
CAPE: Explaining Outliers by Counterbalancing

Zhengjie Miao∗1, Qitian Zeng∗2, Chenjie Li2,
Boris Glavic2, Oliver Kennedy3, Sudeepa Roy1

1Duke University, Durham, NC 2IIT, Chicago, IL 3SUNY Buffalo, Buffalo, NY

{zjmiao,sudeepa}@cs.duke.edu, {qzeng3,cli112,bglavic}@{hawk}.iit.edu,
okennedy@buffalo.edu

ABSTRACT
In this demonstration we showcase Cape, a system that ex-
plains surprising aggregation outcomes. In contrast to pre-
vious work, which relies exclusively on provenance, Cape
explains outliers in aggregation queries through related out-
liers in the opposite direction that provide counterbalance.
The foundation of our approach are aggregate regression
patterns (ARPs) that describe coarse-grained trends in the
data. We define outliers as deviations from such patterns
and present an efficient algorithm to find counterbalances
explaining outliers. In the demonstration, the audience can
run aggregation queries over real world datasets, identify
outliers of interest in the result of such queries, and browse
the patterns and explanations returned by Cape.

PVLDB Reference Format:
Zhengjie Miao, Qitian Zeng, Chenjie Li, Boris Glavic, Oliver
Kennedy, and Sudeepa Roy. CAPE: Explaining Outliers by Coun-
terbalancing. PVLDB, 12(12): 1806-1809, 2019.
DOI: https://doi.org/10.14778/3352063.3352071

1. INTRODUCTION
When analyzing a dataset by running aggregation queries,

a user may encounter a result that is higher or lower than
her expectation. Given such an outlier, the user may want
to know what led to this unexpected outcome. For instance,
consider a publication dataset such as the one shown in Ta-
ble 1. User Alice analyses trends in the publication output
of researchers in Computer Science. Inspecting the result of
an aggregation query that returns the total number of pub-
lications per author and year, she observes that a particu-
lar author published significantly more papers in 2018 than
usual. Previous approaches [3, 4] explain outliers in aggrega-
tion query results through intervention, i.e., they compactly
encode a part of the provenance [1] for the result of interest
whose exclusion from the input would significantly change
the aggregation result in the opposite direction of the out-
lier of interest. For instance, they may explain the author’s

∗denotes equal contribution.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352071

Pub

author pubid year venue
AX P1 2005 SIGKDD
AX P2 2004 SIGKDD
AY P2 2004 SIGKDD
AZ P3 2004 SIGMOD

Table 1: Running example publications dataset

high publication count in 2018 by listing the venues where
she published most frequently in this particular year.

While the techniques from [3, 4] produce meaningful ex-
planations for some scenarios, these techniques have lim-
ited applicability when the ‘cause’ of an outlier is not con-
tained in its provenance, or when we want to explain a
low outlier in the output of a monotone aggregate query
(excluding inputs will only further decrease the aggregate).
As an example, a possible explanation for someone’s high
publication count in 2018 might be that most of her sub-
missions in 2017 got rejected, but resubmissions of these
papers got accepted in 2018 in addition to other publica-
tions based on new work. That is, a higher than expected
value (the number of publications in 2018) is explained by
a lower than expected value for another answer tuple (the
number of publications in 2017). We refer this type of
explanation where an outlier in one direction is explained
by a related outlier in the opposite direction as explana-
tion by counterbalance. In this demonstration, we showcase
Cape (Counterbalancing with Aggregation Patterns
for Explanations), a system we have developed for com-
puting such explanations. For additional technical details
we refer the reader to [2].

Since counterbalances are also outliers (values that devi-
ate from an expected value), we need to determine what val-
ues to expect in the result of an aggregation query. To this
end, we define aggregate regression patterns (ARPs), which
model correlations in the result of a group-by query. In [2]
we present an efficient method for mining such patterns over
a given dataset. Furthermore, we introduce an algorithm for
finding counterbalances that are related (“similar”) to the
outlier of interest and deviate significantly (“outlierness”)
from the expectation determined by a pattern. Cape ranks
possible explanations based on a scoring function that com-
bines similarity and outlierness.

The goal of this demonstration is to showcase the effec-
tiveness and efficiency of Cape. Cape is available as open
source at https://github.com/capeexplain/cape.We will
first introduce ARPs and explanations by counterbalance,
and discuss the design and implementation of Cape. After-
wards, we present real-world demonstration scenarios and
explain Cape’s user interface. A detailed discussion of re-
lated work can be found in [2].

