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ABSTRACT

The data science revolution and growing popularity of data
lakes make efficient processing of raw data increasingly impor-
tant. To address this, we propose the ACCelerated Operators
for Raw Data Analysis (ACCORDA) architecture. By ex-
tending the operator interface (subtype with encoding) and
employing a uniform runtime worker model, ACCORDA
integrates data transformation acceleration seamlessly, en-
abling a new class of encoding optimizations and robust
high-performance raw data processing. Together, these key
features preserve the software system architecture, empower-
ing state-of-art heuristic optimizations to drive flexible data
encoding for performance. ACCORDA derives performance
from its software architecture, but depends critically on the
acceleration of the Unstructured Data Processor (UDP) that
is integrated into the memory-hierarchy, and accelerates data
transformation tasks by 16x-21x (parsing, decompression) to
as much as 160x (deserialization) compared to an x86 core.

We evaluate ACCORDA using TPC-H queries on tabular
data formats, exercising raw data properties such as parsing
and data conversion. The ACCORDA system achieves 2.9x-
13.2x speedups when compared to SparkSQL, reducing raw
data processing overhead to a geomean of 1.2x (20%). In
doing so, ACCORDA robustly matches or outperforms prior
systems that depend on caching loaded data, while computing
on raw, unloaded data. This performance benefit is robust
across format complexity, query predicates, and selectivity
(data statistics). ACCORDA’s encoding-extended operator
interface unlocks aggressive encoding-oriented optimizations
that deliver 80% average performance increase over the 7
affected TPC-H queries.
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1. INTRODUCTION

Driven by a rapid increase in quantity, type, and number
of sources of data, many data analytics approaches use the
data lake model. Incoming data is pooled in large quantity —
hence the name “lake” — and because of varied origin (e.g.,
purchased from other providers, internal employee data, web
scraped, database dumps, etc.), it varies in size, encoding,
age, quality, etc. Additionally, it often lacks consistency or
any common schema. Analytics applications pull data from
the lake as they see fit, digesting and processing it on-demand
for a current analytics task. The applications of data lakes
are vast, including machine learning, data mining, artificial
intelligence, ad-hoc query, and data visualization. Fast direct
processing on raw data is critical for these applications.

The data lake model has numerous advantages over tra-
ditional data warehouses. First, raw data is only processed
when needed, the data lake model avoids the processing and
10 work for unused data. Second, direct access to raw data
can reduce the data latency for analysis, a key property for
streaming data sources or critical fresh data. Third, data
lake supports exploratory analytics where schemas and at-
tributes may be updated rapidly. Fourth, data lakes can
avoid information loss during loading by keeping the source
information, so applications can interpret inconsistent data
in customized fashion. Fifth, the data lake model avoids
scaling limits such as maximum capacity of database systems
and licensing limits or cost (price/loaded data licensing mod-
els). One consequence of the data lake model is that data
remains in native complex structures and formats instead of
in-machine SQL types with well-defined schemas.

From a system point of view, the essence of the data lake
model is to shift ETL/loading work from offline into the
query execution. Of course, the shifted work is much smaller
- just the part needed for the query. As for each query,
only the relevant data is pulled from the lake and processed
(essentially load, then analyze) to complete the query.

Because data lakes put raw data interpretation on the criti-
cal path of query execution, they elevate raw data processing
to a critical performance concern. Queries that require an-
swers quickly, or those that require interactive and real-time
analysis, perhaps on recently-arrived raw data, will be sensi-
tive to the speed of raw data processing.

Prior research has made improvements for batch ETL
(data loading). For example, several software-acceleration
approaches exploit SIMD instructions (InstantLoad[46] — to
find delimiters, and MISON [43] — to speculate parsing).

More closely relevant are Lazy ETL approaches that avoid
unnecessary ETL by only processing the data actually needed.
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Databases [12, 16, 36, 37] apply lazy loading, caching ma-
terialized results, and positional maps to avoid expensive
data transformations. These approaches require query data
reuse, significant memory, and storage resources to achieve
high performance. When these properties do not hold, per-
formance can become variable and poor. Another technique
for raw data processing is pushing predicates down before
the loading work, several systems [15, 37, 47] exploit query
semantics for partial predicate pushdown. For these systems,
performance is highly dependent on selectivity, and filters
are limited to be very simple (literal-equal) and thus do not
work for all external data representations (e.g., gzip).

Apache SparkSQL [15] is a widely-used analytics system
for processing raw data built on top of Apache Spark [59],
a popular in-memory map-reduce framework. SparkSQL
offers a SQL-like interface for relational processing, and its
popularity has produced a rich ecosystem for data analytics.

We propose ACCORDA, a novel software and hardware
architecture that integrates data encoding into operator in-
terfaces and query plans, and uses a uniform runtime worker
model to seamlessly exploit the UDP accelerator for data
transformation tasks. We implemented ACCORDA, modify-
ing the SparkSQL code base and adding a set of accelerated
operators and new optimization rules for data encoding into
the Catalyst query optimizer.

In prior work, we designed and evaluated the ACCORDA
accelerator (a.k.a the Unstructured Data Processor or UDP
[23, 25]), and build on it here. The ACCORDA architecture
integrates UDP acceleration in the memory-hierarchy with
low overhead. The Unstructured Data Processor is a high-
performance, low-power data transformation accelerator that
achieves 20x geomean performance improvement and 1,900x
geomean performance/watt improvement for a range of ETL
tasks over an entire multi-core CPU [25].

We evaluate the ACCORDA architecture on raw data pro-
cessing micro-benchmarks and TPC-H queries on tabular
format to stress parsing flat data and data type conversion,
and show that ACCORDA provides robust query perfor-
mance on raw data that matches or exceeds loaded, cached
data analysis. Specific contributions of the paper include:

e ACCORDA software architecture that integrates data
transformation acceleration seamlessly by subtyping
operator interfaces with data encoding and a uniform
runtime worker model — all accelerated. Thus, AC-
CORDA enables flexible exploitation of encoding-based
query transformation and optimization.

ACCORDA provides robust, high-performance, raw
data processing, delivering 2.9x-13.2x speedups on
TPC-H queries on tabular data when compared to
SparkSQL on CPU. ACCORDA narrows the penalty
for raw data analysis from 5.6x to 1.2x, effectively elim-
inating the overhead relative to computing on loaded,
cached data.

To specifically quantify the benefits of ACCORDA’s
software architecture, we added encoding-based opti-
mization in the middle of a query plan. These encoding
optimizations produce additional 1.1x-11.8x speedups
with 80% average performance increase over the 7 af-
fected TPC-H queries.

