
ProgressiveDB – Progressive Data Analytics
as a Middleware

Lukas Berg
TU Darmstadt

Germany
lukasjulian.berg@stud.tu-

darmstadt.de

Tobias Ziegler
TU Darmstadt

Germany
tobias.ziegler@cs.tu-

darmstadt.de

Carsten Binnig
TU Darmstadt

Germany
carsten.binnig@cs.tu-

darmstadt.de

Uwe Röhm
University of Sydney

Australia
uwe.roehm@sydney.edu.au

ABSTRACT
ProgressiveDB transforms any standard SQL database into
a progressive database capable of continuous, approximate
query processing. It introduces a few small extensions to the
SQL query language that allow clients to express progres-
sive analytical queries. These extensions are processed in
the ProgressiveDB middleware that sits between a database
application and the underlying database providing interac-
tive query processing as well as query steering capabilities
to the user. In our demo, we show how this system allows
a database application with a graphical user interface to in-
teract with different backends, while providing the user with
immediate feedback during exploratory data exploration of
an on-time flight database. ProgressiveDB also supports ef-
ficient query steering by providing a new technique, called
progressive views, which allows the intermediate results of
one progressive query to be shared and reused by multiple
concurrent progressive queries with refined scope.

PVLDB Reference Format:
Lukas Berg, Tobias Ziegler, Carsten Binnig and Uwe Röhm. Pro-
gressiveDB – Progressive Data Analytics as a Middleware. PVLDB,
12(12): 1814-1817, 2019.
DOI: https://doi.org/10.14778/3352063.3352073

1. INTRODUCTION

Motivation. Interactive visualisations are arguably the most
important tool to explore, understand and convey facts about
data. For example, as part of data exploration visualisations
are used to quickly skim through the data and look for pat-
terns along various dimensions of the data. This requires to
generate a sequence of visualisations and allow the user to
interact with them. A recent study [6] has shown that visual

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352073

delays of 500ms tend to decrease both end-user activity and
data set coverage, due to the reduction in rates of user inter-
action that is crucial for overall observation, generalization
and hypothesis.

Unfortunately, existing database systems are ill-suited for
these types of interactive workloads that result from visual
exploration tools for different reasons: (1) Unfortunately,
when the data sets are larger, computing results for even a
single visualisation can take seconds or even minutes, creat-
ing a significant barrier to interactive data analysis. One
promising route to compute continuously refining results
that was already published in the late 1990’s was online
aggregation [4]. Different from offline-sampling, which is
used in BlinkDB [1] or VerdictDB [8], online aggregation
can provide interactive response times for arbitrary aggre-
gate group-by queries over single tables and more recent ex-
tensions also support queries including joins [7, 5]. However,
online aggregation has not yet made its way into any of the
commercial DBMSs available today. (2) In interactive data
exploration, users often want to quickly refine a query. For
example, in some customer analysis a user might quickly try
out different age ranges as filter criteria. In today’s DBMS,
every user interaction results in a new SQL query putting a
high overhead on the performance of the system.

Contribution. In this paper, we propose ProgressiveDB , a
middleware that provides progressive execution capabilities
on top of non-progressive databases such as PostgreSQL,
MonetDB, etc. That way, ProgressiveDB transforms any
standard SQL database into a progressive DBMS.

In order to provide progressive query execution to ap-
plications, ProgressiveDB introduces a few but important
extensions to the SQL query language (called progressive
extensions) that allow clients to express progressive analyt-
ical queries and consume continuously refining results. Fur-
thermore, the SQL extensions of ProgressiveDB additionally
support query steering that can be used by applications to
change running queries without the need to start a separate
query for each user interaction.

For executing the progressive SQL extensions, Progres-
siveDB rewrites the incoming queries into a set of smaller
queries that are continuously executed against the underly-
ing database. ProgressiveDB is that way capable of contin-

1814

Q1) SELECT PROGRESSIVE

 AVG(delay)

 FROM OnTime

 GROUP BY origin

Q2) SELECT AVG(delay)

 FROM OnTime

 WHERE …

J

D

B

C

Query
Router

Progressive
Executor

Exact
Executor

Meta + Results

Progressive Table

OnTime_1

OnTime_2

OnTime_N

…

Q11

Q12

Q1N

Q2

Figure 1: System Architecture of ProgressiveDB

uous query processing to answer analytical queries at inter-
active speeds and refine results in a progressive manner.

The contributions of this demo paper are as follows:

• We define several extensions of SQL that allow users to
express progressively executed queries with additional
query steering capabilities.

• We present the design of ProgressiveDB , a middleware
engine that transforms any SQL database system into
a progressive DBMS and discuss progressive query pro-
cessing algorithms of ProgressiveDB that are imple-
mented in our middleware which is based on Apache
Calcite.

