
Blockchain Meets Database: Design and Implementation
of a Blockchain Relational Database

Senthil Nathan1, Chander Govindarajan1, Adarsh Saraf1,
Manish Sethi2, and Praveen Jayachandran1

1IBM Research - India, 2IBM Industry Platforms, USA
1(snatara7, chandergovind, adasaraf, praveen.j)@in.ibm.com, 2manish.sethi1@ibm.com

ABSTRACT
In this paper, we design and implement the first-ever de-
centralized replicated relational database with blockchain
properties that we term blockchain relational database. We
highlight several similarities between features provided by
blockchain platforms and a replicated relational database,
although they are conceptually different, primarily in their
trust model. Motivated by this, we leverage the rich fea-
tures, decades of research and optimization, and available
tooling in relational databases to build a blockchain rela-
tional database. We consider a permissioned blockchain
model of known, but mutually distrustful organizations each
operating their own database instance that are replicas of
one another. The replicas execute transactions indepen-
dently and engage in decentralized consensus to determine
the commit order for transactions. We design two approach-
es, the first where the commit order for transactions is agreed
upon prior to executing them, and the second where trans-
actions are executed without prior knowledge of the commit
order while the ordering happens in parallel. We leverage
serializable snapshot isolation (SSI) to guarantee that the
replicas across nodes remain consistent and respect the or-
dering determined by consensus, and devise a new variant
of SSI based on block height for the latter approach. We
implement our system on PostgreSQL and present detailed
performance experiments analyzing both approaches.

PVLDB Reference Format:
Senthil Nathan, Chander Govindarajan, Adarsh Saraf, Manish
Sethi, Praveen Jayachandran. Blockchain Meets Database: De-
sign and Implementation of a Blockchain Relational Database.
PVLDB, 12(11): 1539-1552, 2019.
DOI: https://doi.org/10.14778/3342263.3342632

1. INTRODUCTION
Blockchain has gained immense popularity over recent

years, with its application being actively explored in several
industries. At its core, it is an immutable append-only log
of cryptographically signed transactions, that is replicated
and managed in a decentralized fashion through distributed

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3342263.3342632

consensus among a set of untrusted parties. Opinion on the
technology has varied widely from being hailed as the biggest
innovation since the Internet to being considered as another
database in disguise. For the first time, we undertake the
challenge of explaining blockchain technology from the per-
spective of concepts well known in databases, and highlight
the similarities and differences between the two. Existing
blockchain platforms [18, 52, 40, 15], in an attempt to build
something radically new and transformative, rebuild a lot of
features provided by databases, and treat it as just a store
of information. We take a contrarian view in this paper.
By leveraging the rich features and transactional process-
ing capabilities already built into relational databases over
decades of research and development, we demonstrate that
we can build a blockchain relational database with all fea-
tures provided by existing blockchain platforms and with
better support for complex data types, constraints, triggers,
complex queries, and provenance queries. Furthermore, our
approach makes building blockchain applications as easy as
building database applications; developers can leverage the
rich tooling available for backup, analytics, and integration
with existing enterprise systems. Applications that have
a strong compliance and audit requirements and need for
rich analytical queries such as in financial services that are
already built atop relational databases, or ones that are
reliant on rich provenance information such as in supply
chains are likely to most benefit from the blockchain rela-
tional database proposed in this paper.
With a focus on enterprise blockchain applications, we tar-

get a permissioned setup of known but untrusted organiza-
tions each operating their own independent database nodes
but connected together to form a blockchain network. These
database nodes need to be replicas of each other but dis-
trust one another. Replication of transaction logs and state
among multiple database nodes is possible using master-
slave [17, 26, 46, 51] and master-master [26, 49, 51] proto-
cols. In these protocols, the master nodes need to be trusted;
for any transaction, a single node executes it and propagates
the final updates to other nodes either synchronously [39, 21,
45] or asynchronously [29, 43, 47] , which would not work
in a blockchain network. Hence, transactions need to be
independently executed on all nodes. Further, such an ex-
ecution and subsequent commits across multiple untrusted
nodes must result in the same serializable order to ensure
consistency. We need a novel replication protocol with a
notion of decentralized trust. Although fault-tolerant syn-
chronous commit protocols [30, 50] exist, they cannot be
used as they either require a centralized trusted controller

1539

or multple rounds of communications per transaction which
would be costly in a network with globally distributed nodes.
In this paper, we address this key challenge of ensuring

that all the untrusted database nodes execute transactions
independently and commit them in the same serializable or-
der asynchronously. Towards achieving this, we make two
key design choices. First, we modify the database to sep-
arate the concerns of concurrent transaction execution and
decentralized ordering of blocks of transactions. We leverage
ordering through consensus only to order blocks of transac-
tions, and not for the serializable ordering of transactions
within a single block. Second, independently at each node,
we leverage serializable snapshot isolation (SSI) [24, 44] to
execute transactions concurrently and then serially validate
& commit each transaction in a block to obtain a serializable
order that will be identical across all untrusted nodes.
We make the following contributions in this paper: (1) We

devise two novel approaches of building a blockchain plat-
form starting from a database, (a) where block ordering is
performed before transaction execution, (b) where transac-
tion execution happens parallelly without prior knowledge
of block ordering. (2) We devise a new variant of serializable
snapshot isolation [44] based on block height to permit trans-
action execution to happen parallelly with ordering. (3) We
implement the system in PostgreSQL using only 4000 lines
of C code and present the modified architecture.
The rest of this paper is organized as follows. We highlight

the properties required in a blockchain platform, motivate
how several of these are either partially or fully available
in relational databases, and identify shortcomings that need
to be addressed in §2. We discuss our design in §3 and
describe two approaches to transaction processing leveraging
serializable snapshot isolation. We provide an account of our
prototype implementation on PostgreSQL in §4. In §5, we
present a detailed performance study. We discuss related
work in §6 and conclude in §7.

2. MOTIVATION
Table 1 presents a comparison of properties required by

a blockchain platform and features available in relational
databases. We argue that there is much to be gained by
leveraging and enhancing the features of relational databases
to build a permissioned blockchain platform, rather than
building one from scratch. This approach helps us lever-
age the decades of research in relational databases, stable
enterprise-ready code with rich features, the large commu-
nity, libraries, tools and integrations with enterprise appli-
cations. Next, we compare blockchains and databases across
eight features and the enhancements needed.
(1) Smart contract & transaction: Many blockchain

platforms such as Hyperledger Fabric [18], Ethereum [52]
and Corda [31] support smart contracts which are functions
(written in platform specific languages like Go) that manage
state on the blockchain ledger. Transactions are invocations
of these functions. This is similar to stored procedures in
relational databases written in PL/SQL, a feature complete
procedural language that is powerful enough to match func-
tionality provided by contracts in other platforms. How-
ever in a blockchain platform, independent execution of the
contracts by different peers needs to be deterministic which
may not be true for PL/SQL if utility functions such as
random and timestamp are used. Hence, we need to con-
strain PL/SQL to ensure determinism.

(2) User authenticity & non-repudiability: Permis-
sioned blockchain systems employ public key infrastructure
for user management and ensuring authenticity. Users be-
long to organizations that are permissioned to participate
in the network. Transactions are digitally signed by the in-
voker and recorded on the blockchain, making them non-
repudiable. Relational databases have sophisticated user
management capabilities including support for users, roles,
groups, and various user authentication options. However,
submitted and recorded transactions are not signed by the
invoker making them repudiable.
(3) Confidentiality & access control: Some permis-

sioned blockchains support the notion of confidentiality; sm-
art contracts, transactions and data are only accessible by
authorized users. In addition, access to invoke functions
and to modify data is restricted to specific users. Relational
databases have comprehensive support for access control on
tables, rows, columns and PL/SQL procedures. Some re-
lational databases even provide features like content-based
access control, encryption and isolation of data. Advanced
confidentiality features where only a subset of the nodes have
access to a particular data element or smart contract can be
implemented, although we don’t consider that in this paper.
(4) Immutability of transactions and ledger state:

The blockchain ledger is an append-only log of blocks con-
taining sets of transactions that are chained together by
adding the hash of each block to it’s succeeding block. This
makes it difficult for an attacker to tamper with a block and
avoid detection. The ledger state can only be modified by
invoking smart contract functions recorded as transactions
on the blockchain and are immutable otherwise. Although a
database logs all submitted transactions, executed queries,
and user information, it isn’t possible to detect changes to
the log as there are no digital signatures.
(5) Consistent replicated ledger across distrustful

nodes: All non-faulty peers in a blockchain must main-
tain a consistent replica of all transactions and the ledger
state. This is ensured by all peers committing transactions
in the same sequential order as agreed through consensus.
Note that consensus is performed on blocks of transactions
rather than on individual transactions to be more perfor-
mant. Databases support replication of transaction logs and
state among nodes using master-slave [17, 26, 46, 51] and
master-master [26, 49, 51] protocols. As discussed earlier, in
these protocols, master nodes are trusted. Hence, we need
a replication protocol with a notion of decentralized trust,
while ensuring that the replicas remain consistent.
(6) Serializability isolation, ACID: Blockchain trans-

actions require serializable isolation, in which dirty read,
non-repeatable read, phantom reads, and serialization anom-
alies are not possible. Transactions, when executed in paral-
lel, must follow the same serializable order across all nodes.
Further, transactions should be ACID [23] compliant. Seri-
alizable isolation can be achieved in databases by employing:
(i) strict 2-phase locking [39], (ii) optimistic concurrency
control [33], or (iii) SSI [24, 44]. While these techniques can
be leveraged to a large extent, they need to be enhanced to
follow the block order as determined through consensus.
(7) Asynchronous transactions: As transaction pro-

cessing and consensus may involve a non-trivial delay, clients
submit transactions and leverage notification mechanisms to
later learn the transaction status. Databases provide notifi-
cation channels and triggers that can serve this purpose.
(8) Provenance: The append-only log of transactions in

blockchains can be harnessed as a provenance store for sev-

1540

Table 1: Similarities between blockchain properties and relational database features.
Blockchain Properties Relational Database Features Enhancement Needed
Smart contract PL/SQL procedure Deterministic execution
Authenticity, non-repudiability User management with groups and roles Crypto-based transaction authentication
Access control Role & content-based ACL policies None
Immutable transaction logs Transaction logs Digitally signed transactions
Consistent replicated ledger between
untrusted nodes

