Arx: An Encrypted Database using
Semantically Secure Encryption

Rishabh Poddar
UC Berkeley

rishabhp@berkeley.edu

ABSTRACT

In recent years, encrypted databases have emerged as a
promising direction that provides data confidentiality with-
out sacrificing functionality: queries are executed on en-
crypted data. However, many practical proposals rely on a
set of weak encryption schemes that have been shown to leak
sensitive data. In this paper, we propose Arx, a practical
and functionally rich database system that encrypts the data
only with semantically secure encryption schemes. We show
that Arx supports real applications such as ShareLaTeX with
a modest performance overhead.

PVLDB Reference Format:

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx:
An Encrypted Database using Semantically Secure Encryption.
PVLDB, 12(11): 1664-1678, 2019.

DOI: https://doi.org/10.14778/3342263.3342641

1. INTRODUCTION

Due to numerous data breaches [7,25], the public concern
over privacy and confidentiality is likely at one of its peaks to-
day. In recent years, encrypted databases [5,67,72,83] (EDBs)
have emerged as a promising direction towards achieving both
confidentiality and functionality: queries run on encrypted
data. CryptDB [72] demonstrated that such an approach
can be practical and can support a rich set of queries; it
then spurred a rich line of work including Cipherbase [5]
and Monomi [83]. The demand for such systems is demon-
strated by the adoption in industry such as in Microsoft’s
SQL Server [58], Google’s Encrypted Big Query [33], and
SAP’s SEEED [34] amongst others [20,39,45,78]. Most of
these services are NoSQL databases of various kinds showing
that a certain class of encrypted computation suffices for
many applications.

Unfortunately, this area faces a challenging privacy-
efficiency tradeoff, with no known practical system that
does not leak information. The leakage is of two types:
leakage from data and leakage from queries.

Leakage from data is leakage from an encrypted database,
e.g., relations among data items. In order to execute queries
efficiently, the EDBs above use a set of encryption schemes

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 11

ISSN 2150-8097.

DOL: https://doi.org/10.14778/3342263.3342641

Tobias Boelter
UC Berkeley

t.o@berkeley.edu

Raluca Ada Popa
UC Berkeley

raluca.popa@berkeley.edu

some of which are property-preserving by design (denoted
PPE schemes), e.g., order-preserving encryption (OPE) [8,
9,71] or deterministic encryption (DET). OPE and DET
are designed to reveal the order and the equality relation
between data items, respectively, to enable fast order and
equality operations. However, while these PPE schemes con-
fer protection in some specific settings, a series of recent
attacks [26,37,61] have shown that given certain auxiliary
information, an attacker can extract significant sensitive in-
formation from the order and equality relations revealed by
these schemes. These works demonstrate offline attacks in
which the attacker steals a PPE-encrypted database and
analyzes it offline.

Leakage from queries refers to what an (online) attacker
can see during query execution. This includes all observable
state in memory, along with which parts of the database are
touched (called access patterns), including which (encrypted)
rows are returned and how many, which could be exploited
in certain settings [15, 35,44, 48]. Unfortunately, hiding
the leakage due to queries is very expensive as it requires
oblivious protocols (e.g., ORAM [81]) to hide access patterns,
along with aggressive padding [60] to hide the result size.
For instance, Naveed [60] shows that in some cases it is more
efficient to stream the database to the client and answer
queries locally than to run such a system on a server.

A natural question is then: how can we protect a database
from offline attackers as well as make progress against online
attackers, while still providing rich functionality and good
performance?

We propose Arx, a practical and functionally rich database
system that takes an important step in this direction by al-
ways keeping the data encrypted with semantically secure
encryption schemes. Semantic security implies that no in-
formation about the data is leaked (other than its size and
layout), preventing the aforementioned offline attacks on a
stolen database. For an online attacker, Arx incurs pay-as-
you-go information leakage: the attacker no longer learns
the frequency count or order relations for every value in the
database, but only for data involved in the queries it can
observe. In the worst case (e.g., if the attacker observes many
queries over time), this leakage could add up to the leakage
of a PPE-based EDB, but in practice it may be significantly
more secure for short-lived online attackers. As prior work
points out [10,18,53], this model fits the “well-intentioned
cloud provider” which uses effective intrusion-detection sys-
tems to prevent attackers from observing and logging queries
over time, but fears “steal-and-run” attacks. For example,
Microsoft’s Always Encrypted [58] advocates this model.

1664

Unfortunately, there is little work on such EDBs, with
most work focusing on PPE-based EDBs. The closest to our
goal is the line of work by Cash et al. [16,17] and Faber et
al. [28], which builds on searchable encryption. As a result,
these schemes are significantly limited in functionality—they
do not support common queries such as order-by-limit, ag-
gregates over ranges, or joins—and are also inefficient for
write operations (e.g., updates, deletes). Furthermore, for
certain online attackers, these systems have some extra leak-
age not present in PPEs, as we elaborate in §11. To replace
PPE-based EDBs, we need a solution that is always at least
as secure as PPE-based EDBs.

Overall, by exclusively using semantically secure encryp-
tion, Arx prevents the offline attacks above [26,37,61] from
which PPE-based EDBs suffer. For online attackers, Arx is
always either more or as secure as PPE-based EDBs.

1.1 Techniques and contributions

A simple way to protect against offline attacks is to keep
the data encrypted at rest in the database and only decrypt
it when it is in use; however, such an approach directly leaks
the secret key even to a short-lived attacker who succeeds in
taking a well-timed snapshot of memory. A better alternative
is to consider a hybrid design that uses a PPE-based EDB,
but employs a second layer of encryption for data at rest on
the disk. However, an attacker who similarly captures the
decryption key when it is in memory gets access to the PPE-
encrypted data, rendering the second layer of encryption
useless. While both approaches enable rich functionality,
they leak more information than our goal in Arx.

Instead, Arx introduces two new database indices, ArxRange
and ArxEq that encrypt the data with semantic security;
queries on these indices reveal only a limited per-query ac-
cess pattern. ArxRange is for range and order-by-limit queries,
and ArxEq is for equality queries. While ArxRange can be
used for equality queries as well, ArxEq is substantially faster.

To enable range queries, ArxRange builds a tree over the
relevant keywords, and stores at each node in the tree a
garbled circuit for comparing the query against the keyword
in the node [31,86]. Our tree is history-independent [4] to
reduce structural leakage. The main challenge with ArxRange
is to avoid interaction (e.g., as needed in BlindSeer [68]) at
every node on a tree path. To address this challenge, Arx
draws inspiration from the theoretical literature on Garbled
RAM [29]. Arx chains the garbled circuits on a tree in
such a way that, when traversing the tree, a garbled circuit
produces input labels for the child circuit to be traversed
next. Thereby, the whole tree can be traversed in a single
round of interaction. For security, each such index node may
only be used once, so ArxRange essentially destroys itself
for the sake of security. Nevertheless, only a logarithmic
number of nodes are destroyed per query, and Arx provides
an efficient repair procedure.

ArxEq builds a regular database index over encrypted
values by embedding a counter into repeated values. This
ensures that the encryption of two equal values is different
and the server does not learn frequency information. To
search for a value v, the client provides a small token to the
server, which the server expands into many search tokens
for all occurrences of v. ArxEq provides forward privacy [12],
preventing old tokens from being used to search new data.

Building on top of ArxRange, Arx speeds up aggregations
by transforming them into tree lookups via ArxAgg.

Users :<---- Application Server ----#<--- DBMS Server---»
: (under attack]
E\ 3 H:
: query 1 -a
¥ query “|uf" i .;Q
l:l : reSUt) | rewriter |4 Ly @: YO,
; Application Client Proxy : Server Proxy DBMS

Figure 1: Arx’s architecture: Shaded boxes depict compo-
nents introduced by Arx. Locks indicate that sensitive data
at the component is encrypted.

Because of the new indices, index and query planning
become challenging in Arx. The application’s administrator
specifies a set of regular indices, thereby expecting a certain
asymptotic performance. However, regular indices do not
directly map to Arx’s indices because Arx’s indices pose
new constraints. The main constraints are: Arx cannot use
the same index for both = and > operations, an equality
index on (a,b) cannot be used to compute equality on a
alone, and range queries requires an ArxRange index. With
this in mind, we designed an index planning algorithm
that guarantees the expected asymptotic performance while
building few additional indices.

Finally, we designed Arx’s architecture so that it is
amenable to adoption. Two lessons [70] greatly facilitated
the adoption of the CryptDB system: do not change the DB
server and do not change applications. Arx’s architecture,
presented in Fig. 1, accomplishes these goals. The difference
over the CryptDB architecture [72] is that it has a server-
side proxy, a frontend for the DB server. The server proxy
converts encrypted processing into regular queries to the DB,
allowing the DB server to remain unchanged.

We implement and evaluate Arx on top of MongoDB,
a popular NoSQL database. We show that Arx supports a
wide range of real applications such as ShareLaTeX [77], the
Chino health data platform [19], NodeBB forum [63], and
Leanote [51] amongst others. In particular, Chino is a cloud-
based platform that serves the European medical project
UNCAP [84]. Chino provides a MongoDB-like interface to
medical web applications (running on hospital premises) but
currently operates on plaintext data. The project’s lead-
ers confirmed that Arx’s model fits Chino’s setup perfectly.
Finally, we also show that Arx’s overheads are modest: it
impacts the performance of ShareLaTeX by 11% and the
YCSB [22] benchmark by 3-9%.

2. OVERVIEW

In the rest of this paper, we use MongoDB/NoSQL termi-
nology such as collections (for RDBMS tables), documents
(for rows), and fields (for columns), but we use SQL format
for queries because we find MongoDB’s JS format harder
to read. While we implement Arx for MongoDB, its design
applies to other databases as well.

