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ABSTRACT
The randomized technique of color coding is behind state-of-
the-art algorithms for estimating graph motif counts. Those
algorithms, however, are not yet capable of scaling well to
very large graphs with billions of edges. In this paper we
develop novel tools for the “motif counting via color cod-
ing” framework. As a result, our new algorithm, motivo,
scales to much larger graphs while at the same time pro-
viding more accurate motif counts than ever before. This is
achieved thanks to two types of improvements. First, we de-
sign new succinct data structures for fast color coding opera-
tions, and a biased coloring trick that trades accuracy versus
resource usage. These optimizations drastically reduce the
resource requirements of color coding. Second, we develop
an adaptive motif sampling strategy, based on a fractional
set cover problem, that breaks the additive approximation
barrier of standard sampling. This gives multiplicative ap-
proximations for all motifs at once, allowing us to count not
only the most frequent motifs but also extremely rare ones.

To give an idea of the improvements, in 40 minutes mo-

tivo counts 7-nodes motifs on a graph with 65M nodes and
1.8B edges; this is 30 and 500 times larger than the state
of the art, respectively in terms of nodes and edges. On
the accuracy side, in one hour motivo produces accurate
counts of ⇡ 10.000 distinct 8-node motifs on graphs where
state-of-the-art algorithms fail even to find the second most
frequent motif. Our method requires just a high-end desk-
top machine. These results show how color coding can bring
motif mining to the realm of truly massive graphs using only
ordinary hardware.
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1. INTRODUCTION
Graphlets, also called motifs or patterns, are small in-

duced subgraphs of a graph. Graphlets are often considered
the “building blocks” of networks [17, 23, 28, 29], and their
analysis has helped understanding network evolution [1], de-
signing better graph classification algorithms [28], and de-
veloping cutting-edge clustering techniques [29].
A fundamental problem in graphlet mining and analysis is

graphlet counting: estimating as accurately as possible the
number of copies of a given graphlet (e.g., a tree, a clique,
etc.) in a graph. Graphlet counting has a long and rich
history, which began with triangle counting and received in-
tense interest in recent years [2, 6, 7, 10, 12, 15, 17, 20, 21,
25, 26, 27, 30]. Since exact graphlet counting is notoriously
hard, one must resort to approximate probabilistic count-
ing to obtain algorithms with an acceptable practical per-
formance. Approximate counting is indeed often su�cient,
for example when performing hypothesis testing (deciding
if a graph comes from a certain distribution or not) or esti-
mating the clustering coe�cient of a graph (the fraction of
triangles among 3-node graphlets).
The simplest formulation of approximate graphlet count-

ing, which we adopt in this work, is the following. We are
given a simple graph G on n nodes, an integer k > 2, and
two approximation parameters ✏, � 2 (0, 1). For each graph-
let H on k nodes (the clique, the path, the star etc.), we
want a very reliable and accurate estimate of the number of
induced copies of H in G: with probability at least 1 � �,
all estimates should be within a factor (1± ✏) of the actual
values. Note that we are talking about induced copies; non-
induced copies are easier to count and can be derived from
the induced ones. Our goal is to develop practical algorithms
that solve this problem for sizes of G and H that were out of
reach before, i.e., graphs with hundreds of millions of edges
and graphlets on more than 5 or 6 nodes. We remark that
scaling k is harder than it may seem at a first sight: just
the number of distinct graphlets grows from 21 for k = 5 to
over 10.000 for k = 8. Thus, mining larger graphlets is not
simply a matter of fixing k – instead, it requires new ideas.
To appreciate the main obstacles to large-scale graphlet

counting, let us review the existing techniques and their lim-
itations. All known e�cient algorithms for approximating
graphlet counts are based on sampling graphlets from G.
One popular way of sampling graphlets is to define a ran-
dom walk over the set of graphlets of G, simulate it until it
reaches stationarity, and take a sample [6, 12, 15, 25]. This
technique is simple, elegant, and has a small memory foot-
print. Unfortunately, it can be extremely ine�cient: it is
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known that, even if G is fast-mixing, the random walk may
need ⌦(nk�1) steps to reach stationarity and/or to hit on
the most frequent graphlet of G [8, 9].

A completely di↵erent sampling approach is the CC algo-
rithm of [8, 9], an extension of the well-known color coding
technique [4] based on two key observations. The first obser-
vation is that color coding can be used to build an abstract
“urn” which contains a sub-population of all the k-trees of G
that is very close to the true one. The second observation is
that the task of sampling k-graphlets can be reduced, with
minimal overhead, to sampling k-trees from the urn. One
can thus estimate graphlet counts in two steps: the build-up

phase, where one builds the urn from G, and the sampling

phase, where one samples k-trees from the urn. Building
the urn requires time O(akm) and space O(akn) for some
a > 0, where n and m are the number of nodes and edges
of G, while sampling takes a variable but typically small
amount of time per sample. The resulting algorithm, CC,
outperforms random walk-based approaches and is the cur-
rent state of the art [8, 9].

Although CC has extended the outreach of graphlet count-
ing techniques, it cannot e↵ectively cope with graphs with
billions of edges and values of k beyond six. This is due
to two main bottlenecks. First, the time and space taken
by the build-up phase are significant and prevent CC from
scaling to the values of G and k that we are interested in
this paper. For example, on a machine with 64GB of main
memory, the largest graph for which CC runs successfully
has 5.4M nodes for k = 5, 6 and just 2M nodes for k = 7.
Second, taking s samples from the abstract urn gives the
usual additive 1/s-approximation, which means we can ac-
curately count only those graphlets whose occurrences are
a fraction at least 1/s of the total. Unfortunately, in many
graphs, most graphlets have a very low relative frequency,
and CC is basically useless to count them.

In this work we overcome the limitations of CC by mak-
ing two main contributions to the “motif counting via color
coding” framework. The first contribution is reducing the
running time and space usage of the build-up phase. We do
so in three ways. First, we introduce succinct color coding
data structures that can represent colored rooted trees on
up to 16 nodes with just one machine word, and support
frequent operations (e.g. merging trees) in just a few ele-
mentary CPU instructions. This is key, as colored trees are
the main objects manipulated in the build-up phase. Sec-
ond, for large graphs we present a simple “biased coloring”
trick that we use to trade space and time against the accu-
racy of the urn (the distance of the urn’s distribution from
the actual tree distribution of G), whose loss we quantify via
concentration bounds. Third, we describe a set of architec-
tural and implementation optimizations. These ingredients
make the build-up phase significantly faster and bring us
from millions to billions of edges and from k = 5 to k = 8.

Our second contribution is for the sampling phase and is
of a fundamentally di↵erent nature. To convey the idea,
imagine having an urn with 1000 balls of which 990 red, 9
green, and 1 blue. Sampling from the urn, we will quickly
get a good estimate of the fraction of red balls, but we will
need many samples to witness even one green or blue ball.
Now imagine that, after having seen those red balls, we could
remove from the urn 99% of all red balls. We would be left
with 10 red balls, 9 green balls, and 1 blue ball. At this
point we could quickly get a good estimate of the fraction

of green balls. We could then ask the urn to delete almost
99% of the red and green balls, and we could quickly esti-
mate the fraction of blue balls. What we show here is that
the urn built in the build-up phase can be used to perform
essentially this “deletion” trick, where the object to be re-
moved are treelets. In this way, roughly speaking, we can
first estimate the most frequent graphlet, then delete it from
the urn and proceed to the second most frequent graphlet,
delete it from the urn and so on. This means we can in
principle obtain a small relative error for all graphlets, in-
dependently of their relative abundance in G, thus breaking
the ⇥(1/✏) barrier of standard sampling. We name this al-
gorithm AGS (adaptive graphlet sampling). To obtain AGS
we actually develop an online greedy algorithm for a frac-
tional set cover problem. We provide formal guarantees on
the accuracy and sampling e�ciency of AGS via set cover
analysis and martingale concentration bounds.
In order to properly assess the impact of the various opti-

mizations, in this paper we have added them incrementally
to CC, which acts as a baseline. In this way, it is possible
to assess in a quantitative way the improvements due to the
various components.
Our final result is an algorithm, motivo1, that scales well

beyond the state of the art in terms of input size and simul-
taneously ensures tighter guarantees. To give an idea, for
k = 7 motivo manages graphs with tens of millions of nodes
and billions of edges, the largest having 65M nodes and 1.8B
edges. This is 30 times and 500 times (respectively in terms
of n and m) what CC can manage. For k = 8, our largest
graph has 5.4M nodes and 50M edges (resp. 18 and 55 times
CC). All this is done in 40 minutes on just a high-end com-
modity machine. For accuracy, the most extreme example
is the Yelp graph, where for k = 8 all but two graphlets
have relative frequency below 10�7. With a budget of 1M
samples, CC finds only the first graphlet and misses all the
others. motivo instead outputs accurate counts (✏  0.5) of
more than 90% of all graphlets, or 10.000 in absolute terms.
The least frequent ones of those graphlets have frequency
below 10�20, and CC would need ⇠ 3 · 103 years to find
them even if it took one billion samples per second.