Master-slave & master-master replication with
trust on transaction ordering and update logs

Decentralized trust and transaction order-
ing determined by consensus

Serializable isolation level Strict 2-phase locking, optimistic concurrency
control, serializable snapshot isolation

Order must respect block ordering ob-
tained through consensus

Async transaction & notification LISTEN & NOTIFY commands None
Provenance queries Maintains all versions of a row Enable query on historical records

eral use cases including supply chain tracking and financial
compliance. However, most blockchain platforms today do
not support complex queries on historic data or are not opti-
mized for provenance queries. In certain relational databases
which support Multi-Version Concurrency Control [20] such
as snapshot isolation [19], all versions of a row are main-
tained though SQL queries cannot access old rows (which
are purged periodically). For provenance queries, we need
to disable purging and enable queries on the old rows.

3. DESIGN
We identify two approaches to achieve our goal of building

a consistent replicated ledger across untrusted nodes start-
ing from a relational database. The first approach, order-
then-execute, orders all the transactions through a consensus
service and then nodes execute them concurrently, whereas
in the second approach, execute-order-in-parallel, transac-
tion execution happens on nodes without prior knowledge
of ordering while block ordering happens parallelly through
a consensus service. Intuitively, while the first approach is
simpler and requires fewer modifications to the relational
database, the second approach has the potential to achieve
better performance. We design and implement both ap-
proaches to study their trade-offs.
We describe the key components of our system in §3.1.

We provide background on Serializable Snapshot Isolation in
§3.2 and show later in §3.3 that SSI, if directly applied, does
not guarantee serializability and consistency across nodes for
the execute-order-in-parallel approach. Figure 1 juxtaposes
the two proposed approaches and we describe them in detail
in §3.3, including a novel SSI based on block height tech-
nique. We discuss security properties of the proposed ap-
proaches in §3.4. We describe a mechanism for peer node re-
covery in §3.5 and then discuss how a permissioned blockcha-
in network can be bootstrapped in §3.6.

3.1 Key Components
We consider a permissioned network of organizations that

are known to one another but may be mutually distrustful.
The network is private to the participating organizations
and a new organization must be permissioned to join the
network. Each organization may include clients, database
peer nodes and ordering service nodes, which we describe
below, that together form the decentralized network.
Client: Each organization has an administrator respon-

sible for onboarding client users onto the network. The ad-
ministrator and each client have a digital certificate regis-
tered with all the database peers in the system, which they
use to digitally sign and submit transactions on the network
(we describe the network setup process in §3.6). This helps
support authenticity, non-repudiability and access control

properties. Clients may also listen on a notification channel
to receive transaction status.
Database Peer Node: An organization may run one or

more database nodes in the network. All communication to
send and receive transactions and blocks happens via a se-
cure communication protocol such as TLS. Each node also
has a cryptographic identity (i.e., public key) and all com-
munications are signed and authenticated cryptographically.
Each database node maintains its own replica of the ledger
as database files, independently executes smart contracts
as stored procedures, and validates and commits blocks of
transactions formed by the ordering service.
Ordering Service: Consensus is required to ensure that

the untrusted database nodes agree on an ordering of blocks
of transactions. To leverage the rich literature on consensus
algorithms with different trust models, such as crash fault
tolerant (e.g., Raft [41], Paxos [35], Zab [32]) and byzantine
fault tolerant (e.g., PBFT [25], XFT [38], BFT-SMaRt [22])
consensus we make the ordering service in our system plug-
gable and agnostic to the database implementation. The
ordering service consists of consensus or orderer nodes, each
owned by a different organization. Each orderer node, sim-
ilar to database nodes, have their own digital certificate or
identity. The output of consensus yields a block of transac-
tions, which is then atomically broadcast to all the database
nodes. A block consists of (a) a sequence number, (b) a set
of transactions, (c) metadata associated with the consensus
protocol, (d) hash of the previous block, (e) hash of the cur-
rent block, i.e., hash (a, b, c, d); and (f) digital signature on
the hash of the current block by the orderer node.

3.2 Serializable Snapshot Isolation (SSI)
Strict 2-phase locking (S2PL), optimistic concurrency con-

trol (OCC), and SSI are approaches to achieve serializability.
As SSI offers greater concurrency than S2PL and OCC, we
have chosen SSI in our design. SSI achieves serializability
using a modified snapshot isolation (SI) technique.
Snapshot Isolation and Anomalies. In SI, each trans-

action reads from a consistent snapshot of the database com-
prising of the last committed values that existed at the time
the transaction started. Although SI prevents dirty read,
non-repeatable read, and phantom read, it cannot guarantee
serializability due to SI anomalies [19] which violates con-
sistency (i.e., C in ACID), specifically integrity constraints
(refer to [19, 24, 44] for examples). Hence, Cahill et. al. [24]
proposed SSI to detect and resolve anomalies automatically.
Background on SI Anomalies. To detect SI anomalies,

Adya et. al. [16] proposed multi-version serialization history
graph. This graph contains a node per transaction, and an
edge from transaction T1 to transaction T2, if T1 must have
preceded T2 in the apparent serial order of execution. Three
types of dependencies can create these edges:

1541

T1: invoke
smartcontract
foo(args) at
height 'n'

1
2 T1 2 2

block5Notify
Client

5
5

(b) Execute and Order In Parallel

Client1 form
Org1

Database Node
of Org1

Database Node
of Org2

Database Node
of OrgN

Ordering
Service

3 3 3

6 6 commit transactions
as per the order in

block

6

state change hash7 7 7

state change hashes are
added in the next block block9 9

9

10 10 10checkpoints or
point in time rollback

8

executes transactions
concurrently using
proposed SSI
at height n

Client1 form
Org1

Database Node
of Org1

Ordering
Service

T1: invoke
smartcontract
foo(args)

1

4 4 4

performs consensus to
construct a blockblock

2

3

Notify
Client

3
3

(a) Order then Execute

5 5 5

 executes transactions
in block concurrently
using proposed SSI

 commit transactions
as per the order in

block
state change hash6 6 6

state change hashes are
added in the next block block8 8

8

Database Node
of Org2

Database Node
of OrgN

9 9 9checkpoints or
point in time rollback

7

checkpointing
phase

6 7 8 9

2

3

4

5

ordering
phase

execution
phase

committing
phase

performs consensus to
construct a block

4

2

3

4

5

execution
phase

ordering
phase

6

checkpointing
phase

7 8 9 10

Figure 1: Proposed transaction flows—order-then-execute and execute-and-order-in-parallel

T1 T2 T1 T2 T3 T1 T2 T3

(a) (b) (c)

rw-dependency wr-dependency

Figure 2: SI Anomalies between 2 and 3 transactions

• rw-dependency : if T1 writes a version of some object,
and T2 reads the previous version of that object, then
T1 appears to have executed after T2, because T2 did not
see the update. To represent this, an edge from T2 to T1

with a label rw needs to be added. As we will see, these
rw-conflicts are central to SSI. Further, a dependency
can also be caused by predicate reads.

• wr-dependency : if T1 writes a version of an object, and
T2 reads that version, then T1 appears to have executed
before T2 (an edge from T1 to T2 with a label wr).