Finally, we show ACCORDA’s in memory-hierarchy
integration enables flexible use of hardware acceleration
and improves efficiency in analytics systems (e.g., 1.6x

1569

faster and 14x less data movement in a typical select-
filter-project query).

The remainder of the paper is organized as follows. Section
2 outlines background on data analytics systems and raw
data performance challenges. In Section 3, we illustrate new
analytics capabilities enabled by fast data transformation.
In Section 4 and 5, we present the ACCORDA software and
hardware architecture. We study ACCORDA’s performance
in Section 7 using the methodology described in Section 6.
We discuss and compare our results to the research literature
in Section 8, and summarize the results in Section 9.

2. BACKGROUND

2.1 Data Lake or Raw Data Processing

Raw data processing requires in-line data parsing, cleaning,
and transformation in addition to analysis. The raw data
exists in an external format, often serialized and compressed
for portability, that must be parsed to be understood. Typi-
cally, only a small fraction of the data is required, so it can
be imported to extract what is actually needed. In contrast,
database computations on loaded data generally exploit an
internal, optimized format for performance.

Furthermore, raw data lacks a clear schema, making ex-
traction difficult. Parsing, decoding, deserialization, and
more can be required to transform elements into CPU binary
formats. To allow further read optimizations, row/column
transposition can be desired. We term these operations col-
lectively as data transformation, and all have a common un-
derlying model derived from the finite automata (FA); these
models underly all grammar-based encodings. In many cases,
these raw formats are composed of a sequence of tag/value
pairs (e.g., Snappy, CSV, JSON, and XML). The correspond-
ing operation is determined by the specific tag value (e.g.,
delimiter in CSV, tag in Snappy, and key in JSON). These
formats often employ sub-word encodings (bytes, symbols,
etc.) and variable-length encodings (strings, Huffman, etc.).
For each FA state transition, a little work is done. Software
usually implements such FAs with costly switch statements
or computed branches (multi-target branches) making this
computation more expensive than IO (Section 3.2).

2.2 SparkSQL and Optimization

SparkSQL [15] is a relational processing module in Spark
[59] using Dataset APIs. It leverages traditional RDBMS
optimizations and a tight integration between relational and
procedural processing in Spark code. SparkSQL uses a seri-
alized internal format, rather than RDD, in the execution
engine to reduce data SerDes cost in shuffling. Tungsten code
generation is used to collapse multiple operators together to
save interpretation cost and improve data locality. The Cat-
alyst query optimizer uses heuristic rules to expand a set of
candidate plans followed by cost-based plan selection. Mod-
ern query optimizers (e.g., Hive/Calcite [17], SQL Server [5],
and Pig [27]) use rules for applying heuristics during query
optimization to greatly reduce the plan search space.

3. TOWARDS FIRST-CLASS RAW DATA PRO-

CESSING

We describe new analysis capabilities enabled by acceler-
ated raw data processing, and then demonstrate CPU’s poor
performance on it, motivating the ACCORDA approach.
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Figure 1: Ideal Raw Data Analysis.

3.1 Fast Filtering, Extraction, and Transfor-
mation Unlock New Capabilities

A system with fast data filtering, extraction, and transfor-
mation unlocks new capabilities for data analysis. Robust,
high-performance, raw data processing enables three dimen-
sions of new analytics capabilities (see Figure 1). First,
it enables interactive and real-time analysis on fresh data,
avoiding data loading delays - due to scheduling or substan-
tial export-transform-load (ETL). Second, it enables users
to write ad-hoc queries that access arbitrary data, without
regard for it having been loaded. With no fixed schema, users
can compute with flexible, open, user-defined data types and
operations on raw data. Uniform fast processing welcomes
rich data sources — unstructured web logs, sensor data, social
network activities, texts and images, and organized columnar
data. This valuable analysis is restricted today by high data
transformation cost and rigid schema structure. Third, prior
research on acceleration (on-demand loading and in-memory
buffering [12, 15, 16]) exploits caching efficiency, making
performance sensitive to query history, and requiring large
memory. Systems with robust, high-performance raw data
processing can avoid these limitations.

High-performance data transformation also unlocks new
opportunities in traditional query optimization. The encod-
ing of both data source and intermediate data is a critical
cost factor for analytical operations. Consider sorting. We
sort customerID field in the TPC-H dataset [6] that is in the
format “Customer#xxxxxxxx”. The native string format im-
plies a comparison-based implementation. Transforming to
a partitioned dictionary encoding with a dictionary-encoded
prefix delivers a 7x speedup (see Figure 2a).! Going further,
a partitioned-dictionary format enables the use of radix sort
(Dict+Radix), producing an overall 22x speedup.

Consider hashing, used in hash-partition, hash-join, and
hash-aggregate. Raw data is often unnormalized, using mul-
tiple long attributes to identify records. Their hashing cost
can be significant; for example murmurhash3 has cost pro-
portional to key size. Compressing keys cheaply can reduce
hashing cost. In Figure 2b, we compare applying Huffman
encoding with 30% compression ratio (on ~ 200 bytes per

We transform the id part as an integer and combine it with
the encoded prefix for a 32-bit encoding. The key size reduc-
tion and the cheaper comparator increase the performance.
Source data uses TPC-H scale factor 1.
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locks Performance from Encoding Choice.
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Figure 3: High Load Costs: Compressed CSV into
PostgreSQL.

record). With ACCORDA’s accelerator (Section 5), the en-
coding can be done cheaply, producing an overall 20% cost
reduction. However, CPU’s cannot realize the benefits of
such optimizations due to poor encoding performance.

3.2 Data Transformation is Expensive on CPU’s

Transforming raw data to database formats is costly whether
done in batch [46] or just-in-time [12]. For example, Figure
3a shows single-threaded costs to load the TPC-H [6] Gzip-
compressed CSV files (scale factor from 1 to 30) from SSD
into the PostgreSQL relational database [4] (Intel Core-i7
CPU with 250GB SATA 3.0 SSD). This common extract-
transform-load (ETL) task includes decompression, parsing
record delimiters, tokenizing attribute values, and deserializa-
tion. It requires nearly 800 seconds for scale factor 30 (about
30GB uncompressed), dominating time to initial analysis.
Note that CPU execution time for loading is >200x larger
than disk IO time (Figure 3b).

CPU’s perform poorly on data transformation workloads
due to 1) poor support for sub-word, variable-length data,
and 2) unpredictable control flows in data transformation
tasks. Modern CPU micro-architectures require fifty to hun-
dreds of instructions in flight to achieve full performance,
requiring correct branch prediction over a dozen or more
branches. However, data transformation is heavily con-
ditional and unpredictable, characterized by multi-target
branches (switches) and short code blocks that have been
shown to waste 86% of cycles due to misprediction [25].
Expensive data transformation limits the encoding optimiza-
tions for data analytics.