1.1 Related work
Counting induced subgraphs is a classic problem in com-

puter science. The exact version is notoriously hard, and
even detecting a k-clique in an n-node graph requires time
n⌦(k) under the Exponential Time Hypothesis [11]. Practi-
cal exact counting algorithms exist only for k  5; currently,
the fastest one is ESCAPE [20], which still takes a week on
graphs with a few million nodes. We use ESCAPE for com-
puting some of our ground-truth counts.
For approximate graphlet counting many techniques have

been proposed. For k  5, one can sample graphlets via
path sampling (do a walk on k nodes in G and check the
subgraph induced by those nodes) [17, 26, 27]. This tech-
nique, however, does not scale to k > 5. A popular approach
is to sample graphlets via random walks [6, 25, 12, 15]. The
idea is to define two graphlets as adjacent in G if they share
k�1 nodes. This implicitly defines a reversible Markov chain
over the graphlets of G which can be simulated e�ciently.
Once at stationarity, one can take the sample and easily
compute an unbiased estimator of the graphlet frequencies.

1The C++ source code of motivo is publicly available at
https://bitbucket.org/steven_/motivo.
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Unfortunately, these algorithms cannot estimate counts, but
only frequencies. Even then, they may give essentially no
guarantee unless one runs the walk for ⌦(nk�1) steps, and
in practice they are outperformed by CC [8, 9]. Another
recent approach is that of edge-streaming algorithms based
on reservoir sampling [22], which however are tailored to
k  5. As of today, the state of the art in terms of G and
k is the color-coding based CC algorithm of [8, 9]. CC can
manage graphs on ⇠5M nodes for k = 5, 6, on ⇠2M nodes
for k = 7, and on less than 0.5M nodes for k = 8, in a
matter of minutes or hours. As said above, CC does not
scale to massive graphs and su↵ers from the “naive sam-
pling barrier” that allows only for additive approximations.
Finally, we shall mention the algorithm of [16] that in a few
minutes can estimate clique counts with high accuracy on
graphs with tens of millions of edges. We remark that that
algorithm works only for cliques, while motivo is general
purpose and provides counts for all graphlets at once.

Preliminaries and notation. We denote the host graph
by G = (V,E), and we let n = |V | and m = |E|. A graphlet

is a connected graphH = (VH , EH). A treelet T is a graphlet
that is a tree. We let k = |VH |. We denote by H the set of all
k-node graphlets, i.e., all non-isomorphic connected graphs
on k nodes. When needed we denote by Hi the i-th graphlet
of H. A colored graphlet has a color cu 2 [k] associated to
each one of its nodes u. A graphlet is colorful if its nodes
have pairwise distinct colors. We denote by C ✓ [k] a subset
of colors. We denote by (T,C) or TC a colored treelet whose
nodes span the set of colors C; we only consider colorful
treelets, i.e., the case |T |=|C|. Often treelets and colored
treelets are rooted at a node r 2 T . Finally, dv and u ⇠ v
will denote the degree of a node v in G and a neighbor u of
v, respectively.

Paper organization. Section 2 reviews color coding and
the CC algorithm. Section 3 introduces our data structures
and techniques for accelerating color coding. Section 4 de-
scribes our adaptive sampling strategy. Section 5 concludes
with our experiments.

2. COLOR CODING AND CC
The color coding technique was introduced in [4] to prob-

abilistically detect paths and trees in a graph. The CC al-
gorithm of [8, 9] is an extension of color coding that enables
sampling colorful graphlet occurrences from G. It consists
of a build-up phase and a sampling phase.

2.1 The build-up phase
The goal of this phase is to build a treelet count table

that is the abstract “urn” used for sampling. First, we do
a coloring of G: for each v 2 G independently, we draw
uniformly at random a color cv 2 [k]. We then look at the
treelets of G that are colorful. For each v and every rooted
colored treelet TC on up to k nodes, we want a count c(TC , v)
of the number of copies of TC in G that are rooted in v (note
that we mean non-induced copies here). To this end, for each
v we initialize c(TC , v) = 1, where T is the trivial treelet
on 1 node and C = {cv}. For a TC on h > 1 nodes, the
count c(TC , v) is then computed via dynamic programming,
as follows. First, T has a unique decomposition into two
subtrees T 0 and T 00 rooted respectively at the root r of T
and at a child of r. The uniqueness is given by a total order
over treelets (see next section). Now, since T 0 and T 00 are

smaller than T , their counts have already been computed for
all possible colorings and all possible rootings in G. Then
c(TC , v) is given by (see [9]):

c(TC , v) =
1
�T

X

u⇠v

X

C
0⇢C

|C0|=|T 0|

c(T 0
C0 , v) · c(T 00

C00 , u) (1)

where �T is the number of subtrees of T isomorphic to T 00

rooted at a child of r. CC employs (1) in the opposite way:
it iterates over all pairs of counts c(T 0

C0 , v) and c(T 00
C00 , u) for

all u ⇠ v, and if T 0
C0 , T 00

C00 can be merged in a colorful treelet
TC , then it adds c(T 0

C0 , v) · c(T 00
C00 , u) to the count c(TC , v).

This requires to perform a check-and-merge operation for
each count pair, which is quite expensive (see below).
A simple analysis gives the following complexity bounds:

Theorem 1. ([9], Theorem 5.1) The build-up takes time

O(akm) and space O(akn), for some constant a > 0.

The size of the dynamic programming table is a major bot-
tleneck for CC: already for k = 6 and n = 5M, it takes 45GB
of main memory [9].

2.2 The sampling phase
The goal of this phase is to sample colorful graphlet copies

u.a.r. from G, using the treelet count table from the build-
up phase. The key observation in [8, 9] is that we only need
to sample colorful non-induced treelet copies; by taking the
corresponding induced subgraph in G, we then obtain our
induced graphlet copies. Colorful treelets are sampled via a
multi-stage sampling, as follows. First, draw a node v 2 G
with probability proportional to ⌘v =

P
TC

c(TC , v). Sec-
ond, draw a colored treelet TC with probability proportional
to c(TC , v)/⌘v. We want to sample a copy of TC rooted at
v. To this end we decompose TC into T 0

C0 and T 00
C00 , with

T 0
C0 rooted at the root r of T and T 00

C00 at a child of r (see
above). We then recursively sample a copy of T 0

C0 rooted at
v, and a copy of T 00

C00 rooted at node u ⇠ v, where u is cho-
sen with probability c(T 00

C00 , u)/
P

z⇠v
c(T 00

C00 , z). Note that
computing this probability requires listing all neighbors z of
v, which takes time proportional to dv. Finally, we combine
T 0
C0 and T 00

C00 into a copy of TC . One can see that this gives
a colorful copy of T drawn uniformly at random from G.
Consider then a given k-graphlet Hi (e.g., the clique), and

let ci be the number of colorful copies of Hi in G. We can
estimate ci as follows. Let �i be the indicator random vari-
able of the event that a graphlet sample x is an occurrence
of Hi. It is easy to see that E[�i] = ci �i/t, where �i is the
number of spanning trees in Hi and t is the total number
of colorful k-treelets of G. Both t and �i can be computed
quickly, by summing over the treelet count table and via
Kirchho↵’s theorem (see below). We thus let ĉi = t��1

i
�i,

and E[ĉi] = ci. By standard concentration bounds we can
then estimate ci by repeated sampling. Note that the ex-
pected number of samples to find a copy of Hi grows as 1/ci.
This is the additive error barrier of CC’s sampling.

Estimators and errors. Finally, let us see how to es-
timate the number of total (i.e., uncolored) copies gi of Hi

in G, which is our final goal. First, note that the probabil-
ity that a fixed subset of k nodes in G becomes colorful is
pk = k!/kk. Therefore, if G contains gi copies of Hi, and
ci is the number those copies that become colorful, then by
linearity of expectation E[ci] = pkgi (seeing ci as a random
variable). Hence, ĝi = ci/pk is an unbiased estimator for gi.
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This is, indeed, the count estimate returned by CC and by
motivo.

For what concerns accuracy, the error given by ĝi can
be formally bounded via concentration bounds. An additive
error bound is given by Theorem 5.3 of [9], which we slightly
rephrase. Let g =

P
i
gi be the total number of induced k-

graphlet copies in G. Then:

Theorem 2 ([9], Theorem 5.3). For all ✏ > 0,

Pr
h��ĝi � gi

�� > 2✏g
1� ✏

i
= exp(�⌦(✏2g1/k)).