• ww-dependency : if T1 writes a version of some object,
and T2 replaces that version with the next version, then
T1 appears to have executed before T2 (an edge from T1

to T2 with a label ww).
If a cycle is present in the graph, then the execution does not
correspond to any serial order, i.e., a SI anomaly has caused
a serializability violation. Otherwise, the serial order can be
determined using a topological sort.
In SI, a wr-dependency or ww-dependency from T1 to T2

denotes that T1 must have committed before T2 began. In
practice, writes acquire an exclusive lock to prevent ww-
dependency between two concurrent transactions. Hence, a
wr-dependency also cannot occur between two concurrent
transactions. In contrast, only rw-dependency occurring be-
tween concurrent tra-nsactions is relevant when studying se-
rialization anomalies.
Adya et. al. [16] observed that every cycle in a serial-

ization graph contains at least two rw-dependency edges.
Fekete et. al. [27] subsequently found that two such edges
must be adjacent. Figure 2(a) shows the only possible cycle
with two transactions, and Figure 2(b) and (c) show the two
possible cycles with three transactions. If any of the trans-
actions is aborted, a serializable order could be achieved.
SSI - Resolving Anomalies. SSI automatically detects

and resolves anomalies. As tracking rw & wr dependen-
cies, and subsequently detecting cycles is costly, SSI applies
heuristics that are anomaly-safe, but could result in false
positives. They are:

(1) abort immediately : Cahill et. al. [24] used two flags
per transaction T: (a) inConflict—set when there is a rw-
dependency from a concurrent transaction to T; (b) out-
Conflict—set when there is a rw-dependency from T to a
concurrent transaction. As soon as both of these flags are
set for T, which could lead to an SI anomaly, T is aborted.
(2) abort during commit : Ports et. al. [44] maintained

two lists per transaction T: (a) inConflictList—maintains
a list of concurrent transactions from which there is a rw-
dependency to T. (b) outConflictList—maintains a list of
concurrent transactions to which T has a rw-dependency.
The transactions present in inConflictList of T are called
nearConflicts. The transactions present in the inCon-
flictList of each nearConflict are called farConflicts. For
e.g., in Figure 2(b), for T2, T1 is a nearConflict and T3 is
a farConflict. Recall that rw-dependency occurs only be-
tween concurrently executing transactions (such as in Fig-
ures 2(a) and (b)). For each pair of nearConflict and far-
Conflict, if both transactions are not yet committed, then
this heuristic aborts the nearConflict so that an immedi-
ate retry can succeed. In contrast, a wr-dependency only
occurs between a committed and a just commenced trans-
action (Figure 2(c)). In this case, only if T3 has committed
first, its nearConflict T2 is aborted. Otherwise, no transac-
tions are aborted. In other words, while the heuristic does
not track wr-dependency, it accounts for its possibility and
aborts a transaction whose outConflict has committed.

3.3 Proposed Approaches
In this subsection, we describe the transaction flows for

(1) Order then Execute; and (2) Execute and Order in Par-
allel as shown in Figure 1. In both flows, transactions are
committed asynchronously across nodes.

3.3.1 Order then Execute
A transaction submitted by a client in the order-then-

execute approach comprises of (a) a unique identifier, (b)
the username of the client, (c) the PL/SQL procedure ex-
ecution command with the name of the procedure and ar-
guments, and (d) a digital signature on the hash(a, b, c)
using the client’s private key. The transaction flow consists
of four pipelined phases: ordering, execution, committing,
and checkpointing, wherein a submitted transaction needs
to first be ordered, then executed, and finally committed
before recording a checkpoint.

1542

(1) Ordering phase: Clients submit transactions di-
rectly to any one of the ordering service nodes. On a peri-
odic timeout, the ordering service nodes execute a consensus
protocol to construct a block of transactions and delivers the
block to the database nodes. In Figure 1(a), steps 2 and 3
denote this phase.
(2) Execution phase: On receiving a block of transac-

tions, each database node verifies whether the received block
is in sequence and sent by the ordering service. On success-
ful verification, the node appends the block to a block store
maintained in the local file system. In parallel, the node re-
trieves unprocessed blocks one at a time, in the order of their
block sequence number, from the block store and performs
the following four operations:
1. The database node assigns a thread per transaction (pro-

vided that the identifier present in a transaction’s field
is unique) to authenticate and execute it. In an append-
only ledger table, it records each transaction in a block.
This ledger table is used for recovery as explained in §3.5
and also for provenance queries as demonstrated in §4.2.

2. Each thread retrieves the public key associated with the
username in the transaction, to verify the user’s digital
signature. On successful authentication, the username
is set for the thread’s session which is needed for ac-
cess control. We leverage the database’s access control
capabilities without modification.

3. Each thread executes the PL/SQL procedure with the
passed arguments as per the transaction. To ensure that
on all nodes the transactions are executed on the same
committed state, all valid transactions in a block are ex-
ecuted concurrently using the abort during commit SSI
variant. This helps in ensuring that the set of transac-
tions marked to be committed are the same and that
they follow the same serializable order across all nodes.

4. Once a thread completes execution of a transaction, the
transaction would be ready to either commit or abort (as
per the procedure’s execution logic), but waits without
proceeding. This is because it could result in a different
commit order in different nodes, if the execution com-
pletion order is different (which could result in different
aborts by SSI in each node).

Only after committing a block of transactions, the execution
phase will process the next block. In Figure 1(a), step 4
denotes the execution phase.
(3) Committing phase: To ensure that the commit

order is the same on all nodes, the order in which the trans-
actions get committed is the order in which the transactions
appear in the block. Only when all valid transactions are
executed and ready to be either committed or aborted, the
node serially notifies one thread at a time to proceed fur-
ther. Every transaction applies the abort during commit ap-
proach to determine whether to commit, and only then does
the next transaction enter the commit stage. While it is
possible to apply SSI for all transactions at once to obtain a
serializable order, we defer such optimizations for simplicity.
The node records the transaction status in the ledger table
and emits an event via a notification channel to inform the
client. In Figure 1(a), step 5 denotes the committing phase.
There is one additional challenge. In SSI, ww-dependency

is handled using an exclusive lock. For example, if T1 and
T2 are competing to write an object, only one transaction
can acquire a lock (say T1) and the other (say T2) must
wait for the lock to be released which can happen only after
the commit/abort of T1. However, in our system, to ensure

consistency across all nodes, the committing phase cannot
start unless all transactions complete execution. So, we can-
not use locks for ww-dependency. However, as the ordering
between transactions is determined by consensus and fixed
across all nodes, we leverage this to permit both transactions
to write to different copies of the object, but subsequently
commit only the first as determined by the ordering. We
show how such an implementation is possible in §4.
It is noteworthy that certain existing blockchain plat-

forms such as Ethereum also follow an order-then-execute
approach. However, they execute transactions sequentially
in the order they appear in the block to ensure serializability
and consistency across nodes, but this affects performance.
In contrast, leveraging SSI to execute transactions concur-
rently and then sequentially issuing committing as per or-
dering from consensus, enables us to optimize performance.
(4) Checkpointing phase: Once all transactions in a

block are processed, each node computes the hash of the
write set, which is the union of all changes made to the
database by the block, and submits it to the ordering service
as a proof of execution and commit. When a node receives
subsequent blocks, it would receive the hash of write set
computed by other nodes. The hash computed by all non-
faulty nodes would be the same and the node then proceeds
to record a checkpoint (note that this is different from the
Write-Ahead Logging checkpointing). It is not necessary to
record a checkpoint every block. Instead, the hash of write
sets can be computed for a preconfigured number of blocks
and then sent to the ordering service. In Figure 1(a), steps
6, 7, and 8 denote the checkpointing phase.

3.3.2 Execute and Order in Parallel
A transaction submitted by a client in the execute-order-

in-parallel approach comprises of (a) the username of the
client, (b) the PL/SQL procedure execution command with
the name of the procedure and arguments, (c) a block num-
ber, (d) a unique identifier which is computed as hash(a,
b, c), and (e) a digital signature on the hash(a, b, c, d)
using the client’s private key. The transaction flow consists
of four phases: execution, ordering, committing, and check-
pointing phase. A submitted transaction is executed by the
database nodes and in parallel ordered by the ordering nodes
and placed in a block. This is followed by the commit and
checkpoint phases. We describe each phase in detail below.
(1) Execution Phase: Clients submit transactions di-

rectly to one of the database nodes. When a node receives a
transaction, it assigns a thread to authenticate, forward and
execute the transaction. On successful authentication (same
as in the order-then-execute approach), the transaction is
forwarded to other database nodes and the ordering service
in the background. The four steps described in §3.3.1 for
the execution phase applies for the execute-order-in-parallel
approach as well, except for the default SSI and the logic
to handle duplicate transaction identifiers. This is shown
in steps 1-3 in Figure 1(b). Unlike the order-then-execute
approach where execution of transactions happen after or-
dering and on the committed state from the previous block,
in the execute-order-in-parallel approach we endeavor to ex-
ecute and order in parallel. To ensure that the transaction
is executing on the same committed data on all nodes, the
submitted transaction includes the block height on which it
should be executed (the client can obtain this from the peer
it is connected with). We propose SSI based on block height
as depicted in Figure 3, as the default SSI cannot ensure

1543

Table 2: Abort rule for our proposed SSI variants when
Transaction T is committing.
nearConflict farConflict to commit first Abort

same block among conflicts
" " nearConflict farConflict
" " farConflict nearConflict
" % nearConflict farConflict
% " farConflict

nearConflict% % -
% none -

3
2
1

Current
Block
Height

DB state at block height 3

DB state at block height 1
DB state at block height 2

Logical Storage

Example: Execute
transaction-1 at snapshot-height 1

Can access only the DB
state at block height 1

=>

Figure 3: Logical Database Storage to Enable Snapshot
Isolation Based on Block Height.

that transactions are executed on the same committed state
on all nodes as each node can be at a different block height
depending on its processing speed.
SSI Based on Block Height : In this isolation level,

each row of a table contains a creator block number and
deleter block number which denote the block that created
and deleted this row, respectively (irrespective of the trans-
action within the block that created it). Note that, creator
and deleter block number are part of the implementation
for the order-then-execute approach as well, but are used
only for provenance queries and are not required for SSI.
During a transaction execution, based on the block number
specified, the transaction can view the database state com-
prising of all commits up to this block height as shown in
Figure 3. We refer to this specified block number as the
transaction’s snapshot-height. In other words, a transac-
tion sees all rows with creator lesser than or equal to its
snapshot-height. For all such rows, the deleter should
be either empty or greater than the snapshot-height. For
this SSI to work, we need to maintain all versions of a row
and every update should be a flagging of the old row and an
insertion of the new row. Every delete should be a marking
of deleter. This facilitates the transaction to be executed
on the same committed data on all nodes.
However, the current block (current-block) processed for

commit by a node might be either lower or higher than the
specified snapshot-height of a transaction. If the current
-block is lower, the transaction would start executing once
the node completes processing all blocks and transactions up
to the specified snapshot-height. If the current-block is
higher, the transaction would be executed immediately, but
the serializability requirement could be violated because of a
phantom or stale data read, which needs to be detected and
handled. For example, assume that a transaction is updat-
ing all rows in a table which satisfy a given predicate men-
tioned in a WHERE clause. There is a possibility that a row
that satisfies the predicate was committed by a block with a
number which is greater than the specified snapshot-height
and lesser than or equal to current-block. In this scenario,
a phantom read [19] has occurred that violated the serial-
izability. Similarly, a transaction can read a row from a
snapshot as of snapshot-height, but if that row was either
updated or deleted by a subsequent block it would result in
a stale read for this transaction.

