
GALO: Guided Automated Learning for re-Optimization

Guilherme Damasio#�, Spencer Bryson#�, Vincent Corvinelli$, Parke Godfrey∗�,
Piotr Mierzejewski$, Jaroslaw Szlichta#�, Calisto Zuzarte$

#Ontario Tech University, Canada ∗York University, Canada
�IBM Centre for Advanced Studies, Canada, $IBM Ltd, Canada

guilherme.fetterdamasio@uoit.ca, spencer.bryson@uoit.ca, vcorvine@ca.ibm.com
godfrey@yorku.ca, piotrm@ca.ibm.com, jarek@uoit.ca, calisto@ca.ibm.com

ABSTRACT
Query performance problem determination is usually per-
formed manually in consultation with experts through the
analysis of query plans. However, this is an excessively time
consuming, human error-prone, and costly process. GALO
is a novel system that automates this process. The tool au-
tomatically learns recurring problem patterns in query plans
over workloads in an offline learning phase to build a knowl-
edge base of plan rewrite remedies. GALO’s knowledge base
is built on RDF and SPARQL, which is well-suited for ma-
nipulating and querying over SQL query plans, which are
graphs themselves. It then uses the knowledge base online
to re-optimize queries queued for execution to improve per-
formance, often quite dramatically.

PVLDB Reference Format:
Guilherme Damasio, Spencer Bryson, Vincent Corvinelli, Parke
Godfrey, Piotr Mierzejewski, Jaroslaw Szlichta, and Calisto Zuza-
rte. GALO: Guided Automated Learning for re-Optimization.
PVLDB, 12(12): 1778-1781, 2019.
DOI: https://doi.org/10.14778/3352063.3352064

1. INTRODUCTION
As the complexity of database queries and schemas spiral

ever upward, the challenges facing database systems have
become severe [1]. SQL queries nowadays often are gener-
ated by middleware tools instead of by SQL programmers.
Business-intelligence platforms, such as IBM’s Cognos have
enabled organizations to scale data analysis systematically
as never before. Meanwhile, the SQL queries generated “be-
hind the scenes” can span hundreds lines of code.

Query optimization has long been a hallmark of data ware-
house systems, which has enabled the data-analysis revolu-
tion. However, the complexity of modern workloads is out-
pacing what database systems can perform efficiently. Data-
base optimizers fail to pick best query plans more often.

Consider the portion of the tree of the query plan chosen
by IBM Db2 as “optimal” shown in Fig. 1a. This pattern is
an example of a real-life, under-performing query from one
of the IBM customers. The performance issue here hinges

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352064

2.94925+06
MSJOIN

(2)

1.1832e+07
IXSCAN

(3)

6.72337e+07
OPEN_IN

Q1

1.22525e+07
IXSCAN

(7)

2.98757e+08
ENTRY_IDX

Q2

1.22525e+07
TB-SORT

(5)

(a) Plan by IBM Db2.

2.94925+06
HSJOIN

(2)

1.1832e+07
IXSCAN

(4)

6.72337e+07
OPEN_IN

Q1

1.22525e+07
IXSCAN

(3)

2.98757e+08
ENTRY_IDX

Q2

(b) Plan by GALO.

Figure 1: IBM client query with a problematic join.

on the optimizer’s join choice: the MSJOIN gets the ENTRY

table data using an index scan IXSCAN (#7) of the index
ENTRY IDX that contains all the column values needed, and
then performs a sort that is read by a table scan, TB-SORT
(#5). The size of data entering the sort and the number of
pages that spill to the disk at runtime are large.

The chosen fix by our GALO system1 shown in Fig. 1b has
exchanged the MSJOIN with a hash join (HSJOIN), and swaps
the outer and inner tables. While the HSJOIN spills pages
into the disk at runtime too, the amount is significantly
smaller. This plan rewrite reduced the query runtime from 9
hours to just 5 minutes! IBM experts report that even more
complex patterns exist, which can take days to be resolved.