1806

https://github.com/capeexplain/cape

author venue year pubcnt
AX SIGKDD 2006 4
AX SIGKDD 2007 1
AX SIGKDD 2008 4
AX VLDB 2006 4
AX VLDB 2007 4
AX VLDB 2008 1
AX ICDE 2006 6
AX ICDE 2007 6
AX ICDE 2008 4

Table 2: Partial result of query Q0 from Example 1

Rank Explanation score
1 (AX , ICDE, 2007, 6) 13.78
2 (AX , ICDE, 2006, 6) 10.91
3 (AX , ICDM, 2007, 5) 6.44
4 (AX , VLDB, 2007, 4) 5.77
5 (AX , SIGMOD, 2008, 4) 5.57

Table 3: Top-5 explanations returned by Cape for Ex. 1

2. BACKGROUND AND CAPE OVERVIEW
We now briefly introduce user questions, aggregate regres-

sion patterns (ARPs), and explanations by counterbalance.
We use the example shown below as a running example.

Example 1. Consider a simplified and anonymized ver-
sion of the DBLP (http://dblp.uni-trier.de/) publica-
tion dataset with schema Pub(author,pubid,year,venue).
Some example entries are shown in Table 1. The following
query Q0 computes the number of publications per author,
year, and venue. Table 2 shows a subset of this query’s re-
sult.

SELECT author , year , venue , count (*) AS pubcnt
FROM Pub
GROUP BY author , year , venue

Given this result, a user may wonder why certain rows have
a higher/lower aggregation function value than expected. For
instance, if the user is aware that author AX is a prolific
data mining researcher who typically publishes multiple pa-
pers in SIGKDD each year, she may wonder “why did AX

publish only 1 paper in SIGKDD in 2007?”.

User question. Consider a relation R and a group-
by aggregate query Q = γG,agg(A)(R), where G denotes the
query’s group-by attributes, A is an attribute from R, and
agg is an aggregation function (sum or count). Given a
result tuple t ∈ Q(R) and a direction dir ∈ {high, low}, a
user question is a quadruple: φ = (Q,R, t, dir).

Intuitively, while exploring the data by running query Q
over R, the user observes that the aggregation value of an
answer tuple t is lower or higher than her expectation and
wants to understand why this is the case. For instance, the
question given in Example 1 can formally be written as φ0 =
(Q0, Pub, t0, low), whereQ0 = γauthor,year,count(pubid)(Pub) and
t0 is the tuple (AX , SIGKDD, 2007, 1) from Table 2.

2.1 Aggregate Regression Patterns
Aggregate regression patterns (ARPs) model trends that

hold in aggregation. For the DBLP dataset we may find
ARPs like P1 (where ‘many’ depends on local and global
thresholds δ, θ, ∆, λ described below):

P1 : =“for many authors, the number of publications
increases linearly over the years”.

Pattern P1 states that if we partition the rows in the out-
put of the query Q0 = γauthor,year,count(pubid)(Pub) based on
their author names, then within each fragment the rela-
tionship between the year values and the aggregate output

count(pubid) (number of publications) can be described ap-
proximately though a linear function.

An ARP partitions the result of an aggregation query Q
on a subset F ⊆ G of the group-by attributes (the parti-
tion attributes), and within each fragment describes cor-
relations between the remaining group-by attributes V =
(G− F) (the predictor attributes) and the results of the
aggregation function using a regression model. Pattern P1

uses a single partition attribute F = {author} and single
predictor attribute V = {year}. In addition to the partition
and predictor attributes, an ARP also specifies an aggregate
function and attribute to be used (count(pubid) in P1) and
what regression model type to use: e.g., linear.

Given an ARP P , we want to check whether P correctly
describes a trend in the data. We consider a pattern to hold
“locally” (for a given fragment) if there are sufficient dis-
tinct values of V within the fragment (larger than a thresh-
old δ which we refer to as the local support threshold), and
we can train a regression model on this fragment with a suffi-
ciently high goodness-of-fit (higher then a local model quality
threshold θ). For instance, P1 holds locally for author AX if
she has actively published in more than δ years and we can
fit a linear regression that predicts her number of publica-
tions based on the year with a goodness-of-fit that is higher
than θ. A pattern is considered to hold “globally” if the
percentage of fragments for which it holds locally exceeds an
adjustable threshold ∆ (the global support threshold) and the
ratio between the number of fragments with sufficient evi-
dence (local support) for which the pattern holds is larger
than a threshold λ (the global confidence threshold). For ex-
ample, P1 would be considered to hold globally if it holds for
more than ∆ authors and out of all authors that published
in more than δ years, the pattern holds for a fraction that
is larger than λ (details in [2]).