3.3 ACCORDA Enables Fast Raw Data Trans-
formation and Processing
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We present ACCORDA (ACCelerated Operators for Raw
Data Analysis), a software and hardware architecture for
data analytics systems on raw data. In Figure 4, we illus-
trate how ACCORDA fits into the landscape of analytics
systems in two dimensions — batch/on-demand loading and
accelerated /non-accelerated. Conventional databases (lower
left) batch load raw data and run on CPU’s. Data transforma-
tion is expensive on CPU’s, consuming significant resources.
Conventional accelerated database systems (upper left) use
discrete GPU’s or FPGA'’s, focusing on compute acceleration
but suffering from high cost to access acceleration. Recently,
several systems have focused on raw data processing, loading
raw data on-demand and using CPU’s (lower right). They
include RAW/NoDB [12, 16, 36, 37] that loads on demand,
and then caches loaded data in memory lazily to speedup
query execution. Spark [15] executes on raw data sources but
suffers from poor parsing and deserialization performance.
Sparser [47] applies a narrow class of fast filters before data
loading to reduce raw data processing cost.

The ACCORDA system (upper right) combines on-demand
loading with seamless acceleration that focuses on data trans-
formation, providing predictable, high performance on raw
data processing. Key ideas include introducing data encod-
ing types in a query plan, uniform runtime worker model
with data transformation acceleration, in memory-hierarchy
hardware acceleration integration, and novel query optimiza-
tions based on data encoding. In Section 4, we describe
the ACCORDA software architecture, and in Section 5, we
describe the UDP hardware acceleration that serves as the
key enabler for ACCORDA’s software architecture.

4. ACCORDASOFTWARE ARCHITECTURE

We discuss the ACCORDA software architecture, describ-
ing the key design choices — extending operators with encod-
ing subtypes and a uniform runtime worker model — that to-
gether enable seamless flexible acceleration and optimization.
Next, we show how these elements preserve the structure
and benefit of traditional analytics engines.

4.1 Encoding in the Operator Interface

ACCORDA extends the operator interface, conceptually
adding data encodings as column properties.? This effec-

2Blocking and cross-column group optimizations complicate
this slightly, but we defer that complexity to later discussion.
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Operator Interface = <Attributel, Attribute2, ...>
Attribute = <DataType, Name, Metadata>
DataType = String | Double | Date | Integer | ...

ACCORDA Interface = <Encode-Attribl, Encode-Attrib2,...>
Encode-Attrib = <DataType, Name, Metadata, Encode >
Encode = Native | Dictionary | Huffman | Part-Dictionary | ...

Figure 5: ACCORDA’s Encoding-extended Opera-
tor Interface.

tively subtypes the operators with data encoding, allowing
expression of encoding-specialized operators (e.g., filter for
RLE-encoded INTSs). These extended types (see Figure 5)
are used for query optimization and execution, so query plans
can capture encodings and data transformation amongst en-
codings, and optimize them. A transformation can satisfy
the encoding requirement of accelerated operator’s implemen-
tation, or it can be fused to improve data locality and reduce
transformation cost. ACCORDA’s acceleration enables many
new inexpensive data transformation operators.

A traditional operator interface is a list of attribute types.
ACCORDA operator interface is a list of <attribute, encod-
ing> tuples as illustrated in Figure 5. ACCORDA’s current
implementation supports four encodings: Native (native for-
mat), Dictionary, Huffman, and Partitioned-Dictionary (a
prefix of the data item is dictionary-encoded). NATIVE
grandfathers legacy operators, enabling co-existence with
new explicit encode operators as well as customized variants
for improved performance.

Figure 7 gives a concrete example to demonstrate what
happens in an encode operator. The encode operator first
batches a set of records into a block and sends the block to the
data transformation operator (accelerated as in Section 5) for
a series of transformations (transpose for efficient dictionary
encoding of attribute A, and then transpose back with each
record streaming into downstream operators). In Section 5,
we revisit this example, showing acceleration detail.

|A: string| B: float | C: date | D: int |

. N Npmmmmmmm———

\ dictiongry native

i
]
]
]
I
]
]

Dictionary
Encode

transpose recode transpose

Figure 7: Dictionary Encode Operator.

Example To illustrate the power of encoding subtyping for
operators, consider the full query optimization example in
Figure 6. We add UDP-accelerated operators (left side),
swapping in an accelerated JSON reader (blue) under the
traditional operator interface. Extending the operator in-
terface with data encoding (see “native” added to many
encodings) enables the four query plan transformations (red).
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Figure 6: Encoding-Based Query Optimization Example (Encodings Indicated Between Operators).

The encoding for each data attribute is suffixed with “_”. For
example, in “string_json”, json is the encoding and string
is the data type. With the richer encoding-extended inter-
face, the optimizer allows lazy parsing and deserialization by
pushing predicates down. Next, it picks an efficient operator
implementation with a specific encoding (e.g., inference, sort,
and regex). Later steps fuse the introduced encode operators
to improve execution efficiency and data locality. Finally, the
remaining encode operators can be UDP-accelerated (blue).
In summary, the encoding-extended operator interface cap-
tures data encodings for intermediate results in a query plan
allowing flexible and cascading optimizations.

4.2 Uniform Runtime Worker Model

In ACCORDA, extended operator types enable acceler-
ated and traditional operators to be treated uniformly. AC-
CORDA also implements a uniform runtime model; all run-
time worker threads are accelerated (Figure 8). This uni-
formity simplifies scheduling of work, and allows queries to
run from end-to-end on a single worker without switching,

enhancing data locality.
original
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Figure 8: Most Accelerated Systems Create Differ-
ent Worker Types (Upper). ACCORDA Has Uni-
form Accelerated Workers (Lower).

Likewise, ACCORDA integrates acceleration seamlessly
within the memory-hierarchy, reducing access overhead, cre-
ating low-overhead data sharing across accelerated and unac-
celerated operators. This is possible because the ACCORDA
accelerator is fast, small, and low-power so that a single
accelerator is sufficient to support across many CPU cores
(see Section 5), and still delivers high speedups (evaluated in
Section 7.3). Most other hardware acceleration approaches

are forced into looser integration [18, 35, 45, 50] by power,
and wind up with two worker types: accelerated and nor-
mal. Such an approach complicates scheduling, forcing query
execution to switch between workers to exploit acceleration.

