of the Nest procedure. As
the procedure partitions and structures the left-hand sides
of a plain SO tgd, we call the result LH-Trees.

Definition 4.1 (LH-Trees). Let µ be a plain SO tgd with
parts σ1, . . . , σn and relational atoms S1, . . . , Sm on the left-
hand sides of its parts. The LH-Trees of µ is a set of trees
with the relational atoms as nodes. For each part σi in µ

with the sets of relational atoms Si1, . . . ,Sik, there exists a
path Si1, . . . ,Sik in a tree from the root Si1 to the node Sik.

For example, Fig. 4 shows the LH-trees of µ5 to produce
λ11 and λ12 in Fig. 3b. t1 is built from σ1, σ2, σ4; σ1 cor-
responds to the root node of t1 while σ2 and σ4 correspond
to the two paths from root node S1 to the two leaf nodes S2

and S3 respectively. Note that a node of LH-tree can contain
the conjunction of multiple relational atoms. For instance,
t2 built from σ3 of µ5 has one root node S31 = {S2, S3}.

S1

S2 S3

S2 ˄S3t1 t2

Figure 4: LH-trees for λ11 and λ12 in Fig. 3b

It is easy to see, that the result of the Nest algorithm can
be considered as LH-trees. As discussed above, considering
the left-hand sides alone is not sufficient for checking the
rewritability. Therefore, we add also the Skolem functions
to the LH-Trees, and get LH-Skolem-Trees.

Definition 4.2 (LH-Skolem-Trees). Let µ be a plain SO
tgd and T = {t1, . . . , tn} be the set of LH-Trees of µ. The
LH-Skolem-Trees for µ are obtained from T as below:

• If σi is a part in µ with the sets of relational atoms
Si1, . . . ,Sik and a Skolem term f(x) appearing on its
right-hand side, and Si1, . . . ,Sik is a path in a LH-tree
t ∈ T , then f(x) is attached to the node Sik.

• If the Skolem term f(x) is attached to some node S
in a tree, then it will be removed from all nodes in
the sub-tree rooted at S, i.e., we just keep the first
occurrence of a Skolem term in the tree.

Example 4.1. Please consider the plain SO tgd µ1 in Fig.
5a (continued from the running example, but we added a
new relation P for Project, p for ProjectName and fp for
ProjectID), the corresponding LH-Skolem-trees are shown
in the middle. The plain SO tgd µ1 can be divided into
two blocks: {σ1, σ2, σ3} as they overlap in the relational
atom D(n), and {σ4} which is the only part with P (p). The
Skolem term fd(n) is attached only to D as it appears in σ1

(the occurrences attached to G and B are removed as stated
in the definition). The LH-Skolem-tree for σ4 has only one
node P as there is only one relational atom in that part.

The result of Nest algorithm is shown in Fig. 5c. It can
be seen to have the same structure as LH-Skolem-trees of µ1

in Fig. 5b, i.e., each (Skolemized) nested tgd corresponds to
one tree.
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σ1 : [D(n)→ D′(n, fd(n))]∧
σ2 : [D(n) ∧G(g, n)→ G′(g, fd(n), fl(n, g))]∧
σ3 : [D(n) ∧B(b, n)→ B′(b, fd(n), fa(n, b))]∧
σ4 : [P (p)→ P ′(p, fp(p)]

(a)

D

G B

P
fd(n)

fl(n,g) fa(n,b)

fp(p)

(b)

δ61 : [D(n)→ D′(n, fd(n))∧
[G(g, n)→ G′(g, fd(n), fl(n, g))]∧
[B(b, n)→ B′(b, fd(n), fa(n, b))]]

δ62 : [P (p)→ P ′(p, fp(p)]

(c)

Figure 5: (a) Extended plain SO tgd µ1 from Fig. 1b; (b) LH-Skolem-Trees of µ1; (c) Result of Nest

Now, we also have to verify whether the Skolem functions
are correctly placed in the LH-Skolem-tree, i.e., whether
there is a hierarchical order of the Skolem functions. The
idea of linearity was proposed in [6] and states that in each
new block, the sets of arguments of all Skolem Functions can
be ordered linearly, i.e., should be contained in each other.
For the plain SO tgd µ1 in Fig. 5a, Arg(fd) ⊂ Arg(fl),
Arg(fd) ⊂ Arg(fa), but Arg(fl) * Arg(fa) and Arg(fa) *
Arg(fl); thus, µ1 does not satisfy linearity and cannot be
rewritten according to [6]. The reason is that the approach
of [6] tries to find whether the given plain SO tgds have a
‘linear’ structure, which would be a criteria for tgds. Yet, as
we have shown in Sec. 2.2, nested tgds have a tree structure.
This is the root cause why linearity is too limited for finding
the plain SO tgds with logically equivalent nested tgds.

