
Synergistic Graph and SQL Analytics Inside IBM Db2

Yuanyuan Tian
IBM Research

ytian@us.ibm.com,

Sui Jun Tong
IBM Research

bjsjtong@cn.ibm.com

Mir Hamid Pirahesh
IBM Research

pirahesh@us.ibm.com
Wen Sun

IBM Research
sunwenbj@cn.ibm.com

En Liang Xu
IBM Research

bjxelxu@cn.ibm.com

Wei Zhao
IBM Research

weizhao@cn.ibm.com

ABSTRACT
To meet the challenge of analyzing rapidly growing graph
and network data created by modern applications, a large
number of specialized graph databases have emerged, such
as Neo4j, JanusGraph, and Sqlg. At the same time, RDBMSs
and SQL continue to support mission-critical business ana-
lytics. However, real-life analytical applications seldom con-
tain only one type of analytics. They are often made of
heterogeneous workloads, including SQL, machine learning,
graph, and other analytics. In particular, SQL and graph
analytics are usually accompanied together in one analyt-
ical workload. This means that graph and SQL analytics
need to be synergistic with each other. Unfortunately, most
existing graph databases are standalone and cannot easily
integrate with relational databases. In addition, as a mat-
ter of fact, many graph data (data about relationships be-
tween objects or people) are already prevalent in relational
databases, although they are not explicitly stored as graphs.
Performing graph analytics on these relational graph data
today requires exporting large amount of data to the spe-
cialized graph databases. A natural question arises: can
SQL and graph analytics be performed synergistically in a
same system? In this demo, we present such a working sys-
tem called IBM Db2 Graph. Db2 Graph is an in-DBMS
graph query approach. It is implemented as a layer inside
an experimental IBM Db2™, and thus can support synergis-
tic graph and SQL analytics efficiently. Db2 Graph employs
a graph overlay approach to expose a graph view of the re-
lational data. This approach flexibly retrofits graph queries
to existing graph data stored in relational tables. We use
an example scenario on health insurance claim analysis to
demonstrate how Db2 Graph is used to support synergistic
graph and SQL analytics inside Db2.

PVLDB Reference Format:
Yuanyuan Tian, Sui Jun Tong, Mir Hamid Pirahesh, Wen Sun,
En Liang Xu, Wei Zhao. Synergistic Graph and SQL Analytics
Inside IBM Db2. PVLDB, 12(12): 1782-1785, 2019.
DOI: https://doi.org/10.14778/3352063.3352065

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352065

1. INTRODUCTION
Rapidly growing social networks and other graph datasets

have created a high demand for graph analysis systems. As
a result, a large number of graph databases emerged, fo-
cusing on the low-latency graph queries, such as finding the
neighbors of a vertex with certain properties, and retrieving
the shortest path between two vertices. Examples of graph
databases include Neo4j [9], JanusGraph [8], Sqlg [13], SQL-
Graph [16], OrientDB [10], Sparksee [12], ArangoDB [2], In-
finiteGraph [7], BlazeGraph [3], TigerGraph [14], and SQL
Server’s Graph Extension [4], etc.

These graph databases generally handle graph-only query
workload very well. However, graph queries are not all that
one does in an analytics workload of a real life application.
They are often only a part of an integrated heterogeneous
analytics pipeline, which may include SQL, machine learn-
ing (ML), graph and other types of analytics. After all, SQL
analytics still remain to be the most widely used for mission-
critical business analytics. As a result, graph queries are
often combined with SQL analytics in practice. And per-
haps more importantly, many graph data are already preva-
lent in the existing relational databases. Sometimes this is
due to legacy reasons. For example, many graph data and
graph queries have already existed before the boom of graph
databases. In addition, very often, the same data which
powered the existing SQL applications can also be treated
as graph data (e.g. data about relationships between ob-
jects or people) and be used for new graph applications. In
summary, graph queries need to be synergistic with SQL
analytics and retrofittable to existing relational data.