4.3 Preserving Software Architecture

encoding rules legacy rules

omae 11 (111

compute encode legacy

@9

Access Data
Methods Layouts

Operators

Storage Layer

Figure 9: ACCORDA Query Engine Software Archi-
tecture (Added Components in Green).

The ACCORDA software system’s design preserves con-
ventional data analytics system architecture. For example, in
our implementation built on SparkSQL, system components
such as query frontend, storage system, memory manage-
ment, and distributed manager are unchanged. As shown in
Figure 9, newly added components include new rules and two
classes of new operators (encoding-optimized compute and
encode). New elements are depicted in green. The optimiza-
tion layer gains new data-encoding rules from the rule-based
optimizer (e.g., the Catalyst optimizer [15]) that transform
the query plans to select good encodings.®> ACCORDA en-
capsulates legacy operators using the extended interface, and
adds encoding and compute operators, enabling exploitation
of format-optimized compute operators.

Importantly, the ACCORDA software architecture avoids
disrupting the optimizer. Figure 10 contrasts optimizer

30ur evaluation (Section 7) inspired addition of rules for
data read, filter, hashing, regex matching and sorting to
place data encoding operators in a query plan.
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architectures for traditional, accelerated, and ACCORDA-
accelerated. The traditional non-accelerated query optimizer
consists a cost model and dozens of optimization rules (left).
GPU/FPGA-accelerated systems add layers to manage the
cost of data transfer to/from PCle, data transformation over-
heads, locality impacts, and device scheduling [18] (center).
The ACCORDA query optimizer maintains the original op-
timizer architecture, adding rules, and using cost metrics
alone to manage use of acceleration (right). The key to this
is the ACCORDA’s critical choice of in memory-hierarchy
acceleration (Section 5) and uniform runtime worker model.

4.4 Preserving Flexible Query Optimization

4.4.1 Coarse-grained vs. Fine-grained

Iterator-based execution (tuple-at-a-time) has well-known
virtues for avoiding unnecessary materialization — and cor-
responding computation and IO [15, 29]. ACCORDA’s
software architecture, combined with in memory-hierarchy
accelerator integration (Section 5.1) allows ACCORDA to
preserve the tuple-at-a-time processing model (or at least a
block-oriented version).

NoC 9

—/ —
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DB with PCle-Accelerator
Changes to Operator-at-a-
time Processing

ACCORDA Preserves
Iterator-based Processing
with Acceleration

Traditional Tuple-at-a-
time lterator-based
Processing

Figure 11: Comparing Execution Models.

In contrast, accelerated DBMS (e.g., GPU database) gen-
erally employs operator-at-a-time processing [18]. Figure 11
shows these differences. This is a consequence of GPU’s sepa-
rate memory systems (copy-in/copy-out, data movement, and
synchronization cost), as well as their non-uniform worker
model (see Section 4.2). Consequences include large interme-
diate materialized results, extra computation, and memory
demand — particularly for accelerators with limited memory
(e.g., GPU’s). So the accelerator totally disrupts the opti-
mizer; a common response is to use a completely new strategy
that splits a query plan into coarse-grained chunks and sched-
ules each separately. Each chunk runs on the same device
using a single processing model (e.g., operator-at-a-time).

ACCORDA enables full, fine-grained query optimization.
We reuse the existing rules in SparkSQL. The optimizer treats
accelerated operators as the first-class citizens as shown in
Figure 12. Rule a,b are fired when the sub-tree in a query
plan and the estimated statistics meet the transforming
condition. Rule ¢ replaces a data transformation operator
with an accelerated counterpart. Rule d transforms a costly
regex matching filter expression into a separate accelerated
operator. While beneficial in ACCORDA, these fine-grained
optimizations would damage performance in a GPU/FPGA-
accelerated database systems if they are not constrained by
the interaction overheads between CPU’s and accelerators.

In Figure 13a, we illustrate the benefits of fine-grained op-
timization for two TPC-H queries using the platform, system
and workload described in Section 6. In Q10, the ACCORDA
optimizer replaces the data source operator with an accel-
erated one (rule ¢) and combines seven group by attributes
together and compresses it using Huffman coding (rule b).
The follow-on hash aggregation is computed based on the
encoded group. Optimization with rule ¢ along achieves a
2.6x speedup than the baseline, and an additional 18% per-
formance improvement with rule b. Similarly in Q13, besides
the accelerated data read (rule c), the expensive regex filter-
ing expression is replaced by the hardware-accelerated regex
operator (rule d). The combined effect (rule c+d) produces
a 13.2x speedup compared to the baseline.

sort Sort

Hash

xcan e tent)>

Attribute (X) | dictionary Attribute (X) | 200 bytes
encoded Attribute (X)

Rule a) Rule b)
T T Filter( ...)
Accelerated ’ |:>
5V Read |:> oo lorate Filter(Regex, ...)
Rule ¢) Rule d)

Figure 12: ACCORDA Rule Examples.

4.4.2 Integral vs. Standalone Encoding

ACCORDA’s encoding-extended operator interface allows
encode operators to be decoupled (standalone) from integral
implementations (encode-compute-decode). In ACCORDA,
attributes can take on varied encodings at each step, reducing
operator implementation’s encoding overhead. Thus the AC-
CORDA query optimizer can use rule-based optimizations to
choose the best encodings while decode operators are inserted
where necessary and delayed after filtering or aggregation to
reduce cost. These standalone encoding transformations can
later be fused to further improve execution efficiency.

We illustrate the potential gain in Figure 13b with sort-
limit query on the shipdate attribute of the lineitem table
on the ACCORDA system. The integral implementation for
sorting with hardware acceleration gives a 15x speedup. On
the other hand, standalone decode operators allow work to
be shifted after the filter operations, producing another 20%
performance improvement. Larger benefits are possible with
more complicated, aggressive transformation rules.

S. ACCORDA HARDWARE ARCHITECTURE
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Query Optimization.

The ACCORDA hardware system builds on our prior work
on the UDP (a high-performance, low-power data trans-
formation accelerator [23, 25]). The unique architectural
features of the UDP include multi-way dispatch, variable-
size symbol support, flexible-source dispatch, and flexible
memory sharing. These features, combined with software
programmability, a fast scratchpad memory, and 64 parallel
lanes enable a single UDP to provide a 20x geomean speedup
over an entire multi-core CPU across a broad variety of
export-transform-load computations such as CSV parsing,
Huffman encode/decode, regex pattern matching, dictionary
encode/decode, run-length encoding, histogram, and snappy
compression/decompression (see Figure 17). Furthermore,
the UDP’s implementation achieves geomean 1,900-fold in-
crease in performance/watt (four orders of magnitude). At
a tiny 3.82mm? area, and 0.86 watt [25], the UDP can be
integrated on a CPU with minimal cost. Together, these
capabilities power ACCORDA’s low-cost data transforma-
tion at full memory speeds. Next, we explore how to best
integrate the UDP into the hardware system architecture
and the analytics system software architecture.