Observing the example of Fig. 5a, which can be rewritten
into two nested tgds, we need to verify only argument lists
of Skolem functions in a path of the tree from the root to a
leaf node, instead of the whole tree (or block). Since a given
plain SO tgd may have multiple sets of LH-Skolem-trees
(e.g., µ5 in Fig. 3a), the verification may also be different.
This idea is implemented in our DeSkolemization procedure
and leads to the definition of hierarchically ordered.

Definition 4.3 (Hierarchically-Ordered). Let µ be a
plain SO tgd. µ is hierarchically ordered if there exists a set
of LH-Skolem-trees T of µ satisfying:
(1) distinct trees in T have disjoint Skolem functions;
(2) for every Skolem function f(x) in a tree t ∈ T , its ar-
guments are the same as the universal variables of the node
Sik where f(x) is attached, i.e., assume that the path from
root to Sik is Si1, . . . ,Sik, and the set of universal variables
appearing in Si1, . . . ,Sik is Xik, then the arguments of f
satisfy x = Xik.

µ1 in Fig. 5a is hierarchically ordered. Because in Fig. 5b
the LH-Skolem-trees of µ1 do not share any Skolem func-
tions; the arguments of Skolem function Arg(fd) = XD =
{n}, Arg(fl) = XG = {n, g}, Arg(fa) = XB = {n, b},
Arg(fp) = XP = {p}. The rewriting result of µ1 consists of
two nested tgds, λ1 in Fig. 1c which is de-Skolemized from
δ61, and the nested tgd ∀p P (p) → ∃yp P ′(p, yp) which is
de-Skolemized from δ62. Note that a plain SO tgd µ may
have multiple sets of LH-trees (e.g., Fig. 4 shows one of three
sets of LH-trees of µ5), which lead to multiple sets of LH-
Skolem-trees. As long as one set of LH-Skolem-trees of µ
satisfies Definition 4.3, µ is rewritable. Finally, we present
the below sufficient condition to check whether a plain SO
tgd can be rewritten to a set of nested tgds.

Theorem 2. Let µ be a plain SO tgd. If µ is both consistent
and hierarchically-ordered, then there exists a set of nested
tgds Λ such that µ ≡ Λ.

Theorem 2 is the sufficient and necessary condition for
Alg. 3 to succeed, since Alg. 1 produces LH-Trees of µ and
hierarchical ordering is examined by Alg. 2 and 3. If µ is not
hierarchically ordered, then Alg. 3 will try all possibilities
and finally return ∅.

Summary. Besides answering Q2, Theorem 2 provides
a valuable insight regarding characterizations of plain SO
tgds rewritable to nested tgds. That is, there exists a proper
subclass of plain SO tgds which can always be rewritten to
logically equivalent nested tgds, i.e., the plain SO tgds which
are consistent and hierarchically-ordered. Comparing to the
linearity [6], the condition hierarchically-ordered provides a
more precise portrait of the structural properties of a plain
SO tgd that guarantee its rewritability. Moreover, Theo-
rem 2 also reveals that not only Skolem functions, but also
the left-hand sides of a plain SO tgd, i.e., source schemas,
may affect its rewritability to nested tgds, which is not stud-
ied in existing works.

4.3 Complexity
In order to answer Q3 regarding efficiency, we analyze

the complexity of our approach and show that the core al-
gorithms have the polynomial-time complexity. To analyze
the complexity of the algorithms, we consider the following
parameters: m is the number of parts in the plain SO tgd;
s and t denote the average number of source (resp., tar-
get) relations in a part; a is the average number of universal
variables in a source relation; b is the average number of dis-
tinct Skolem functions appearing in a target relation; and
the average arity of a target relation is c.

Theorem 3. Let µ be a plain SO tgd and the quantities of
its parameters are fixed. Then, Nest and DeSkolemization
are polynomial-time algorithms, and BuildNestedTGD is an
exponential-time algorithm.