2.1 Architecture

Arx considers the model of an application that stores
sensitive data at a database (DB) server. The DB server
can be hosted on a private or public cloud. Fig. 1 shows
Arx’s architecture. The application and the database system
remain unmodified. Instead, Arx introduces two components
between the application and the DB server: a trusted client
proxy and an untrusted server proxy. The client proxy

1665

exports the same API as the DB server to the application
so the application does not need to be modified. The server
proxy interacts with the DB server by invoking its unmodified
API (e.g., issuing queries); in other words, the server proxy
behaves as a regular client of the DB server. Unlike CryptDB,
Arx cannot use user-defined functions instead of the server
proxy because the proxy must interact with the DB server
multiple times per client query.

The client proxy stores the master key. It rewrites queries,
encrypts data, and forwards the rewritten queries to the
server proxy for execution along with helper cryptographic
tokens. It forwards all queries without any sensitive fields
directly to the DB server. The client proxy is lightweight:
it does not store the DB and does much less work than the
server. The client proxy stores metadata (schema informa-
tion), a small amount of state, and optionally a cache. The
server runs the expensive part of DB queries, filtering and
aggregating many documents into a small result set.

In most cases, the client proxy processes only the results
of queries (e.g., to decrypt them). However, in some corner
cases, it performs some post-processing; as a result, our im-
plementation needs to duplicate some parts of the typesystem
and expression evaluation logic of the server database.

2.2 Threat Model

Arx targets attackers to the database server. Hence, our
threat model assumes that the attacker does not control or
observe the data or execution on the client-side, and may
only access the server-side which consists of Arx’s server
proxy and the database servers.

Arx considers passive (honest-but-curious) server attack-
ers: the attackers examine server-side data to glean sensitive
information, but follow the protocol as specified, and do not
modify the database or query results. The active attacker is
interesting future work, that can potentially leverage com-
plementary techniques [43,54,57,88|. Further, in the Arx
model, an attacker cannot inject any new queries as she does
not have access to the client application or to the secret keys
at the client proxy, but only to the server.

We consider two types of passive attackers, offline and on-
line attackers, and provide different guarantees for each. The
offline attacker manages to steal one copy of the database,
consisting of (encrypted) collections and indices. It does not
contain in-memory data related to the execution of current
queries (which falls under the online attacker). The online
attacker is a generic passive attacker: it can log and observe
any information available at the server (i.e., all changes to
the database, all in-memory state, and all queries) at any
point in time for any amount of time.

2.3 Security guarantees

Offline attacker. Arx’s most visible contribution over PPE-
based EDBs is for the offline attacker. Such an attacker
corresponds to a wide range of real-world instances including
hackers who extract a dump of the database, or insiders who
managed to steal a copy of the database.

For this attacker, Arx provides strong security guarantees
revealing nothing about the data beyond the schema and size
information (the number of collections, documents, items
per field, size of items, which fields have indices and for what
operations). The contents of the database (collections and
indices) are protected with semantically secure encryption,
and the decryption key is never sent to the server. In contrast,

in PPE-based EDBs, the attacker readily sees the order or
frequency of all the values in the database for PPE-encrypted
fields. In particular, Arx prevents the offline attacks of [26,
37,61] from which PPE-based EDBs suffer.

Online attacker. The online attacker additionally watches
queries and their execution. Arx hides the parameters in
the queries, but not the operations performed. In particu-
lar, Arx does not hide metadata (e.g., query identifiers and
timestamps) or access patterns during execution (e.g., which
positions in the database or index are accessed/returned and
how many). Prior work has shown that, if an attacker can
observe such information from many queries and if certain
assumptions and conditions hold, the attacker can recon-
struct data [15,35,44,48]. Since each query in Arx reveals
only a limited amount of metadata, the sooner an attacker
is detected (e.g., the fewer queries they observe), the less
information they are able to glean.

For this attacker, Arx aims to always be more or as secure
as PPE-based EDBs. Indeed, for all operations, Arx’s leakage
is always upper-bounded by the leakage in PPE-based EDBs.
This is non trivial: for example, a prior EDB aiming for
semantic security [28] is not always more secure than PPE-
based EDBs, as we explain in §11.

Security definition. To quantify the leakage to online
attackers, we provide a security definition for Arx and its
protocols that is parameterized by a leakage profile £, which
is a function of the database and the sequence of the queries
issued by the client. Our security definition is fairly standard,
and similar to prior work [17,28].

We say that a DB system (or a query execution protocol)
is L-semantically secure if, for any PPT adversary A, the
entirety of A’s view of the execution of the queries is efficiently
simulatable given only £. A invokes the interface exposed
by the client to submit any sequence of queries). A then
observes the execution of the queries from the perspective
of the server, i.e., it can observe all the state at the server,
as well as the full transcript of communication between the
client and server. Formally, A’s task is to distinguish between
a real world execution of the queries (Real) between the
client and server, and an ideal world execution (Ideal) where
the transcript is generated by a PPT simulator S that is
only given access to the leakage function £.

DEFINITION 1. Let £ be a leakage function. We say that
a protocol 11 is L-semantically-secure if for all adversaries
A and for all sequences of queries Q, there exists a PPT
simulator S such that:
Pr[Real{(\, Q) = 1] — Pr[Ideall; 5 ; (A, Q) = 1] < negl(\)
where X\ is the security parameter and negl(\) a negligible
function in \.

We formalize the leakage profile of Arx and its protocols in
§8, and provide proofs of security with respect to Definition 1
for non-adaptive adversaries (who select the query sequence
beforehand) in the full version of our paper. Informally, the
leakage for ArxEq includes the list of queries that search for
the same keyword; for ArxRange, the leakage includes the
ranks of the bounds in the range query.

2.4 Admin API

We describe the API exposed by Arx to application admins.
The admin can take an existing application and enhance it
with Arx annotations. Arx’s planner, located at the client
proxy, uses this API to decide the data encryption plan, the

1666

list of Arx indices to build, and a query execution plan for
each query pattern.

Following the example of Microsoft’s SQL Server [58] and
Google’s Encrypted BigQuery [33], Arx requires the admin
to declare what operations will run on the database fields.
By default, Arx considers all the fields in the database to be
sensitive, unless specified otherwise. To use Arx, the admin
specifies the following information during system setup:

1. (Optional) Annotated schema: fields that are unique,
fields that are nonsensitive (if any), and field sizes;

2. The operations that run on sensitive fields;

3. The fields that should be indexed.

For the first, the admin uses the API: collection = { field;:

info1, ..., field,: info, }, to annotate the fields in a col-

lection. This annotation is optional, but it benefits the

performance of Arx if provided. info should specify “unique”

if the values in the field are unique, e.g., SSN. Arx automati-

cally infers primary keys to be unique. info may also specify

a maximum length for the field, which helps Arx choose a

more effective encryption scheme.

Arx encrypts all the fields in the DB by default. However,
the admin may explicitly override this behavior by specifying
info as “nonsensitive” for a particular field. This option
should only be used if (1) the admin thinks this field is
not sensitive and desires to reduce encryption overhead, or
(2) Arx does not support the computation on this field but
the admin still wants to use Arx for the rest of the fields.
However, we caution that though some fields may not be
sensitive themselves, they may leak auxiliary information
about other fields in the database. Hence, the admin should
select such fields with care.

Second, Arx needs to know the query patterns that will
run on the database. Concretely, Arx needs to know what
operations run on which fields, though not the constants
that will be queried—e.g., for the query select * from T
where age = 10, Arx needs to know there will be an equality
check on age. The admin can either specify these operations
directly, or provide a trace from a run of the application and
Arx will automatically identify them.

Third, Arx needs to know the list of regular indices built
by the application. Arx needs this information in order to
provide the same asymptotic performance guarantees as an
unencrypted database. Note that this requirement poses no
extra work on the part of the admin, and is the same as
required by a regular database.

2.5 Functionality

We now describe the classes of read and write queries that
Arx can execute over encrypted data. As we show in §9, this
functionality suffices for a wide range of applications.

Read queries. Arx supports queries of the form:

select [agg doc| fields from collection
where clause [orderby fields| [1imit /|

doc denotes a document and [agg doc| aggregations over
documents, which take the form)" Func(doc). Y can be
any associative operator and Func an arbitrary, efficiently-
computable function. Examples include sum, count, sum of
squares, min, and max. More aggregations can be computed
with minimal postprocessing at the client proxy by combining
a few aggregations, such as average or standard deviation.
The predicate clause is | A; op(fi)] where op(fi) denotes
equality /range operations over a field f; such as =,> and <.

In addition, Arx supports a common form of joins—namely,
foreign-key joins—which we defer to the full version of our
paper due to space constraints.

Write queries. Arx supports standard write queries such
as inserts, deletes, and updates.

Constraints. Not all range/order queries are supported by
Arx. First, queries may not contain range operations over
more than one encrypted field—i.e., (5 > fi > 3) A (f2 < 10)
is not supported unless fs is unencrypted. Second, if the
query contains a limit along with range operations over an
encrypted field, then it may contain an order-by operation
over the encrypted field alone.

3. ENCRYPTION BUILDING BLOCKS

Besides its indices, Arx relies on three semantically-secure
encryption schemes. These schemes already exist in the
literature, so we do not elaborate on them.

BASE is standard probabilistic encryption, e.g., AES-CTR.

EQ enables equality checks using a searchable encryption
scheme similar to existing work [16,49]. One cannot build an
index on EQ ciphertexts directly because they are random-
ized, and Arx uses this scheme only for non-indexed fields
(i.e., linear scans). When the developer desires an index for
equality checks, Arx uses our new ArxEq index.

EQunique is a special case of EQ. In many applications,
some fields have unique values, e.g., primary keys, SSN. In
this case, Arx makes an optimization: instead of implement-
ing EQ with the scheme above, it uses deterministic encryp-
tion. Deterministic encryption does not leak frequency when
values are unique. Such a scheme is very fast: the server
can simply use the equality operator as if the data were
unencrypted. Databases can also build indices on the field
as before, so this case is an optimization for ArxEq too.

AGG enables addition using the Paillier scheme [66].

4. ArxRange & ORDER-BASED QUERIES

We now present our index enabling range queries and
order-by-limit operations.