In order to ensure serializability, the proposed SSI ap-
proach detects such phantom reads and stale data reads to
abort the corresponding transaction. To detect and abort
such a transaction, the proposed approach applies row vis-
ibility logic on the committed state: (1) when a row with
creator greater than the specified snapshot-height satis-
fies the given predicate, abort the transaction provided that
the deleter is empty (handles phantom read); (2) when
a row with creator lesser than snapshot-height satisfies
the given predicate, abort the transaction provided that the
deleter is non-empty and greater than snapshot-height
(handled stale read). Further, concurrent transactions which
are going to be committed during or after current-block
can also create a phantom read or a stale read problem.
Such cases are tracked by our proposed SSI as described in
the committing phase.
(2) Ordering Phase: Database nodes submit transac-

tions to the ordering service unlike the order-then-execute
approach. Note that the transactions are being executed in
the database nodes while they are being ordered by the or-
dering service. The rest of the logic is same as explained in
§3.3.1 for the order-then-execute approach. In Figure 1(b),
the steps 4 and 5 denote the ordering phase.
(3) Committing Phase: Like in the order-then-execute

approach, an important pre-condition for entering commit
phase is that all transactions in a block must have completed
its execution and waiting to proceed with commit/abort.
However, there are two key differences compared to the
commit phase of order-then-execute. First, after receiving
a block, if all transactions are not running (this occurs if
the node has not received communication of a transaction
from another peer due to maliciousness or network delay),
the committer starts executing all missing transactions and
waits for their completion before proceeding to the com-
mitting phase. Second, unlike the previous approach, it is
possible for concurrent transactions to be executing at differ-
ent snapshot heights (as specified by the respective clients).
Further, transactions that are concurrent on one node, may
not be concurrent on another, but we need the set of trans-
actions that are decided to be committed to be the same on
all nodes. As a result, we don’t support blind updates such
as UPDATE table SET column = value; which might result
in a lock for ww-dependency only on a subset of nodes. Note,
ww-dependencies are handled in the same way as described
in §3.3.1. Further, instead of employing the abort during
commit variant of SSI, we propose a block-aware abort dur-
ing commit variant of SSI as described next.
Proposed SSI variant—block-aware abort during

commit. Table 2 presents the abort rules for the pro-
posed SSI variant. In addition to nearConflict and far-
Conflict, our variant considers two additional parameters:
(1) whether the nearConflict and farConflict are in the
same block; (2) if they are in the same block, which among
them is earlier as per the ordering. When either or both
the conflicts are in the same block as transaction T, it is
straightforward to abort the one that comes later in the or-
dering, and is deterministic on all nodes.
The tricky case is when neither of the conflicts are in the

same block. In this case, we abort the nearConflict transac-
tion. Note, the nearConflict is not in the same block but ex-
ecutes concurrently with T—this means that the snapshot
-height specified for both could be lesser than or equal to
the current block height at the node. With no synchroniza-

1544

tion on transaction executions between nodes, it is possible
for an SI anomaly to occur only at a subset of nodes. To
ensure consistency between nodes, we need to ensure that
the same set of transactions are aborted on all nodes. Let
us consider possible scenarios in other nodes (say T2 is the
nearConflict transaction): (1) If T2 is concurrent with T and
an anomaly structure is detected, then T2 is aborted as per
our heuristic; (2) If T commits before T2 starts execution,
then T2 being a nearConflict for T read a stale value and
would be aborted as discussed earlier; (3) If T2 is concur-
rent with T , but T is committed first, then this is a case of
a rw-dependency where the outConflict has already commit-
ted leading to an anomaly structure (similar to Figure 2(c))
and T2 will be aborted in this case as well. Hence, we must
abort the nearConflict irrespective of the presence of a far-
Conflict, whenever the nearConflict is not in the same block.
(4) Checkpointing Phase is same as explained in §3.3.1.
The unique identifier used for a transaction must be the

hash of (a) the username of the client, (b) the PL/SQL pro-
cedure execution command with the name of the procedure
and arguments, and (c) a block number specified for the SSI
by the client. The reason is that if two different transac-
tions are submitted to two different nodes with the same
unique identifier, whichever transaction executes first on a
given node is the one that would succeed, whereas the other
would fail due to the duplicate identifier. As this can result
in an inconsistent state across nodes, the unique identifier
is composed of the three fields in the transaction to ensure
that no two different transactions have the same identifier.

3.4 Discussion on Security Properties
(1) Submission of invalid transactions. A malicious

client can potentially submit a large number of invalid trans-
actions (e.g., ones that will eventually fail due to stale reads,
try to perform operations they do not have access for) in an
attempt to launch a denial of service attack. This can be
thwarted in one of two ways. First, similar to permission-
less blockchain networks, a transaction fee could be levied
for each transaction using a native currency (it is possible
to implement a native currency in our system if desired).
Second, by monitoring clients and their behavior on the net-
work, it is possible to exclude them from participation. We
leave such enhancements for future work as it does not affect
the core design of our system.
(2) Obscuration of valid transactions. In order-

execute approach, when a malicious orderer node receives
a transaction from the user, it might not include the trans-
action in a block. Similarly, in execute-order-in-parallel ap-
proach, when a malicious database node receives a trans-
action from the user, it might not forward the transaction
to other database and orderer nodes. In both scenarios, at
the client side, the transaction request would timeout. The
client can then submit the same transaction to some other
orderer or database node depending on the approach. Note
that even if the client side timeout was a false alarm (i.e.,
the transaction is forwarded, included in a block and exe-
cuted), the resubmission of the same transaction does not
affect the data consistency as all nodes check for the unique
identifier included in the transaction before execution.
In execute-order-in-parallel approach, if the database node

forwards the transaction to an orderer node but not to other
database nodes, eventually the request would be added into
a block and delivered to all database nodes. The default
committing phase described in §3.3.2 would take care of ex-
ecuting missing transactions while processing the block.

(3) Withholding of a block or transaction commit.
In both approaches, when a malicious database node receives
a block, it might skip committing the block or a transaction
in that block. In such a scenario, the hash computed during
the checkpointing phase would differ from other nodes, and
it would become evident during the checkpointing process
that the malicious node did not commit the block correctly.
As other organizations can detect such maliciousness, there
is no incentive for the organization to engage in such an
activity. Since database nodes validate and commit blocks
independently of one another, a malicious database node
cannot hamper the liveness of the network.
(4) Byzantine ordering nodes. A malicious ordering

node could send an incorrect block to database nodes con-
nected to it. If an organization’s database node trusts the
ordering node it operates, but the ordering node is malicious,
then that database node would also become faulty. This sce-
nario would then be similar to the previous scenario of the
database node being malicious. If a database node does not
trust the ordering node, it should obtain blocks from 2f +1
ordering nodes (assuming the consensus algorithm tolerates
f failures or malicious behavior).
(5) Tampering of queries. In both approaches, the

user can submit a read query to a single database node to
fetch the stored data. A malicious node can tamper with the
query and return incorrect results to the user. The following
are two ways to detect such malicious behavior. The user
can submit the query to multiple database nodes and verify
whether the results are the same. Otherwise, any of the
existing query authentication [36, 37, 42, 53, 54] methods
can be used to verify the integrity of query results. Further,
when a stored data is tampered with, it would eventually be
identified through the checkpointing phase.
(6) Tampering of blockchain. Each database node

stores all blocks in a separate store called the block store as
described in §3.3. If any malicious database node tampers
its block store, it will not affect the other replicas main-
tained at other organizations’ node. In order to tamper the
block store and not be detected, the database node would
need the private cryptographic key of the orderer node as
well as the client who submitted the transaction to forge
their signatures. Even if the malicious node achieves this,
if the majority of the nodes are non-malicious, honest or-
ganizations could prove that the malicious organization has
tampered with the block store by comparing the replicated
chain when a conflict occurs. Only if 51% of the nodes are
malicious, a blockchain can be successfully tampered.

3.5 Recovery After a Failure
A blockchain network is required to tolerate node failures

and we need to ensure that a failed node recovers to a con-
sistent state when it restarts. In both approaches, the block
processing stage has the following two common operations
per block: (1) atomically store all transactions information
in the ledger table along with the block number; (2) atom-
ically store all transactions’ status (i.e., commit/abort) in
the ledger table. Note, only after all transactions get writ-
ten to write-ahead-logging and the default transaction logs,
the step 2 gets executed. A node can fail during any of the
above two stages. When the node restarts, it executes the
following operations to recover the database:
1. Retrieves the last processed block number from the ledger

table and checks whether all transactions have a status.