In our implementation, we sort the parts by the number of
source relations, and handle the part with the lowest number
of source relations first, which is often a good choice. In
the evaluation, we will show that with input plain SO tgds
rewritable, the exponential complexity is often only relevant
for the case when searching for all solutions.

5. EVALUATION
With intensive experiments we have evaluated our ap-

proach in the following aspects. In Sec. 5.1, we introduce
the mapping test suite that generates plain SO tgds as the
input of our algorithms. In Sec. 5.2, we demonstrate ex-
perimentally the correctness of our approach. In Sec. 5.3,
we use [6] as baseline and compare it with our approach re-
garding the rewriting rate. Furthermore, in Sec. 5.4 we ex-
plore the hierarchical ordering of plain SO tgds with diverse
characteristics. Finally, we examine the performance of our
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Table 1: Parameters of nested tgd generator

Parameter Description Value
πTreeHeight Pattern Tree height h

πNumLeaves
Number of child leaves

per node in pattern
k

πFullLeaves
Whether generate a full

pattern tree
T/F

πNumParts Number of parts per nested tgd m

πNumSrcRels
Number of source relations

per part
s

πAritySrcRels Arity of source relations a

πNumTgtRels
Number of target relations

per part
t

πArityTgtRels Arity of target relations c

πNumExistV ars
Number of distinct existential

variables per target relation
b

algorithms in Sec. 5.5, which confirms with our complexity
analysis in Sec. 4.3. The experiments are performed on a
Intel i7 1.8GHz machine with four cores and 24GB RAM.

5.1 Mapping Generators
To examine the generality of our approach, it is impor-

tant that we have plain SO tgds with a huge variety of char-
acteristics as input. There are existing tools for generating
schema mappings, such as iBench [4] which is extended from
STBenchmark [2]. Notably, although iBench can be used for
logical mapping generation, it does not meet the experimen-
tal requirements in this work. To explore the relationship
between plain SO tgds and nested tgds, our experiments
need plain SO tgds as input which can be rewritten to nested
tgds. However, iBench uses the mapping languages of tgds
and plain SO tgds,2 but not nested tgds; and its proposed
mapping primitives [4, 5] do not cover nested mappings.
That is, the plain SO tgds generated by iBench correspond
to a set of tgds instead of nested tgds, if they are rewritable.

Thus, we have implemented a mapping test suite includ-
ing a nested tgd generator and a plain SO tgd generator.3

The test suite also includes tools for Skolemizing and nor-
malizing a nested tgd; checking whether two given nested
tgds are structurally equivalent (one can be transformed to
the other by renaming variables); and checking whether two
given plain SO tgds are structurally equivalent. We focus
on the introduction of the two generators.

Nested Tgd Generator. Our nested tgd generator has
two running modes, single and batch. In the single mode,
the user can customize every variable/relation name such
that the generator produces a specific nested tgd. For in-
stance, we can apply this mode to generate λ2 in Fig. 2.
To populate a number of nested tgds, the batch mode can
be configured with several parameters, as in Table 1. The
value column indicates whether the parameter is a boolean
parameter (values as T/F ) or a quantitative parameter.

Plain SO tgd Generator. Similarly, the plain SO tgd
generator also has two running modes, and allows a set of
parameters as shown in Table 2. For the plain SO tgd gen-
eration no pattern tree related parameters are required, and
we use πNumFuncs instead of πNumExistV ars for each target

2
http://dblab.cs.toronto.edu/project/iBench/

3
http://dbis.rwth-aachen.de/cms/staff/hai/test/tools

Table 2: Parameters of plain SO tgd generator

Parameter Description Value
πNumParts Number of parts m

πNumSrcRels
Number of source relations

per part
s

πAritySrcRels Arity of source relations a

πNumTgtRels
Number of target relations

per part
t

πArityTgtRels Arity of target relations c

πNumFuncs
Number of distinct Skolem

functions per target relation
b

πFuncArgMode
How Skolem function

arguments are chosen

Relation

Part

All

relation. As consistency is not our focus in this work, for the
following experiments our plain SO tgd generator generates
plain SO tgds satisfying consistency.