5.1 In Memory-Hierarchy Integration

We consider two alternatives for integrating the ACCORDA
accelerator into the hardware system: 1) on PCle and 2) in
memory-hierarchy. Historically, most accelerators (GPU’s
and FPGA’s) use PCle integration [18, 49] both for the con-
venience of modular “pluggability” as well as the realities of
their large die sizes (both FPGA’s and GPU’s are typically
as large as CPU’s, requiring 100’s of mm? for good accelera-
tion performance) and high power (GPU’s range from 50-300
watts, and 10-50 watts for FPGA’s). As important, GPU’s
require a dedicated high bandwidth memory for performance,
forcing data sharing with the CPU’s via copying and expen-
sive data transfers, to utilize the acceleration. The resulting
data movement overhead prevents fine-grained interleaved
execution between CPU’s and accelerators. PCle-attached
acceleration is depicted in Figure 14 (blue).

In ACCORDA, we use “in memory-hierarchy” integration
of the accelerator — UDP (Figure 14, green). The UDP is
added to the CPU chip, reducing data transfer cost (traffic
through the on-chip network). This is only possible with
a high-performance, tiny (area), and low-power (0.86 watt)
accelerator. The Unstructured Data Processor (UDP) meets
all these requirements. A single UDP accelerator is <1% the
area of a CPU chip, but delivers 20x data transformation
performance in 0.86 watt [25].

We illustrate in memory-hierarchy integration in Figure
14 (green). The CPU core accesses the caches normally, but
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PCle In Memory- e I <
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Figure 14: Two Approaches to Integrate Accelera-
tion (In Memory-Hierarchy Integration in Green).
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Figure 15: UDP’s Software Stack Supports a Wide
Range of Transformations. Traditional CPU and
UDP Computation Can be Integrated Flexibly.

can also directly access the accelerator’s scratchpad memory
which is mapped as “uncacheable” (data doesn’t appear in
regular memory-hierarchy). Data is moved to/from scratch-
pad memory by libraries using lightweight DMA operations
(like memepy) [52] as in Figure 14 (green arrow). For exam-
ple, the record block in Figure 7 is moved from CPU caches
by the DMA engine into the UDP scratchpad. Next, the
UDP program transposes columns with balanced distribution
on the 64 UDP lanes. After that, each UDP lane performs en-
coding. Then, the result is transposed again and DMA’ed to
the CPU caches. The key advantage of in memory-hierarchy
integration is the low-overhead data sharing between CPU
cores and accelerators; we leverage this as a foundation of
the ACCORDA software architecture.

5.2 Programming the UDP Accelerator

A key challenge for specialized accelerators is their general-
ity and software-programmability. We carefully designed the
UDP instruction set [22] to achieve software-programmability
with high-performance. The UDP programs are called as
application-level dynamic libraries.

UDP programs can be composed by domain-specific trans-
lators, selected from UDP kernel libraries, or high-level lan-
guages from third-parties — all sharing a single backend (see
Figure 15). The translators support a high-level abstrac-
tion and a domain-specific frontend to generate high-level
assembly language. The backend takes UDP assembly and
does intra-block and cross-block optimizations, but most
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importantly, it does the layout optimization to achieve high
code density for multi-way dispatch [24]. Furthermore, it
optimizes action block sharing to achieve small code size.

6. METHODOLOGY

6.1 System Modeling

We compare ACCORDA performance to a baseline of
SparkSQL running on a 14-core, 28-thread CPU (Intel Xeon
E5-2680) with 64GB DDR3. We use default Spark/SparkSQL
configuration and a single worker with 10GB memory.

ACCORDA'’s performance is based on a software prototype
derived from Apache SparkSQL (version 2.2) with the query
engine and optimizer extensions described in Section 4. This
includes the cost of using Java Native Interface (JNI) to
make data accessible to the accelerator. ACCORDA system
performance is determined by a timed hybrid-simulation
modeling methodology. We utilize the Intel HARP system
(two-socket system with the same Intel Xeon E5-2680 and
an Altera Arrial0 FPGA connected by QPI) to achieve high-
speed execution for large workloads [7]. We capture event
logs with timing (e.g., timestamps) and execution labels.

Because the FPGA emulation of the UDP as well as the
QPI emulation of in memory-hierarchy integration are both
slower than a real implementation, we re-time the traces
according to Figure 16 and the data in Table 1. ACCORDA
workers run across the CPU and UDP with no overlap. UDP
execution is scaled up to 1Ghz ASIC speed [25], and data
movement of in memory-hierarchy transfers is scaled by the
ratio of DMA bandwidth over QPI. The trace log is post-
processed to implement the hybrid-simulation model and
reflect the updated task time. This hybrid performance
modeling is conservative since it assumes no overlap between
the CPU core and acceleration, and performance is penalized
by cache pollution due to simulation and logging.

Table 1: Hardware Platform Statistics.

[ [ FPGA Emulation [ Actual |
DMA Bandwidth 3 GB/s 30 GB/s
Clock Frequency 40 MHz 1 GHz

Resources 295K ALM, 10Mb BRAM | 8.69mm?

Spark Worker Task

CPU Accelerate

CPU Accelerate | CPU

Log Traces

«

l N
Input Size Output Size

Compute time

L Freguency Scales

DMA UDP Compute | DMA

Transfer
Cost

Figure 16: Timed Hybrid-Simulation Model.

6.2 Workload

We use the TPC-H dataset [6] and the entire 22 TPC-H
queries for evaluation, spanning both simple select-project-
join structures to more complicated ones with expensive

expressions and large intermediate attributes. We use source
raw data in tabular format (TBL) with different fields sepa-
rated by delimiter ’|. Each field is in text format rather than
binary, exercising the flat parsing and data type conversion
dimensions of raw data processing.

A more aggressive raw data study would include deep
nested structures and unnormalized relations, so our esti-
mates of ACCORDA benefit are conservative. Raw data
workloads containing these richer raw properties will fur-
ther tax conventional systems, causing them to spend more
time on complex data parsing and conversion. In contrast,
ACCORDA will find more opportunities to apply hardware
acceleration and to employ aggressive encoding optimizations
on nested structures, unnormalized relations, and so on.