Database vendors have made raw tools available to SQL
programmers to troubleshoot performance problems. Oracle
and Microsoft offer pragma and hints, respectively, embed-
ded in their SQL, while IBM provides guideline documents
(written in XML) submitted with a query to the optimizer.
Pragma, hints, and guidelines serve to sway the optimizer’s
choices in query planning. They can be used by the pro-
grammer, by profiling the query plans and execution traces,
to override decisions that the optimizer would make concern-
ing, for example, choice of join algorithms and join order.

Such manual performance debugging, however, has be-
come increasingly difficult with very complex query work-
loads. More time than ever is now spent by experts on such
tasks at the major database-vendor companies. Thus, auto-
mated tools are needed for the workload debugging. Exist-
ing tools do not have the means of doing a deeper parse of

1System video available at https://vimeo.com/335947845

1778

query plans that would allow for automated reasoning and
querying over problem patterns that GALO does.

This workload debugging also has been ad hoc. The lessons
learned from one fix are lost, to be rediscovered by others
later. At IBM, our recently developed OptImatch system
[3, 4] has been a successful effort towards addressing this.
Experts feed problematic query-plan patterns and their reso-
lutions into an OptImatch knowledge base to be shared with
others. Still, the OptImatch knowledge base is built by ex-
perts tediously by hand. GALO significantly extends over
OptImatch as the knowledge base is automatically “learned”.
We use the RDF graph model and the SPARQL language
to represent and query execution plans.

Today’s database optimizers are two stage: a query rewrite
optimizer and a cost-based optimizer [1]. There might be
“flaws” in the chosen query plan, however. Cost estima-
tions may go awry. Unusual characteristics in the data and
the query can circumvent the planning strategies as encoded
in the database optimizer. GALO offers a third tier of re-
optimization. Rules from GALO’s knowledge base are ap-
plied to the resulting query plan that resolve known perfor-
mance trouble spots.

GALO can be also used by the performance optimization
team to extract from the knowledge base those systemic is-
sues, to learn and develop new rewrite rules for query rewrite
and optimization techniques for the cost-based optimizer.
And these improvements are not merely academic; they arise
directly from real-world workloads. GALO has been well re-
ceived within IBM, and is proving to be a valuable tool both
in company support and in database optimizer development.

The GALO system builds on our foundations developed
in [2]. In the demonstration, we showcase a novel system for
problem determination that exploits graph databases. At-
tendees will use GALO over the synthetic TPC-DS bench-
mark and real IBM client query workloads.

GALO’s knowledge base is an innovative and powerful
representation for storing, manipulating, and querying SQL
query plan patterns. GALO’s transformation engine is re-
sponsible for mapping SQL queries and query plans to the
knowledge base’s RDF format, and to the SPARQL queries
used to query the knowledge base.

The learning engine is used offline to populate the knowl-
edge base. It analyzes large and complex SQL queries in
the workload, and segments them into sub-queries. The
query’s predicates are varied to result in different cardinal-
ities. Then, for each sub-query from this, the query plan
that the optimizer produces is compared against competing
plans found using Db2’s Random Plan Generator. When-
ever a competing plan is found that performs better than
the optimizer’s, it flags the pair as a rewrite, a problematic
plan pattern and its guideline solution.

The matching engine is employed online to re-optimize
the query plans of incoming queries by querying the knowl-
edge base (via SPARQL queries) to find matching plan re-
writes. Since the knowledge base’s rewrites are abstracted,
with canonical symbol labels for tables and attributes, a
query with the similar sub-structure and characteristics can
match a problem pattern learned over a different query, even
from a different query workload.

2. THE GALO SYSTEM
System Overview. GALO is an automated system to

improve SQL workload performance. A workload is a pop-

Knowledge
base

Learning Engine

Ranking ModuleRandom
Plan
Generator

Pattern Template
Generator with
Guidelines

Sub-queries
generator

Matching Engine

Guideline
Generator

KB to QEP
Mapper

RDF
generator

Best Plans

SPARQL
Query

RDF graph
QEPs

Guideline

Transformation Engine

Sub-QEPs
Generator

QEP to
SPARQL
generator

Figure 2: System architecture.

ulated database with a requisite schema and a collection of
SQL queries that are periodically executed. GALO profiles
the workloads offline to construct a knowledge base which
captures performance issues from the queries in the work-
loads. When the workload is executed (e.g., periodically
in a data warehouse), GALO acts as a third stage of re-
optimization by applying rewrites from the knowledge base
(KB) to the query plans online to improve performance.