Similar to previous studies [6, 4], to study how the Skolem
functions affect the rewritability, we have designed three
modes of πFuncArgMode for Skolem function argument gen-
eration, adapted from iBench. In Relation and Part modes
the generator chooses the whole set of universal variables
from a source relation or a whole part. For instance, µ3

in Example 3.1 could be a possible output of the Relation
mode. With the All mode, the arguments of a Skolem func-
tion will include the universal variables from all parts that
have been generated. In preliminary experiments, we have
also tested the cases when the generator randomly picks
up universal variables as Skolem function arguments, which
leads to the generated plain SO tgds rarely rewritable.

5.2 Correctness and Completeness
With Theorem 1, we have proved theoretically the sound-

ness of our approach. To provide a more practical perspec-
tive, we design experiments and show that our approach
generates nested tgds equivalent to the input plain SO tgds.
The main difficulty lies on the unavailability of ground truth.
Given a random, complex plain SO tgd, there is no known
method to determine whether it is rewritable to a finite set
of nested tgds (an open question raised in [21]).

Check with existing literatures. Therefore, we have
collected 14 plain SO tgds from existing literatures [3, 6, 21,
14, 4] whose rewritability is known, together with all the
examples we have used in this paper. We have processed
these plain SO tgds with our approach, and all the rewriting
results have been verified to be correct. The detailed results
including the input plain SO tgds, their source literatures
and our results can be found online.4

Apply the nested tgd generator. In addition, to ex-
amine the correctness of our approach with complex map-
pings, we have designed a 2nd experiment using the nested
tgd generator and populated 1,088,230 nested tgds, which
are transformed to plain SO tgds by Skolemization and nor-
malization. Table 3 shows the value ranges of the quan-
titative parameters in Table 1 applied in this experiment.
For the remaining boolean parameter in Table 1, we have
used different combinations of values. In this way, we ob-
tain rewritable plain SO tgds whose equivalent nested tgds

4
http://dbis.rwth-aachen.de/cms/staff/hai/corr/results
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Table 3: Nested tgd generator
parameter value range

Parameter Min Max
πTreeHeight 2 6
πNumLeaves 1 5
πNumParts 2 10
πNumSrcRels 1 10
πAritySrcRels 1 10
πNumTgtRels 1 10
πArityTgtRels 1 10
πNumExistV ars 1 8
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Figure 6: Rewritability comparison with baseline approach

are available. We refer to such plain SO tgds as transformed
plain SO tgds, which are transformed from nested tgds with
preserving logical equivalence, and the ground truth of their
rewritability is known. We processed these plain SO tgds
with our approach BuildNestedTGD, and all of them can
be rewritten to nested tgds. Finally, we applied the tool in
our mapping test suite to check whether the newly generated
nested tgds are structurally equivalent to the original nested
tgds (unique except for renaming of variables). By doing so,
we verified that all the rewriting results are correct.

Due to the absence of the ground truth, we cannot fully
validate the completeness of our approach. However, in this
experiment we are able to show that with the transformed
plain SO tgds whose equivalent nested tgds are known, our
approach succeeds in finding their solutions.

5.3 Comparison With Baseline Approach
In this experiment, we compare our approach with the

state-of-the-art approach [6]. In Sec. 4.2 we have explained
why our proposed condition hierarchically-ordered is more
general than linearity in a formal manner. Now we demon-
strate this claim more intuitively with experiments.

Experimental setting. To guarantee the availability
of ground truth, similar to Sec. 5.2 in this experiment we
also first generate nested tgds, then Skolemize and normalize
them to obtain transformed plain SO tgds as input. In this
way all input plain SO tgds have equivalent nested tgds.
For each nested tgd, we generate k-ary pattern trees, and
we increase the value of k. The pattern tree height is set as
the same with the value of k.

Results. We have run tests with different parameter val-
ues with similar observations. Here, we report the rewriting
rates of two sets of parameters in Fig. 6a and b. We observe
that our approach can rewrite all input plain SO tgds with-
out being affected by the complexity of pattern trees, while
the rewriting rate of baseline approach decreases with the
increasing pattern tree complexity. The difference becomes
significant with a higher value of k. Because linearity is a
restrictive description of rewritable plain SO tgds. When
the number of children per node (k) increases, the pattern
tree structures of initial nested tgds become more complex,
and less input plain SO tgds fall into the linear structure.

Summary. These results indicate the considerable gains
by applying our proposed approach in terms of rewritabil-
ity. More importantly, it shows that our approach describes
more precisely the structural properties of the rewritable
plain SO tgds, especially with the complex cases.