1545

Note, as we store all transactions’ status atomically, ei-
ther all transactions must have a status or none.

2. If a status is found in the ledger table for transactions,
it means that the block was committed successfully and
no recovery is needed. Note, if a node fails after commit-
ting a transaction, during restart, the default recovery
mechanism that uses write-ahead logging (WAL) would
take care of disk consistency.

3. If a status is not found in the ledger table for transac-
tions, a node might have (a) either failed after commit-
ting all those transactions but before updating the ledger
table with the status, or (b) failed before committing all
or some those transactions. If a transaction was suc-
cessfully committed, the relational database would have
recorded the status on the default transaction logs. The
node first checks the status of each transaction by read-
ing the default transaction logs. If a status is present for
all transactions, the node would update the ledger table
with the status (i.e., case (a)).

4. If a status is not present in the transaction log for all or
some transactions (i.e., case (b)), the node needs to roll-
back all other committed transactions in the same block.
Then the node can start re-executing all transactions as
described in §3.3, commit them, and record the status
in the ledger table. The rollback of committed transac-
tions is required as we need to execute all transactions
in a block parallelly using SSI at the same time to get a
consistent result with other nodes as well.

The handling of blocks missed out during failure is as simple
as fetching, processing and commiting them one by one. We
observe that it is possible to simplify the recovery process
by doing a single atomic commit of a a block of transactions
but we have omitted describing this in the interest of space.

3.6 Network Bootstrapping
To bootstrap a permissioned network, first, we need to

bring up the database and orderer nodes each with their
respective admin users and secure communication via TLS
between them. We need to then create users & roles for
each organization, and deploy PL/SQL procedures as smart
contracts.
Setting up database nodes and ordering service.

At network startup, each organization shares domain names
of database and orderer nodes, TLS certificates, and creden-
tials of admin users (i.e., public keys) with all other orga-
nizations. Each organization then starts its database and
orderer nodes with the above information.
Support for blockchain and non-blockchain schema.

Both blockchain (replicated) and non-blockchain (private)
schemas are supported, and it is possible to invoke read-
only queries on a node that span both schemas.
Setting up of PL/SQL procedures. To facilitate de-

ployment of smart contracts, each node exposes the follow-
ing four system smart contracts created during setup. These
contracts can only be invoked by organization admins, are
considered blockchain transactions and follow the transac-
tion flow described earlier. (1) create_deployTx() creates,
replaces or drops a smart contract. An entry is added to
the deployment table, but does not execute yet. Access con-
trol policies need to be embedded within a smart contract
itself; (2) submit_deployTx() executes the SQL statement
present in the deployment table after verifying that an ad-
min from each organization has approved the deployment
transaction. If not all organizations have approved, the in-

vocation returns an error; (3) approve_deployTx() approves
a deployment transaction by adding a provided digital sig-
nature of the organization’s admin; (4) reject_deployTx()
rejects a deployment transaction by adding a provided dig-
ital signature of the organization’s admin and a reason.

4. IMPLEMENTATION
PostgreSQL [13] is the first open source database to im-

plement the abort during commit SSI variant [44]. Further,
it maintains all rows even after an update or delete and
is highly modular and extensible. For these reasons, we
chose to modify PostgreSQL to build a blockchain relational
database, rather than implementing one from scratch. The
modifications only amounted to adding around 4000 lines
of C code to implement both approaches. We present rele-
vant background on PostgreSQL in §4.1. Then, in §4.2 and
§4.3, we describe the components we added and modified
in PostgreSQL respectively. In §4.4, we present implemen-
tation details of a crash fault-tolerant ordering service, and
describe the transaction flows in §4.5.

4.1 PostgreSQL Background
PostgreSQL supports three isolation levels—read commit-

ted, repeatable read (i.e., SI), and serializable (i.e., SI with
detection and mitigation of anomalies). A snapshot com-
prises of a set of transaction IDs, which were committed
as of the start of this transaction, whose effects are visi-
ble. Each row has two additional elements in the header,
namely xmin and xmax, which are the IDs of the transac-
tions that created and deleted the row, respectively. Note,
every update to a row is a delete followed by an insert (both
in the table and index). Deleted rows are flagged by set-
ting xmax instead of being actually deleted. In other words,
PostgreSQL maintains all versions of a row unlike other im-
plementations such as Oracle that update rows in-place and
keep a rollback log. This is ideal for our goal of building a
blockchain that maintains all versions of data. A snapshot
checks xmin and xmax to see which of these transactions’
ID are included in the snapshot to determine row visibility.
Clients connect to the PostgreSQL server, postgres, us-

ing an application interface such as libpq [12]. A backend
process [11] is then assigned to each client connection to exe-
cute queries. PostgreSQL supports background workers [10]
(additional processes other than backend) to perform other
activities such as logical replication and statistics collection.
Note, the postgres server, backends, and background work-
ers coordinate and share data through shared memory re-
gions. Both the shared memory data structures and back-
ground workers are easily extensible.

4.2 New Components Introduced
Communication Middleware & Block Processor.

We introduced two new background workers: (1) commu-
nication middleware to communicate with other nodes and
orderer, to transfer and receive transactions/blocks. The
received blocks are stored in an append-only file named pg-
Blockstore. Further, the middleware is also responsible for
starting a transaction using libpq in the order-then-execute
flow, and for starting any missing transactions in the execute-
order-in-parallel flow; (2) block processor to process a block.
It executes the commit phase as described in §3.3.
Shared Memory Data Structures. We introduced the

following four data structures in the shared memory (the last
two are used only for the execute-order-in-parallel flow).

1546

(1) [Transaction{uuid, queries}blk#, sig]
libpq jdbc odbc

application

postgres
(server)

postgres backendfork

exec_simple_query(query)
1. Parse/Analyze
2. Plan
3. Execute

Shared Memory

page buffer
background writer

vaccumXLOG: WAL CLOG Lock

storage

Statistics Semaphore

Middleware BlockProcessorforkfork

Postgres Node 1

Postgres Node 2

jdbc odbc

application
Middleware

(2) Middleware: Forward transaction to other
nodes and ordering service

Ordering Service
(solo, kafka, pbft)

Modified SSI
Crypto

Denotes modified or newly added module

TxWriteSet
BlockProcessor

Metadata

(2) Execution Phase. Verify user signature. Invoke
Middleware to forward transaction.

(2) Transaction{uuid, queries} blk#, sig

TxMetadata

pgLedgerpgCerts pgBlockstore

(8) Commit Phase. Apply the proposed SSI

(4) Ordering Phase:
Construct & send the block

(5) Block

(5) Block

(6) Middleware: On receiving the block, verify
orderer signature and store in pgBlockstore

(7) BlockProcessor: Signal each backend
serially as per transaction order in block. Wait
for all to commit/abort. Update pgLedger.

TxOrder

(3) Execute transaction using proposed SSI. Wait for
signal from BlockProcessor before either commit/abort.

libpq

Figure 4: Transaction Flow in PostgreSQL for execute-order-in-parallel

Table 3: Example provenance queries to audit user transactions.
Audit Scenarios Queries
Get all invoice details from table invoices which were updated
by a supplier S between blocks 100 and 300

SELECT invoices.* FROM invoices, pgLedger WHERE
pgLedger.blockNumber BETWEEN 100 AND 300 AND pgLedger.user =
S AND invoices.xmax = pgLedger.txid AND invoices.deleter IS NULL;

Get all historical details of an invoice from table invoices
whose invoiceID (primary key) is k and was updated by either
supplier S or manufacturer M in the last 24 hours

SELECT invoices.* FROM invoices, pgLedger WHERE invoiceID = k
AND pgLedger.user IN (S, M) AND pgLedger.commitTime > now()
- interval ‘24 hours’ AND invoices.xmax = pgLedger.txid AND in-
voices.deleter IS NULL;

(1) TxMetadata enables communication and synchroniza-
tion between block processor and backends executing the
transaction (as needed in the commit phase). The block pro-
cessor uses this data structure to check whether all transac-
tions have completed its execution and to signal each back-
end to proceed further. Each entry consists of the global
transaction identifier (as present in the transaction), trans-
action ID assigned locally by the node, process id of the
backend, a semaphore to denote whether the transaction has
completed its execution and waiting for a signal to proceed
further, and a final status (i.e., commit/abort).
(2) BlockProcessorMetadata helps in signaling block pro-

cessor from the backend once it commits/aborts a transac-
tion. Additionally, this data structure holds the last com-
mitted block number, current block number (so that the
backend can use it to set the creator & deleter block
number in rows), and a semaphore to enable signaling from
middleware to block processor.
(3) TxWriteSet holds the write-set of each transaction so

that after SSI validation and before writing to WAL, back-
end can store the creator or deleter in each row. For
an update, it stores both the old and new row pointer.
For delete, it stores only the old row pointer. Further,
TxWriteSet is used to compute the hash of the write-set
for each block.
(4) TxOrder helps backend to apply our proposed block-

aware abort during commit variant of SSI. It stores the
global transaction identifier of each transaction in the block
as per the commit order to aid in finding whether a nearCon-
flict or farConflict is present in the same block.
Blockchain Related Catalog Tables. We introduced

two system catalog tables, pgLedger and pgCerts. The for-
mer is the ledger table described in §3.5, and stores infor-
mation about each transaction such as the global identifier,
local transaction ID, the query, the submitting client and
commit/abort status. It is used for recovery and for sup-
porting provenance queries. The latter stores the crypto-
graphic credentials of the blockchain users.