7. EVALUATION

Evaluation of ACCORDA system includes micro-benchmark
for the hardware accelerator (see [25] for a more complete
study), its integration, query performance versus alternate
raw data approaches, and performance sensitivity studies.

7.1 ACCORDA Accelerator Micro-benchmark
7.1.1 Regex Matching

UDP accelerates regular expression matching dramatically.
Regex is important for data filtering SQL operators (e.g.,
LIKE and RLIKE). Figure 17a compares performance on a
single regex pattern from TPC-H Q13, showing the perfor-
mance of ACCORDA accelerator (UDP), an 8-thread CPU
(Intel Hyperscan [3]), an FPGA [50] (using the best perfor-
mance number), and a commercial ASIC implementation
(Titan [53]). The 8-thread CPU achieves 12.8 GB/s, and the
FPGA nearly doubles that. The Titan accelerator performs
similar to the 8-thread CPU but at much less power. UDP
achieves 64 GB/s, 4.9x faster than the 8-thread CPU.

7.1.2 Decompression

UDP accelerates data compression, which is widely-used
to reduce raw data storage cost. For decompression, we
compare the UDP to the 8-thread CPU-based Snappy [1]
library, a commercial FPGA implementation [8] using Virtex
7 (28nm) and 28Mb BRAMs, and a commercial ASIC (Intel
[2]). Our results (see Figure 17b) show UDP matches best
performance (13 GB/s) but at a much smaller fraction of
power and area cost required for the FPGA implementation.
ASIC delivers less performance with significantly lower power.
UDP is 2.6x faster than the 8-thread CPU.

7.1.3  Parsing

UDP accelerates parsing, which is critical to extract rele-
vant fields from unstructured raw data. The parsing involves
finding and validating delimiters, and extracting interesting
fields. In Figure 17c, we compare the UDP performance to
an 8-thread CPU (SIMD-optimized parser [46]) and an ASIC
design for parsing CSV/JSON/XML [14]. The UDP achieves
4.3 GB/s throughput, 2x the performance of the 8-thread
CPU (2 GB/s), and 3x greater than the ASIC design.

7.1.4 Deserialization

UDP can accelerate data transformation from external
format to native machine format (deserialization). Dese-
rialization happens when raw data is in machine-neutral
interchangeable format. In Figure 17d, we use the UDP to
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accelerate ASCII to DATE type conversion. It is one of the
most expensive data transformation tasks in raw data pro-
cessing [12, 37]. We compare the Java deserialization CPU
library to our UDP-based implementation. UDP achieves
1.6 GB/s throughput, 20x faster than the 8-thread CPU.

7.2 Benefits of In Memory-Hierarchy

In memory-hierarchy accelerator integration lays the foun-
dation for the ACCORDA software architecture, enabling
data transformation to improve performance. We compare
two approaches in terms of accelerator integration: UDP
accelerator in memory-hierarchy vs. on PCle. The total per-
formance and data movement are modeled using the LogCA
model [13]. In this experiment, we use the TPC-H order table
in the compressed tabular format. The query is simple: SE-
LECT date, comment FROM order WHERE comment
RLIKE ¢ *special. *requests. *”.

Figure 18a shows the runtime breakdown for three phases:
decompression, parsing-select, and regex filtering. Decom-
pression and regex filtering are offloaded completely, but
select requires CPU-accelerator collaboration. This data
sharing across the PCle bus increases overhead by 66%.
Figure 18b shows that varying the comment attribute from
1%-100% selectivity, resulting PCle-integration to cause 6.8x-
14x higher data movement. In memory-hierarchy accelerator
integration preserves the iterator-based execution model, al-
lowing ACCORDA to preserve fine-grained data sharing and
interleaved execution between CPU cores and the accelerator.

7.3 Acceleration Scalability

Acceleration performance must be sufficient to support
both multiple cores and accelerated worker uniformity. We
study the sharing of one UDP accelerator (64 lanes) across
multiple cores by increasing the number of workers. Results
(see Figure 18c) show that with 16 workers, the sharing in-
creases accelerated runtime by less than 20% on TPC-H Q1
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(data transform, filter, hash aggregate, float computation,
and sort) with “weak-scaling”. When combined with the
accelerator’s 304x performance advantage on these compu-
tations, after data movement and sharing overhead, each
of the 16 workers still experiences an overall 3.6x speedup,
producing large benefit for the entire query.

7.4 Benefits of Software-Programmability

The ACCORDA accelerator is software-programmable.
FPGA’s are popular alternative: hardware-programmability.
We use a set of data transformation and filtering tasks to
compare performance achieved per unit silicon area (per-
formance density). FPGA’s use LUTs (look up table) and
interconnection configuration to achieve programmability,
paying silicon area overhead and lower clock rate for flex-
ibility. In contrast, the UDP hardwires an instruction set
architecture (basic primitives) and runs software written
to that ISA. This enables the UDP implementation to use
silicon area efficiently and achieve a high clock rate.

Figure 20 compares performance density for the decom-
pression and the regular expression matching (1 and 500
patterns). For FPGA’s, we report a Xilinx’s commercial
design [8] for decompression, a database-oriented design [50]
for single-pattern regex, and a network monitoring based
design [58] for 500-pattern regex. Area is calibrated LUT’s
used [54], excluding BRAMs. For the UDP, we present
two metrics. The first is program area (program size in
the SRAM), and the second adds UDP logic area. In all
cases, UDP is more area-efficient (see Figure 20), with 19x
better performance density for decompression and 160x for
single-pattern and 90x for 500-pattern regex. Here, software-
programmability provides significantly higher performance
density than hardware-programmability.

7.5 ACCORDA Raw Data Performance
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Comparing Raw Data Approaches We compare AC-
CORDA system performance to several alternate approaches:
1) SparkSQL [15] with batch loading of the TPC-H tables
into memory beforehand, 2) SparkSQL with on-demand ETL
without caching any transformed data (the worst case for
RAW /NoDB approach [12]), and 3) Sparser [47] on SparkSQL
with on-demand ETL (SIMD-accelerated partial pre-filtering)
with data and queries detailed in Section 6.2.

Our results (see Figure 19) show that ACCORDA improves
query performance for all 22 queries, and not only compared
to batch ETL (16x geomean), but also relative to on-demand
ETL (4.6x geomean), and optimized on-demand SIMD fil-
tered ETL (3.6x geomean). The reasons for ACCORDA’s
benefits compared to batch ETL (only load what’s needed)
and on-demand ETL (UDP acceleration of data parsing,
conversion, and encoding optimization) are straightforward,
but the comparison to Sparser bears further discussion.