5.4 Rewritable Plain SO Tgds
Answering Q2, Theorem 2 has provided the characteriza-

tion of rewritable plain SO tgds. Now we further explore
how the rewritability is affected by the structural properties
of the given plain SO tgds, e.g., number of parts, source
relations and Skolem functions, etc.

Experimental setting. We generate input plain SO
tgds directly by the plain SO tgd generator introduced in
Sec. 5.1, which we refer to as generated plain SO tgds. Note
that different from the transformed plain SO tgds in pre-
vious experiments using the nested tgd generator, in this
experiment we do not have the ground truth whether a
generated plain SO tgd has equivalent nested tgds. There-
fore, given such an input plain SO tgd µ, when the rewrit-
ing process succeeds and returns a set of nested tgds Λ,
we verify the correctness of the results by Skolemizing and
normalizing Λ back to a new plain SO tgd µ′, then check
whether µ′ and µ are structurally equivalent, i.e., unique
unto renaming. In this way, we have verified that all the
rewriting results are correct. All tests in this experiment
share the same parameter values unless explicitly given in
Fig. 7: πNumParts = 3, πNumSrcRels = 1, πNumTgtRels =
1, πAritySrcRels = 5, πArityTgtRels = 4, πNumFuncs = 1.

Results. First we study how the rewritability is affected
by Skolem functions in terms of their types and propor-
tion. We generate plain SO tgd with three modes of Skolem
function arguments (πFuncArgMode) in Table 2. Fig. 7a il-
lustrates how the rewriting rate in percentage (y-axis) varies
with the increasing proportion of Skolem functions in tar-
get relation arity (x-axis). By comparing the three lines in
Fig. 7a, we can observe that there is a considerable rewritabil-
ity difference due to the choices of Skolem function argu-
ments. Relation mode has the lowest rewriting rate which
is close to zero with the increasing proportion of Skolem
functions, as in this mode the minimum unit for universal
variable selection as Skolem function arguments is a source
relation, which makes it less likely that the Skolem functions
satisfy hierarchical ordering. The rewriting rate for Part
mode is higher since the minimal unit for Skolem function
argument selection is a part. The plain SO tgds generated
in All mode are always rewritable. Because in this mode all
the universal variables generated in the scope of the current
part are included in the argument list of the Skolem func-
tion of this part. Therefore, our approach can always find its
equivalent nested tgd (similar to Example 3.3). Moreover,
by observing the lines of Relation and Part modes in Fig. 7a
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Figure 7: Rewriting rate with varying values of different parameters

we also find that the rewritability declines with the increas-
ing proportion of Skolem functions in the arity of a target
relation. Because if one Skolem function is unqualified then
the whole plain SO tgd fails to satisfy hierarchical order-
ing. With more Skolem functions, it becomes more difficult
for the generated plain SO tgd to meet the requirement of
hierarchical ordering.

Next we study whether the rewritability of our solution
is affected by other structural properties of input plain SO
tgds. In Fig. 7b we have run the test by increasing the
number of parts in a plain SO tgd (x-axis). We observe
that except the All mode in which a rewriting is always
possible, the rewriting rates in the other two modes decline
with the increasing amount of parts. This is expected since
with more parts, there is a higher possibility that a Skolem
function does not include universal variables from the “po-
tential ancestor” parts, and the plain SO tgd fails to be
hierarchically-ordered.

We have run tests by varying the values of other param-
eters in Table 2, e.g., number of source relations per part,
which showed little impact on rewritability.5 Furthermore,
we vary the ratio of source relation correlation (number of
source relations from previously generated parts divided by
number of source relations in the current part). For instance,
in Fig. 1b, σ2 and σ3 both have two source relations with
one relation D(n) from σ1, thus the ratio of source relation
correlation is 50%. We set the Skolem function generation
as Relation mode. Fig. 7c indicates that the rewriting rate
gains a noticeable increase with the rise of the correlation
ratio. Because when the left-hand sides of parts are more
correlated, it is more likely to build a LH-tree, which con-
tributes to a higher likelihood of satisfying Theorem 2.