2.2 Explanations by Counterbalance
Using ARPs, Cape finds explanations by counterbalance

as introduced in the introduction. Intuitively, an explana-
tion comes from a fragment f ′ generated by fixing values for
the partition attributes F ′ of a pattern P ′ that can be ap-
plied to the user question. That is, f ′ agrees with the user
question tuple t on attributes F ′∩G where G are the group-
by attributes of the user’s query. A counterbalance is a data
point from fragment f ′ that is an outlier in the opposite di-
rection of the user question, i.e., it is lower/higher then the
prediction according to pattern P ′. The actual details are
more involved; and we refer the reader to [2].

The top-5 explanations produced by Cape for φ0 from
Example 1 are shown in Table 3. The score of an ex-
planation is computed as dev×isLow

distance×Norm
, where (i) dev

denotes the relative deviation of the counterbalance from
the value predicted for this data point by the pattern (e.g.,
a higher count of ICDE publications for AX is more sur-
prising than a higher count of ICDM papers as AX is a
data mining researcher and ICDM is a data mining confer-
ence), (ii) distance denotes the distance between the group-
by attributes of the user question tuple t and the values of
the counterbalance (e.g., explanations from the same year
2007 or adjacent years 2006/2008 have higher scores), (iii)
Norm is a normalization factor, and (iv) isLow is a flag
that records whether dir = low in the user question. The
top two explanations for the running example (ICDE 2007
and ICDE 2006) suggest that AX might have sent more pa-

1807

http://dblp.uni-trier.de/

3

2

1

4

5

6

Figure 1: Cape’s Main GUI: the user enters aggregation queries (2) over the schema shown in (1) and can then explore query
results (3), browse patterns relevant to the query (4 + 5), and can request explanations for why an answer is high/low (6).

pers to ICDE in these years instead of to SIGKDD. None of
the explanations appearing in Table 3 can be produced by
previous approaches [4, 3] since these explanations do not
stem from the tuples in the provenance of AX ’s SIGKDD
publications in 2007.

2.3 Implementation and Optimizations
Cape is implemented in Python (version 3.5) and runs

on top of PostgreSQL (version 10.4). Cape consists of two
main components: (A) an offline ARP mining method, and
(B) a method to compute top-k explanations interactively.

(A) Offline ARP Mining. To determine which patterns
hold for a dataset we have to enumerate all possible ARP
candidates, and for each candidate determine whether it
holds locally for a sufficiently large number of fragments.
Since the number of possible pattern candidates is exponen-
tial in the number of attributes of the input relation, testing
all pattern candidates using a brute force algorithm is not
efficient. The algorithm we presented in [2] scales to larger
datasets by applying several optimizations. To determine
whether a particular pattern candidate P = (F, V, agg,A,M)
(with partition attributes F , predictor attributes V , aggre-
gate function agg(A), and regression model M) holds locally
over R, we need run a query Q(R) = γF∪V,agg(A)(R) to re-
trieve the relevant data and then train a regression model.
(1) Reuse queries: We reduce the query time by using a
single query for all pattern candidates that share the same
F ∪ V – this query retrieves all fragments for these global
pattern candidates. For instance, if F1 = {A,B,C} and
F2 = {A,C} and V1 = {D} and V2 = {B,D} a single query-
ing grouping on {A,B,C,D} is sufficient to test both pat-
terns. (2) Limit the number of candidate ARPs: We
only consider patterns for which |F ∪ V | ≤ ψ for a config-
urable threshold ψ since the number of group-by attributes
|G| in a user’s query is typically small and we are unlikely

to use patterns where |F ∪ V | is much larger than |G|. (3)
Use FDs: We also detect functional dependencies (FDs)
during pattern mining and use these FDs to avoid mining
redundant patterns, e.g., consider P1 and P2 that differ only
in F , say F1 = {A} and F2 = {A,B} and there is an FD
A → B. If P1 holds, then P2 will also hold, i.e., we can
avoid checking whether P2 holds.

(B) Finding the top-k explanations. Using ARPs that
are mined offline, Cape finds explanations to a given user
question interactively. Two optimizations are used. (1)
Min-heap: We use a min-heap-based algorithm for gen-
erating and ranking explanations. The algorithm takes as
input a set of ARPs P and a user question φ = (Q,R, t, dir).
The min-heap contains the top-k explanations with highest
scores found so far. The algorithm iterates over all patterns
in P and all their refinements. If it finds a relevant pattern
and a new candidate explanation, then it checks whether
the explanation’s score is higher than the score of the root
element of the min-heap; if so, the root element is replaced
by the new explanation and the heap is updated. (2) Use
an upper bound on scores for an ARP: For each ARP
P in P we compute an upper bound on the score of any
explanation for the user question that uses P . We skip any
candidate explanation whose upper bound is lower than the
lowest score of the current top-k explanations.

3. DEMONSTRATION
Datasets. We will use three real world datasets in the

demonstration of Cape. In addition to the DBLP dataset
described in Example 1, the user can also explore Cape
using a Crime dataset from the City of Chicago data portal
and a NYC Taxi dataset [2]. The main user interface of
Cape is shown in Figure 1, where the user can interact with
Cape as follows.