• We discuss our demonstration scenario, where an ap-
plication on top of ProgressiveDB can be used to ex-
plore and analyse a flight delay database [3].

Outline. In the remainder of this paper, we first introduce
the system architecture of ProgressiveDB (Section 2), before
we define our progressive extensions of SQL (Section 3) that
ProgressiveDB supports. Section 4 describes the demo ap-
plication that allows attendees to interact and explore Pro-
gressiveDB with the flight database.

2. SYSTEM OVERVIEW
The goal of ProgressiveDB is to enable progressive query

processing and steering of queries without changing the un-
derlying DBMS. Consequently, we utilize a middleware-based
approach that provides progressive query capabilities to ap-
plications via a standard JDBC interface. This middleware
handles all query routing, intermediate result processing,
and manages the internal state of the progressive query exe-
cution as depicted in Figure 1. To support progressive query
execution, a table has to be specifically prepared and made
available to Progressive-SQL as a chunked Progressive Table
(depicted on the right side of Figure 1). What is important
is that chunking can be typically implemented by simply us-
ing the partition functions of an underlying database. See
Section 3.1 for details.

As a query interface, ProgressiveDB supports both —
standard SQL queries, like Q2, which are directly executed
on the underlying DBMS on the whole table, and progressive
queries as shown for Q1 formulated in our Progressive-SQL
language (which is a SQL extension). Both are handled by
the Progressive Executor of the middleware. For execut-
ing a query formulated using our progressive extensions for
SQL like Q1, the Progressive Executor translates the in-
coming progressive queries into a series of sub-queries (Q11

- Q1N) on the prepared Progressive Table. Each sub-query
is executed on the underlying DBMS on a per chunk basis
– typically a single partition of the table (cf. Section. 3.1).

The Progressive Executor progressively combines the partial
results over individual chunks with the current state of the
query execution. Every time a new sub-query has finished
the approximate overall result is progressively updated and
sent to the application. Consequently, the more of the table
is processed (i.e., the more sub-queries have been finished)
the lower the relative error. See Section 3.2 for details.

Furthermore, the middleware is also responsible to provide
efficient execution strategies for query steering that are also
part of our progressive SQL extensions. For example, part
of our SQL extensions are so called progressive views that
allow an application to refine an already running query with
additional filtering predicates or to drill-down its grouping
categories. In this case, the ProgressiveDB middleware man-
ages all necessary intermediate state to do so without having
to re-run any already completed (sub-)query. See Section 3.3
for details.

Our implementation of ProgressiveDB is based on the
Apache Calcite data management framework [2]. For Pro-
gressiveDB , we extended Calcite with the Progressive-SQL
syntax, and added the progressive executor components.

3. PROGRESSIVE SQL
Applications using ProgressiveDB can express analytical

queries in Progressive SQL which allows them to execute
queries progressively with interactive latency on the under-
lying database, and also with the possibility to further refine
an already running progressive query (i.e., query steering).

3.1 Database Preparation
In order to be used by Progressive SQL, a table has to be

prepared for progressive queries first. ProgressiveDB parti-
tions tables into chunks holding data such that each parti-
tion is small enough to be queried by an analytical query
within a given query latency. An important aspect of this
preparation step is that tuples are assigned randomly to
each chunk so that the individual sub-queries sent by Pro-
gressiveDB access indeed a random sample of the table.

Note that chunking can be implemented without the need
to copy the data of a table in the underlying database sys-
tem. Instead, if a database system natively supports parti-
tioning (e.g., most commercial DBMS or PostgreSQL) Pro-
gressiveDB makes use of this capability: the table will be
partitioned into n randomized ’chunks’ such that the av-
erage response time of a simple aggregation query is below
the configured threshold latency. Note that for most systems
partitioning is natively supported. For systems without par-
titioning support, a chunking column and an index on that
column are used by ProgressiveDB .

1815

3.2 Progressive Queries
With progressive query execution, clients continuously

receive approximate query results which are progres-
sively getting more accurate approaching the final result.
Clients initiate a progressive query by adding the keyword
PROGRESSIVE to an aggregation query:

SELECT PROGRESSIVE aggregation˙list
FROM relation
WHERE condition

GROUP BY group˙attrs

ProgressiveDB translates such a progressive aggregation
query Q internally into a series of sub-queries qi such that
each sub-query queries only a single chunk (partition) of the
prepared progressive table. The results of each sub-query qi
are then combined in the middleware with the current state
of the progressive query execution to produce an approxi-
mate overall aggregation result at stage i.