Unfortunately existing graph databases cannot satisfy the
synergistic and retrofittable requirements. First of all, most
of them are standalone and cannot easily integrate with re-
lational databases. They force applications to import data
into the specialized graph databases either at runtime or
in a preprocessing step, perform the graph queries, and ex-
port the result data to continue with the rest of the ana-
lytics pipeline. Even though some hybrid graph databases
(which build a graph engine on top of an existing data store)
are built on top of relational databases, such as Sqlg [13],
SQLGraph [16], and SQL Server Graph Extension [4], they
dictate the way graph data are stored inside the database,
hence cannot retrofit to existing relational graph data. The
existing graph data have to be replicated in the desired form
before graph queries can be applied in these systems, and
of course, the applications have to make sure that the two
copies of the data are consistent in case of updates. GR-
Fusion [15] and GraphGen [17] adopted the approach of ex-

1782

Db2 Db2 Graph

GraphSQL

Figure 1: Overview of Db2 Graph

Db2 Graph

TinkerPop

Topology Graph
Structure

SQL
Dialect

Traversal
Strategy

Db2 Query Engine

Gremlin

SQL

Figure 2: Db2 Graph architecture

tracting graphs from the relational tables, and then materi-
alizing the graph structures in memory. Graph queries are
only served on the in-memory copy of the data. Essentially,
this approach also keeps two copies of data, only that the
secondary copy is in memory. As a result, when updates
happen to the underlying relational data, the graph queries
won’t see the latest data.

In this demo, we propose to demonstrate an in-DBMS
graph query approach, called IBM Db2 Graph, for sup-
porting synergistic and retrofittable graph queries inside the
IBM Db2™relational database [6]. As illustrated in Figure 1,
Db2 Graph is implemented as a layer inside an experimen-
tal Db2 prototype, and thus can support synergistic graph
and SQL analytics efficiently. Most importantly, graph and
SQL queries operate on exactly the same data stored in the
database. Db2 Graph employs a graph overlay approach to
expose a graph view of the relational data. This approach
flexibly retrofits to existing graph data stored in relational
tables. We use an example scenario on health insurance
claim analysis to demonstrate how Db2 Graph can support
synergistic graph and SQL analytics inside Db2.

2. Db2 Graph OVERVIEW
Db2 Graph is a layer inside Db2 specialized for graph

queries. It overlays a property graph onto a set of relational
tables. Users then can issue graph queries written in Tinker-
pop Gremlin graph language [1] on top of the overlay graph.
Db2 Graph translates each graph query into a set of SQL
queries, and finally executes the graph query by utilizing the
Db2 query engine through SQL.

2.1 Graph Overlay
We now describe how Db2 Graph overlay a property graph

onto relational tables.
Background on Property Graphs. A property graph

contains vertices and edges. Vertices represent discrete ob-
jects, and edges capture the relationships between vertices.
Both vertices and edges can have arbitrary number of prop-
erties, represented as key-value pairs. Each vertex/edge is

uniquely identified with an id in a property graph. Ver-
tices/edges can also be tagged with labels to distinguish the
different types of objects/relationships in the graph.

Graph databases always present a single property graph
with a vertex set and an edge set for users to query. Over-
laying a single property graph onto a set of relational tables
really boils down to mapping the vertex set and the edge
set of the graph to the relational tables. In particular, for
the vertex set, the mapping specifies: 1) what table(s) store
the vertex information, 2) what table column(s) are mapped
to the required id field, 3) what is the label for each vertex
(defined from a table column or a constant), and 4) what
columns capture the vertex properties, if any. Similarly, for
the edge set, the mapping specifies: 1) what table(s) store
the edge information, 2) what table columns are mapped to
the required id, inv (incoming vertex id), and outv (outgoing
vertex id) fields, 3) what is the label for each edge (defined
from a table column or a constant), and 4) what columns
correspond to the edge properties, if any. This graph overlay
mapping is achieved by an overlay configuration file in Db2
Graph. Note that the mapping is not restricted to tables
only, it can be also on created views of tables.