Since we aim at multiplicative errors, we prove a multiplica-
tive bound, which is also tighter than Theorem 2 if the max-
imum degree � of G is small. We prove (see Appendix A):

Theorem 3. For all ✏ > 0,

Pr
h��ĝi � gi

�� > ✏ gi
i
< 2 exp

⇣
�

2✏2

(k � 1)!
pk gi
�k�2

⌘
. (2)

In practice, ĝi appears always concentrated. In other words,
the coloring does not introduce a significant distortion. Note
that this holds for a single coloring, i.e., for a single execution
of CC. If one averages over � executions with independent
colorings, the probabilities decrease exponentially with �.

3. SPEEDING UP COLOR CODING
This section details step-by-step the data structures and

optimizations that are at the heart of motivo’s e�ciency.
First, we implemented a C++ porting of CC (which is in
Java), translating all algorithms and data structures care-
fully to their closest C++ equivalent. This porting is our
baseline benchmark. We then incrementally plugged in our
data structures and optimizations, ultimately obtaining mo-

tivo. Figures 1 and 2 show how the performance improves
during the process. Note that motivo uses 128-bit counts,
while CC uses 64-bit counts which causes overflows (just the
number of 6-stars centered in a node of degree 216 is ⇡ 280).
Before moving on, we note that a perfectly fair porting

of CC is not possible. This is because CC makes heavy
use of fast specialized integer hash tables provided by the
fastutil

2 library, which exists only in Java and seems to
be crucial to its performance. Indeed, for the porting we
tested three popular libraries – google::sparse hash map

and google::dense hash map of the sparsehash library3, and
std::unordered map from the C++ containers library. With
the first two, the porting is up to 17⇥ slower than CC,
and with the latter one it is up to 7⇥ slower. Nonethe-
less, after all optimizations are in place, motivo is faster
than CC and relatively insensitive to the hash table choice,
with running times changing by at most 30%. We thus use
std::unordered map in the porting for the sake of mea-
suring the impact of optimizations, and use the memory-
parsimonious google::sparse hash map in motivo.

3.1 Succinct data structures
The main objects manipulated by CC and motivo are

rooted colored treelets and their associated counts, which
are stored in the treelet count table. We first describe their
implementation in CC, then introduce the one of motivo.

2
http://fastutil.di.unimi.it/

3
https://github.com/sparsehash/sparsehash
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Figure 1: cumulative impact of our optimizations on the
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Figure 2: cumulative impact of our optimizations on the
memory usage of the build-up phase.

The internals of CC. In CC, each TC has a unique
representative instance, that is a classic pointer-based tree
data structure equipped with a structure storing the colors.
The pointer to this instance acts as unique identifier for TC .
The treelet count table of CC is then implemented as follows:
for each v 2 G, a hash table maps the pointer of each TC

to the count c(TC , v), provided that c(TC , v) > 0. Thus,
each entry uses 128 bits – 64 for the pointer and 64 for the
count – plus the overhead of the hash table. For computing
c(TC , v), CC processes every neighbor u ⇠ v as follows (see
also Section 2.1). For every pair of counts c(T 0

C0 , v) and
c(T 00

C00 , u) in the hash tables of v and u, check that C0
\

C00 = ;, and that T 00
C00 comes before the smallest subtree of

T 0
C0 in the total order of the treelets (see below). If these

conditions hold, then T 0
C0 and T 00

C00 can be merged into a
treelet TC whose unique decomposition yields precisely T 0

C0

and T 00
C00 . Then, the value of c(TC , v) in the hash table of v

is incremented by c(T 0
C0 , v) · c(T 00

C00 , u). The expensive part
is the check-and-merge operation, which CC does with a
recursive algorithm on the treelet representative instances.
This has a huge impact, since on a graph with a billion
edges the check-and-merge is easily performed trillions of
times. In fact, in our porting, check-and-merge operations
consume from 30% to 70% of the build-up time.
Motivo’s treelets. Let us now describe motivo’s data

structures, starting with an uncolored treelet T rooted at r 2

T . We encode T with the binary string sT defined as follows.
Perform a DFS traversal of T starting from r. Then the i-th
bit of sT is 1 (resp. 0) if the i-th edge is traversed moving
away from (resp. towards) r. For all k  16, this encoding
takes at most 30 bits, which fits nicely in a 4-byte integer
type (padded with 0s). The lexicographic ordering over the
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sT ’s gives a total ordering over the T ’s that is exactly the one
used by CC. This ordering is also a tie-breaking rule for the
DFS traversal: the children of a node are visited in the order
given by their rooted subtrees. This implies that every T has
a well-defined unique encoding sT . Moreover, merging T 0

and T 00 into T requires just concatenating 1, sT 00 , sT 0 in this
order. This makes check-and-merge operations extremely
fast: we measure a speedup ranging from 150⇥ for k = 5 to
1000⇥ for k = 7.
This succinct encoding supports the following operations:

• getsize(): return the number of vertices in T . This
is one plus the Hamming weight of sT , which can be
computed in a single machine instruction (e.g., POPCNT
from the SSE4 instruction set).

• merge(T 0
, T 00

): merge two treelets T 0, T 00 by append-
ing T 00 as a child of the root of T 0. This requires just
to concatenate 1, sT 00 , sT 0 in this order.

• decomp(T): decompose T into T 0 and T 00. This is the
inverse of merge and is done by suitably splitting sT .

• sub(T): compute the value �T of (1), i.e., the number
of subtrees of T that (i) are isomorphic to the treelet
T 00 of the decomposition of T , and (ii) are rooted at
some child of the root. This is done via bitwise shift

and and operations on sT .

A colored rooted treelet TC is encoded as the concatena-
tion sTC of sT and of the characteristic vector sC of C.4

For all k  16, sTC fits in 46 bits. Set-theoretical opera-
tions on C become bitwise operations over sC (or for union,
and for intersection). Finally, the lexicographical order of
the sTC ’s induce a total order over the TC ’s, which we use
in the count table (see below). An example of a colored
rooted treelet and its encoding is given in Figure 3 (each
node labelled with its color).

3

1

2 7

5 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 0

sT sC

Figure 3: a colored rooted treelet and its encoding, shown
for simplicity on just 8 + 8 = 16 bits.

Motivo’s count tables. In CC, treelet counts are stored
in n hash tables, one for each node v 2 G. In each table, the
pair (TC , c(TC , v)) is stored using the pointer to the repre-
sentative instance of TC as key. This imposes the overhead
of dereferencing a pointer before each check-and-merge op-
eration to retrieve the actual structure of TC . Instead of
using a hash table, motivo maintains the key-value pairs
(TC , c(TC , v)) such that c(TC , v) > 0 in a set of arrays, one
for each v 2 G and for each treelet size h 2 [k]. These
arrays are sorted lexicographically w.r.t. the order of the
keys described above. This makes iterating over the counts
extremely fast and, since each key TC is explicitly stored
using its representation sTC , eliminates the need for deref-
erencing. The price to pay is that searching for a given TC

4Given an universe U , the characteristic vector hx1, x2, . . . i
of a subset S ✓ U contains one bit xi for each element i 2 U ,
which is 1 if i 2 S and 0 otherwise.

in the count table requires a binary search. However, this
still takes only O(k) time, since the whole record has length
O(6k).5 Recall that motivo uses 128-bit counts6, whereas
CC uses 64-bit integers. This increases by 64 bits the space
per pair compared to CC; however, motivo saves 16 bits
per pair by packing sTC into 48 bits, using a total of 176
bits per pair. Finally, in place of c(TC , v), motivo actually
stores the cumulative count ⌘(TC , v) =

P
T

0
C0TC

c(T 0
C0 , v).

In this way each c(TC , v) can be recovered with negligible
overhead, and the total count for a single node v (needed
for sampling) is just at the end of the record.
motivo’s count table supports the following operations:

• occ(v): returns the total number of colorful treelet
copies rooted at v. Running time: O(1).

• occ(TC , v): returns the total number of copies of TC

rooted at v. Running time: O(k) via binary search.

• iter(T, v): returns an iterator to the first pair
(TC , c(TC , v)) stored in the table such that TC = (T,C).
Running time: O(k), plus O(1) per accessed treelet.

• iter(TC , v): If c(TC , v) > 0, returns an iterator to the
pair (TC , c(TC , v)). When c(TC , v) = 0, the returned
iterator refers to the pair T 0

C0 , where T 0
C0 if the first

colored treelet that follows TC for which c(T 0
C0 , v) > 0.

Running time: O(k), plus O(1) per accessed treelet.

• sample(v): returns a random colored treelet TC with
probability proportional to c(TC , v)/⌘v. This is used
in the sampling phase. Running time O(k): first we
get ⌘v in O(1) time (see above); then in O(k) time we
draw R u.a.r. from {1, . . . , ⌘v}; finally, we search for
the first pair (TC , ⌘) with ⌘ � R, and we return TC .