4.1 Strawman

We begin by presenting a helpful but inefficient strawman,
that corresponds to the protocols in mOPE [71] and the
startup ZeroDB [27]. For simplicity, consider the index to be
a binary tree (instead of a regular B+ tree). To obtain the
desired security, each node in the tree is encrypted using a
standard encryption scheme. Because such encryption is not
functional, the server needs the help of the client to traverse
the index. To locate a value a in the index, the server and the
client interact: the server provides the root node to the client,
the client decrypts it into a value v, compares v to a, and
tells the server whether to go left or right. The server then
provides the relevant child to the client, and the procedure
repeats until it reaches a leaf. As a result, each level in the
tree requires a roundtrip, making the process inefficient.

4.2 Non-interactive index traversal

ArxRange enables the server to traverse the tree by itself.
Say the server receives BASEy(a) and must locate the leaf
node corresponding to a. To achieve this goal, the server must
be able to compare BASE(a) with the encrypted value at a
node, say BASEj(v). Inspired from the theoretical literature

1667

ArxRange index on patients.age:

| A8
B ||

patients collection:

D | age ‘diagnosis
Enc(23) | Enc(26)| Enc(Lyme)
Enc(91) | Enc(3) |Enc(flu)

Figure 2: ArxRange example. Enc is encryption with BASE.

on garbled RAM [29, 30], we store a garbled circuit at
each tree node that performs the comparison, while hiding
a and v from the attacker.

A garbling scheme is a set of algorithms (Garble, Encode,
Eval) [31,86]. Using a garbling scheme, the client can invoke
the algorithm Garble on a boolean circuit f to obtain a
garbled version F' of the circuit, along with some secret
encoding information e. Given an input a, the client can run
Encode(e, a) to produce an encoding e, corresponding to the
input. Then, the server can run Eval(F,e,) and obtain the
output y = f(a). The security of garbled circuits guarantees
that the server learns nothing about a or the data hardcoded
in f other than the output f(a) (and the size of a and f).
This guarantee holds as long as the garbled circuit is used
only once. That is, if the client provides two encodings e,
and e, using the same encoding information e to the server,
the security guarantees no longer hold. Hence, our client
provides at most one input encoding for each garbled circuit.

To allow the server to traverse the index without interac-
tion, each node in the index must re-encode the input for
the next node in the path, because the encoding e, of the
input to a node differs from the encoding for its children. We
therefore chain the garbled circuits so that each circuit
outputs an encoding compatible with the relevant child node.

Let N be a node in the index with value v, and let L and
R be the left and right nodes. Let eV, ef, and ef be the
encoding information for these nodes. The garbled circuit
at IV is a garbling of a boolean circuit that compares the
input with the hardcoded value v and additionally outputs
the re-encoded input labels for the next circuit:

if a < v then

e/, < Encode(e”, a); output e, and ‘left’
else

e/, + Encode(e®, a); output e, and ‘right’

Fig. 2 shows how the server traverses the index with-
out interaction. The number at each node indicates the
value v hardcoded in the relevant garbled circuit. Now con-
sider the query: select * from patients where age < 5.
The client provides an encoding of 5, Encode(5) encrypted
with the key for the root garbled circuit. The server runs
this garbled circuit on the encoding and obtains “left” as well
as an encoding of 5 for the left garbled circuit. The server
then runs the left circuit on the new encoding, and proceeds
similarly until it reaches the desired leaf node. Note that
since each node encodes the < operation, in order to perform
< operations the client needs to first transform the query
into an equivalent query with the < operation; e.g., age <5
is transformed to age < 6 instead.

Repairing the index. A part of our index gets destroyed
during the traversal because each garbled circuit may be
used at most once. To repair the index, the client needs to
supply new garbled circuits to replace the circuits consumed.
Fortunately, only a logarithmic number of garbled circuits
get consumed. Suppose a node N and its left child L get
consumed. For each such node N, the client needs two pieces
of information from the server: the value v encoded in N, and
the encoding information for the right child R. The server
therefore sends an encryption of v (i.e., BASE(v), stored
separated in the index), and the ID of the circuit at R. The
ID of each circuit is a unique, random value that is used by
the client proxy (together with the secret key) to generate
the encodings for the circuit; i.e., the ID of the circuit at
R was used to compute e¢®. Sending ID instead of e saves
bandwidth because the encoding information is not small
(1KB for a 32-bit comparison).

4.3 The database index

We need to take two more steps to obtain an index with
the desired security.

First, the shape of the index should not leak information
about the order in which the data was inserted. Hence, we
use a history-independent treap [4,59] instead of a regular
search tree. This data structure has the property that its
shape is independent of the insertion or deletion order.

Second, we store at each node in the tree the encrypted
primary key of the document containing the value. This
enables locating the documents of interest. Note that the
index does not leak the order of values in the database even
though the leaves are ordered: the mapping between a leaf
and a document is encrypted, and the index can be simulated
from size information. If the primary key were not encrypted,
the server would learn such an order.

Query execution. Consider the query select * from
patients where 1 < age < 5. Each node in the index
has two garbled circuits to allow concurrent search for the
lower and upper bounds. The client proxy provides tokens
for values 1 and 5 to the server, which then locates the left-
most and rightmost leaves in the interval (1, 5] and fetches
the encrypted primary keys from all nodes in between. The
server sends the encrypted keys to the client proxy which
decrypts them, shuffles them, and then selects the documents
mapped to these primary keys from the server. The shuffling
hides from the server the order of the documents in the range.

For order-by-limit £ queries, the server simply returns the
leftmost or rightmost ¢ nodes. Order-by operations without
a limit are not performed using ArxRange. Since they do not
have a limit, they do not do any filtering, so the client proxy
can simply sort the result set itself.

Updating the index. For inserts and deletes, the server
traverses the index to the appropriate position, performs the
operation, and rebalances the index if required. For updates,
the server first performs a delete followed by an insert. As
a result of the rebalancing, all nodes that have at least one
different child node are also marked as consumed (in addition
to those consumed during traversal), and are sent for repair
to the client proxy; however, the total number of consumed
nodes is always upper bounded by the height of the index.
Some update or delete queries may first perform a filter
on a field using a different index, but also requiring deletes
from an ArxRange index as a result. To support this case, we
maintain an encrypted backward pointer from the document

1668

to the corresponding node in the tree. The backward pointers
enable the identification of these nodes without having to
traverse the ArxRange index. Decryption of these pointers
requires a single round of interaction with the client proxy.
Additionally, for monotonic inserts—a common case where
inserts are made in increasing or decreasing order—a cheap
optimization is for the client proxy to remember the position
in the tree of the last value, so that most values can be
inserted directly without requiring traversal and repair.

Concurrency. ArxRange provides limited concurrency be-
cause each index node needs to be repaired before it can be
used again. To enable a degree of concurrency, the client
proxy stores the top few levels of the tree. As a result, the
index at the server essentially becomes a forest of trees and
accesses across different trees can be performed in parallel.
At the same time, the storage at the client proxy is very small
because trees grow exponentially in size with the number
of levels. Queries to the same subtree, however, are still
sequential. This technique improves performance without
impacting the security guarantees of the index.

4.4 Optimizations

We employ several techniques to further improve the per-
formance of ArxRange: (1) we chain garbled circuits together
using transition tables instead of computing the encoding
function inside the circuit; (2) we incorporate recent advances
in garbling in order to make our circuits short and fast; and
(3) we remove index repair from the critical path of a query,
and return the query results to the client before starting
repair. We defer the details to the full version of our paper.

S. ArxEq & EQUALITY QUERIES

The ArxEq index enables equality queries and builds on
insights from the searchable encryption literature [11], as
explained in §11. We aim for ArxEq to be forward private,
a property shown to increase security significantly in this
context [12]: the server cannot use an old search token on
newly inserted data. We begin by presenting a base protocol
that we improve in stages.

5.1 Base protocol

Consider an index on the field age. ArxEq will encrypt the
value in age (as follows) and it will then tell the DB server
to build a regular index on age.

The case when the fields are unique (e.g., primary key,
IDs, SSNs) is simple and fast: ArxEq encrypts the fields with
EQunique and the regular index suffices. The rest of the
discussion applies to non-unique fields.

The client proxy stores a map, called ctr, mapping each
distinct value v of age that exists in the database to a counter
indicating the number of times v appears in the database.
For age, this map has about 100 entries.

Encrypt and insert. Suppose the application inserts a
document where the field age has value v. The client proxy
first increments ctrfv]. Then, it encrypts v into:

Enc(v) = H(EQunique(v), ctr[v]) (1)
where H is a cryptographic hash (modeled as a random or-
acle). This encryption provides semantic security because
EQunique(v) is a deterministic encryption scheme which be-
comes randomized when combined with a unique salt per
value v: ctr[v]. This encryption is not decryptable, but as

1669

discussed in §7.2, Arx encrypts v with BASE as well. The
document is then inserted into the database.

Search token. When the application sends the query
select * where age = 80, the client proxy computes a search
token using which the server proxy can search for all occur-
rences of the value 80. The search token for a value v is the
list of encryptions from Eq. (1) for every counter from 1 to
ctr[v]: H(EQunique(v),1),..., H(EQunique(v), ctr[v]).
Search. The server proxy uses the search token to recon-
struct the query’s where clause as: age = H(EQunique(v), 1)
or ... or age = H(EQunique(v), ctr[v]) (with the clauses
in a random order). The DB server uses the regular index
on age for each clause in this query and returns the results.
If the number of values exceeds the maximum query size
allowed by the backend database, then Arx’s server proxy
split the disjunction into multiple queries (at the cost of
additional index lookups).

Note that the scheme provides forward privacy: the server
cannot use an old search token to learn if newly inserted
values are equal to v as they would have a higher counter.

5.2 Reducing the work of the client proxy

The protocol so far requires the client proxy to generate as
many tokens as there are equality matches on the field age.
If a query filters on additional fields, the client proxy does
more work than the size of the query result, which we want
to avoid whenever possible. We now show how the client
proxy can work in time (log ctr[v]) instead of ctr[v].