Finally we compare the different rewriting strategies, i.e.,
rewrite the given plain SO tgd to a solution (a set of nested
tgds) or a single nested tgd. Fig. 7d shows the result with
the Skolem function generation set as Relation mode. Here
the rewriting rate is significantly higher when we rewrite the
given plain SO tgds to a set instead of one nested tgd. This
is expected as there are plain SO tgds rewritable to a finite
set of nested tgds instead of one nested tgd.

Summary. The rewritability of plain SO tgds is affected
by the types and proportion of Skolem functions. Such an
observation aligns with the previous work [6]. A more valu-
able discovery is that the rewritability is a rather complex
problem, and its factors are a combination of Skolem func-
tions and other structural properties (amount of parts, cor-
relation of left-hand), and rewriting strategies. It is also

5
http://dbis.rwth-aachen.de/cms/staff/hai/comp/results.

the key insight of hierarchical ordering. That is, the Skolem
function arguments need to “match” with the tree-like pat-
terns built from source relations of the given plain SO tgd.

5.5 Performance
Experimental setting. We have directly generated plain

SO tgds using the plain SO tgd generator and set the Skolem
function as All mode, thus the input plain SO tgds are all
rewritable. We mainly report the rewriting time with regard
to varying number of parts,6 as it has the most significant
contribution to complexity (see the proof of Theorem 3).

Results. Fig. 8a shows the rewriting time in millisec-
onds when the algorithm BuildNestedTGD terminates with
a valid solution found, while Fig. 8b provides the rewriting
time in seconds for searching all solutions. The trends how
rewriting time changes with increasing number of parts is
consistent with our analysis in the following aspects: (i) In
Fig. 8a we observe that our rewriting algorithms are quite
efficient, e.g., for a plain SO tgd with 8 parts of 32 source
relations, our approach just needs 71 milliseconds in aver-
age. (ii) Fig. 8b indicates that by changing the rewriting
strategy to multiple solutions, the rewriting time increases
significantly when the input plain SO tgds have a larger
number of parts. This is expected as the search of all pos-
sible solutions has the exponential complexity. To make it
clearer, in Fig. 8c we show the number of candidate solutions
with varying values of parts, which presents a similar trend
as in Fig. 8b. In Fig. 8d we use the number of tested solu-
tions as x-axis, and observe that the rewriting time scales
well with the number of tested solutions.

Nevertheless, FO semantics discovery is not a frequent op-
eration in data exchange and data integration applications.
In Fig. 8b for a complex mapping with 8 parts it takes less
than 23 minutes in average, which is still endurable. For
practical use a mapping designer can first run our approach
to find one solution. If she is interested in finding all possi-
ble rewriting solutions for comparison, then she can also run
our algorithms to find all solutions of the mapping expressed
as a plain SO tgd.

Summary. The experimental results confirm with our
previous complexity analysis. Besides showing that our ap-
proach can efficiently find one valid solution for the given
rewritable plain SO tgd, we also find out the exponential
complexity of finding all possible solutions in such cases,
which is not discussed in the existing works.

6 Full report: http://dbis.rwth-aachen.de/cms/staff/hai/
perfm/results.

1536

http://dbis.rwth-aachen.de/cms/staff/hai/comp/results
http://dbis.rwth-aachen.de/cms/staff/hai/perfm/results
http://dbis.rwth-aachen.de/cms/staff/hai/perfm/results


1 2 3 4 5 6 7 8
Number of parts

0
10
20
30
40
50
60
70
80

Re
wr

iti
ng

 ti
m

e 
(m

illi
se

co
nd

s) (a) Rewrite to one solution

1 2 3 4 5 6 7 8
Number of parts

0
300
600
900

1200
1500

Re
wr

iti
ng

 ti
m

e 
(s

ec
on

ds
) (b) Find all solutions

1 2 3 4 5 6 7 8
Number of parts 

0

5000

10000

15000

20000

Nu
m

be
r o

f t
es

te
d 

so
lu

tio
ns (c) Candidate solution increase

0 5000 10000 15000 20000
Number of tested solutions 

0
300
600
900

1200
1500

Re
wr

iti
ng

 ti
m

e 
(s

ec
on

ds
) (d) Find all solutions

Figure 8: Performance test (πNumSrcRels = 4, πAritySrcRels = 5, πNumTgtRels = 3, πArityTgtRels = 4, πNumFuncs = 2)

6. RELATED WORK
In this work, we study the problem of transforming plain

SO tgds to dependencies with first-order semantics, e.g.,
nested tgds. The origin of this problem is the predicate
variables elimination from classical SO logic (see [13] for an
overall introduction). However, our focus is plain SO tgds,
a class of SO formulas with specific syntax and practical
applications in data exchange and data integration systems.