Table 2: Sparser and ACCORDA Predicate Support
(TPC-H 22 Queries). S = Sparser, A = ACCORDA,
O = TPC-H Occurrence.

Predicate Type Example S| A| O
Multi-Column coll = col2 0] 15 | 15
Range Compare 10 < col < 20 0| 40 | 40
IN Operator col IN (vall, val2, ...) 0 5 5
Literal Equal col = “abcd” 32 | 32| 32
Regex (partial) col RLIKE “ab.*[0-9]{2}” | (6) 6 6

[ [ Total Supported [ 32798798

Sparser tries to avoid parsing and deserialization by using
literal comparisons to raw bytes. This limits the types of
predicates and raw data encodings that can be covered, and

the effectiveness of the filtering. For example, gzipped data
cannot be filtered. Table 2 categorizes the predicates used in
TPC-H queries, comparing Sparser and ACCORDA’s ability
to support. Sparser’s SIMD approach supports 32 (and 6
regex filters partially) out of 98 predicates, limited to Literal
Equal predicates and sub-string part of Regex predicates. AC-
CORDA’s flexible hardware acceleration enables it to support
a broad range of predicates, including Reger with complex se-
mantics (e.g., range and repetition), multiple columns, range
comparison, or IN operator. Thus, ACCORDA supports all
98 predicates in the TPC-H queries — general acceleration
without constraints on predicate semantics.
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Figure 21: Software Architecture Enabled Perfor-
mance Benefit (Selected TPC-H Queries).

ACCORDA Software Architecture Benefits Next, we
explore the benefits of ACCORDA’s software architecture
that enables aggressive encoding-based optimizations. Figure
21 compares ACCORDA (Raw) and ACCORDA (Enc+Raw)
on selected queries Q9, Q10, Q12, Q13, Q16, Q19 and
Q22. ACCORDA (Raw) shows acceleration of data loading,
but ACCORDA (Enc+Raw) shows how further aggressive
encoding-based query optimization in the middle of a query
plan can further increase performance. Specifically, Q10 ben-
efits from attribute group compression, Q12 from dictionary
encoding for fast filtering, and Q9, Q13, Q16, Q19, Q22 from
accelerated operators for multi-pattern matching and regular
expression filtering. Overall, the ACCORDA software ar-
chitecture enables encoding-based query optimizations that
yield 1.1x to 11.8x speedups beyond raw data acceleration,
a software architecture benefit of 1.8x geomean (80%!). This
workload contains only flat parsing (see Section 6.2); we
expect larger benefits for raw data with nested structures
and unnormalized relations with long attributes.

ACCORDA Raw vs. Loaded, Cached Analysis To see
how much raw data processing overhead remains, we com-
pare ACCORDA raw data analysis to loaded data analysis

1577



N W
vl O

W SparksQL (Loaded, Cached Data)

W ACCORDA (External, Raw Data)

N
o

=
o

Execution Time(s)
=
wv

P FTATTPIY I T P

3> A DXL RO DN DO o L O O N S
FFE LSS ELFIPITISIS LSS &

&
&

Figure 22: ACCORDA Raw Data Processing vs.
Loaded, Cached Data Analysis.

(SparkSQL Loaded, Cached Data). In SparkSQL (Loaded,
Cached Data), data has been parsed, transformed, trans-
posed, loaded into its internal columnar-format, and cached
into main memory for fast access. Thus it approximates
both traditional database (with loaded data) and the best
case for RAW/NoDB [12] when all raw data accesses hit
in-memory buffer with only selected columns fetched. Our
results, in Figure 22, show raw data processing overhead
between ACCORDA (External, Raw Data) and SparkSQL
(Loaded, Cached Data) is reduced to 1.2x overall (geomean)
from 5.6x. Q13 is an outlier for loaded data, suffering from
poor regex performance. The raw data overhead is 1.3x
geomean excluding Q13. The key reasons for this improve-
ment are ACCORDA’s encoding-based optimization and
hardware acceleration. The remaining overheads are due to
ACCORDA'’s lack of projection pushdown, floating number
conversion, and memory caching — tailored for loaded data,
and not so useful for raw data. Overall, ACCORDA reduces
raw data processing overhead to only 20%.

In summary, ACCORDA nearly eliminates transformation
cost for raw data, enabling it to outperform other raw data ap-
proaches and achieve competitive performance against loaded,
cached data analysis. Encoding optimization is critical, en-
abled by ACCORDA'’s software architecture, contributing
1.1x-11.8x speedups beyond data loading acceleration. Over-
all, ACCORDA gives speedups of 16x vs. batch loading, 4.6x
vs. on-demand ETL, and 3.6x vs. SIMD filtering (Sparser).

7.6 Sensitivity to Data Statistics

In raw data processing, early partial filtering with inexpen-
sive predicates [15, 47] can avoid the cost of data transfor-
mation (e.g., parsing, deserialization) and subsequent query
computation. We study ACCORDA’s benefit on supported
predicate functionality, filter selectivity, cost of predicates,
and volume of data. As in Table 2, ACCORDA’s flexible
hardware acceleration provides excellent coverage.

We compare ACCORDA with different raw data processing
approaches using three predicates — Range Compare, Literal
Equal, Regex Match —and varying their selectivity (see Figure
23). As shown in Figure 23, On-Demand ETL (SparkSQL)
suffers from CPU’s slow data transformation thus delivers
poor performance in all cases. Sparser leverages SIMD-
accelerated filters to have less data to parse, deserialize, and
filter. However, Sparser can’t support range-based predicates
existed in Q1. In Q12 and Q13, Sparser pushes substrings in
the predicates on raw data, thus achieves speedups. Sparser’s
performance is sensitive to data statistics (selectivity) in
these cases. On the other hand, ACCORDA’s hardware
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acceleration enables robust support for all TPC-H predicates,
reducing data loading cost. For a wide range of data statistics,
it is approaching loaded, cached data analysis.

7.7 Format Type and Complexity Sensitivity

Open data formats are pervasive in data lakes, enabling
size optimization, readability, execution performance, and
portability. The resulting format complexity incurs raw
data processing cost [12, 37, 43, 47] that grows with data
complexity. We study its impact on ACCORDA’s benefits.