Instead of encrypting a value v as in Eq. (1), the client
proxy hashes according to the tree in Fig. 3. It starts with
EQunique, (v) at the root of a binary tree. A left child node
contains the hash of the parent concatenated with 0, and
a right child contains the hash of the parent with 1. The
leaves of the tree correspond to counters 0,1,2,3, ..., ctr[v].

The client proxy does not materialize this entire tree.
Given a counter value ct, the proxy can compute the leaf cor-
responding to ct, simply by using the binary representation
of ct to compute the corresponding hashes.

T= EQuniquek(v)

To=HT [10) Ty =HT (1)
Too=HTgll0) Tgq =H(Tgl 1) Tyq=H(T4]I0)

Figure 3: Search token tree.

New search token. To search for a value v with counter
ctr[v], the client proxy computes the covering set for leaf
nodes 0, ..., ctr[v] — 1. The covering set is the set of inter-
nal tree nodes whose subtrees cover exactly the leaf nodes
0,...,ctrlv] — 1. E.g., in Fig. 3, ctr[v] = 3 and the covering
set of the three leaves is {To, Th0}. The nodes in the covering
set constitute the search token. The covering set can be
easily deduced from the binary representation of ctr[v] — 1.

Search. The server proxy expands the covering set into the
leaf nodes, and proceeds as before.

5.3 Updates

We have already discussed inserts. For deletes, Arx simply
deletes the document. An update is a delete followed by an
insert. As a result, encrypted values for some counters will
not return matches during search. This does not affect accu-
racy, but as more counters go missing, it affects throughput

because the DB server wastes cycles looking for values with
no matches. It also provides a small security leakage because
a future search leaks how many items were deleted. As a
result, ArxEq runs a cleanup procedure after each deletion.
As a performance optimization, one can run a cleanup proce-
dure when a search query for a value v indicates more than
a threshold of missing counters, relaxing security slightly.

Cleanup. The server proxy tells the client proxy how
many matches were found for a search, say ct. The client
proxy updates ctr[v] with ct, chooses a new key k' for v, and
generates new tokens as in Fig. 3: Tgg, ..., Te using k'. It
gives these tokens to the server, which replaces the fields
found matching with these.

5.4 Counter map

To alleviate the burden of storing the counter map at the
client proxy, it is possible to store it encrypted at the server
instead while still providing strong guarantees against offline
attackers. However, we recommend storing it at the client
proxy for increased security against the online attacker. We
now discuss both design points and accompanying tradeoffs.

Counter map at server. The counter map can be stored
encrypted at the server. An entry of the sort v — ct becomes
EQunique, (v) — EQunique,; (ct), where k7 and k3 are two
keys derived from the master key, used for the counter map.
When encrypting a value in a document or searching for a
value v, the client proxy first fetches the encrypted counter
from the server by providing EQuniquekr (v) to the server.
Then, the algorithm proceeds the same as above.

To avoid leaking the number of distinct fields, Arx pads
the counter map to the number of documents in the relevant
collection. This scheme satisfies Arx’s security goal in §2.3:
a stolen database remains encrypted with semantic security
and leaks nothing except size information.

Counter map at client. However, we recommend keeping
the counter map at the client proxy for higher security against
an online attacker. If the counter map is stored at the server,
then with every newly inserted value, an online attacker can
see which entry of the counter map is accessed and which
document is inserted in the database. Storing the counter
map at the client hides such correlations entirely.

Though the size of the counter map grows with the number
of different values a field can take, in many cases, the storage
overhead is small—e.g., for low-cardinality fields such as
gender, age, and letter grades. Moreover, in the extreme case
when all values are unique (¢.e., the maximum possible size for
a counter map), ArxEq defaults to the regular index built over
EQunique encryptions, which doesn’t need a counter map at
all. The case when there are many distinct values with few
repetitions is less ideal, and we implement an optimization for
this case: to decrease the size of the counter map, Arx groups
multiple entries into one entry by storing their prefixes. As
a tradeoff, the client proxy has to filter out some results.

6. ArxAgg & AGGREGATION QUERIES

We now explain Arx’s aggregation over the encrypted
indices. It is based on AES and is faster than homomorphic
encryption schemes like Paillier [66]. Many aggregations
happen over a range query, such as computing the average
days in hospital for people in a certain age group. Arx
computes the average by computing sum and count at the
server, and then dividing them at the client proxy. Hence,

let’s focus on the query: select sum(daysAdmitted) from
patients where 70 < age < 80.

The idea behind aggregations in Arx is inspired from litera-
ture on authenticated data structures [54]. This work targets
integrity guarantees (not confidentiality), but interestingly,
we use it for computations on encrypted data. Consider the
ArxRange index in Fig. 2 built on age. At every node N in
the tree, we add the partial aggregate corresponding to the
subtree of N. For the query above, N contains a partial sum
of daysAdmitted corresponding to the leaves under N. The
root node thus contains the sum of all values. This value is
stored encrypted with BASE.

To compute the sum over an arbitrary range such as [70, 80],
the server first locates the edges of the range as before, and
then identifies a perfect covering set. Note that the covering
set is logarithmic in the size of the index. For each node in
this set, the server returns the encrypted aggregates of all
its children and the encrypted value of the node itself to the
client proxy, which decrypts them and sums them up.

7. ARX’S PLANNER

Arx’s planner takes as input a set of query patterns, Arx-
specific annotations, and a list of regular indices (per §2.4),
and produces a data encryption plan, a list of Arx-style
indices, and a query plan for each pattern.

7.1 Index planning

Before deciding what index to build, note that ArxRange
and ArxEq support compound indices, which are indices on
multiple fields. For example, an index on (diagnosis, age)
enables a quick search for diagnosis = 'flu' and age > 10.
Arx enables these by simply treating the two fields as one
field alone. For example, when inserting a document with
diagnosis= 'flu', age = 10, Arx merges the fields into one
field 'flu' || 00010, prefixing each value appropriately to
maintain the equality and order relations, and then builds a
regular Arx index.

When deciding what indices to build, we aim to provide
the same asymptotic performance as the application admin
expects: if she specified an index over certain fields, then the
time to execute queries on those fields should be logarithmic
and not require a linear scan. At the same time, we would
like to build few indices to avoid the overhead of maintaining
and storing them. Deciding what indices to build automati-
cally is challenging because (1) there is no direct mapping
from regular indices to Arx’s indices, and (2) Arx’s indices
introduce various constraints, such as:

e A regular index serves for both range and equality op-
erations. This is not true in Arx, where we have two
different indices for each operation. We choose not to use
an ArxRange index for equality operations because of its
higher cost and different security.

e Unlike a regular index, a compound ArxEq index on (a,b)
cannot be used to compute equality on a alone because
ArxEq performs a complete match.

e A range or order-by-limit on a sensitive field can be com-
puted only via an ArxRange index, so it can no longer be
computed after applying a separate index.

All these are further complicated by the fact that the
application admin can explicitly specify certain fields to be
nonsensitive (as described in §2.4), and simultaneously de-
clare compound indices on a mixture of fields, both sensitive

1670

and not. Similarly, queries can have both sensitive as well
as nonsensitive fields in a where clause.

Despite all these constraints, our index planning algorithm
is quite simple. It runs in two stages: per-query processing
and global analysis. Only the where clauses (including order-
by-limit operations) matter here. The first stage of the
planner treats sensitive and nonsensitive fields equally. For
clarity, we use two query patterns as examples. Their where
clauses are: Wi: “a =and b =", Wy: “ x = and y > and z =".
The indices specified by the admin are on = and (a, b).

Stage 1: Per-query processing. For each where clause
Wi, extract the set of filters S; that can use the indices in a
regular database. Example: For W1, S1 = {(a =,b =)} and
for Wa, Sz = {(z =)}

Then, if W, contains a sensitive field with a range or order-
by-limit operation, append a “>” filter on this field to each
member of S;, if the member does not already contain this.
Based on the constraints in §2.5, a where clause cannot have
more than one such field. Example: For W1, S1 = {(a =,b =
)}, and for Wa, So = {(z =,y >)}.

Stage 2: Global analysis. Union all sets S = U;S;. Re-
move any member A € S if there exists a member B € S
such that an index on B implies an index on A. The concrete
conditions for this implication depend on whether the fields
involved are sensitive or not, as we now exemplify.
Example: If a and b are nonsensitive, and S contains both
(a=,b=) and (a =,b >), then (a =,b =) is removed. If all
of a, b and c are sensitive and S contains both (a =,b =,¢ >)
and (a =,b >), then (a =,b >) is removed. For Wi and W5
above, if b and y are sensitive (a,z, z can be either way), the
indices Arx builds are: ArxEq (a,b) and ArxRange (z,y).

One can see why our planner maintains the asymptotic
performance of the admin’s index specification: each expres-
sion that was sped up by an index remains sped up. In §9, we
show that the number of extra indices Arx builds is modest
and does not blow up in practice.

7.2 Data layout

Next, laying out the encryption plan is straightforward:
All values of a sensitive field are encrypted with the same
key, but this key is different from field to field.

For every aggregation in a query, decide if the where clause
in this query can be supported entirely by using ArxRange
or ArxEq. Concretely, the where clause should not filter by
additional fields not present in the index. If so, update the
metadata of the respective index to follow our aggregation
strategy per §6. If not, encrypt the respective fields with
AGG if the aggregate requires the computation of a sum.
For every query pattern, if the where clause W, checks
equality on a field f that is not part of every element of
Si, encrypt f with EQ (since at least one query plan will
need to filter this field by equality without an index).
For every sensitive field projected by at least one query,
additionally encrypt it with BASE. The reason is that EQ
and our indices are not decryptable.

8. SECURITY ANALYSIS

We now formalize the security guarantees of Arx. We
first develop a formal model of a database system, and then
provide leakage definitions with respect to offline and online
attackers. Proofs of security follow in the full version.

1671

Protocol (e) | Operation L.(DB, q)
EQ | where field=w sp(w), Hist(w)
(83) | insert sp(w)
delete -
ArxEq | where field=w sp(w), Hist(w)
(85) | cleanup (§5.3) sp(w), Hist(w)
insert, delete -
ArxRange | where a < field <b | rk(a — 1), rk(b)
(84) | orderby limit ¢ 14
insert, delete v rk(v)
Figure 4: Query leakage in Arx’s protocols.