0-rooting. Consider a colorful treelet copy in G that
is formed by the nodes v1, . . . , vh. In the count table, this
treelet is counted in each one of the h records of v1, . . . , vh,
since it is e↵ectively a colorful treelet rooted in each one
of those nodes. Therefore, the treelet is counted h times.
This is inevitable for h < k, since excluding some rooting
would invalidate the dynamic programming (Equation 1).
However, for h = k we can store only one rooting and the
sampling works just as fine. Thus, for h = k we count only
the k-treelets rooted at their node of color 0. This cuts the
running time by 30% � 40%, while reducing by a factor of
k the size of the k-treelets records, and by ⇡ 10% the total
space usage of motivo.

3.2 Other optimizations
Greedy flushing. To further reduce memory usage, we

use a greedy flushing strategy. Suppose we are currently
building the table for treelets of size h. While being built,
the record of v is actually stored in a hash table, which allows
for e�cient insertions. However, immediately after comple-
tion it is stored on disk in the compact form described above,
but still unsorted w.r.t. the other records. The hash table is
then emptied and memory released. When all records have
been stored on disk, a second I/O pass sorts them w.r.t. their

5By Cayley’s formula: there are O(3kk�3/2) rooted treelets
on k vertices [19], and 2k subsets of k colors.
6Tests on our machine show that summing 500k unsigned
integers is 1.5⇥ slower with 128-bit than with 64-bit integers.
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corresponding node. At the end, the treelet count table is
stored on disk without having entirely resided in memory.
The price to pay is the time for sorting, which was at most
10% of the total time in all our runs.

Neighbor bu↵ering. Our final optimization concerns
sampling. In most graphs, motivo natively achieves sam-
pling rates of 10k samples per second or higher. But on
some graphs, such as BerkStan or Orkut, we get only 100
or 1000 samples per second. The reason is the following.
Those graphs contain a node v with a degree � much larger
than any other node. Inevitably then, a large fraction of
the treelets of G are rooted in v. This has two combined
e↵ects on the sampling phase (see Subsection 2.2). First, v
will be frequently chosen as root. Second, upon choosing v
will spend time ⇥(�) to sweep over its neighbors. The net
e↵ect is that the time to take one sample grows superlinearly
with �, slowing down the sampling dramatically. To over-
come this, we perform bu↵ered sampling. If dv � 104, then
with a single sweep over v’s neighbors, motivo samples 100
neighbors at random instead of just one. It then returns the
first, and caches the remaining 99 for the future. In this
way, on large-degree nodes motivo sweeps only once every
100 samples. As Figure 4 shows, this increases the sampling
speed by ⇡ 20⇥ on Orkut and ⇡ 40⇥ on BerkStan.
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Figure 4: impact of neighbor bu↵ering on sampling.

3.3 Implementation details
We describe some other implementation details of motivo

that, although not necessarily being “optimizations”, are
necessary for completeness and reproducibility.

Input graph. The graph G is represented by adjacency
lists. Each list is a sorted static array of the vertex’s neigh-
bors; arrays of consecutive vertices are contiguous in mem-
ory. This allows for fast iterations over the set of outgoing
edges of a vertex, and for O(log n)-time edge-membership
queries7, that we need in the sampling phase to obtain the
induced graphlet from the sampled treelet.

Multi-threading. Similarly to CC, motivomakes heavy
use of thread-level parallelism in both the build-up and sam-
pling phases. For the build-up phase, for any given v the
counts c(·, v) can be computed independently from each
other, which we do using a pool of threads. As long as
the number of remaining vertices is su�ciently large, each
thread is assigned a (yet unprocessed) vertex v and will com-
pute all the counts c(TC , v) for all pairs TC . While this
requires minimal synchronization, when the number of un-
processed vertices decreases below the amount of available

7This is actually O(log du) where (u, v) is the edge being
tested. In practice, it is often the case that du ⌧ n.

threads, the above strategy is no longer advantageous as it
would cause some of the threads to become idle. This can
increase the time needed by the build-up phase if G exhibits
skewed degree and/or treelet distributions. To overcome this
problem, the last remaining vertices are handled di↵erently:
we allow multiple threads to concurrently compute di↵erent
summands of the outermost sum of (1) for the same vertex
v, i.e., those corresponding to the edges (v, u) 2 E. Once
all the incident edges of v have been processed, the partial
sums are then combined together to obtain all the counts
c(·, v). This reduces the running time by a few percentage
points. For the sampling phase, samples are by definition
independent and are taken by di↵erent threads.
Memory-mapped reads. In the build-up phase, to

compute the count table for treelets of size h we must ac-
cess the count tables of size j, for all j < h. For large in-
stances, loading all those tables simultaneously in memory
is infeasible. One option would be to carefully orchestrate
I/O and computation, hoping to guarantee a small number
of load/store operations on disk. We adopt a simpler solu-
tion: memory-mapped I/O. This delegates the I/O to the
operating system in a manner that is transparent to mo-

tivo, which sees all tables as if they resided in main mem-
ory. When enough memory is available this solution gives
ideally no overhead. Otherwise, the operating system will
reclaim memory by unloading part of the tables, and future
requests to those parts will incur a page fault and prompt
a reload from the disk. The overhead of this approach can
be indeed measured via the number of page faults. This
reveals that the total I/O volume due to page faults is less
than 100MB, except for k = 8 on LiveJournal (34GB) and
Yelp (8GB) and for k = 6 on Friendster (15GB). However,
in those cases additional I/O is inevitable, as the total size
of the tables (respectively 99GB, 90GB, and 61GB) is close
to or even larger than the total memory available (about
60GB).
Alias method sampling. Recall that, to sample a color-

ful graphlet from G, we first sample a node v with probabil-
ity proportional to the number of colorful k-treelets rooted
at v (Subsection 2.2). We do this in time O(1) by using
the alias method [24], which requires building an auxiliary
lookup table in time and space linear in the support of the
distribution. In our case this means time and space O(n);
the table is built during the second stage of the build-up pro-
cess. In practice, building the table takes negligible amounts
of time (a fraction of a second out of several minutes).
Graphlets. In motivo, each graphlet H is encoded as

an adjacency matrix packed in a 128-bit integer. Since a
graphlet is a simple graph, the k ⇥ k adjacency matrix is
symmetric with diagonal 0 and can be packed in a (k�1)⇥ k

2

matrix if k is even and in a k ⇥
k�1
2 matrix if k is odd

(see e.g. [5]). The resulting triangular matrix can then be

reshaped into a 1 ⇥
k
2�k

2 vector, which fits into 120 bits
for all k  16. In fact, one can easily compute a bijection
between the pair of vertices of the graphlet and the indices
{1, . . . , 120}. Before encoding a graphlet, motivo replaces it
with a canonical representative from its isomorphism class,
computed using the Nauty library [18].
Spanning trees. By default, motivo computes the num-

ber of spanning trees �i of Hi in time O(k3) via Kirchho↵’s
matrix-tree theorem which relates �i to the determinant of a
(k�1)⇥(k�1) submatrix of the Laplacian matrix of Hi. To
compute the number �ij of occurrences of Ti in Hj (needed
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for our sampling algorithm AGS, see Section 4), we use an
in-memory implementation of the build-up phase. The time
taken is negligible for k < 7, but is significant for k � 7. For
this reason, motivo caches the �ij and stores them to disk
for later reuse. This accelerates sampling by up to 10⇥.

3.4 Biased coloring
Finally, we describe an optimization, that we call “biased

coloring”, that can be used to manage graphs that would
otherwise be too large. Suppose for simplicity that, for each
treelet T on j nodes, each v 2 G appears in a relatively small
number of copies of T , say kj/j!. Then, given a set C of j
colors, a copy of T is colored with C with probability j!/kj .
This implies that we will have an expected ⇥(1) copies of T
colored with C containing v, in which case the total table
size (and the total running time) will approach the worst-
case space bounds.

Suppose now we bias the distribution of colors. In particu-
lar, we give probability � ⌧

1
k
to each color in {1, . . . , k�1}.

The probability that a given j-treelet copy is colored with
C is then:

pk,j(C) =

⇢
j!�j if k /2 C

⇠ j!�j�1 if k 2 C
(3)

If � is su�ciently small, then, for most T we will have a
zero count at v; and most nonzero counts will be for a re-
stricted set of colorings – those containing k. This reduces
the number of pairs stored in the treelet count table, and
consequently the running time of the algorithm. The price
to pay is a loss in accuracy, since a lower pk increases the
variance of the number ci of colorful copies of Hi. However,
if n is large enough and most nodes v belong to even a small
number of copies of Hi, then the total number of copies gi
of Hi is large enough to ensure concentration. In particular,
by Theorem 3 the accuracy loss remains negligible as long
as �k�1n/�k�2 is large (ignoring factors depending only on
k). We can thus trade a ⇥(1) factor in the exponent of
the bound for a ⇥(1) factor in both time and space, espe-
cially on large graphs where saving resources is precious. To
find a good value for �, one can start with � ⌧ 1/kn and
grow it until a small but non-negligible fraction of counts
are positive. At this point by Theorem 3 we have achieved
concentration, and we can safely proceed to the sampling
phase.