Provenance Query. We introduced a special type of
read only query called provenance. This query type can see
all committed rows present in tables irrespective of whether
it is inactive (i.e., marked with xmax) or active. As it can
access all historical content, it enables support for very com-
plex analytical and audit queries with the help of pgLedger.
Table 3 presents two examples of provenance queries.

4.3 Components Modified
Application Interface and Deterministic PL/SQL

Procedures. We have enhanced the default application in-
terface, i.e., libpq, with additional APIs to submit blockchain
transactions & provenance queries, and fetch the latest block
height at the node. To make the PL/SQL procedure deter-
ministic, we have restricted the usage of date/time library,
random functions from the mathematics library, sequence
manipulation functions, and system information functions.
Further, SELECT statements must specify ORDER BY primary
_key when using LIMIT or FETCH. Additionally, it cannot use
row headers such as xmin, xmax in WHERE clause.
SSI Based on Block Height. We have added two fields

for each row: (i) creator block number, (ii) deleter block
number. During commit, these two fields are filled for en-
tries in the TxWriteSet depending on whether an entry is an
update, insert, or delete. SI applies a row visibility logic us-
ing xmin and xmax to identify whether a row should be seen
by a transaction (as described in §4.1). We enhance the row
visibility logic to have additional conditions using the row’s
creator and deleter block number and the snapshot-height
of the transaction (as described in §3.3.2). This is in addi-
tion to the default row visibility logic that helps avoid seeing
rows updated/deleted by concurrent transactions. During
predicate reads, the default visibility logic in PostgreSQL
traverses rows as per the index entries that satisfies the
given predicate or traverses the whole table when an in-
dex is missing. For our approach to work (mainly to avoid
phantom or stale read described in §3.3.2), all read access

1547

is enforced to happen via index entries only which satisfies
a given predicate clause. Otherwise, there is a high possi-
bility of transactions getting aborted due to false positive
phantom or stale read. Hence, if an index is not available
for the given predicate clause, nodes abort the transaction.
Further, SELECT * FROM table_name; is not allowed from
PL/SQL procedures as it always traverses the whole table.
It is possible to implement our approach without the need
for an index, but for simplicity we defer such optimizations.
Note, any kind of individual SELECT statements without any
writes on the blockchain schema will not be affected by SSI
as the transaction would be marked as read-only and would
be executed on one node only.
SSI Block-Aware Abort During Commit and ww-

dependency. For the execute-order-in-parallel approach,
we have modified the abort rule to follow our proposed rules
in Table 2. The modified SSI utilizes the TxOrder data
structure in the shared memory. For ww-conflicts, we al-
low writes to the same object by different transactions (as
updates are anyway not in-place in PostgreSQL) by main-
taining an array of xmax values comprising of transaction
IDs of all competing transactions in the row being updated.
During commit, for each old row entry in the TxWriteSet,
the backend (corresponding to the transaction that is com-
mitting now) checks xmax values and marks all other trans-
actions for abort as only one transaction can write to the
row to avoid lost update. Finally, it retains only its own
transaction ID in the xmax field.

4.4 Ordering Service
As described in §3.1, any consensus algorithm can be

leveraged. We support two alternate ordering services: an
Apache Kafka [1] and ZooKeeper [2] based crash fault toler-
ant ordering, and a BFT-SMaRt [22] based byzantine fault
tolerant ordering. Clients/peers connect to independent or-
derer nodes to submit transactions and receive created blocks.
When using Kafka-based consensus, orderer nodes publish
all received transactions to a Kafka cluster which then deliv-
ers the transactions in a FIFO order. Likewise, when using
BFT consensus, they submit the transactions to a BFT-
SMaRt cluster which creates a total ordering of the received
transactions. For creating a block of transactions, we use
two parameters: block size, the maximum number of trans-
actions in a block, and block timeout, the maximum time
since the first transaction to appear in a block was received.
Each orderer node publishes a time-to-cut message to the
Kafka cluster or sends it to the BFT-SMaRt cluster (de-
pending on which ordering is used) when its timer expires.
The first time-to-cut message is considered to cut a block
and all other duplicates are ignored. Once a block is cut,
orderer nodes append their signatures to the block, persist
the block in filesystem and then send it to connected peers.

4.5 Transaction Flow
Figure 4 depicts the new and modified components de-

scribed in the previous sections and outlines the execute-
order-in-parallel transaction flow. As the order-then-execute
flow is simpler, we omit presenting the details for it in the
interest of brevity. The application leverages the blockchain
interfaces in libpq to fetch the latest block height and sub-
mit the transaction to the PostgreSQL backend. After veri-
fying the client signature leveraging pgCerts, the transaction
is forwarded to other PostgreSQL nodes and to the order-
ing service using the communication middleware (the client

can also submit the transaction to all peers, rather than
one peer forwarding to all other peers). The backend up-
dates TxMetadata, executes the transaction leveraging the
SSI variant based on block-aware abort during commit, and
collects the write-set into TxWriteSet. It then sets ready-
to-proceed status in TxMetadata and waits for a signal from
the block processor.
On receiving a block from the ordering service, the mid-

dleware verifies the orderer signature and stores the block
in pgBlockstore. The block processor retrieves each unpro-
cessed block from the pgBlockstore one at a time and adds all
transactions to pgLedger. It confirms from TxMetadata that
all transactions have completed execution and then serially
signals each backend as per the order in the block to proceed
further. On receiving this signal, the backend validates the
transaction based on the block-aware abort during commit
logic as explained in §3.3.2, sets either commit/abort status
in TxMetadata, and signals the block processor. Once all
transactions have been processed, the block processor up-
dates the pgLedger with the status for each transaction. We
are yet to implement the checkpoint flow described in §3.

5. EVALUATION
In this section, we study the performance and cost of both

our design approaches. We measure performance in terms of
throughput and latency. Throughput is defined as the aver-
age number of unique transactions committed per second in
the blockchain network, and latency is defined as the aver-
age time taken to commit a transaction, measured from the
time a client submits it. A transaction is said to be commit-
ted in the blockchain network when majority of the nodes
commit. The cost is measured in terms of resource utiliza-
tion such as CPU, memory, disk and network bandwidth
utilization. We study the effect on performance and cost by
varying several system parameters, namely (a) block size,
(b) transaction arrival rate, (c) smart contract query com-
plexity, (d) deployment model (local/wide area network),
and (e) the number of database nodes (network size).
We use two smart contracts (1) simple contract—inserts

values into a table; (2) complex contract—performs com-
plex joins between two tables to execute aggregate opera-
tions and writes the result to a third table. Note that while
simple contract can be implemented in most blockchain
platforms today, complex contract is impossible to imple-
ment efficiently. We consider two deployment models, the
first where all organizations host their database nodes on a
common public cloud data center (LAN), and second where
nodes are hosted independently leading to a multi/hybrid-
cloud setup (WAN). In our experiments, the WAN setup
involved four data centers spread across four continents.
These models help us study the communication overheads
of the two approaches. In both deployments, database and
orderer nodes were hosted on virtual machines each with 32
vCPUs of Intel Xeon E5-2683 v3 @ 2.00GHz and 64 GB of
memory. In the multi-cloud deployment, the network band-
width between nodes was between 50 and 60 Mbps, whereas,
it is 5 Gbps in the single cloud deployment.
In addition to throughput and latency, we also measure

the following seven micro metrics (all as averages) to gain
a deeper understanding of system behavior: (1) block re-
ceive rate (brr)—the number of blocks received per second
at the middleware from orderer; (2) block processing rate
(bpr)—the number of blocks processed and committed per
second at the block processor; (3) block processing time (bpt

1548

 0

 500

 1000

 1500

 2000

 2500

1200 1500 1800 2100
 0.01

 0.1

 1

 10

 100

T
h

ro
u

g
h

p
u

t
(t

p
s

)

L
a

te
n

c
y

 (
s

e
c

)

Transaction Arrival Rate (tps)

(a) order then execute

Throughput (block size: 10)
Throughput (block size: 100)
Throughput (block size: 500)

Latency (block size: 10)
Latency (block size: 100)
Latency (block size: 500)

 5

 500

 1000

 1500

 2000

 2500

1800 2100 2400 2700
 0.01

 0.1

 1

 10

 100

T
h

ro
u

g
h

p
u

t
(t

p
s

)

L
a

te
n

c
y

 (
s

e
c

)

Transaction Arrival Rate (tps)

(b) execute and order in parallel

Figure 5: Performance with simple contract

Table 4: Order then execute: micro metrics for an ar-
rival rate of 2100 tps.
bs brr bpr bpt bet bct tet su
10 209.7 163.5 6 5 1 0.2 98.1%
100 20.9 17.9 55.4 47 8.3 0.2 99.1%
500 4.2 3.5 285.4 245 44.3 0.4 99.7%

in ms)—the time taken to process and commit a block; (4)
block execution time (bet inms)—the time taken to start all
transactions in a block till they suspend for commit/abort;
(5) transaction execution time (tet in ms)—the time taken
by the backend to execute a transaction until it suspends for
commit/abort; (6) block commit time (bct inms)—the time
taken to perform the serial commit of all transactions in a
block and can be measured as bpt− bet; (7) missing trans-
actions (mt)—the number of transactions missing per second
while processing blocks at the block processor (relevant for
execute-order-in-parallel). We define two additional terms:
(1) the peak throughput as the maximum achieved through-
put for a given smart contract type and block size across all
possible arrival rates; (2) the system utilization (su) as the
fraction of time the block processor is busy (bpb) expressed
as a percentage. bpb can be estimated as the average num-
ber of blocks processed in 1s (bpr) multiplied by the time
taken to process each block (bpt). When a peak throughput
is achieved, our system utilization should be close to 100%.
Unless mentioned otherwise, our experiments use a sin-

gle data center with three organizations, each running a
database and a kafka-based orderer node. At the orderer,
the block timeout was set to 1s and the block size was
varied. We used pgTune [9] to configure PostgreSQL and
max_connection (i.e., number of backends) was set to 2600.
The arrival rate was load balanced among nodes.