Notation. We denote the set of all binary strings of length
n as {0,1}". We write [a;]j=; to denote the list of values
lai,...,an]. If S is a list or a set, then |S| denotes its size.

8.1 Preliminaries

A database system is a pair of stateful random access
machines (Client, Server). The server Server stores a database
DB, and the client Client can through interaction with Server
compute queries out of a set of supported queries, which
may modify the database.

Database. A database DB = {T1,...,T»} is a set of collec-
tions. Each collection T,; = (F;, Ind;, [(id;, D;)];)) comprises
a set of fields F; = {f1,...,fm,} of size m;; a set of indices
Ind;; and a list of identifier-document pairs, where id; is the
identifier for document D;. A document D; = [wy, ..., wm,]
is a list of keywords where w; is indexed by field f; (denoted
w; = D;[f]). Here, w; € {0,1}1%1 U {4}, where ||f;|| denotes
the size of the keywords in the field’s domain. Also, we write
|IT]| to denote the number of documents in collection T.
Given a collection T, we write T(w) to denote the set
of identifiers of documents that contain w, i.e., T(w) =
{id | 3(id,D) € T s.t. w € D}.
Indices. Given a collection T; and a field f, an index I € Ind;
is a search tree built over the Dj[f], for all D; € T;,. We
represent the search tree as a tuple (V, E) of nodes and
edges, where each node contains a function f that enables
tree traversal. We define the shape of an index shape(I) = E
to be the set of edges. Since a field may contain multiple
indices (i.e., both ArxEq and ArxRange), we write I(f) to
refer to all the indices maintained on a field f.

Schema. Let E = {BASE, EQ, EQunique, ArxEq, ArxRange}
denote the set of protocols supported by Arx. We define the
schema S of a collection T; to be its name, its set of fields,
the size of each field, protocols maintained per field, and the
shapes of all indices:

S(T2) = (i, {f;, Il plan(f,), shape(1) VI € I(F;)}iL,).

Here, plan(f;) = {e € E} is the set of protocols maintained
on field f;. The schema of a database DB is then given by
S(DB) = |, S(T).
Queries. A predicate pred = (f,op) is a tuple compris-
ing a field f and an operation op over the field, where
op € {<,>,=,< and >,orderby limit}. A query q =
(ts, T, qtype, pred, params) is a 5-tuple that comprises a times-
tamp ts, the name of a collection T, a query type qtype €
{read, insert, delete}, a predicate pred, and query param-
eters params corresponding to the predicate. We model
updates as a delete followed by an insert.

Note that our definition of a query consists only of a single
predicate for simplicity of exposition. We model queries
with multiple predicates as a list of single-predicate queries.
To insert a document D, we model the operations as a list

of insert queries, one per field of the document; in these
insert queries, q.pred.op = L, q.pred.f is the corresponding
field, and g.params is the value to be inserted.

We write DB(q) = ([id;]i, e) to denote the set of identifiers
of documents that satisfy q along with the protocol e € E
used to execute q. For inserts, deletes, and updates, [id;];
indicates the list of documents inserted, deleted, or updated.

Admin API. During system setup, for each collection T;,
the admin supplies a predicate set:

P(T:) = {[(F;,0p,)], | f; € Fi} ,
which is the set of query predicates that will be issued by
Client over the collection (as described in §2.4). The global
predicate set is then given by P(DB) = |J, P(T:).

8.2 Leakage definitions

We define the leakage profile of Arx, £ = {Lof, Lon}: first
for the database itself (offline attacker), then for the execution
of each query (online attacker).

DEFINITION 2 (OFFLINE LEAKAGE OF A DATABASE).

The leakage of a database DB is:

Lor(DB) = (S(DB), B(DB), {¥T; |T4lI}),
where S(DB) is the schema of the database, and P(DB) is
the global predicate set of the database.

Before defining the leakage of queries, we define the rank
of an element z in a list L = [ai1,...,as] as rk(L,z) =
{a; | ai < z}|, and we write rk(z) if L is clear from context.

Our online leakage function Lo, is stateful, and maintains
the query history of the database Q(DB) = [q;]; as a list of
every query issued by Client. We denote the query history
of a collection T as Q(T) = {q | g € Q(DB) and q.T = T}.

Given collection T with a field f that has the EQ or ArxEq
protocol maintained on it, we define the search pattern of a
keyword w (following Bost [12]) as:
sp(w, T,f) = {q.ts | 3 q € Q(T) s.t. g.pred is (f,=), and w €
q.params},
and we write sp(w) if T and f are clear from context. Es-
sentially, sp leaks which equality queries relate to the same
keyword. Similarly, for collection T with a field f containing
the EQ or ArxEq protocol, we define the write history of
keyword w as:

WHist(w, T,f) = {(q.ts, q.qtype, id) | 3 q € Q(T) s.t. id €
DB(q), q.qtype € {insert,delete}, and D[f] = w},

where and D is the document corresponding to id. We write
WHist(w) if T and f are clear from context. Essentially,
WHist leaks the list of all write operations on keyword w.

Finally, let T® be the state of collection T in the initial
database, before any queries are issued. Then, we define the
history of keyword w as Hist(w, T) = (T°(w), WHist(w, T)),
and we write Hist(w) if T is clear from context.

DEFINITION 3 (ONLINE LEAKAGE OF QUERIES). Let
([ids]s, [e5]5) < DB(q). Then, the leakage of a query q over
database DB 1is:

Lon(DB, q) = ((a.ts,q.T,q.qtype, g.pred), [id;];, L (DB, q))
where L.(DB, q) is additional leakage due to the protocol e
used to execute the query, as detailed in Fig. /.

We note that the leakage of ArxEq, as captured in Fig. 4,
is similar to that of Sophos [12] and Diana [13].

9. EVALUATION

We now show that Arx supports real applications with a
modest overhead. We defer microbenchmarks of the various
encryption schemes to the full version of our paper.

Implementation. While the design of Arx is decoupled
from any particular DBMS, we implemented our prototype
for MongoDB 3.0. Arx’s implementation consists of ~11.5K
lines of Java, and ~1800 lines of C/C++ code. We also
disable query logs and query caches to reduce the chance
that an offline attacker gets information an online attacker
would see, as discussed in Grubbs et al. [36].

Testbed. To evaluate the performance of Arx, we used
the following setup. Arx’s server proxy was collocated with
MongoDB 3.0.11 on 4 cores of a machine with 2.3GHz Intel
E5-2670 Haswell-EP processors and 256GB of RAM. Arx’s
client proxy was deployed on 4 cores of an identical machine.
A separate machine with 48 cores was used to run the clients.
In throughput experiments, we ran the clients on all 48 cores
of the machine to measure the server at maximum capacity.
All three machines were connected over a 1GbE network; to
simulate real-world deployments, we added a latency of 10ms
(RTT) to each server using the tc utility.

9.1 Functionality

To understand if Arx supports real applications, we evalu-
ate Arx on seven existing applications built on top of Mon-
goDB. We manually inspected the source code of each appli-
cation to obtain the list of unique queries issued by them, and
cross-verified the list against query traces produced during
an exhaustive run of the application. All these applications
contain sensitive user information, and Arx encrypts all fields
in these applications by default.

Fig. 5 summarizes our results. With regard to unsup-
ported queries across the applications, 4 of the 11 were due
to timestamps; Arx can support these queries in case the
timestamps are nonsensitive and explicitly specified as such
by the application admin. The limitation was the number
of range/order operations Arx allows in the query, as ex-
plained in §2.5. For NodeBB, the two unsupported queries
performed text searches, and for Leanote, the five queries
were evaluating regular expressions, both of which Arx can-
not support. Even so, these are only a small fraction of the
total queries issued, which are tens to hundreds in number.
In general, the table shows that Arx can support almost all
the queries issued by real applications. In cases where an
application contains queries that are not supported by Arx,
the application admin should consider whether the applica-
tion needs the query in that form and if she can adjust it
(e.g., by removing a filter that is not necessary or that can be
executed in the application). The admin could also consider
if the unsupported data field is nonsensitive and mark it
as such, but this should be done with care. The table also
shows that though Arx’s planner increases the number of
indices by 20%, this number does not blow up. The main
reason is that the number of fields with order queries that
are not indexed by the application is small.

9.2 Performance of ArxEq

We evaluate the overall performance of ArxEq (without
the optimization for unique values) using relevant queries
issued by ShareLaTeX. These queries filter documents by
one field using ArxEq. We loaded the database with 100K
documents representative of a ShareL.aTeX workload.

Fig. 6 compares the read throughput of ArxEq with a regu-
lar MongoDB index, when varying the number of duplicates
per value of the indexed field. The ArxEq scheme expands
a query from a single equality clause into a disjunction of

1672

.. Unsupported queries Number of indices | Total indices
Application Examples of fields Total | Excl. timestamps | ArxEq ArxRange Vanilla | Arx
ShareLaTeX [77] document lines, edits 1 - 12 4 12 16
Uncap (medical) [84] heart rate, tests - - 0 2 2 2
NodeBB (forum) [63] | posts, comments 2 2 13 4 12 17
Pencilblue (CMS) [69] | articles, comments 3 - 46 27 70 73
Leanote (notes) [51] notes, books, tags 5 5 64 28 69 92
Budget manager [14] expenditure, ledgers - - 5 0 5 5
Redux (chat) [75] messages, groups - - 3 0 3 3

Figure 5: Examples of applications supported by Arx:

examples of fields in these applications; the number of queries not

supported by Arx when all fields were considered sensitive, and when timestamps were excluded; how many Arx-specific indices
the application requires; and the total number of indices the database builds in the vanilla application and with Arx. Since
ArxAgg is built on top of ArxEq and ArxRange, we do not count it separately.