Impact. With � = 0.001, the build-up time on Friend-

ster (65M nodes, 1.8B edges) shrinks from 17 to 10 minutes
(1.7⇥) for k = 5, and from 1.5 hours to 13 minutes (7⇥) for
k = 6. In both cases, the main memory usage and the disk
space usage decrease by at least 2⇥. The relative graphlet
count error increases correspondingly, as shown in Figure 5
(see Section 5 for the error definition). For k = 7, the build
takes 20 minutes – in this case we have no comparison term,
as without biased coloring motivo did not terminate a run
within 2 hours. Note that Friendster has 30 (500) times the
nodes (edges) of the largest graph managed by CC for the
same values of k [9]. In our experiments (Section 5) biased
coloring is disabled since mostly unnecessary.

4. ADAPTIVE GRAPHLET SAMPLING
This section describes AGS, our adaptive graphlet sam-

pling algorithm for color coding. Recall that the main idea
of CC is to build a sort of “urn” supporting a primitive
sample() that returns a colorful k-treelet occurrence u.a.r.
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Figure 5: graphlet count error distribution of uniform and
biased coloring (dashed), for k=5 and k=6.

from G. The first step of AGS is to “refine” this interface
with one urn for each possible k-treelet shape T . More pre-
cisely, for every k-treelet shape T our urn should support
the following primitive:

• sample(T ): return a colorful copy of T u.a.r. from G

With sample(T ) one can selectively sample treelets of dif-
ferent shapes, and this can be used to virtually “delete”
undesired graphlets from the urn. Let us try to convey the
idea with a simple example. Imagine G contains just two
types of colorful graphlets, H1 and H2, of which H2 rep-
resents a tiny fraction p (say 0.01%). Using our original
primitive, sample(), we will need ⇥(1/p) calls before finding
H2. Suppose however H1 and H2 are spanned by treelets of
di↵erent shape, say T1 and T2. We could then start by using
sample(T1), until we estimate accurately H1. At this point
we switch to sample(T2), which completely ignores H1 (since
it is not spanned T2), until we estimate accurately H2 as
well. In this way we can estimate accurately both graphlets
with essentially O(1) samples. Clearly, in general we have
more than just two graphlets, and distinct graphlets may
have the same spanning trees. Still, this adaptive sampling
strategy strikingly outperforms naive sampling in the pres-
ence of rare graphlets. Moreover, AGS yields multiplicative
guarantees on all graphlets, while taking only O(k2) times
the minimum number of samples any algorithm must take
(see below).
We now describe AGS in more detail. Recall from Sec-

tion 2 that for every v 2 G we know occ(T, v), the number
of colorful copies of T rooted at v. Using this fact, one
can easily restrict the sampling (Subsection 2.2) to a spe-
cific treelet T , thus drawing u.a.r. a colorful copy of T in G.
This gives our primitive sample(T ). We then start invoking
sample(T ), using the k-treelet T with the largest number of
colorful occurrences. Eventually, some graphlet Hi spanned
by T will appear enough times, say ⇥( 1

✏2
ln( 1

�
)). We then

say Hi is covered. Now, since we do not need more samples
of Hi, we would like to continue with sample(T 0) for some
T 0 that does not span Hi, as if we were asking to “delete”
Hi from the urn. More precisely, we seek T 0 that minimizes
the probability that by calling sample(T 0) we observe Hi.
The crux of AGS is that we can find T 0 as follows. First,

we estimate the number gi of colorful copies of Hi in G,
which we can do since we have enough samples of Hi. Then,
for each k-treelet Tj we estimate the number of copies of Tj

that span a copy of Hi in G as gi�ij , where �ij is the number
of spanning trees of Hi isomorphic to Tj . We then divide
this estimate by the number tj of colorful copies of Tj in G,
obtained summing occ(Tj , v) over all v 2 G. The result is
an estimate of the probability that sample(Tj) spans a copy
of Hi, and we choose the treelet Tj⇤ that minimizes this
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probability. More in general, we need the probability that
sample(Tj) spans a copy of some graphlet among the ones
covered so far, and to estimate gi we must take into account
that we have used di↵erent treelets along the sampling.

The pseudocode of AGS is listed below. A graphlet is
marked as covered when it has appeared in at least c̄ sam-
ples. For a union bound over all k-graphlets one would set
c̄ = O( 1

✏2
ln( s

�
)) where s = sk is the number of distinct k-

graphlets. In our experiments we set c̄ = 1000, which gives
good accuracy on most graphlets. We denote by H1, . . . , Hs

the distinct k-node graphlets and by T1, . . . , T& the distinct
k-node treelets.

Algorithm AGS(✏, �)

1: (c1, . . . , cs) (0, . . . , 0) . graphlet counts

2: (w1, . . . , ws) (0, . . . , 0) . graphlet weights

3: c̄ d 4
✏2

ln(
2s
�
)e . covering threshold

4: C  ; . graphlets covered

5: Tj  an arbitrary treelet type

6: while |C| < s do
7: for each i

0
in 1, . . . , s do

8: wi0  wi0 + �i0j/tj

9: TG  an occurrence of Tj drawn u.a.r. in G

10: Hi  the graphlet type spanned by TG

11: ci  ci + 1

12: if ci � c̄ then . switch to a new treelet Tj

13: C  C [ {i}
14: j

⇤  argminj0=1,...,&
1
tj0

P
i02C

�i0j0 ci0/wi0

15: Tj  Tj⇤

16: return (
c1
w1

, . . . ,
cs
ws

)

4.1 Approximation guarantees
We prove that, if AGS chooses the “right” treelet Tj⇤ ,

then we obtain multiplicative error guarantees. Formally:

Theorem 4. If the tree Tj⇤ chosen by AGS at line 14

minimizes Pr[sample(Tj) spans a copy of some Hi 2 C]
then, with probability (1 � �), when AGS stops ci/wi is a

multiplicative (1±✏)-approximation of gi for all i = 1, . . . , s.

The proof requires a martingale analysis and is deferred
to Appendix B. We stress that the guarantees hold for all
graphlets, irrespective of their relative frequency. In prac-
tice, AGS gives accurate counts for many or almost all graph-
lets at once, depending on the graph (see Section 5).

4.2 Sampling efficiency
Let us turn to the sampling e�ciency of AGS. We first

observe that, in some cases, AGS does no better than naive
sampling. However, this is not a limitation of AGS itself: it
holds for any algorithm based solely on sampling treelets via
the primitive sample(T ). This class of algorithms is quite
natural, and indeed includes the graphlet sampling algo-
rithms of [17, 26, 27]. Formally, we prove:

Theorem 5. For any constant k � 2, there are graphs

G in which some graphlet H represents a fraction pH =
1/ poly(n) = ⌦(n1�k) of all graphlet copies, and any algo-

rithm needs ⌦(1/pH) calls to sample(T ) in expectation to

just find one copy of H.

Proof. Let T and H be the path on k nodes. Let G
be the (n � k + 2, k � 2) lollipop graph; so G is formed by
a clique on n � k + 2 nodes and a dangling path on k � 2

nodes, connected by an arc. G contains ⇥(nk) non-induced
occurrences of T in G, but only ⇥(n) induced occurrences
of H (all those formed by the k � 2 nodes of the dangling
path, the adjacent node of the clique, and any other node in
the clique). Since there are at most ⇥(nk) graphlets in G,
then H forms a fraction pH = ⇥(n1�k) of these. Obviously
T is the only spanning tree of H; however, an invocation of
sample(G, T ) returns H with probability ⇥(n1�k) and thus
we need ⇥(nk�1) = ⇥(1/pH) samples in expectation before
obtaining H. One can make pH larger by considering the
(n0, n� n0) lollipop graph for larger values of n0.

Theorem 5 rules out good absolute bounds on the number
of samples used by AGS. However, we can show that AGS
is close to the best possible, clairvoyant algorithm based
on sample(T ). By clairvoyant we mean that the algorithm
knows in advance how many sample(Tj) calls to make for
every treelet Tj in order to get the desired bounds with the
minimum total number of calls. Formally, we prove:

Theorem 6. If the tree Tj⇤ chosen by AGS at line 14

minimizes Pr[sample(Tj) spans a copy of some Hi 2 C],
then AGS makes a number of calls to sample() that is at

most O(ln(s)) = O(k2) times the minimum needed to ensure

that every graphlet Hi appears in c̄ samples in expectation.