Figure 24a compares TPC-H Q1 execution time on raw
data with a succession of more complex formats (Snappy
+ CSV, Huff+Snappy+CSV, JSON, Snappy+JSON, and
Huff+Snappy +JSON). CPU processing cost increases with
format complexity — lineitem in CSV format increases by 32%
when data is in Huffman+Snappy+JSON format. Sparser
sees a similar increase. The ACCORDA system, with ca-
pable hardware acceleration, sees minimal increase, only
3.7%. As shown in Figure 24b, ACCORDA with its flexibly-
programmable acceleration (UDP) delivers a robust 4x speed-
up vs. SparkSQL on a variety of source format complexity.
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8. DISCUSSION AND RELATED WORK

Optimizing Raw Data Processing Several SIMD ac-
celeration techniques target parsing in ETL. InstantLoad
[46] exploits SIMD parallelism to find delimiters, reducing
branch misses by 50%, to achieve single-thread performance
over 250 MB/s (x86 CPU). Our UDP delivers 40x better
single thread performance and easily saturates a DDR mem-
ory channel. MISON [43] exploits speculative parsing and
SIMD acceleration for JSON. A list of pattern trees is built
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from a training data set, optimizing a speculative parsing
pattern. However, effectiveness depends heavily on template
variety and good sample data. ACCORDA accelerates JSON
parsing robustly and supports more structures (e.g., XML).

SCANRAW [20] is a pipelined architecture for loading raw
data, integrated as a meta-operator. Speculative loading
attempts to mitigate high ETL cost by loading whenever
there is spare disk 10 bandwidth. In contrast, ACCORDA
doesn’t load data but accelerates raw data processing directly.

RAW/NoDB [12, 16, 36, 37] applies lazy loading, caching
materialized results, and positional maps to raw data pro-
cessing to avoid ETL/data transformation. It also caches
transformed records if there is reuse. RAW/NoDB can trade
memory for performance. Data Vault [33] takes a similar
approach, using query-driven memory caching of multidi-
mensional arrays from scientific raw files. These results show
several limitations. First, query performance on first-time
touched columns suffers from slow data loading. Second,
because caching depends on reuse, query performance is sen-
sitive to pattern and history — queries that share little in a
large data lake or few columns will have poor performance.
Third, effective caching requires significant memory capacity
(e.g., 32GB [16]); NoDB’s positional maps also consume sig-
nificant space. ACCORDA uses hardware to accelerate raw
data processing, achieving robust, good performance.

Other systems [15, 37, 47] exploit query semantics for
predicate pushdown. Inexpensive partial predicates are used
to filter raw data, avoiding downstream transformation and
processing cost. As in Table 2, predicate types and hard-
ware support limit their applicability. ACCORDA has good
predicate coverage, achieving inexpensive filtering broadly.

Data Representations for Fast Query Execution
Database representation strongly affects query performance.
C-store [9, 51] demonstrates that column-oriented storage
layouts with rich encodings (e.g., bitmap, dictionary, and
run-length-encodings) can optimize query performance on
OLAP workloads. Recently, more advanced data representa-
tions [26, 39, 42, 44] have been proposed to exploit SIMD
accelerations for fast query scan while preserving storage size
reduction. Compressed formats are designed to allow direct
processing without decompression [10, 60] under a limited
set of query semantics. In ACCORDA, we consider dynamic
data transformation acceleration during query execution on
raw data without any constraints on query semantics.

Such compressed data representations can accelerate itera-
tive machine learning algorithms [21, 40]. They are designed
to allow direct computation during training. Zukowski et
al. [61] explored dynamic transposition between row and
column formats during query execution. The results suggest
distinct layouts benefit different operations (e.g., scan for
column and aggregation for row). On the other hand, many
database operators can be accelerated by applying SIMD,
GPU’s or FPGA’s [35, 48, 50, 57]. However, many acceler-
ated operators require a special data layouts, and thus could
benefit from ACCORDA’s fast data transformation, enabling
more general exploitation of customized formats.

Database Hardware Accelerators Data centers are
now incorporate varied accelerators (e.g., ASIC’s, FPGA’s,
and GPU’s) [30, 34, 49]. One thread is accelerators for
data analytics. Accelerator designs have been proposed
for query procssing bottlenecks [11, 28, 35, 38, 41, 50, 55,
56]. Researchers have explored customized accelerators for
common operators in SQL such as join [56], partition [11, 55,

1579

56], sort [56], aggregation [56], regex search [28, 50, 56], and
index traversal [38]. Deploying an accelerator for each task is
challenging — design and deployment cost, and obsolescence
when new algorithms emerge. Closest is the Oracle DAX
[41], accelerating column scan on compressed formats. DAX
only supports fixed formats; the UDP accelerator is flexibly-
programmable, matching DAX performance and efficiency,
and is extensible to broader existing and future encodings.
Active research explores the use of FPGA’s to accelerate
data analytics [19, 31, 32, 35, 45, 49, 50]. Computation
kernels are implemented on FPGA’s as co-processors. DAnA
[45] automatically generates FPGA implementations from
UDFs for iterative machine learning training jobs in RDBMS.
Other work explores FPGA’s for regex matching [50], data
partitioning [35] and histogram generation [32]. However, for
interactive queries, building one circuit for each algorithm
is impractical due to the latency and resource requirement.
FPGA acceleration on multiple operations in a query requires
runtime reconfiguration with additional performance penalty.
Furthermore, the reconfigurable LUTs in FPGA’s suffer from
low energy efficiency [54]. Our UDP accelerator provides data
transformation flexibility with high-efficiency and flexible
software-programmability. Results in Section 7.4 show its
advantages over FPGA’s in performance and area efficiency.

9. SUMMARY AND FUTURE WORK

ACCelerated Operators for Raw Data Analysis (ACC
ORDA) is a software and hardware architecture that extends
the operator interface with encoding and uses a uniform
runtime worker model to seamlessy integrate acceleration.
ACCORDA improves data lake / raw data processing perfor-
mance by 2.9x-13.2x on TPC-H benchmarks, reducing raw
data processing overhead to 20%, and its extended operator
interface unlocks aggressive encoding-oriented optimizations
that deliver an 80% average speedup on the affected TPC-H
queries. These experiments exercise flat parsing and data
type conversion; larger benefits will accrue for nested struc-
tures and unnormalized relations that require complex pars-
ing and expose more encoding optimization opportunities.

ACCORDA'’s flexible query optimization across data en-
codings and good performance expose new opportunities. In-
teresting directions include: novel data formats (customized
to application or data), aggressive query optimizations for
open data type encodings, and new computation kernels /
operators tuned to specific data encodings. Further, AC-
CORDA integrates acceleration deeply into both hardware
and software architectures, preserving and extending tra-
ditional query optimization structures and maximizing the
breadth of acceleration applicability. This creates the op-
portunity to extend data analytics to a growing diversity of
user-defined data types, addressing the expressiveness gap
between programming and query languages.
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