70000 " -y 30000 " .y 80000 M BB
ongol —_— R ongo —_— o L ongol [}
60000 groxy 28000 Igroxy —_—— . 70000 gl’OXy ==
g 50000 Arx —e— g 26000 - Arx —o— 3 60000 [
$ 40000 Jowoor e Sooop
8 30000 & 22000 5 40000
& 20000 = 20000 -§ 30000 [.
10000 18000 p—o—o— o) g 20000 - 4%
L i < 10000
0 16000 1 1 1 1 1 1 1 1 1 1 = 0 \ A A
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100 50%R, 95%R, 95%R, 50%R.

No. of duplicates

No. of duplicates

50%U 5%U 5% 50%RMW

Figure 6: ArxEq read throughput with Figure 7: ArxEq write throughput with Figure 8: YCSB throughput for differ-

increasing no. of duplicates.

equalities over all possible tokens. The number of tokens
corresponding to a value increases with the number of du-
plicates. The DB server essentially looks up each token in
the index. In contrast, a regular index maps duplicates to
a single reference and can fetch them all in a scan. Both
indices need to fetch the documents for each primary key
identified as a matching, which constitutes a significant part
of the execution time. Overall, ArxEq incurs a penalty of
55% in the worst case, of which 8% is due to Arx’s proxy.
When all fields are unique, the added latency due to ArxEq is
small—1.13ms versus 0.94ms for MongoDB. As the number
of duplicates increases, the latency of both MongoDB and
Arx increase as well—at 100 duplicates, Arx’s latency is
42.1ms, while that of MongoDB is 18.8ms.

Fig. 7 compares the write throughput of ArxEq with in-
creasing number of duplicates. The write performance of a
regular B+Tree index slowly improves with increased dupli-
cation, as a result of a corresponding decrease in the height
of the tree. In contrast, writes to an ArxEq index are indepen-
dent of the number of duplicates by virtue of security: each
value looks different. Further, since each individual insert
requires the computation of a single token (a constant-time
operation), the write throughput of ArxEq remains stable in
this experiment. As a result, the net overhead grows from
18% (when fields are unique) to 25% when there are 100
duplicates per value. Latency follows a similar trend and
remains stable for ArxEq at 3.3ms. For a regular MongoDB
index, the latency slowly improves from 2.7ms to 2.5ms as
the number of duplicates grows to 100.

YCSB Benchmark. Since Arx is a NoSQL database, we
also evaluate its overhead using the YCSB benchmark [22].
YCSB conforms to ArxEq’s optimized case when fields are
unique. In this experiment, we loaded the database with
1M documents. Arx considers all fields to be sensitive by
default, including the primary key. Hence, the primary key
has an ArxEq index and the rest of the fields are encrypted
with BASE. Fig. 8 shows the average performance of Arx

increasing no. of duplicates.

ent workloads.

versus vanilla MongoDB, across four different workloads
with varying proportions of reads and writes, as specified.
“R” refers to proportion of reads, “U” to updates, “I” to
inserts, and “RMW?” to read-modify-write. The reduction in
throughput is higher for read-heavy workloads as a result of
the added latency due to sequential decryption of the result
sets. Overall, the overhead of Arx is 3%-9% across workloads,
showing that indexing primary keys is fast with Arx.

9.3 Performance of ArxRange

We now evaluate the latency introduced by ArxRange. We
pre-inserted 1M values into the index, and assumed a length
of 128 bits for the index keys, which is sufficient for composite
keys. We cached the top 1000 nodes of the index at the client
proxy, which amounted to a mere 88KB of memory. We
subsequently evaluated the performance of read and write
operations on the index. Fig. 9 illustrates the latency of
each operation, divided into three parts: (1) the time taken
to traverse the index, (2) the time taken to decrypt the
retrieved document IDs (for reads)—this incurs a network
roundtrip as described in §4.3; (3) the time taken to retrieve
the corresponding results (for reads) or insert the document
(for writes), and (4) the time taken to repair the index. The
generation of fresh garbled circuits in order to repair the
index contributes the most towards latency.

Overall, range queries cost more than writes because the
former require a network roundtrip in order to decrypt the
retrieved IDs before fetching the corresponding documents.
The cost of traversing a path in the index is ~3ms. We note
that the strawman in §4.1 incurs a roundtrip overhead for
each node in the path, while our protocol incurs only a single
roundtrip cost for decrypting the IDs in the leaves of the
index. Fig. 9 also highlights the improvement when the index
can be optimized for monotonic inserts, which was common
in the applications we evaluated. We also note that though
the overall latency of ArxRange is high, the results of a range
query can be returned to the client before performing the

1673

35 € 10000 __ 7000
30 Traversal Emmmm E MongoDB s Arx === <
— Decrypt IDs 2 8000 oL 10% 110 £ 6000
@ 25 |- Operation 8 6000 —— -10% -10%-11% g
< 20 Repair —— = e il s : < 5000
8 15 _g- 4000 < RS g_
2 3 2000 & § 400 —
310 o 3 S MongoDB
5 Q £ 0 © 3000 Proxy =——
0 — Q. eoo %, = 2000 1 Arxl)
Read Write Read Write Monotonic B T8y R & 16 24 30 40 48
MongoDB Arx K4 i
No. of clients

Figure 9: ArxRange latency of reads Figure 10: ShareLaTeX performance Figure 11: ShareLaTeX performance

and writes.

600
500
400
300

100

Throughput (ops/s)

Read Write
Without caching

Read Write
With caching

Figure 12: ArxRange throughput, with and without caching.

repair operation (see §4.4). Thus, in low load scenarios, the
effective latency of a range query drops to ~15ms.

We next measure the throughput of ArxRange in Fig. 12.
Without client-side caching of nodes, the throughput of the
index is very limited, since each operation requires the cir-
cuit at the root of the index to be replenished, forcing the
operations to be sequential. However, when the top few
levels of the tree are cached at the client, multiple queries to
different parts of the index can proceed in parallel, and the
throughput increases by more than an order of magnitude (at
which point the client proxy in our testbed gets saturated).

9.4 Performance of ArxAgg

The cost of computing an aggregate over a range in Arx
is essentially equal to the cost of computing the range query.
This is because traversing the index for a range query auto-
matically computes the covering set. As a result, with 1M
values in the index, aggregating over a range takes ~3 ms in
Arx, equal to the cost of traversing the index.

9.5 End-to-end evaluation on ShareLaTeX

We now evaluate the end-to-end overhead of Arx using
ShareLaTeX [77], a popular web application for real-time
collaboration on LaTeX projects, that uses MongoDB for
persistent storage. We chose ShareLaTeX because it uses
both of Arx’s indices, it has sensitive data (documents, chats)
and is a popular application. ShareLaTeX maintains multiple
collections in MongoDB corresponding to users, projects,
documents, chat messages, etc. We considered all the fields
in the application to be sensitive, which is the default in Arx.
The application was run on four cores of the client server.

Before every experiment, we pre-loaded the database with
100K projects, 200K users, and other collections with 100K
records each. Subsequently, using Selenium (a tool for au-
tomating browsers [76]), multiple users launch browsers in
parallel and collaborate on projects in pairs—(i) editing doc-
uments, and (ii) exchanging messages via chat. We ran the
user processes on a separate machine with 48 cores. Fig. 10
shows the throughput of Sharel.aTeX in a vanilla deployment
with regular MongoDB, compared to its performance with

with Arx’s client proxy on varying cores with increasing no. of client threads

Arx in various configurations. The client proxy is either col-
located with the ShareLaTeX application sharing the same
four cores, or deployed on extra and separate cores. The ap-
plication’s throughput declines by 29% when the client proxy
and ShareLaTeX are collocated; however, when two separate
cores are allocated to Arx’s client proxy, the reduction in
throughput stabilizes at a reasonable 10%.

Fig. 11 compares the performance of Arx with increasing
load at the application server, when four separate cores are
allocated to Arx’s client proxy. It also shows the performance
of MongoDB with the proxy without the Arx hooks. Note
that each client thread issues many requests as fast as it
can, bringing a load equivalent to many real users. At
peak throughput with 40 clients and 100% CPU load at the
application, the reduction in performance due to Arx is 11%;
8% is due to Arx’s proxy, and the remaining 3% due to its
encryption and indexing schemes.

Finally, the latency introduced by Arx is modest compared
to the latency of the application. In conditions of low stress
with 16 clients, performance remains bottlenecked at the
application, and the latency added by Arx is small in com-
parison, increasing from an average of 268ms per operation
to 280ms. At peak throughput, the latency of vanilla Share-
LaTeX is 355ms, which grows by 15% to 408ms with Arx,
having marginal impact on user experience.

In sum, Arx brings a modest overhead to the overall web
application. There are two main reasons for this. First,
web applications have a significant overhead themselves at
the web server, which masks the latency of Arx’s protocols.
Second, even though ArxRange is not cheap, it’s one out of a
set of multiple operations Arx runs, with the others being
faster and overall more common in applications.

9.6 Storage

Arx increases the total amount of data stored in the
database because: (1) ciphertexts are larger than plaintexts
for certain encryption schemes, and (2) additional fields are
added to documents in order to enable certain operations,
e.g., equality checks using EQ, or tokens for ArxEq indexing.
Further, ArxRange indices are larger than regular B+Trees,
because each node in the index tree stores garbled circuits.
Vanilla ShareL.aTeX with 100K documents per collection
occupied 0.56GB in MongoDB, with an extra 48.7 MB for
indices. With Arx, the data storage increased by 1.9x to
1.05GB. The application required three compound ArxRange
indices, which together occupied 8.4GB of memory at the
server proxy while indices maintained by the database oc-
cupied 56.5MB. This resulted in a net increase of 16x at
the DB server. We note, however, there remains substantial
scope for optimizing index size in our implementation.

1674

9.7 Comparison with CryptDB

Arx supports fewer queries than CryptDB, but we find
their functionalities are nevertheless comparable. For ex-
ample, CryptDB supports all the queries in the TPC-C
benchmark [82], while Arx supports 30 out of 31 queries.