The proof of the theorem relies on a fractional set cover and
can be found in Appendix C.

5. EXPERIMENTAL RESULTS
In this section we compare the performance of motivo to

CC [9] which, as said, is the current state of the art. For
readability, we give plots for a subset of datasets that are
representative of the entire set of results.
Set-up. We ran all our experiments on a commodity ma-

chine equipped with 64GB of main memory and 48 Intel
Xeon E5-2650v4 cores at 2.5GHz with 30MB of L3 cache.
We allocated 880GB of secondary storage on a Samsung
SSD850 solid-state drive, dedicated to the treelet count ta-
bles of motivo. Table 1 shows the graphs on which we
tested motivo, and the largest tested value of k. All graphs
were made undirected and converted to the motivo binary
format. For each graph we ran motivo for all k = 5, 6, 7, 8, 9,
or until the build time did not exceed 1.5 hours; except for
Twitter and LiveJournal, where we did k = 5, 6 regardless
of time.

Table 1: our graphs (⇤ = with biased coloring)
graph M nodes M edges source k

Facebook 0.1 0.8 MPI-SWS 9

BerkStan 0.7 6.6 SNAP 9

Amazon 0.7 3.5 SNAP 9

Dblp 0.9 3.4 SNAP 9

Orkut 3.1 117.2 MPI-SWS 7

LiveJournal 5.4 49.5 LAW 8

Yelp 7.2 26.1 YLP 8

Twitter 41.7 1202.5 LAW 6 (7
⇤
)

Friendster 65.6 1806.1 SNAP 6 (7
⇤
)

Ground truth. We computed exact 5-graphlet counts
for Facebook, Dblp, Amazon, LiveJournal and Orkut by
running the ESCAPE algorithm [20]. On the remaining
graphs ESCAPE died by memory exhaustion or did not re-
turn within 24 hours. For k > 5 and/or larger graphs, we
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averaged the counts given by motivo over 20 runs, 10 using
naive sampling and 10 using AGS.

5.1 Computational performance
Build-up time. The table below shows the speedup of

motivo’s build-up phase over the original Java implementa-
tion of CC; dashes mean that CC failed by memory exhaus-
tion or 64-bit integer overflow. We do not report Twitter

and Friendster, as CC failed even for k = 5. motivo is 2⇥-
5⇥ faster than CC on 5 out of 7 graphs, and never slower
on the other ones.

Table 2: motivo vs. CC build-up phase speedup

graph k=5 k=6 k=7 k=8 k=9

Facebook 4.2 3.4 3.9 5.5 10.0

BerkStan 2.2 - - - -

Amazon 2.1 1.7 1.5 1.6 2.2

Dblp 2.1 1.4 1.7 2.2 3.9

Orkut 5.6 - -

LiveJournal 3.1 3.1 - -

Yelp 2.4 - - -

Count tables size. The table below shows the ratio
between the main memory footprint of CC and the total
external memory usage of motivo; both are indicators of
the total count table size. The footprint of CC is computed
as the smallest JVM heap size that allowed it to run. In
almost all cases motivo saves a factor of 2, in half of the
cases a factor of 5, and on Yelp, the largest graph managed
by CC, a factor of 8. For k = 7, CC failed on 6 over 9 graphs,
while motivo processed all of them with a space footprint
of less than 12GB (see below).

Table 3: motivo vs. CC table size shrinkage factor

graph k=5 k=6 k=7 k=8 k=9

Facebook 108.7 87.5 54.5 17.3 7.1

BerkStan 36.5 - - - -

Amazon 6.6 3.3 2.1 1.1 1.0

Dblp 6.2 4.0 2.4 1.1 1.0

Orkut 8.5 - -

LiveJournal 11.4 3.8 - -

Yelp 8.0 - - -

Sampling speed. The table below shows the sampling
speedup of motivo’s naive sampling with respect to CC.
motivo is always 10⇥ faster, and even 160⇥ faster on Yelp.
This means motivo gives more accurate estimates for a fixed
time budget, even though in the sampling phase it must
access the count tables from disk.

Table 4: motivo vs. CC sampling rate speedup

graph k=5 k=6 k=7 k=8 k=9

Facebook 14.9 13.2 9.4 50.0 115.9

BerkStan 29.3 - - - -

Amazon 60.7 12.6 13.2 13.2 16.5

Dblp 17.7 11.4 10.1 44.8 88.6

Orkut 29.2 - -

LiveJournal 31.8 28.5 - -

Yelp 159.6 - - -

Additional remarks. motivo runs in minutes on graphs
that CC could not even process, and in less than one hour for

all but the largest instance. The contrast with ESCAPE [20]
and [6, 12, 15, 25] is even starker, as those algorithms take
entire days even for graphs 10–100 times smaller. We also
point out that, unlike all these algorithms, motivo’s behav-
ior is very predictable, as shown in Figure 6.
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Figure 6: motivo’s build-up time (seconds per million
edge) and space usage (bits per input node).

5.2 Accuracy
We assess the accuracy of motivo’s count estimates, and

in particular of AGS against the naive sampling strategy. All
plots below report the average over 10 runs, with whiskers
for the 10% and 90% percentiles. Naive sampling is shown
by the left bars, and AGS by the right bars. Note that
motivo’s naive sampling strategy and CC’s sampling algo-
rithm are exactly the same algorithm, so for a given number
of samples they give the same output. However, motivo is
much faster than CC and so takes many more samples per
unit of time. Hence, the accuracy of CC is dominated by
the accuracy of motivo.
A necessary remark. The accuracy of estimates obviously

depends on the number of samples taken. One option would
be to fix an absolute budget, say 1M samples. Since however
for k = 5 there are only 21 distinct graphlets and for k = 8
there are over 10k, we would certainly have much higher ac-
curacy in the first case. As a compromise, we tell motivo
to spend in sampling the same amount of time taken by the
build-up phase. This is also what an “optimal” time alloca-
tion strategy would do – statistically speaking, if we have a
budget of 100 seconds and the build-up takes 5 seconds, we
would perform 10 runs with 5 seconds of sampling each and
average over the estimates.
Error in `1 norm. First, we evaluate how accurately

motivo reconstructs the global k-graphlet distribution. If
f = (f1, . . . , fs) are the ground-truth graphlet frequencies,
and f̂ = (f̂1, . . . , f̂s) their estimates, then the `1 error is
`1(f , f̂) =

P
s

i=1 |f̂i � fi|. In our experiments, the `1 error
was below 5% in all cases, and below 2.5% for all k  7.
Single-graphlet count error. The count error of H is:

errH =
ĉH � cH

cH
(4)

where cH is the ground-truth count ofH and ĉH its estimate.
Thus errH = 0 means a perfect estimate, and errH = �1
means the graphlet is missed. Figure 7 shows the distribu-
tion of errH for one run, for naive sampling (top) and AGS
(bottom), as k increases from left to right. AGS is much
more accurate, especially for larger values of k, and CC’s
naive sampling misses many graphlets. (We will give a very
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Figure 7: distribution of graphlet count error for k = 6, 7, 8. Top: naive sampling. Bottom: AGS.

Consider now AGS(✏, �). Recall that we are looking at a
fixed graphlet Hi (which here does not denote the graph-
let sampled at line 10). Note that

P
t

⌧=1 X⌧ is exactly the
value of ci after t executions of the main cycle (see line 11).
Similarly, note that

P
t

⌧=1 P⌧ is the value of gi · wi after
t executions of the main cycle: indeed, if Y t�1

j
= 1, then

at step ⌧ we add to wi the value
�ij

tj
(line 8), while the

probability that a sample of Tj yields Hi is exactly
gi�ij

tj
.