GALO extends upon our manual OptImatch system [3,
4]. As the “second generation” of OptImatch, GALO is used
within IBM to populate automatically a general knowledge
base that tracks query plan issues. GALO is also used as
a resource for the IBM Db2 team for evolving and refining
the Db2 optimizer based on rewrites in the knowledge base.

GALO’s system architecture is illustrated in Fig. 2. The
system is comprised of a transformation engine, a learning
engine, and a matching engine. The back-end of GALO
is written in Java. The front-end is a web-based, interac-
tive interface written with JavaScript libraries. The trans-
formation engine is the primary interface to go from SQL
queries and query execution plans into the knowledge base
and back. The knowledge base is represented in RDF and
interacted with (queried via) SPARQL. The learning engine
is used offline to populate the knowledge base with discov-
ered rewrites. The matching engine is used online to match
rewrites to query plans of SQL queries from the workload
queued for execution for the purpose of re-optimization.

Transformation Engine. A query execution plan (QEP)
is the plan constructed by the query optimizer for an SQL
query. Within IBM Db2, query specifications are repre-
sented in the query graph model (QGM). An SQL query
is parsed into a QGM representation. That QGM is then
rewritten by Db2’s query rewrite engine, which applies trans-
formations known to simplify the query. The resulting QGM
is then passed to Db2’s cost-based optimizer, which goes
through a process of table access and join enumeration to
come up with a full fledged query execution plan. Fig. 1
depicts a portion of the query plan file. Each node of the
tree represents an indivisible operator (LOLEPOP), along
with its associated estimated costs.

As QGM’s are essentially graphs, representing them as
such is natural. For building, maintaining, and accessing
a knowledge base of query plans, we want a flexible graph
representation, and a powerful, general “API” for accessing

1779

Figure 3: GALO GUI with hash-join bloom filter problem pattern.

and maintaining the knowledge base. We choose then for
the representation of the knowledge base, the Resource De-
scription Framework (RDF). RDF’s corresponding SPARQL
query language provides the means to query and update the
knowledge base. Matching to (sub-)query plans as stored in
RDF in the knowledge base requires recursive path match-
ing in the graph; such regular path queries (called property
paths in SPARQL) are part of SPARQL 1.1.

The transformation engine is GALO’s tool to map QGM’s
and SQL queries into RDF graphs. An RDF graph is con-
ceptually comprised of triples: subject (resource); predicate
(property or relationship); and object (value or resource).
As such, an RDF triple describes an “edge” in the graph
from the vertex source to the “vertex” object and labeled as
predicate. RDF also allows for the object of a triple to be a
value instead of another node. RDF statements can describe
characteristics of subjects via predicates and values. The re-
sulting RDF graph is a full transformation of the text-based
QGM. GALO uses the Apache Jena RDF API to map the
QGM into an RDF graph.

Learning Engine. The learning engine populates the
knowledge base with problem pattern templates and their
counterpart recommendations. The learning engine is run
offline inside the organization, when the resources over the
systems are not in use, or when load is low. This includes
nights and other non-peak hours, such as weekends and holi-
days. We used several machines inside IBM during non-peak
hours to improve scalability by paralleling the computation.
Large SQL queries are decomposed into smaller parts cor-
responding to sub-queries to find problematic patterns that
can be applied over the query workloads for re-optimization.