ProgressiveDB computes the aggregation approximationi

based on the combined result of all previous sub-queries qj
(j < i) and the additional partial result of sub-query qi. This
is possible for all decomposable aggregation functions, such
as SUM, COUNT and AVG, where the result can be computed by
aggregating over sub- or auxiliary-aggregates for subsets of
the data. In case of SUM and COUNT, the sub-aggregate values
are simply added; in case of AVG, the final aggregate value
is computed from the queried partial SUM and COUNT
auxiliary-aggregate values. These intermediate aggregation
values are further scaled based on the query progress, and
the number and size of the chunks of the progressive table.

Clients receive a continuous refining query result that con-
sists of the progression of approximate aggregation results
after each sub-query. Each result row is tagged with the cor-
responding sub-queries sequence number and a confidence
value for the approximation (note that a general grouping
query could have multiple result rows, one per group, which
would all be tagged with the same sequence number):

0, group attr, aggregation approximation 0, confidence 0

1, group attr, aggregation approximation 1, confidence 1

2, group attr, aggregation approximation 2, confidence 2

...

This way, from the viewpoint of a client, the aggregation
results are progressively getting closer to the exact result.
It is the responsibility of the client application to use these
partial approximate query results to progressively update
their user interface. Basically, query results with sequence
number i replace query results with sequence number i− 1.

The current implementation is limited to single table queries.
In future, we plan to support joins in ProgressiveDB follow-
ing the ideas of [5], but adapted to use the table chunks
available in ProgressiveDB .

3.3 Query Steering
During interactive data exploration, users often want to

quickly refine a query, for example to further filter a result
or drill-down into a result. While the progressive queries
as introduced above give fast (low latency) and progressive
feedback to users, they do not allow the user to steer the
query at runtime. With our SQL syntax so far, refining a
query would require for each step a new query which has
to be processed by the underlying database from scratch –

resulting in both execution overhead and a delay in achieving
a result accuracy comparable to the already running query.

To facilitate the steering of progressive queries, Progres-
sive SQL introduces the concept of a PROGRESSIVE VIEW for
which some FUTURE grouping attributes and filter conditions
can be specified:

CREATE PROGRESSIVE VIEW name AS

SELECT aggregation list
FROM relation
WHERE condition (AND condition i FUTURE)*

GROUP BY grouping list (, group i FUTURE)*

The general semantic of a PROGRESSIVE VIEW is the same
as with a progressive query: ProgressiveDB executes a se-
ries of sub-queries qi such that each sub-query queries only
a single chunk table of the prepared database schema, and
progressively combines these partial results with the current
query execution state to new result approximations. The
executed sub-queries, however, include additional grouping
attributes for each grouping FUTURE clause and necessary
attributes for FUTURE conditions from the view definition.
The sub-queries also pre-filter the data with their filter con-
ditions constructed such that any FUTURE conditions can still
be evaluated on the view’s result approximations.

ProgressiveDB caches the processed partial results tagged
with sequence number i and confidence values in its internal
state under the view name. A client application can query a
progressive view with any combination of the grouping and
filter attributes, and ProgressiveDB will return only the ag-
gregated results for the corresponding groups and matching
filter conditions from its internal cache.

A typical use case for this is that the client initially queries
the progressive view for only those groupings and condi-
tions which are not marked as FUTURE. The user then inter-
acts with the visualisation of the received progressive query
result, for example by drilling down in one of the FUTURE

grouping attributes. The application therefore sends a new
query to the view which indicates which FUTURE grouping at-
tribute should be used. Since ProgressiveDB caches the in-
termediates of a previous query, it can then immediately re-
turn an approximate drill-down result at the confidence level
of the state where the initial query was, which it continuous
to progressively update while further sub-queries are exe-
cuted. This avoids the latency and overhead of re-sending
all previous sub-queries with a new group-by clause.

4. DEMONSTRATION SCENARIO
To demonstrate the capabilities of ProgressiveDB , we use

the well-known airline-on-time database [3]. We have built
a small data exploration application with an interactive web
interface on top of ProgressiveDB which allows to analyse
flight delay information as shown in Figure 2a. We popu-
lated a PostgreSQL and a MySQL database with all flight
data for the 40 largest US airports, resulting in a total of ca.
11 GB data on disk. The following two scenarios are also
shown in our supplementary demo video.

4.1 Scenario 1: Progressive Queries
The first use case demonstrates the progressive query ex-

ecution of ProgressiveDB . As shown in Figure 2a, the user
first selects one of the pre-defined queries from the drop-
down menu 1©, which then gets executed concurrently in
two modes: The left-side of the window shows the result

1816

(a) Screenshot of Usage Scenario 1

Database System
0s

1s

10s

100s

R
es

p
on

se
L

at
en

cy
(s

)

Interactive
Threshold

2.4% Rel.
Error

2.2% Rel.
Error

0% Rel.
Error

0% Rel.
Error

P
ro

g
re

ss
iv

e
R

es
u

lt
s

ProgressiveDB

VerdictDB

PostgreSQL

(b) Response Latencies

Figure 2: Demo Screenshot (left) and Latency Comparison of different Systems (right)

of the progressively executed query 2©, while the right-side
of the window shows the result of running the analytical di-
rectly on the underlying database 3©. Attendees will see that
while they get an immediate feedback from the progressive
query, which also constantly updates with the latest flight
statistics until the result is exact, they have to wait for a
response on the right-hand side.