5.1 Block Size and Arrival Rate
Order then Execute. Figure 5(a) plots the throughput

and latency achieved in order-then-execute approach using
the simple contract. Table 4 presents the micro metrics
for an arrival rate of 2100 transactions per second (tps).
With an increase in transaction arrival rate, the through-
put increased linearly as expected till it flattened out at
around 1800 tps, which was the peak throughput (system
utilization close to 100% as shown in Table 4). When the
arrival rate was close to or above the peak throughput, the
latency increased significantly from an order of 100s of mil-
liseconds to 10s of seconds. For an arrival rate lower than
the peak throughput, with an increase in the block size, the
latency increased. The reason is that with an increase in
block size, it took longer for the orderer to fill a block with
transactions leading to an increased block creation time, and
hence, a larger waiting time for each transaction at the or-
derer. For an arrival rate greater than the peak throughput,
with an increase in block size, the latency decreased. This

is because there was no waiting for transactions to arrive
and form a block, and more transactions were executed in
parallel. This is also observable as the block processing time
(bpt) of a block of size n was always lesser than the sum of
bpt of m blocks each of size n

m
. For the same reason, with

an increase in the block size, the throughput also increased.
Execute and Order in Parallel. Figure 5(b) plots the

same for execute-and-order-in-parallel approach. Table 5
presents the micro metrics for an arrival rate of 2400 tps.
The maximum throughput achieved was 2700 tps, i.e., 1.5×
higher than what was achieved with order-then-execute. No-
te that the system utilization (su) was only 90%. When
the arrival rate was greater than 2700 tps, the through-
put started to degrade and su never reached 100%. We
believe the reason to be a large number of active backends
that resulted in a lot of contention on the shared memory
datastructures (further study is reserved for future work).
Though the block processing time (bpt) and the block exe-
cution time (bet) were observed to be lesser with execute-
and-order-in-parallel as compared to order-then-execute, the
block commit time (bct) was observed to be higher. This
could again be because of a large number of active backends.
Comparison With Ethereum’s Order then Exe-

cute. Blockchain platforms such as Ethereum also adopt an
order-then-execute approach, but execute transactions seri-
ally once the block is formed. To emulate this behavior, we
made our block processor also execute and commit transac-
tions one at a time. This resulted in a peak throughput of
800 tps (for a block size of 100, although the block size does
not matter when we execute serially). This is only about
40% of the throughput achieved with our approach, which
supports parallel execution of transactions leveraging SSI.

Table 5: Execute and order in parallel: micro metrics
for an arrival rate of 2400 tps.
bs brr bpr bpt bet bct tet mt su
10 232.26 232.26 3.86 2.05 1.81 0.58 479 89%
100 24.00 24.00 35.26 18.57 16.69 3.08 519 84%
500 4.83 4.83 149.64 50.83 98.81 6.27 230 72%

5.2 Smart Contract Complexity
Order then Execute. Figure 6(a) plots the peak throug-

hput and micro metrics observed with complex contract
for order-then-execute. With an increase in block size, the
throughput increased and reached a peak of 400 tps. This
was less than 25% of what was observed with simple cont-
ract, primarily because of transaction execution time (tet)
increasing by about 160× as compared to simple contract.
The block processing time (bpt) and the block execution
time (bet) also increased. The CPU and memory utiliza-
tion for simple contract was 10% and 15 GB respectively,
compared to 30% and 15GB for complex contract.
Execute and Order in Parallel. Figure 6(b) plots the

same for execute-order-in-parallel. Both the block process-
ing time (bpt) and the block execution time (bet) were lower
than the one observed in order-then-execute. This is be-
cause, by the time the block reaches the node, all transac-
tions were either executing or already completed execution.
The peak throughput achieved was more than twice that
of order-then-execute. Unlike order-then-execute approach,
this approach permits concurrent execution of a larger num-
ber of transactions unrestricted by the block size (in order-
then-execute, the maximum number of concurrently execut-
ing transactions is capped by the block size). This man-
ifested as a significantly larger increase to the transaction

1549

 0

 200

 400

 600

 800

 1000

10 50 100
 0

 50

 100

 150

 200

 250
P

e
a

k
 T

h
ro

u
g

h
p

u
t

T
im

e
 (

m
s

)

Block Size (#tx)

(a) order-then-execute

Peak Throughput
bpt

bet
tet

 5 0

 200

 400

 600

 800

 1000

10 50 100
 0

 50

 100

 150

 200

 250

P
e

a
k

 T
h

ro
u

g
h

p
u

t

T
im

e
 (

m
s

)

Block Size (#tx)

(b) execute-and-order-in-parallel

Figure 6: Performance with complex contract

 0

 200

 400

 600

 800

 1000

10 50 100
 0.01

 0.1

 1

 10

 100

 1000

P
e

a
k

 T
h

ro
u

g
h

p
u

t

T
im

e
 (

m
s

)

Block Size (#tx)

(a) a multi-cloud deployment

Peak Throughput (OE)
Peak Throughput (EO)

increase in latency (OE)
increase in latency (EO)

 5

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 4 8 12 16 20 24 28 32 36

O
rd

e
re

r
T

h
ro

u
g

h
p

u
t

#Orderer Nodes

(b) impact of network size

Kafka Throughput
BFT Throughput

Figure 7: Performance (a) with complex contract in a
multi-cloud deployment; (b) with different network sizes.

execution time tet compared to order-then-execute. For the
same reason, the CPU utilization increased to 100%, i.e.,
3.3× higher than what was observed for order-then-execute.
In another smart-contract, we used SUM function, GROUP

BY, ORDER BY, and LIMITS instead of JOIN to benchmark the
performance. For a block size of 100, the peak throughput
achieved for order-then-execute and execute-order-in-parallel
was 1.75× and 1.6× higher respectively than that of JOIN.

5.3 Deployment Model and Network Size
Deployment Model. Figure 7(a) plots the peak throug-

hput achieved with both approaches in a multi-cloud de-
ployment. As compared to a single cloud deployment (refer
to Figure 6), only the latency increased on average by 100
ms due to the WAN network but the throughput reminded
the same for most part except a 4% reduction in the peak
throughput when the block size was 100. As the size of a
block with 500 transactions was only about 100 KB (≈196
bytes per transaction), the lower network bandwidth did not
have a significant impact on the performance.
Network Size Figure 7(b) plots the throughput achieved

with kafka and bft based ordering service while varying the
number of orderer nodes and fixing the transaction arrival
rate to 3000 tps. With an increase in the number of orderer
nodes, we observed no impact on the performance of kafka-
based ordering service but the performance achieved with
bft-based ordering service reduced from 3000 tps to 650 tps
as expected due to the communication overhead. With an
increase in the number of database nodes alone, the overall
system throughput did not get affected but limited by the
peak throughput of the ordering service.

6. RELATED WORK
Bitcoin [40] and Ethereum [52] adopt an order-execute

model, where transactions are first ordered in blocks through
consensus (such as proof-of-work) and each node serially
validates and commits transactions locally. In our order-
execute approach, we leverage SSI to execute transactions
concurrently. Further, such platforms only support a simple
key-value data model.

Hyperledger Fabric [18] adopts an execute-then-order
approach, where transactions are first executed and endorsed
by multiple nodes, then ordered by consensus, followed by
serial validation and commit. In contrast, in our execute-
order-in-parallel approach transaction execution and order-
ing happen parallelly. Fabric only supports goleveldb [5] and
couchdb [3] as the underlying database, with support for
composite keys and range queries. In contrast, we support
the full spectrum of SQL queries in a smart contract with the
exception of libraries that could introduce non-determinism
and blind updates. Performance studies on Fabric [18, 48]
have shown throughputs of 3000 tps with goleveldb for a
simple smart contract and 700 tps with couchdb.
Hyperledger Composer [6] is a set of collaboration

tools for building blockchain business networks utilizing Hy-
perledger Fabric. It allows use of basic SQL queries with lim-
ited syntax [7] which are internally converted to CouchDB
JSON selector queries [4].
Corda [31] refers to their platform as a decentralized

database. Transactions are executed by one node at a time
(not parallelly executed by all nodes) and the results are
shared with other nodes that have a need to know. There is
no notion of a blockchain in Corda. However, optionally, a
notary could order transactions and validate them for dou-
ble spending. State objects can define a relational mapping,
and an object serialization framework is used to store the
states in an H2 embedded relational database. This permits
querying the database using SQL and enables rich queries
(such as joins) with an organization’s private non-blockchain
data. However, it does not enable rich query support within
the smart contract itself.
Veritas [28] proposes shared verifiable tables using a set

of Redis key-value stores each owned by an organization.
Only the verifiability property, i.e., immutable logs, is sup-
ported. For ensuring consistency across replicas, it uses a
centralized trusted timestamp server to order transactions.
Further, a transaction is executed only on one of the nodes,
and each node periodically ships logs of multiple read-write
sets to other nodes via a Kafka-based broadcast service.
Nodes vote on transactions to resolve any conflicts.
BigchainDB [15] employs Tendermint consensus [34, 14]

over a set of independent MongoDB [8] instances, each owned
by a different organization. It supports immutability and
decentralization. While the overall goals of BigchainDB are
similar to ours, there are fundamental architectural differ-
ences. It supports only user tokens/assets similar to Bitcoin
and has no support for smart contracts. Transactions are
serially executed post ordering, similar to Ethereum.