The overlay configuration files can be manually created
by the application developers who wish to query relational
tables as graphs. Db2 Graph also provides a toolkit, called
AutoOverlay, to automate the generation of overlay config-
uration for a database in a principled way. AutoOverlay
relies on the primary and foreign key constraints to infer
relationships among the data in relational tables.

2.2 System Architecture
Figure 2 shows the overall architecture of Db2 Graph. It

is a layer inside Db2, between Gremlin graph queries and
the Db2 query engine. Db2 Graph includes the TinkerPop
stack on the top, which parses the input Gremlin and gener-
ates query plans with Tinkerpop API calls, and four tightly
connected components at the bottom, which together imple-
ment the TinkerPop core API with some optimized traversal
strategies. The Topology component maintains the overlay
mapping between a property graph and the relational ta-
bles; the Graph Structure component is our implementation
of the TinkerPop graph structure API; the SQL Dialect com-
ponent deals with implementation details specific for Db2;
and the Traversal Strategy component contains optimized
traversal strategies for performance improvement. Together
they execute the Gremlin query plans with the help of the
Db2 query engine through SQL queries. Below, we highlight
two important optimizations.

Optimization for fixed labels. One common operation
in graph traversals is to query vertices/edges by label(s),
e.g. g.V().hasLabel(‘person’). When the vertex/edge
set maps to multiple tables, by default the implementation
has to query all the vertex/edge tables with the label pred-
icate. But, when vertex/edge tables have fixed labels ((i.e.
fixed label = true) in the overlay configuration, we can
use the specified label(s) to narrow down a subset of tables
to query from. More specifically, any table that has a fixed
label but not matched with the query label(s) can be elimi-
nated from the query. This optimization will provide a huge
performance improvement.

Optimized traversal strategies. A graph traversal in
Gremlin is expressed in a number of steps, e.g. g.V()

.has(‘name’,‘Alice’).values(‘age’, ‘address’). By de-

1783

Claim

Patient

InCharge Service

Chronic
Disease SNOMED

Policyholder

PersonInChargeOfClaim WorkForService

InsuredO
fClaim

EMR EMR

PolicyHolderOfClaim

SimilarTo

ConnectTo

Figure 3: Relationships among data entities.

fault, the steps are executed one by one. In this naive ap-
proach, SQL queries are independently translated from indi-
vidual steps without considering their neighbor steps. This
means a query like SELECT * FROM VertexTable (assuming
there is only one vertex table named VertexTable) would
be executed first (corresponding to g.V()) to retrieves all
the vertex data into Db2 Graph, although the second step
can filter out most of the vertices. In Db2 Graph, we add
optimized strategies in the Traversal Strategy component
to combine multiple steps into one composite step and to
translate the composite step into an optimized SQL query.
We start from a step that accesses the basic graph struc-
ture information requiring a SQL query to Db2, like g.V()

or v.outE(), and try to fold subsequent filter (predicate),
property (projection), group, or aggregation steps into the
previous step as much as possible. The operations of the
folded steps are pushed down to the SQL query of the orig-
inal step. The above example query can now be trans-
lated into an optimized SQL: SELECT age, address FROM

VertexTable WHERE name = ‘Alice’.