Therefore, after the main cycle has been executed t times,
Zt =

P
t

⌧=1(Xt � Pt) is the value of ci � giwi.
Now to the bounds. Suppose that, when AGS(✏, �) re-

turns, ci
wi

� gi(1 + ✏), i.e., ci(1 �
✏

1+✏
) � giwi. On the one

hand this implies that ci�giwi � ci ✏

1+✏
, i.e., Zt � ci ✏

1+✏
; and

since upon termination ci = c̄, this means Zt � c̄ ✏

1+✏
. On

the other hand it implies giwi  ci(1� ✏

1+✏
), i.e.,

P
t

⌧=1 P⌧ 

ci(1� ✏

1+✏
); again since upon termination ci = c̄, this meansP

t

⌧=1 P⌧  c̄(1 �
✏

1+✏
). We can then invoke Lemma 1 with

z = c̄ ✏

1+✏
and v = c̄(1� ✏

1+✏
), and since v + z = c̄ we get:

Pr
h ci
wi

� gi(1 + ✏)
i
 exp

h
�
(c̄ ✏

1+✏
)2

2c̄

i
(7)

= exp
h
�

✏2c̄
2(1 + ✏)2

i
(8)

but ✏
2
c̄

2(1+✏)2
�

✏
2

2(1+✏)2
4
✏2

ln
�
2s
�

�
� ln

�
2s
�

�
and thus the prob-

ability above is bounded by �

2s .
Suppose instead that, when AGS(✏, �) returns, ci

wi
 gi(1�

✏), i.e., ci(1 + ✏

1�✏
)  giwi. On the one hand this implies

that ci � giwi �
✏

1�✏
ci, that is, upon termination we have

�Zt �
✏

1�✏
c̄. Obviously (�Zt)t�0 is a martingale too with

respect to the filter (Ft)t�0, and therefore Lemma 1 still
holds if we replace Zt with �Zt. Let then t0  t be the
first step where �Zt0 �

✏

1�✏
c̄; since |Zt � Zt�1|  1, it

must be �Zt0 < ✏

1�✏
c̄ + 1. Moreover

P
t

⌧=1 X⌧ is nonde-

creasing in t, so
P

t0
⌧=1 X⌧  c̄. It follows that

P
t0
⌧=1 P⌧ =

�Zt0 +
P

t0
⌧=1 X⌧ < ✏

1�✏
c̄+1+ c̄ = 1

1�✏
c̄+1. Invoking again

Lemma 1 with z = ✏

1�✏
c̄ and v = 1

1�✏
c̄+ 1, we obtain:

Pr
⇥ ci
wi

 gi(1� ✏)
⇤
 exp

h
�

(c̄ ✏

1�✏
)2

2( 1+✏

1�✏
c̄+ 1)

i
(9)

 exp
h
�

✏2c̄2

2(1 + c̄)

i
(10)

but since c̄ � 4 then c̄

1+c̄
�

4
5 and so ✏

2
c̄
2

2(1+c̄) �
2✏2c̄
5 . By

replacing c̄ we get 2✏2 c̄
5 �

2✏2

5
4
✏2

ln
�
2s
�

�
> ln

�
2s
�

�
and thus

once again the probability of deviation is bounded by �

2s .
By a simple union bound, the probability that ci

wi
is not

within a factor (1±✏) of gi is at most �

s
. The theorem follows

by a union bound on all i 2 [s].

C. PROOF OF THEOREM 6
For each i 2 [s] and each j 2 [&] let aji be the prob-

ability that sample(Tj) returns a copy of Hi. Note that
aji = gi�ij/tj , the fraction of colorful copies of Tj that span
a copy of Hi. Our goal is to allocate, for each Tj , the num-
ber xj of calls to sample(Tj), so that (1) the total number
of calls

P
j
xj is minimised and (2) each Hi appears at least

c̄ times in expectation. Formally, let A = (aji)
|, so that

columns correspond to treelets Tj and rows to graphlets Hi,
and let x = (x1, . . . , x&) 2 N& . We obtain the following
integer program:

8
<

:

min1|x
s.t.Ax � c̄1

x 2 N&

We now describe the natural greedy algorithm for this
problem; it turns out that this is precisely AGS. The algo-
rithm proceeds in discrete time steps. Let x0 = 0, and for
all t � 1 denote by xt the partial solution after t steps. The
vector Axt is an s-entry column whose i-th entry is the ex-
pected number of occurrences of Hi drawn using the sample
allocation given by xt. We define the vector of residuals at
time t as ct = max(0, c�Axt), and for compactness we let
ct = 1|ct. Note that c0 = c̄1 and c0 = sc̄. Finally, we let
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vivid account of this di↵erence below). Inevitably, the error
spreads out with k; recall that the total number of distinct
8-graphlets is over 104.

Number of accurate graphlets. For a complementary
view, we consider the number of graphlets whose estimate
is within ±50% of the ground-truth value (Figure 8). This
number easily often reaches the thousands, and for k = 9
even hundreds of thousands (note that the plot is in log-
scale). We remind the reader that all this is carried out in
minutes or, in the worst case, in two hours. Alternatively,
we can look at these numbers in relative terms, that is, as
a fraction of the total number of distinct graphlets in the
ground truth (Figure 8). On all graphs except BerkStan,
this ratio is over 90% of graphlets for k = 6, over 75% of
graphlets for k = 7, and over 50% of graphlets for k = 8,
for either naive sampling or AGS. The choice of 50% is just
to deliver the picture, but we remark that such an error is
achieved simultaneously for thousand of distinct graphlets
whose counts di↵er by many orders of magnitude.

5.3 Breaking the sampling barrier with AGS
Finally, we show how AGS breaks the additive error bar-

rier of naive sampling. The best example is the Yelp graph.
Look again at Figure 8. For k = 8, over 99.9996% of the k-
graphlets are stars. Consequently, in our experiments naive
sampling finds only the star graphlet. This means that naive
sampling gives accurate estimates for only 1 graphlet, that
is, 0.01% of the total. Put in other terms, it misses 9999 out
of 10000 graphlets. Instead, AGS returns fair estimates for
9645 graphlets, that is, 87% of the total.

The contrast is even sharper if we look at the frequency of
the graphlets found by the two algorithms. These are shown
in Figure 9 (to filter out noise, we consider only graphlets
appearing in at least 10 samples). Naive sampling finds
only graphlets with frequency at least 99.9996% (that is,
again, the star). AGS finds graphlets with frequency below
10�21, that is, seven orders of magnitude smaller. To convey
the idea, to find those graphlets naive sampling would need
⇡ 3 · 103 years even if running at 109 samples per second.

Let us make a final remark. On some graphs, AGS is
slightly worse than naive sampling. This is expected: AGS is
designed for skewed graphlet distributions, and loses ground
on flatter ones. As a sanity check, we computed the `2 norm
of the graphlet distributions. The three graphs where AGS
beats naive sampling by a largest margin, BerkStan, Yelp

and Twitter, have for all k the highest `2 norms (> .99).
Symmetrically, Facebook, Dblp and Friendster, have for
all k the three lowest `2 norms, and there AGS performs
slightly worse than naive sampling.

6. CONCLUSIONS
We have shown how the color coding technique, despite

its simplicity (or perhaps thanks to it), can be harnessed
to scale motif counting to truly massive graphs. Thanks
to color coding we can mine motifs in graphs with billions
of edges, with approximation guarantees previously out of
reach, using just ordinary hardware. These results can be
seen as the first steps in the direction of unexpensive large-

scale motif mining. We believe it may be possible to scale
even further, by devising appropriate optimizations and al-
gorithmic solutions; and especially by reducing the space
usage, which is still a bottleneck of this approach.

APPENDIX
A. PROOF OF THEOREM 3
We use a concentration bound for dependent random vari-

ables from [13]. Let Vi be the set of copies of Hi in G.
For any h 2 Vi let Xh be the indicator random variable
of the event that h becomes colorful. Let ci =

P
h2Vi

Xh;
clearly E[ci] = pk|Vi| = pkni. Note that for any h1, h2 2 Vi,
Xh1 , Xh2 are independent if and only if |V (h1)\V (h2)|  1,
i.e., if h1, h2 share at most one node. For any u, v 2 G
let then g(u, v) = |{h 2 Vi : u, v 2 h}|, and define �k =
1 + maxu,v2G g(u, v). By standard counting argument one
can see that maxu,v2G g(u, v)  (k � 1)!�k�2

� 1 and thus
�k  (k � 1)!�k�2. The bound then follows immediately
from Theorem 3.2 of [13] by setting t = ✏ci, (b↵ � a↵) = 1
for all ↵ = h 2 Vi, and �⇤(�)  �k  (k � 1)!�k�2.

B. PROOF OF THEOREM 4
The proof requires a martingale analysis, since the distri-

bution from which we draw the graphlets changes over time.
We use a martingale tail inequality originally from [14] and
stated (and proved) in the following form in [3, p. 1476]:

Theorem 7. ([3], Theorem 2.2). Let (Z0, Z1, . . .) be a

martingale with respect to the filter (F⌧ )t�0. Suppose that

Z⌧+1�Z⌧  M for all ⌧ , and write Vt =
P

t

⌧=1 Var[Z⌧ |F⌧�1].
Then for any z, v > 0 we have:

Pr [9 t : Zt � Z0 + z, Vt  v]  exp


�

z2

2(v +Mz)

�
(5)

We now plug into the formula of Theorem 7 the appropriate
quantities. In what follows we fix a graphlet Hi and analyse
the concentration of its estimate. Unless necessary, we drop
the index i from the notation.
A. For t � 1 let Xt be the indicator random variable of the
event that Hi is the graphlet sampled at step t (line 10 of
AGS).
B. For t � 0 let Y t

j be the indicator random variable of the
event, at the end of step t, the treelet to be sampled at the
next step is Tj .
C. For t � 0 let Ft be the event space generated by the
random variables Y ⌧

j : j 2 [&], ⌧ = 0, . . . , t. For any random
variable Z, then, E[Z | Ft] = E[Z |Y ⌧

j : j 2 [&], ⌧ = 0, . . . , t],
and Var[Z | Ft] is defined analogously.
D. For t � 1 let Pt = E[Xt|Ft�1] be the probability that
the graphlet sampled at the t-th invocation of line 10 is Hi,
as a function of the events up to time t� 1. It is immediate
to see that Pt =

P
&

j=1 Y
t�1
j

aji.