The main research question of [24] is the compositions of
schema mappings. The direct output of their composition
algorithms are SO tgds. To make the mapping results appli-
cable for further data transformations such as SQL queries,
they proposed an algorithm that transfers SO tgds back to
tgds. A sound but not complete, P-time checkable condi-
tion is also proposed, which tells when the SO tgds can be
transformed to its equivalent tgds. However, in terms of ex-
pressive power the class of tgds is a strict subclass of nested
tgds. Thus the de-Skolemization algorithm proposed in [24]
covers less plain SO tgds than our approach.

Similar remarks hold for [25], which studies the complexi-
ties of the model checking problems for different mapping de-
pendencies. The checking conditions are given to tell when
an input SO tgd µ without nested function terms can be
translated into FO sentences. That is, the variables con-
stituting the argument list of every Skolem function in µ
should be consistent; there should exist a linear ordering ~X
of the arguments of Skolem functions of µ. Then by applying
standard de-Skolemization procedure that replaces Skolem
functions with existentially quantified variables, µ is trans-
formed to FO sentences. No explicit algorithms are given in
[25]. The limitation of using this method to solve Q1 is also
that only tgds rather than nested tgds are considered.

We mainly compared our solution with [6], which explic-
itly defines the checking conditions of consistency and lin-
earity, and provides the algorithms to rewrite plain SO tgds.
In particular, a partitioning method maximum partition is
proposed, which cuts the plain SO tgds to multiple blocks,
and then checks each block for linearity. [6] has shown that
linearity is more general and its approach can rewrite more
plain SO tgds than [24, 25]. The approach in [6] rewrites
a given plain SO tgd into a set of tgds or FO sentences.
The results do not always satisfy the syntax of nested tgds,
and their decidability of logical equivalence is unknown. Un-
like our approach, in [6] the nesting of mappings (i.e., nest-
ing of implications in nested tgds) is not considered. Such
a property is the main reason why nested mappings are

more efficient than basic mappings [12, 16]. Moreover, we
have proven formally (Sec. 4.2) and showed experimentally
(Sec. 5.3) that even with a focus on rewritability, our algo-
rithmic approach with the condition of a hierarchical order
is more general than the linearity based approach [6].

In [21] a tool, i.e., Gaifman graph of nulls is proposed to
tell apart plain SO tgds and nested tgds. For every nested
GLAV mapping, its Gaifman graph of nulls has bounded
path length (Theorem 4.16, [21]). However, the decidability
of determining whether a given plain SO tgd has bounded
path length in its Gaifman graph of nulls is unknown. In this
work we provide a sufficient condition (Theorem 2), which
is easy to implement.

7. CONCLUSION
We have studied the problem whether a given plain SO tgd

has first-order semantics and can be rewritten into nested
tgds. We proposed an algorithmic approach to transform
plain SO tgds to one or a set of nested tgds while preserving
the logical equivalence. We also defined a sufficient con-
dition to tell whether the input plain SO tgd is rewritable
based on the structural properties. We have formally proved
the correctness of our approach, which we also demonstrated
experimentally through enumerating a massive number of
plain SO tgds with different characteristics and sizes. Al-
though we cannot verify the completeness of our approach
due to the lack of the ground truth, we showed that it is
more general than existing works, and applies to a wide
range of plain SO tgds. We have formally explored the com-
plexity of rewriting tasks, and experimentally showed that
our algorithms have a satisfying performance.

Our current approach investigates the native properties
of the input schema mapping, i.e., its logical equivalence to
first-order mapping dependences. In the future, we plan to
extend our approach by considering additional input, e.g.,
(relaxed) functional dependencies [17]. Moreover, in our
data lake system [15], we generate mappings as plain SO
tgds [16], and use them to rewrite queries in a polystore-
based setting [18]. We are currently working on extending
our proposed algorithms for refining the generated mappings
to boost the mapping execution for data exchange or data
integration tasks in a heterogeneous data lake.
Acknowledgements: The authors would like to thank the
German Research Foundation DFG for the kind support
within the Cluster of Excellence “Internet of Production”
(Project ID: EXC 2023/390621612).
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