1808

Figure 2: Visualizing a local pattern. We plot all data points
as well as the regression model.

1. Run aggregation queries and inspect global and
local ARPs. To help the user to formulate queries, Cape
shows the schema of the underlying database in the left panel
¬. The user enters aggregation queries into box ­. Query
results are shown in ®. The user can select any tuple and
use the “High” and “Low” buttons to request the system
to explain why the currently selected tuple’s aggregation
value is higher or lower than expected. To aid the user in
finding interesting results, the query result can be re-sorted
on any of the result columns. When a query is run, based
on the group-by attributes Cape determines the ARPs that
are relevant to the query. Global patterns are shown in ¯,
and once a global pattern is clicked, the corresponding local
patterns are shown in °.

2. Inspecting global and local patterns. The user
can request a more detailed explanation for a global pattern
by clicking the “Describe Global” button. For local pat-
terns the “Draw Local” button opens up a pop-up window
which shows additional information about the pattern and
a plot showing the corresponding data points as well as the
prediction by the model based on which the pattern holds.
Figure 2 shows such a plot for the pattern P2: “for many
(author, venue) pairs, the number of publications is constant
over the years” (for partition attributes values: author =
AX , and venue = CIKM). The regression model trained on
the data points shown in the figure predicts that author AX

publishes roughly 1.73 papers every year in CIKM. The plots
for local patterns are useful for understanding which query
answers are outliers, and can aid the user in determining
what questions to ask.

3. Use filters to explore patterns and query results.
Cape further helps a user find interesting questions by fil-
tering out patterns and query answers. The user can select
any number of global patterns for which the local patterns
are then shown (¯). They can also select one or more local
patterns to filter the query result so that only tuples that
contributed to the selected patterns will be shown (°).

4. Generating and visualizing explanations. The user
can select any tuple t in the query result with or without
Cape’s help and click on the “High” or “Low” buttons to
create a user question φ = (Q,R, t, high/low). Cape will
generate explanations online and return the top-k explana-
tions (default is k = 10) ranked by score. Each explanation
consists of a pattern P that is relevant to φ, a pattern P ′ that

Figure 3: Visualizing an explanation (description and the
relevant pattern). The tuple from the user question is the
(bigger) red downward triangle and the counterbalancing
explanation is the blue upward triangle.

is a ‘refinement’ of P (details in [2]), and a counterbalance
tuple t′ which is an outlier according to P ′ in the opposite
direction of t in φ. The top-k explanations are shown in
box ±. Clicking on an explanation opens a pop-up window,
which shows a textual description of the explanation and
one or two plots for the ARPs P and P ′ (only one plot is
shown if P = P ′). Furthermore, the data point correspond-
ing to the user question and the data point corresponding to
the counterbalance are highlighted (red downward triangle
and blue upward triangle). Figure 3 shows an explanation
for user question “Why is the number of AX ’s CIKM publi-
cations in 2010 so high?”. Here the relevant pattern P and
refined pattern P ′ are the same: P3 = “for many authors,
the number of publications increases linearly with years”. P3

holds holds locally for AX . The counterbalance comes from
his total number of publications in 2009, which is lower than
the predicted value. This explanation can be verbally de-
scribed as “AX ’s number of publication at CIKM in 2010 is
high, possibly his publications in 2009 is less than expected”.
One possible interpretation is that some of his papers not
published in 2009 ended up being published in 2010.

Note that, like previous work, the explanations returned
by Cape can guide the user in understanding query results.
Obviously, not all outliers can be explained through coun-
terbalancing, e.g., an outlier may be by a data entry error.
Integrating our ideas with other techniques for explaining
outliers is an interesting and challenging research direction.

Acknowledgments. Supported in part by NSF Awards
IIS-1552538, IIS-1703431, IIS-1750460, OAC-1541450, OAC-
1640864, SMA-1637155, and NIH Award 1R01EB025021-
01.

4. REFERENCES
[1] T. J. Green, G. Karvounarakis, and V. Tannen.

Provenance semirings. In PODS, pages 31–40, 2007.

[2] Z. Miao, Q. Zeng, B. Glavic, and S. Roy. Going beyond
provenance: Explaining query answers with
pattern-based counterbalances. In SIGMOD, 2019.

[3] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, pages
1579–1590, 2014.

[4] E. Wu and S. Madden. Scorpion: Explaining away
outliers in aggregate queries. PVLDB, 6(8):553–564,
2013.

1809

	Introduction
	Background and Cape Overview
	Aggregate Regression Patterns
	Explanations by Counterbalance
	Implementation and Optimizations

	Demonstration
	References