E. Let Z0 = 0, and for t � 1 let Zt =
P

t

⌧=1(Xt �Pt). Now,
(Zt)t�0 is a martingale with respect to the filter (Ft)t�0,
since Zt is obtained from Zt�1 by adding Xt and subtract-
ing Pt which is precisely the expectation of Xt w.r.t. Ft�1.
F. Let M = 1, since |Zt+1 � Zt| = |Xt+1 � Pt|  1 for all t.

Finally, notice that Var[Zt|Ft�1] = Var[Xt|Ft�1], since
again Zt = Zt�1 + Xt � Pt, and both Zt�1 and Pt are a
function of Ft�1, so their variance w.r.t. Ft�1 is 0. Now,
Var[Xt|Ft�1] = Pt(1 � Pt)  Pt; and therefore we have
Vt =

P
t

⌧=1 Var[Z⌧ | F⌧�1] 
P

t

⌧=1 P⌧ . Then by Theorem 7:

Lemma 1. For all z, v > 0 we have

Pr

"
9 t : Zt � z,

tX

⌧=1

P⌧  v

#
 exp


�

z2

2(v + z)

�
(6)

1661



amazon berkstan yelp friendster

5 6 7 8 9 5 6 7 8 9 5 6 7 8 5 6
1e0

1e1

1e2

1e3

1e4

1e5

amazon berkstan yelp friendster

5 6 7 8 9 5 6 7 8 9 5 6 7 8 5 6
0.00

0.25

0.50

0.75

1.00

Figure 8: graphlet counts with error within ±50% (dark bars = AGS). Top: absolute number. Bottom: as a fraction.
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Figure 9: frequency of the rarest graphlet appearing in 10 or more samples (dark bars = AGS).

U t = {i : cti > 0}; this is the set of graphlets not yet covered
at time t, and clearly U0 = [s].

At the t-th step the algorithm chooses the Tj⇤ such that
sample(Tj⇤) spans an uncovered graphlet with the highest
probability, by computing:

j⇤ := arg max
j=1,...,&

X

i2Ut

aji (11)

It then lets xt+1 = x+ej⇤ , where ej⇤ is the indicator vector
of j⇤, and updates ct+1 accordingly. The algorithm stops
when U t = ;, since then xt is a feasible solution. We prove:

Lemma 2. Let z be the cost of the optimal solution. Then

the greedy algorithm returns a solution of cost O(z ln(s)).

Proof. Let wt

j =
P

i2Ut
aji (note that this is a treelet

weight). For any j 2 [&] denote by �t

j = ct � ct+1 the
decrease in overall residual weight we would obtain if j⇤ = j.
Note that �t

j  wt

j . We consider two cases.
Case 1: �t

j⇤ < wt

j⇤ . This means for some i 2 Ut we have
ct+1
i

= 0, implying i /2 Ut+1. In other terms, Hi becomes
covered at time t+ 1. Since the algorithm stops when Ut =
;, this case occurs at most |U0

| = s times.
Case 2: �t

j⇤ = wt

j⇤ . Suppose then that the original problem
admits a solution with cost z. Obviously, the “residual”

problem where c is replaced by ct admits a solution of cost
z, too. This implies the existence of j 2 [&] with �t

j �
1
z
ct,

for otherwise any solution for the residual problem would
have cost > z. But by the choice of j⇤ it holds �j⇤ = wt

j⇤ �

wt

j � �t

j for any j, hence �t

j⇤ �
1
z
ct. Thus by choosing j⇤

we get ct+1
 (1� 1

z
)ct. After running into this case ` times,

the residual cost is then at most c0(1� 1
z
)`.

Note that ` + s � c0 = s · c̄ since at any step the overall
residual weight can decrease by at most 1. Therefore the
algorithm performs `+s = O(`) steps overall. Furthermore,

after ` + s steps we have c`+s
 sc̄e�

`
z , and by picking

` = z ln(2s) we obtain c`+s


c̄

s
, and therefore each one of

the s graphlets receives weight at least c̄

2 . Now, if we replace
c̄1 with 2c̄1 in the original problem, the cost of the optimal
solution is at most 2z, and in O(z ln(s)) steps the algorithm
finds a cover where each graphlet has weight at least c̄.

Now, note that the treelet index j⇤ given by Equation 11 re-
mains unchanged as long as Ut remains unchanged. There-
fore we need to recompute j⇤ only when some new graphlet
exits Ut, i.e., becomes covered. In addition, we do not need
each value aji, but only their sum

P
i2Ut

aji. This is pre-
cisely the quantity that AGS estimates at line 14. Theorem 6
follows immediately as a corollary.

1662



D. REFERENCES
[1] A. F. Abdelzaher, A. F. Al-Musawi, P. Ghosh, M. L.

Mayo, and E. J. Perkins. Transcriptional network
growing models using motif-based preferential
attachment. Frontiers in Bioengineering and

Biotechnology, 3:157, 2015.
[2] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Du�eld.

E�cient graphlet counting for large networks. In Proc.

of ICDM, pages 1–10, 2015.
[3] N. Alon, O. Gurel-Gurevich, and E. Lubetzky.

Choice-memory tradeo↵ in allocations. The Annals of

Applied Probability, 20(4):1470–1511, 2010.
[4] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.

ACM, 42(4):844–856, 1995.
[5] T. Baroudi, R. Seghir, and V. Loechner. Optimization

of triangular and banded matrix operations using
2d-packed layouts. ACM TACO, 14(4):55:1–55:19,
2017.

[6] M. A. Bhuiyan, M. Rahman, M. Rahman, and
M. Al Hasan. Guise: Uniform sampling of graphlets
for large graph analysis. In Proc. of ICDM, pages
91–100, 2012.

[7] M. Bressan. Counting subgraphs via DAG tree
decompositions. In Proc. of IPEC, 2019. (To appear).

[8] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and
A. Panconesi. Counting graphlets: Space vs time. In
Proc. of ACM WSDM, pages 557–566, 2017.

[9] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and
A. Panconesi. Motif counting beyond five nodes. ACM
TKDD, 12(4), 2018.

[10] V. T. Chakaravarthy, M. Kapralov, P. Murali,
F. Petrini, X. Que, Y. Sabharwal, and B. Schieber.
Subgraph counting: Color coding beyond trees. In
Proc. of IEEE IPDPS, pages 2–11, 2016.

[11] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong
computational lower bounds via parameterized
complexity. Journal of Computer and System

Sciences, 72(8):1346–1367, 2006.
[12] X. Chen, Y. Li, P. Wang, and J. C. S. Lui. A general

framework for estimating graphlet statistics via
random walk. PVLDB, 10(3):253–264, 2016.

[13] D. Dubhashi and A. Panconesi. Concentration of

Measure for the Analysis of Randomized Algorithms.
Cambridge University Press, New York, NY, USA, 1st
edition, 2009.

[14] D. A. Freedman. On tail probabilities for martingales.
The Annals of Probability, 3(1):100–118, 1975.

[15] G. Han and H. Sethu. Waddling random walk: Fast
and accurate mining of motif statistics in large graphs.
Proc. of ICDM, pages 181–190, 2016.

[16] S. Jain and C. Seshadhri. A fast and provable method

for estimating clique counts using Turán’s theorem. In
Proc. of WWW, pages 441–449, 2017.

[17] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A
fast and provable method for estimating 4-vertex
subgraph counts. In Proc. of WWW, pages 495–505,
2015.

[18] B. D. McKay and A. Piperno. Practical graph
isomorphism, {II}. Journal of Symbolic Computation,
60(0):94–112, 2014.

[19] R. Otter. The number of trees. Annals of

Mathematics, pages 583–599, 1948.
[20] A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE:

E�ciently counting all 5-vertex subgraphs. In Proc. of

WWW, pages 1431–1440, 2017.
[21] G. M. Slota and K. Madduri. Fast approximate

subgraph counting and enumeration. In Proc. of

ICPP, pages 210–219, 2013.
[22] L. D. Stefani, A. Epasto, M. Riondato, and E. Upfal.
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[28] Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis,
Z. Levnajic, V. Janjic, R. Karapandza,
A. Stojmirovic, and N. Pržulj. Revealing the hidden
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