As regards performance, on one hand, CryptDB’s order
and equality queries via PPE schemes are faster than Arx’s—
with a reported overhead of ~1ms [72], as opposed to a few
milliseconds in Arx—but also significantly less secure. On
the other hand, Arx’s aggregate over a range is an order of
magnitude faster for the same security, because CryptDB
uses Paillier [66] to compute aggregates which requires a
homomorphic multiplication per value in the range. For a
range of 10,000 values, aggregates take 80ms in CryptDB
compared to ~3ms in Arx. Overall, Arx is a heavier solution
due to the significant extra security, but remains at par with
CryptDB in terms of overall impact on target applications:
both systems report an overhead on the order of 10%.

10. LIMITATIONS AND FUTURE WORK

ArxRange extensions. Our current ArxRange index is a
binary tree. An interesting extension is to implement the
index for data structures with higher fanout such as B-trees,
e.g., by (i) storing at each node in the tree multiple garbled
circuits; and (ii) using a history-independent B-treap data
structure [32], instead of a binary treap.

History-independence. One needs to be careful that when
logically implementing a history-independent data structure
(as in ArxRange), the physical implementation of it is history-
independent as well. For example, in our treap data structure,
we ultimately require file system support for implementing
secure deletion [6,74]. This is because, when a node is log-
ically deleted, the file system needs to ensure that instead
of merely unlinking the data structure in memory, all copies
of the data (caches, in-memory and disk) are in fact physi-
cally removed so as to become irrecoverable to an attacker.
Implementing secure deletion is complementary to our work.

Transactions. Arx currently does not support transac-
tional semantics. While our techniques can be extended to
transactional systems as well, it has significant practical chal-
lenges. For instance, our ArxRange index requires updates to
multiple nodes in the tree per query along with interaction
with the client, making support for transactions complicated.
However, doing so is interesting future work.

11. RELATED WORK

We compare Arx with state-of-the-art EDBs, and discuss
protocols related to its building blocks, ArxEq and ArxRange.
We do not discuss PPE-based EDBs [5,67,72,83] further as
we have already compared Arx against them extensively in
§1 and §2.3. Seabed [67] hides frequency in some cases, but
still uses PPE.

EDBSs using semantically-secure encryption. This cat-
egory is the most relevant to Arx, but unfortunately, there is
little work done in this space. First, the line of work in [16,28]
is based on searchable encryption, but is too restricted in
functionality. It does not support joins, order-by-limit queries
(commonly used for pagination, more common than range
queries in TPC-C [82]), or aggregates over a range (because
the range identifies a superset of the relevant documents for
security, yielding an incorrect aggregate). Regarding security,

while being significantly more secure than PPE-based EDBs
for offline attackers, for online attackers they could leak more
than PPE-based EDBs because their range queries leak the
number of values matching sub-ranges as well as some prefix
matching information—leakage that is not implied by order.
Arx addresses all these aspects. Other recent works [41,46]
also support equality-based queries but do not support range,
order-by-limit, or aggregates over range queries; the former
doesn’t support inserts or updates either.

Second, BlindSeer [68] is another EDB providing semantic
security. BlindSeer provides stronger security than Arx and
even hides the client query from the server through two-party
computation. Its primary drawbacks with respect to Arx are
performance and functionality. BlindSeer requires a large
number of interactions between the client and server. For
example, for a range query, the client and server need to
interact for every data item in the range (and a few times
more) because tree traversal is interactive. In Arx, there is
no interaction in this case. BlindSeer also does not handle
inserts easily, nor does it support deletes, updates, aggregates
over ranges or order-by-limit queries.

Finally, Obladi [23] targets much stronger guarantees than
Arx by combining ACID semantics with ORAM, but conse-
quently, is also orders of magnitude slower.

Work related to ArxEq. ArxEq falls in the general category
of searchable-encryption schemes and builds on insights from
this literature. While there are many schemes proposed in
this space [11,12,16,24,28,38,42,47,50,62,64,79,80], none of
them meets the following desired security and performance
from a database index. Besides semantic security, when
inserting a value, the access pattern should not leak what
other values it equals, and an old search token should not
allow searching on newly inserted data (forward privacy),
both crucial in reducing leakage [12]. Second, inserts, updates
and deletes should be efficient and should not cause reads to
become slow. ArxEq meets all these goals. Perhaps the closest
prior work to ArxEq is [16]. This scheme uses revocation
lists for delete operations, which adds significant complexity
and overhead, as well as leaks more than our goal in Arx: it
lacks forward privacy and the revocation lists leak various
metadata. Sophos [12] also provides forward privacy, but
uses expensive public key cryptography instead of symmetric
key. Diana [13] is similar to ArxEq.

Work related to ArxRange. There has been a significant
amount of work on OPE schemes in both industry and re-
search communities [1-3,8,9,21,40,52,55,56,65,71,73,85,87].
OPE schemes are efficient but have significant leakage [61].
Order-revealing encryption (ORE) provides semantic secu-
rity [10,18,53]. The most relevant of these is the construction
by Lewi and Wu [53] which is more efficient than ArxRange
because it does not need replenishment, but also less secure
because it leaks the position where two plaintexts differ.
Thus, it is not strictly more secure than OPE.

Acknowledgments

We thank our anonymous reviewers for their invaluable feed-
back. This research was supported by NSF CISE Expedi-
tions #CCF-1730628, and gifts from the Sloan Foundation,
Hellman Fellows Fund, Bakar Fund, Alibaba, Amazon, Ant
Financial, Arm, Capital One, Ericsson, Facebook, Google, In-
tel, Microsoft, NVIDIA, ScotiaBank, Splunk, and VMWare.

1675

12.

1]

[2

3l

(4]

[5

[6

[7

[8

(9

[10]

[11]
[12]

[13]

[14]
15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally.

Database Management as a Service: Challenges and
Opportunities. In Proc. ICDE, 2009.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proc.
SIGMOD, 2004.

G. W. Ang, J. H. Woelfel, and T. P. Woloszyn. System
and Method of Sort-Order Preserving Tokenization. US
Patent Application 13/450,809, 2012.

C. R. Aragon and R. G. Seidel. Randomized search
trees. In Proc. FOCS, 1989.

A. Arasu, K. Eguro, R. Kaushik, D. Kossmann,

R. Ramamurthy, and R. Venkatesan. A secure
coprocessor for database applications. In Proc. FPL,
2013.

S. Bajaj and R. Sion. HIFS: History Independence for
File Systems. In Proc. CCS, 2013.

S. Bearak. 2018 Data Breaches — The Worst So Far,
2018. https://www.identityforce.com/blog/2018-
data-breaches.

A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-Preserving Symmetric Encryption. In Proc.
EUROCRYPT, 20009.

A. Boldyreva, N. Chenette, and A. O'Neill.
Order-preserving encryption revisited: Improved
security analysis and alternative solutions. In Proc.
CRYPTO, 2011.

D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry,
and J. Zimmerman. Semantically Secure
Order-Revealing Encryption: Multi-input Functional
Encryption Without Obfuscation. In Proc.
EUROCRYPT, 2014.

C. Bosch, P. Hartel, W. Jonker, and A. Peter. A Survey
of Provably Secure Searchable Encryption. ACM
Computing Surveys (CSUR), 2014.

R. Bost. Sophos - Forward Secure Searchable
Encryption. In Proc. CCS, 2016.

R. Bost, B. Minaud, and O. Ohrimenko. Forward and
Backward Private Searchable Encryption from
Constrained Cryptographic Primitives. In Proc. CCS,
2017.

Budget Manager. https://goo.gl/chFmct.

D. Cash, P. Grubbs, J. Perry, and T. Ristenpart.
Leakage-Abuse Attacks against Searchable Encryption.
In Proc. CCS, 2015.

D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,
M. Rosu, and M. Steiner. Dynamic Searchable
Encryption in Very-Large Databases: Data Structures
and Implementation. In Proc. NDSS, 2014.

D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu,
and M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. In Proc.
CRYPTO, 2013.

N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu.
Practical Order-Revealing Encryption with Limited
Leakage. In Proc. IACR-FSE, 2016.

Chino.io: Security and Privacy for Health Data in the
EU. https://chino.io/.

CipherCloud. CASB-+ Platform.
http://www.ciphercloud. com.

1676

[21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

[30]

31]
32]
[33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

CipherCloud. Tokenization.
http://wuw.ciphercloud.com/tokenization.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proc. SOCC, 2011.
N. Crooks, M. Burke, E. Cecchetti, S. Harel,

R. Agarwal, and L. Alvisi. Obladi: Oblivious
Serializable Transactions in the Cloud. In Proc. OSDI,
2018.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. In Proc. CCS, 2006.

H. Daitch. 2017 Data Breaches, 2017.
https://www.identityforce.com/blog/2017-data-
breaches.

F. B. Durak, T. M. DuBuisson, and D. Cash. What
Else is Revealed by Order-Revealing Encryption? In
Proc. CCS, 2016.

M. Egorov and M. Wilkison. ZeroDB white paper.
arXiv:1602.07168, 2016.

S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu,
and M. Steiner. Rich Queries on Encrypted Data:
Beyond Exact Matches. In Proc. ESORICS, 2015.

S. Garg, S. Lu, and R. Ostrovsky. Black-Box Garbled
RAM. In Proc. FOCS, 2015.

S. Garg, P. Mohassel, and C. Papamanthou.
TWORAM: Round-Optimal Oblivious RAM with
Applications to Searchable Encryption. Cryptology
ePrint Archive, Report 2015/1010, 2015.
http://eprint.iacr.org/2015/1010.

O. Goldreich, S. Micali, and A. Wigderson. How to
Play ANY Mental Game. In Proc. STOC, 1987.

D. Golovin. B-Treaps: A Uniquely Represented
Alternative to B-Trees. In Proc. ICALP, 2009.
Google. Encrypted BigQuery client. https:
//github.com/google/encrypted-bigquery-client.
P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum,

M. Kohler, A. Schaad, A. Schroepfer, and W. Tighzert.
Experiences and observations on the industrial
implementation of a system to search over outsourced
encrypted data. In Sicherheit, 2014.