7. CONCLUSION
In this paper, we presented the design of a blockchain

relational database, a decentralized database with replicas
managed by different organizations that do not trust one
another. The key challenge we addressed is in ensuring that
all untrusted replicas commit transactions in the same serial-
izable order that respects the block ordering determined by
consensus. We proposed two design approaches that lever-
aged and modified SSI to achieve this, and devised a new
variant of SSI based on block height. Leveraging features
already available in databases enables us to better support
complex data types, schemas, complex queries and prove-
nance queries that are not provided by blockchain platforms
today. We implemented the system on PostgreSQL and pre-
sented detailed performance results.

1550

8. REFERENCES
[1] Apache kafka. https://kafka.apache.org.
[2] Apache zookeeper. http://zookeeper.apache.org.
[3] Couchdb. http://couchdb.apache.org/.
[4] Couchdb selector query.

https://docs.couchdb.org/en/2.2.0/api/database/
find.html.

[5] goleveldb. https://github.com/syndtr/goleveldb.
[6] Hyperledger composer.

https://www.hyperledger.org/projects/composer.
[7] Hyperledger composer query language.

https://hyperledger.github.io/composer/v0.19/
reference/query-language.

[8] Mongodb. https://www.mongodb.com/.
[9] pgtune. https://github.com/gregs1104/pgtune.

[10] Postgresql background worker processes.
https://www.postgresql.org/docs/10/bgworker.html.

[11] Postgresql frontend/backend protocol.
https://www.postgresql.org/docs/10/protocol.html.

[12] Postgresql libpq - c library.
https://www.postgresql.org/docs/10/libpq.html.

[13] Postgresql v10. https://www.postgresql.org/.
[14] Tendermint. https://tendermint.com/.
[15] Bigchaindb: The blockchain database.

https://www.bigchaindb.com/whitepaper/
bigchaindb-whitepaper.pdf. 2018.

[16] A. Adya, B. Liskov, and P. O’Neil. Generalized
isolation level definitions. In Proceedings of 16th
International Conference on Data Engineering (Cat.
No.00CB37073), pages 67–78, Feb 2000.

[17] P. A. Alsberg and J. D. Day. A principle for resilient
sharing of distributed resources. In Proceedings of the
2Nd International Conference on Software
Engineering, ICSE ’76, pages 562–570, Los Alamitos,
CA, USA, 1976. IEEE Computer Society Press.

[18] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W.
Cocco, and J. Yellick. Hyperledger fabric: A
distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth EuroSys
Conference, EuroSys ’18, pages 30:1–30:15, New York,
NY, USA, 2018. ACM.

[19] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’95, pages 1–10, New York, NY, USA,
1995. ACM.

[20] P. A. Bernstein and N. Goodman. Multiversion
concurrency control—theory and algorithms.
ACM Trans. Database Syst., 8(4):465–483, Dec. 1983.

[21] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

[22] A. Bessani, J. Sousa, and E. E. P. Alchieri. State
machine replication for the masses with bft-smart. In
2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks,

pages 355–362, June 2014.
[23] E. Brewer. Cap twelve years later: How the "rules"

have changed. Computer, 45(2):23–29, Feb 2012.
[24] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable

isolation for snapshot databases. In Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 729–738,
New York, NY, USA, 2008. ACM.

[25] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation, OSDI
’99, pages 173–186, Berkeley, CA, USA, 1999.
USENIX Association.

[26] E. Cecchet, G. Candea, and A. Ailamaki.
Middleware-based database replication: The gaps
between theory and practice. In Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 739–752,
New York, NY, USA, 2008. ACM.

[27] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Trans. Database Syst., 30(2):492–528, June
2005.

[28] J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu,
J. Hammer, J. Hunter, R. Kaushik, D. Kossmann,
R. Ramamurthy, S. T. V. Setty, J. Szymaszek, A. van
Renen, J. Lee, and R. Venkatesan. Veritas: Shared
verifiable databases and tables in the cloud. In CIDR
2019, 9th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings, 2019.

[29] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’96, pages 173–182,
New York, NY, USA, 1996. ACM.

[30] J. Gray and L. Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133–160,
Mar. 2006.

[31] M. Hearn. Corda 2016.
https://www.corda.net/content/corda-technical-
whitepaper.pdf.

[32] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the 2011 IEEE/IFIP 41st
International Conference on Dependable
Systems&Networks, DSN ’11, pages 245–256,
Washington, DC, USA, 2011. IEEE Computer Society.

[33] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, June 1981.

[34] J. Kwon. Tendermint: Consensus without mining.
2014.

[35] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[36] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Dynamic authenticated index structures for
outsourced databases. In Proceedings of the 2006
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pages 121–132,
New York, NY, USA, 2006. ACM.

[37] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated index structures for aggregation

1551

queries. ACM Trans. Inf. Syst. Secur.,
13(4):32:1–32:35, Dec. 2010.

[38] S. Liu, P. Viotti, C. Cachin, V. Quéma, and
M. Vukolic. Xft: Practical fault tolerance beyond
crashes. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’16, pages 485–500, Berkeley,
CA, USA, 2016. USENIX Association.

[39] D. A. Menasce, G. J. Popek, and R. R. Muntz. A
locking protocol for resource coordination in
distributed databases. In Proceedings of the 1978
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’78, pages 2–2, New
York, NY, USA, 1978. ACM.

[40] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system,” http://bitcoin.org/bitcoin.pdf.

[41] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proceedings of
the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages
305–320, Berkeley, CA, USA, 2014. USENIX
Association.

[42] H. H. Pang and K. . Tan. Authenticating query results
in edge computing. In Proceedings. 20th International
Conference on Data Engineering, pages 560–571, April
2004.

[43] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible update
propagation for weakly consistent replication. In
Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, SOSP ’97, pages
288–301, New York, NY, USA, 1997. ACM.

[44] D. R. K. Ports and K. Grittner. Serializable snapshot
isolation in postgresql. PVLDB, 5(12):1850–1861,
2012.

[45] S. H. Son. Replicated data management in distributed
database systems. SIGMOD Rec., 17(4):62–69, Nov.
1988.

[46] M. Stonebraker. Concurrency control and consistency
of multiple copies of data in distributed ingres. IEEE
Transactions on Software Engineering,

SE-5(3):188–194, May 1979.
[47] D. B. Terry, M. M. Theimer, K. Petersen, A. J.

Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in bayou, a weakly connected
replicated storage system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 172–182, New York, NY,
USA, 1995. ACM.

[48] P. Thakkar, S. Nathan, and B. Viswanathan.
Performance benchmarking and optimizing
hyperledger fabric blockchain platform. In 2018 IEEE
26th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 264–276, Sep. 2018.

[49] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM
Trans. Database Syst., 4(2):180–209, June 1979.

[50] B. Vandiver, H. Balakrishnan, B. Liskov, and
S. Madden. Tolerating byzantine faults in transaction
processing systems using commit barrier scheduling.
In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 59–72, New York, NY, USA, 2007. ACM.

[51] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and
G. Alonso. Understanding replication in databases
and distributed systems. In Proceedings 20th IEEE
International Conference on Distributed Computing
Systems, pages 464–474, April 2000.

[52] G. Wood. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project
yellow paper, 2014.

[53] C. Xu, J. Xu, H. Hu, and M. H. Au. When query
authentication meets fine-grained access control: A
zero-knowledge approach. In Proceedings of the 2018
International Conference on Management of Data,
SIGMOD ’18, pages 147–162, New York, NY, USA,
2018. ACM.

[54] Y. Zhang, J. Katz, and C. Papamanthou. Integridb:
Verifiable sql for outsourced databases. In Proceedings
of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages
1480–1491, New York, NY, USA, 2015. ACM.

1552

	Introduction
	Motivation
	Design
	Key Components
	Serializable Snapshot Isolation (SSI)
	Proposed Approaches
	Order then Execute
	Execute and Order in Parallel

	Discussion on Security Properties
	Recovery After a Failure
	Network Bootstrapping

	IMPLEMENTATION
	PostgreSQL Background
	New Components Introduced
	Components Modified
	Ordering Service
	Transaction Flow

	Evaluation
	Block Size and Arrival Rate
	Smart Contract Complexity
	Deployment Model and Network Size

	Related Work
	Conclusion
	References