From a given RDF-based QGM, all SQL sub-queries are
auto-generated up to a predefined size threshold (number of
joins). A sub-query projects the joins and applicable local
predicates over selected tables from the original query. The
system produces potential problem-pattern templates from
sub-queries by generating over predicates’ property ranges
with various cardinalities. Property ranges are generated by
sampling the database, and are used to establish problem
patterns with the same best plan within lower and upper-
bound cardinalities. This ensures that problem patterns dis-
covered over one query can be used to match other queries
with different contexts of table and attribute names, but

with the same sub-structure. The learning engine is designed
to operate on top of dynamic data environments with chang-
ing statistics. As data change, the lower and upper-bound
cardinalities for problem patterns can be updated over the
time to account for cardinalities not observed before.

For each of the sub-queries, alternative QGM’s are pro-
duced via the Random Plan Generator (a tool available in-
side IBM Db2). Alternative plans are compared against the
QGM chosen by the optimizer as “optimal” within the pred-
icate property ranges.

Detected query problem patterns are transformed into
templates to be saved in the knowledge base RDF graph.
This is a critical abstraction step, which enables different
queries with varying tables and predicates later to match to
patterns in the knowledge base. Table and column names
are replaced by the canonical symbol labels in the QGM.
When SPARQL queries are generated for the matching for
online re-optimization, the SPARQL node-binding variables
will match to these. Thus, queries with the same sub-
structure and characteristics, but with different table and
attribute names, are matched against the same problem pat-
tern templates. This assures that problem pattern usability
is not limited to a specific query or query workload.

The recommended replacement patterns for correspond-
ing “malicious” problem pattern templates are stored in
the knowledge base as XML guidelines (Fig. 3). A prob-
lematic portion of QGM as chosen by the optimizer from
the TPC-DS workload query is shown in Fig. 3. At run-
time, the F-IXSCAN (#7) suffers from excessive random I/O
reads. This is a consequence of a poorly clustered index
used to access the CATALOG SALES table, causing pages to be
loaded into the buffer pool as usual, but then being over-
written by other pages subsequently loaded. This adds sig-
nificantly to the I/O. This results in a poorly performing
NLJOIN (#4) when joining the problematic F-IXSCAN (#7)
with the F-IXSCAN (#5) over the DATE DIM table. This over-
head is propagated upward into the next NLJOIN (#2) and
operators to follow, causing further performance issues.

The discovered solution by GALO in Fig. 3 applies a hash-
join bloom filter in the HSJOIN (#2). A bloom filter is a
space-efficient, probabilistic data structure to test if an el-
ement is a member of a set by hashing the values. In the
better query plan, the hash join creates a bitmap from the

1780

13.1688
HSJOIN

(2)

1.441e+06
TBSCAN

(4)

1.441e+06
CATALOG
_SALES

Q2

128500
HSJOIN

(5)

4457
TBSCAN

(7)

50000
CUSTOMER
_ADDRESS

Q1

19.6764
NLJOIN

(4)

19.734
R-IXSCAN

(7)

0.99708
F-IXSCAN

(5)

1.441e+06
CATALOG
_SALES

Q4

73049
DATE_DIM

Q3

Figure 4: Expert’s plan for problem in Figure 3.

inner input. This is used as a lookup for the join to avoid
hash-table probes for outer tuples that never can match.
This results in an approximately twice faster query plan.

Matching Engine. At runtime, a large SQL query to
be re-optimized is segmented into sub-queries. The trans-
formation engine is used to translate the query—represented
as an initial QGM by Db2 after the query is parsed—into
RDF and, there, segmented. The transformation engine
then rewrites the RDF’s segments into SPARQL queries,
with the necessary characteristics to match against the RDF
problem pattern templates in the knowledge base.

The QGM generated by the optimizer is modified by match-
ing RDF problem pattern templates. The matches are found
by climbing up iteratively over a segmentation of the QGM
(sub-QGM’s), of the “tree”. The size of a sub-QGM is
capped by the same predefined threshold that was used in
the learning phase (identified by the number of joins). We
verified, in practice, that up to four joins is optimal.

When GALO can “re-optimize” a query, it creates a guide-
line document that contains the matched rewrites for the
query plan from the knowledge base that apply. This guide-
line document is submitted with the query for re-optimization
before execution to produce a query plan. This is a more
general and safer way to perform re-optimization than to
“patch” the plan by forcing all the chosen rewrites to be ap-
plied, which could result in incompatibilities in the overall
plan. The rewrites that matched might not all apply within
the plan; application of one might lead the optimizer to an
altered plan in which the others no longer apply.