3. DEMONSTRATION DESCRIPTION
Example Scenario. We have two datasets stored in a

Db2 database: a health insurance claim dataset that con-
tains information about insurance claims, policyholders, per-
sons in charge, and service providers, etc.; and an EMR
(Electronic Medical Record) dataset that contains informa-
tion about patients, chronic diseases, and SNOMED dis-
ease ontology [11], etc. The goal of the anaysis is to detect
and investigate fraudulent insurance claims, by querying the
datasets together using both SQL and graph queries. When
using SQL, we view the datasets as a set of relational tables.
However, using graph overlay, we can also view all the data
from the two datasets as a giant graph that links entities
together. Figure 3 shows how the data entities are related
to each other in these two datasets. For example, an insur-
ance claim is linked to an insured person, also called a pa-
tient in the EMR setting, who is then connected to diseases,
which in turn link to the disease descriptions in SNOMED;
a claim is also linked to a policyholder, who may further
connect to other policyholders through social networking or
association; a claim also involves a person in charge (e.g. a
physician), who then is associated with a service provider
(e.g. a hospital); claims are also connected to each other
by their similarities, which are resulted from running a ma-
chine learning algorithm for detecting claim similarities. In
our demo, we will conduct the following 4 steps to detect
potential fraudulent insurance claims.

3.1 Find Out Suspicious Claims
In this step, our task is to find out all suspicious insur-

ance claims in the datasets and sort them by their severity.

A claim is considered suspicious if its charge is more than
4x the average charge of similar claims. We can use the
following complex SQL statements to accomplish this task.
SQL is the best fit for this, since the analysis doesn’t require
navigating through numerous entities, but needs to compute
and sort various statistics. Heavy lifting group-by, aggrega-
tion, and sorting is hard to do in Gremlin that focuses more
on traversal along the graph structures.

SELECT claimid, charge,
DECIMAL(simAvgCharge, 10, 2) AS simAvgCharge,
simCount, simMinCharge, simMaxCharge

FROM Claims AS ThisClaim,
LATERAL (
SELECT AVG(charge) AS simAvgCharge,
COUNT(*) AS simCount, MIN(charge) AS simMinCharge,
MAX(charge) AS simMaxCharge

FROM Claim Similarity AS Sim, Claims AS OtherClaims
WHERE ThisClaim.claimid = Sim.claimid
AND Sim.simClaimid = OtherClaims.claimid

) AS SimClaims
WHERE charge > float(4)* simAvgCharge
GROUP BY claimid, charge, simAvgCharge, simCount,

simMinCharge, simMaxCharge
ORDER BY charge/simAvgCharge DESC;

3.2 Look Into One Suspicious Claim
After suspicious claims are identified, Gremlin graph queries

can then be used to shed light on why a claim is suspicious
by exploring all related data associated with the claim. For
example, we can find out what diseases the insured of the
claim have, to figure out why the claim incurs exception-
ally high (more than 4x the average) charge. The following
Gremlin query can be used to accomplish this task. It tra-
verses from a claim node with ID ‘C4377’ to the insured of
the claim (also a patient), then to the diseases that he/she
has, and finally the SNOMED description of the diseases.
Although SQL can also produce the same result, but it re-
quires joins on 4 tables. In comparison, the graph query is
not only more concise but also much more intuitive.

g.V(‘C4377’).hasLabel(‘Claim’).out(‘InsuredOfClaim’)
.out(‘EMR’).hasLabel(’ChronicDisease’).out(‘EMR’)
.hasLabel(’SNOMED’).values(‘CONCEPT NAME’)

The results can be further visualized to facilitate interac-
tive analysis, as shown in Figure 4. This figure shows that
the insured (yellow node) of the claim (orange node) suffers
from multiple chronic diseases (dark blue nodes). That’s
probably why the charge of the claim is so much higher
than normal.

3.3 Investigate The Policyholder
Now, let’s investigate the policyholder of the above sus-

picious claim. What other claims were filed by the same
policyholder? Again, we can use a graph query to perform
this analysis, as shown in Figure 5. The yellow node is the
policyholder. It’s connected to a number of claims, shown
as the dark blue nodes. And all the claims link to the same
patient as the insured. What’s more, in each claim, the pa-
tient was treated by a different physician from a different
service provider. It’s possible that the insured goes to dif-
ferent providers to get the same service repeatedly. Since
different providers don’t usually share data, they would not
know this person has already got the same service elsewhere.
This is very suspicious behavior.