The native execution on the underlying database only re-
turns a result once the query has completed on the whole
dataset, which typically means a delay much worse than the
targeted 500ms interactive latency. This can also be seen in
the graph of Figure 2b, which compares the first-response
latency of ProgressiveDB over PostgreSQL with native Post-
greSQL for the same query. Just for comparison – not part
of the demo – we also included the first response time of Ver-
dictDB over PostgreSQL (which uses a pre-computed sam-
ple) on the same dataset. The progressive query is executed
by ProgressiveDB with a series of sub-queries. These in-
ternal sub-queries can be inspected by attendees using the
’Query Log’ button of the user interface 4©.

While the progressive query is executing, attendees can
also click on the result bar of any airport to start a second
query which analyses the flight delay information at this
airport, but now shown per day of the week 5©. The pro-
gressive result of this second query is shown below the chart
of the first query, and it is also compared to a native execu-
tion. Attendees can note that the second query, while start-
ing immediately after being selected, does run longer and
with an initial less accurate approximation because without
query steering a new separate query is initiated which has
to analyse the data from scratch. We show the effects of
query steering in the second scenario below.

Finally, the user interface also allows attendees to switch
between different backend database engines (i.e., PostgreSQL
and MySQL) to demonstrate the flexibility of the middle-
ware approach of ProgressiveDB .

4.2 Scenario 2: Query Steering
The second use case demonstrates the query steering ca-

pabilities of ProgressiveDB . While the previous use case
showed how ProgressiveDB allows interactive response times
of single progressive queries, it also demonstrated that re-
fining a query results in an initial loss of accuracy due to
the restart of a new query from scratch. However, in many
applications the potential refinements of a query are pre-
determined by the user interface, and hence ProgressiveDB

introduces the concept of a progressive view which computes
an approximate query result suitable for different queries.

Our demo application therefore includes a second view 6©,
which allows query steering using a progressive view (CREATE
VIEW... GROUP BY origin, dayofweek FUTURE). This pro-
gressive view helps to drive a cross-filter visualisation where
users can select different airports on the first visualisation,
which then instantly affects the output on the second chart
which represents the progressive query result of a refined
query. The benefit here is that any of the refined queries
starts at the same progress and accuracy level as those of
the first query, because it can rely on the intermediate re-
sults in the progressive view. This also results in less load
on the backend database systems as only one sequence of
sub-queries has to be executed.

5. SUMMARY
ProgressiveDB provides three main innovations: Firstly,

a middleware that transforms any SQL database into a pro-
gressive database. Secondly, ProgressiveSQL as a simple to
use query interface for interactive applications. Finally, a
progressive view mechanism that extends ProgressiveSQL
by efficient query steering capabilities.

Acknowledgements
We thank Schloss Dagstuhl and the organizers of Seminar
18411 for the opportunity and motivation to pursue the work
reported in this paper.

6. REFERENCES
[1] S. Agarwal et al. Blinkdb: queries with bounded errors and

bounded response times on very large data. In EuroSys, pages
29–42, 2013.

[2] E. Begoli et al. Apache Calcite: A Foundational Framework for
Optimized Query Processing Over Heterogeneous Data Sources.
In ACM SIGMOD, 2018.

[3] Bureau of Transportation Statistics. ASA 2009 data expo.
http://stat-computing.org/dataexpo/2009/.

[4] J. M. Hellerstein et al. Online aggregation. In ACM SIGMOD,
pages 171–182, 1997.

[5] F. Li et al. Wander join: Online aggregation via random walks.
In ACM SIGMOD, pages 615–629, 2016.

[6] Z. Liu et al. The effects of interactive latency on exploratory
visual analysis. IEEE Trans. Vis. Comput. Graph.,
20(12):2122–2131, 2014.

[7] G. Luo et al. A scalable hash ripple join algorithm. In ACM
SIGMOD, pages 252–262, 2002.

[8] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb:
Universalizing approximate query processing. In ACM
SIGMOD, 2018.

1817

http://stat-computing.org/dataexpo/2009/

	Introduction
	System Overview
	Progressive SQL
	Database Preparation
	Progressive Queries
	Query Steering

	Demonstration Scenario
	Scenario 1: Progressive Queries
	Scenario 2: Query Steering

	Summary
	References