3. DEMONSTRATION PLAN
We design scenarios for three demonstration objectives

illustrating our web-based system: a) Familiarization b)
Challenges and c) Effectiveness. We deploy the synthetic
TPC-DS workload (with 99 queries) and the real IBM client
workload (with 116 queries). Due to the IBM copyright re-
strictions, GALO is not available online to general public;
thus, the audience will use our machines to gain the access.

To familiarize users with our methodology, we first demon-
strate GALO’s functionality over a number of queries with
simple problems. We select queries, such that the whole
learning and matching process is comprehensible when vi-
sualized step-by-step.

To highlight the challenges of the complexity of modern
workloads outpacing database systems, we carefully choose a

number of non-trivial large and complex queries. We present
the audience with the query at hand, and how to design an
efficient executable query plan using the capabilities offered
by GALO employed online to re-optimize the query plans of
incoming queries with the knowledge base for plan rewrites.
We focus on the interesting challenges that promote query
performance, including efficient join order and type selec-
tion, cost and cardinality estimation, random I/O reads,
indexing and sorting. We also show the participants that
problem patterns overlap between query workloads. For in-
stance, six out of 24 queries that were improved by GALO’s
re-optimization (25%) of the IBM client’s workload were by
a rewrite that was learned under the TPC-DS workload.

To demonstrate effectiveness of our system, we compare
the rewrites learned by GALO against those learned manu-
ally by the participants by cost of discovery and by quality
of rewrites. To simulate a real-world environment, the par-
ticipants are allowed to access the tools that experts use in
their daily problem determination tasks. This includes grep
command-line utility for searching plain-text query plans
for lines matching a regular expression. We plan to observe
the participants during the demonstration—as we have ob-
served IBM experts using GALO in use case studies—to see
the types of errors they make. Misinterpretation is com-
mon; e.g., the value for a property in a LOLEPOP of a
QGM has been confused by IBM experts, as it can appear
in either decimal (e.g., 13.1688) or exponential format (e.g,
1.441e+06), as seen in Fig. 4.

As an example, we measured the time and conducted qual-
ity analysis to perform problem determination both manu-
ally by IBM experts and automatically by GALO learning
engine over a sample of four queries. Manual problem deter-
mination is highly time consuming on average three times
more expensive than the automatic learning by GALO. For
three of the four problem patterns, IBM experts found fixes
that improved the optimizer performance, however, the re-
placement plans they found are not as good as those found
by GALO. GALO identified and resolved all the issues with
80% average performance speed-up over IBM Db2.

For the query in Fig. 3, the IBM experts identified the
costly join in the NLJOIN #2; they changed the query plan
to that in Fig. 4. Their new query plan is faster by 82% than
the IBM Db2 system, as it does not compute the expensive
FETCH IXSCAN on the CATALOG SALES table for each row in
the outer input. The plan chosen by GALO improves over
the experts’ plan by another 8.6% to a total of 90.6%.

4. REFERENCES
[1] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle,

G. Attaluri, N. Chainani, S. Lightstone, and D. Sharpe.
Memory-efficient hash joins. PVLDB, 8(4):353–364,
2014.

[2] G. Damasio, V. Corvinelli, P. Godfrey, P. Mierzejewski,
A. Mihaylov, J. Szlichta, and C. Zuzarte. Guided
automated learning for query workload re-optimization.
PVLDB, 12(12):2010–2021, 2019.

[3] G. Damasio, P. Mierzejewski, J. Szlichta, and
C. Zuzarte. OptImatch: Semantic web system for query
problem determination. In ICDE, pp. 1334-1337, 2016.

[4] G. Damasio, P. Mierzejewski, J. Szlichta, and
C. Zuzarte. Query performance problem determination
with knowledge base in semantic web system
OptImatch. In EDBT, pp. 515–526, 2016.

1781