1784

Figure 4: Diseases of the insured.

Figure 5: Claims filed by the policyholder.

3.4 Examine Connections of Policyholders
Now, we examine the social connections of the above pol-

icyholder. As shown in Figure 6(a), we can use a graph
query to find out how other policyholders are directly or
indirectly connected to the policyholder in question. The
green node is the suspicious claim, and the dark blue node
connected to it is the policyholder in question. The dark
blue nodes are all high-risk policyholders, and the light blue
nodes are low-risk policyholders. The risk scores for poli-
cyholders are also shown next to the nodes. These scores
are computed using a machine learning algorithm ahead of
time. As shown in the figure, the policyholder in question is
directly connected to some high-risk policyholders, but also
some low-risk policyholders. He is also indirectly connected
to another high-risk policyholder by 3 degrees of separation.
Seeing how the policyholder in question connections to other
high-risk policyholders further reinforces the likelihood that
he/she is involved in some fraudulent activities, and also
potentially sheds light on who-else might be involved in the
potential fraud.

Finally, we demonstrate how updates to the underlying
database can be reflected in graph queries in real time. In
Db2 Graph, SQL and graph queries operate on the same
data, thus any update from the relational side (e.g. through
transactions) is immediately query-able from the graph side.
In this example, we add two more policyholder connections
to the database, and re-run the last graph query. The two
added connections are shown in the graph query result, as in
Figure 6(b). Now the policyholder in question is indirectly
connected to one more high-risk policyholder by 2 degrees

of separation.

(a) Before Updates

(b) After Updates

Figure 6: Social connections of the policyholder.

4. CONCLUSION
In this proposal, we demonstrated how to use IBM Db2

Graph to perform synergistic graph and SQL queries on the
same relational data inside IBM Db2™, in the context of an
insurance claim analysis. As we have shown, each type of
analytics has its own strength: SQL is very good at heavy
lifting grouping, aggregation, and sorting, whereas graph
excels at exploitative navigation of relationships. In prac-
tice, they are often mixed together in an integrated analyt-
ics pipeline as illustrated in this demo. The in-DBMS graph
query approach employed by Db2 Graph really makes the
synergistic graph+SQL analytics workload much easier and
more efficient.

5. REFERENCES
[1] Apache TinkerPop. http://http://tinkerpop.apache.org.

[2] ArangoDB. https://www.arangodb.com.

[3] BlazeGraph. https://www.blazegraph.com.

[4] Graph processing with SQL Server and Azure SQL Database.
https://docs.microsoft.com/en-us/sql/relational-
databases/graphs/sql-graph-overview?view=sql-server-2017.

[5] Graphexp: graph explorer with D3.js.
https://github.com/bricaud/graphexp.

[6] IBM Db2. https://www.ibm.com/analytics/us/en/db2.

[7] InfiniteGraph.
https://www.objectivity.com/products/infinitegraph.

[8] JanusGraph. http://janusgraph.org.

[9] Neo4j. https://neo4j.com.

[10] OrientDB. https://orientdb.com.

[11] SNOMED International. http://www.snomed.org.

[12] Sparksee. http://www.sparsity-technologies.com.

[13] Sqlg. http://www.sqlg.org.

[14] TigerGraph. https://www.tigergraph.com.

[15] M. S. Hassan, T. Kuznetsova, H. C. Jeong, W. G. Aref, and
M. Sadoghi. Grfusion: Graphs as first-class citizens in
main-memory relational database systems. In SIGMOD ’18,
pages 1789–1792, 2018.

[16] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu,
and G. Xie. Sqlgraph: An efficient relational-based property
graph store. In SIGMOD ’15, pages 1887–1901, 2015.

[17] K. Xirogiannopoulos and A. Deshpande. Extracting and
analyzing hidden graphs from relational databases. In
SIGMOD ’17, pages 897–912, 2017.

1785