P. Grubbs, M. Lacharité, B. Minaud, and K. G.
Paterson. Learning to Reconstruct: Statistical Learning
Theory and Encrypted Database Attacks. In Proc.
IEEE SéP, 2019.

P. Grubbs, T. Ristenpart, and V. Shmatikov. Why
Your Encrypted Database Is Not Secure. In Proc.
HotOS, 2017.

P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed,
and T. Ristenpart. Leakage-Abuse Attacks against
Order-Revealing Encryption. Cryptology ePrint
Archive, Report 2016/895, 2016.
http://eprint.iacr.org/2016/895.

W. He, D. Akhawe, S. Jain, E. Shi, and D. X. Song.
ShadowCrypt: Encrypted Web Applications for
Everyone. In Proc. CCS, 2014.

iQrypt: Encrypt and query your database.
http://iqrypt.com/.

H. Kadhem, T. Amagasa, and H. Kitagawa. MV-OPES:
Multivalued-Order Preserving Encryption Scheme: A
Novel Scheme for Encrypting Integer Value to Many
Different Values. IEICE Trans. Info. € Sys., 2010.

https://www.identityforce.com/blog/2018-data-breaches
https://www.identityforce.com/blog/2018-data-breaches
https://goo.gl/chFmct
https://chino.io/
http://www.ciphercloud.com
http://www.ciphercloud.com/tokenization
https://www.identityforce.com/blog/2017-data-breaches
https://www.identityforce.com/blog/2017-data-breaches
http://eprint.iacr.org/2015/1010
https://github.com/google/encrypted-bigquery-client
https://github.com/google/encrypted-bigquery-client
http://eprint.iacr.org/2016/895
http://iqrypt.com/

[41] S. Kamara and T. Moataz. SQL on
Structurally-Encrypted Databases. Cryptology ePrint
Archive, Report 2016/453, 2016.
http://eprint.iacr.org/2016/453.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proc. CCS, 2012.
N. Karapanos, A. Filios, R. A. Popa, and S. Capkun.
Verena: End-to-End Integrity Protection for Web
Applications. In Proc. IEEE S&P, 2016.

G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill.
Generic Attacks on Secure Outsourced Databases. In
Proc. CCS, 2016.

J. Kepner, V. Gadepally, P. Michaleas, N. Schear,

M. Varia, A. Yerukhimovich, and R. K. Cunningham.
Computing on Masked Data: A High Performance
Method for Improving Big Data Veracity.
arXiv:1406.5751, 2014.

M. Kim, H. T. Lee, S. Ling, S. Q. Ren, B. H. M. Tan,
and H. Wang. Better Security for Queries on Encrypted
Databases. Cryptology ePrint Archive, Report
2016,/470, 2016. http://eprint.iacr.org/2016/470.
K. Kurosawa. Garbled Searchable Symmetric
Encryption. In Proc. FC, 2014.

M.-S. Lacharité, B. Minaud, and K. G. Paterson.
Improved Reconstruction Attacks on Encrypted Data
Using Range Query Leakage, 2018.

C. Lan, J. Sherry, , R. A. Popa, S. Ratnasamy, and

Z. Liu. Embark: Securely Outsourcing Middleboxes to
the Cloud. In Proc. SIGCOMM, 2015.

B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and
A. Boldyreva. Mimesis Aegis: A Mimicry Privacy
Shield-A System’s Approach to Data Privacy on Public
Cloud. In Proc. USENIX Security, 2014.

Leanote. https://leanote.com/.

S. Lee, T.-J. Park, D. Lee, T. Nam, and S. Kim.
Chaotic Order Preserving Encryption for Efficient and
Secure Queries on Databases. IEICE Trans. Info. €
Sys., 2009.

K. Lewi and D. J. Wu. Order-Revealing Encryption:
New Constructions, Applications, and Lower Bounds.
In Proc. CCS, 2016.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin.
Authenticated Index Structures for Aggregation
Queries. ACM Trans. Info. & Sys. Sec., 2010.

D. Liu and S. Wang. Programmable Order-Preserving
Secure Index for Encrypted Database Query. In Proc.
CLOUD, 2012.

D. Liu and S. Wang. Nonlinear order preserving index
for encrypted database query in service cloud
environments. Concurrency and Computation: Practice
and Ezxperience, 2013.

R. Merkle. Secrecy, authentication and public key
systems / A certified digital signature. PhD thesis,
Stanford University, 1979.

Microsoft SQL Server. Always Encrypted Database
Engine. https://goo.gl/51LwQ9.

M. Naor and V. Teague. Anti-persistence: History
Independent Data Structures. In Proc. STOC, 2001.
M. Naveed. The Fallacy of Composition of Oblivious
RAM and Searchable Encryption. Cryptology ePrint

Archive, Report 2015/668, 2015.
http://eprint.iacr.org/2015/668.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

1677

[61] M. Naveed, S. Kamara, and C. V. Wright. Inference
Attacks on Property-Preserving Encrypted Databases.
In Proc. CCS, 2015.

[62] M. Naveed, M. Prabhakaran, and C. A. Gunter.
Dynamic Searchable Encryption via Blind Storage. In
Proc. IEEE S€6P, 2014.

[63] NodeBB. https://nodebb.org/.

[64] W. Ogata, K. Koiwa, A. Kanaoka, and S. Matsuo.
Toward Practical Searchable Symmetric Encryption. In
Proc. IWSec, 2013.

[65] G. Ozsoyoglu, D. A. Singer, and S. S. Chung.

Anti-Tamper Databases: Querying Encrypted

Databases. In Proc. DBSec, 2003.

P. Paillier. Public-key cryptosystems based on

composite degree residuosity classes. In Proc.

EUROCRYPT, 1999.

A. Papadimitriou, R. Bhagwan, N. Chandran,

R. Ramjee, A. Haeberlen, H. Singh, A. Modi, and

S. Badrinarayanan. Big Data Analytics over Encrypted

Datasets with Seabed. In Proc. OSDI, 2016.

V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin,

S. G. Choi, W. George, A. Keromytis, and S. Bellovin.

Blind Seer: A scalable private DBMS. In Proc. IEEE

SEP, 2014.

PencilBlue. https://goo.gl/SS4biS.

R. A. Popa. Building Practical Systems that Compute

on Encrypted Data. PhD thesis, MIT, 2014.

R. A. Popa, F. H. Li, and N. Zeldovich. An

Ideal-Security Protocol for Order-Preserving Encoding.

In Proc. IEEE S&P, 2013.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and

H. Balakrishnan. CryptDB: Protecting Confidentiality

with Encrypted Query Processing. In Proc. SOSP,

2011.

F. Y. Rashid. Salesforce.com Acquires SaaS Encryption

Provider Navajo Systems, 2011.

https://goo.gl/MKiF2b.

J. Reardon, D. Basin, and S. Capkun. SoK: Secure

Data Deletion. In Proc. IEEE S€6P, 2013.

Redux. https://goo.gl/AWZy6z.

Selenium. http://wuw.seleniumhg.org/.

ShareLaTeX. https://www.sharelatex.com/.

Skyhigh. Skyhigh Security Cloud.

https://www.skyhighnetworks.com/.

[79] D. X. Song, D. Wagner, and A. Perrig. Practical

Techniques for Searches on Encrypted Data. In Proc.

IEEE S&P, 2000.

E. Stefanov, C. Papamanthou, and E. Shi. Practical

Dynamic Searchable Encryption with Small Leakage.

In Proc. NDSS, 2014.

E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher,

L. Ren, X. Yu, and S. Devadas. Path ORAM: an

extremely simple oblivious RAM protocol. In Proc.

CCS, 2013.

TPC-C Transation Processing Benchmark.

http://wuw.tpc.org/tpcc/.

S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich.

Processing Analytical Queries over Encrypted Data.

PVLDB, 6(5):289-300, 2013.

[84] UNCAP: Ubiquitous iNteropable Care for Ageing
People. http://www.uncap.eu/.

[66]

[67]

[68]

[69]
[70]

[71]

[72]

(73]

[74]
[75]
[76]

[77]
[78]

(80]

[81]

(82]

[83]

http://eprint.iacr.org/2016/453
http://eprint.iacr.org/2016/470
https://leanote.com/
https://goo.gl/51LwQ9
http://eprint.iacr.org/2015/668
https://nodebb.org/
https://goo.gl/SS4biS
https://goo.gl/MKiF2b
https://goo.gl/AWZy6z
http://www.seleniumhq.org/
https://www.sharelatex.com/
https://www.skyhighnetworks.com/
http://www.tpc.org/tpcc/
http://www.uncap.eu/

[85] L. Xiao, I.-L. Yen, and D. T. Huynh. Extending Order [87] D. Yum, D. Kim, J. Kim, P. Lee, and S. Hong.

Preserving Encryption for Multi-User Systems. Order-Preserving Encryption for Non-uniformly
Cryptology ePrint Archive, Report 2012/192, 2012. Distributed Plaintexts. In Proc. WISA, 2011.
http://eprint.iacr.org/2012/192. [88] Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB:

[86] A. C. Yao. How to Generate and Exchange Secrets Verifiable SQL for outsourced databases. In Proc. CCS,
(Extended Abstract). In Proc. FOCS, 1986. 2015.

1678

http://eprint.iacr.org/2012/192

	Introduction
	Techniques and contributions

	Overview
	Architecture
	Threat Model
	Security guarantees
	Admin API
	Functionality

	Encryption Building Blocks
	ArxRange & Order-based Queries
	Strawman
	Non-interactive index traversal
	The database index
	Optimizations

	ArxEq & Equality Queries
	Base protocol
	Reducing the work of the client proxy
	Updates
	Counter map

	ArxAgg & Aggregation Queries
	Arx's Planner
	Index planning
	Data layout

	Security analysis
	Preliminaries
	Leakage definitions

	Evaluation
	Functionality
	Performance of ArxEq
	Performance of ArxRange
	Performance of ArxAgg
	End-to-end evaluation on ShareLaTeX
	Storage
	Comparison with CryptDB

	Limitations and Future Work
	Related Work
	References

