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ABSTRACT

Modern elastic computing systems allow applications to scale up
and down automatically, increasing capacity for workload spikes
and ensuring cost savings during lulls in activity. Adapting database
management systems to work on top of such elastic infrastructure is
not a trivial task, and requires a deep understanding of the sophisti-
cated interplay between data fragmentation, replica allocation, and
cluster provisioning. This demonstration showcases NashDB, an
end-to-end method for addressing these concerns in an automatic
way. NashDB relies on economic models to maximize query per-
formance while staying within a user’s budget. This demonstration
will (1) allow audience members to see how NashDB handles shift-
ing workloads in an adaptive way, and (2) allow audience members
to test NashDB themselves by constructing synthetic workloads
and seeing how NashDB adapts a cluster to them in real time.
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1. INTRODUCTION

Elastic data management systems, i.e. systems which frequently
change the number of machines in a database cluster, are critical for
both (1) scaling up to handle workload spikes and (2) scaling down
during lulls in activity to reduce costs. To achieve this, such elas-
tic systems must make decisions about data fragmentation, repli-
cation, and cluster sizing simultaneously, while balancing query
performance and resource utilization costs.

This brings about a number of complications for system admin-
istrators. First, administrators must decide how many cluster nodes
to provision, as under-provisioning leads to diminished performance
and over-provisioning leads to undue server provisioning cost. This
is especially critical for cloud-deployed applications, as provision-
ing cost directly translates to monetary cost. Second, administra-
tors must decide how to distribute data across the cluster. Here, the
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goal is to identify a data partitioning and data replication scheme.
Since workloads often change over time, static data distribution
strategies can decrease query performance (e.g., by under-replicating
“hot” data fragments). Third, supporting query prioritization, the
expectation that queries with a higher priority should experience
relatively higher performance than ones with a lower priority, is of-
ten expected by users with complex and diverse query workloads.

To address the above, administrators must simultaneously navi-
gate cluster sizing, data replication, and data placement decisions,
all while taking query priorities and dynamic workloads into ac-
count. Unfortunately, administrators typically approach these com-
plex decisions by manually adjusting the cluster size, re-partitioning,
and re-replicating the data to simply avoid hot spots (an approach
automated in [18]). These decisions often rely on rule-of-thumb es-
timations and gut instincts; even when administrators know exactly
what performance levels are required, it is difficult to translate per-
formance goals and query prioritization policies into an actualized
distributed deployment (e.g., cluster size, data fragments, replicas).

Previous works rarely addressed all of these issues in an end-
to-end manner. Several workload-driven fragmentation and repli-
cation strategies (e.g., [3,5,6, 16, 17]) assume a fixed cluster size
or do not support query priorities. Many cluster sizing techniques
(e.g., [7, 8,10, 12—-14]) rely on the underlying database to handle
fragmentation and replication. Existing work in elastic databases
(e.g., [4, 15, 18]) handles workload spikes by incrementally scal-
ing up/down the cluster and re-distributing data on the new cluster
configuration, but does not take query prioritization into account.

This demonstration will showcase NashDB, a data distribution
and cluster sizing framework for making priority-aware data distri-
bution and node provisioning decisions for read-only OLAP sys-
tems. NashDB uses methods from economics and game theory to
make decisions about fragmentation, replication, and cluster sizing
in an end-to-end manner while respecting query priority. NashDB
directly translates the monetary value of a query to the user (i.e., the
price the user is willing to pay to process that query) into a query
priority, and identifies the cluster size and data distribution scheme
that balances data (supply) to the value of incoming queries (de-
mand). If all queries are assigned the same value, NashDB will
balance the data distribution with respect to data access patterns,
adding more replicas for more popular tuples, scaling up the clus-
ter during workload spikes, and scaling down during lulls in activ-
ity. When users adjust the price of queries, indicating their priority,
NashDB will reconfigure the database cluster to favor high-valued
queries, which will thus experience better performance relative to
low-valued ones. NashDB was introduced in [9].
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Conference attendees will be able to observe NashDB’s auto-
matic data fragmentation, replication, placement, and cluster sizing
strategies on a live data management system. Additionally, they
will be able to modify the priority and volume of each query in a
workload, and observe how NashDB is able to adaptively and au-
tomatically custom-tailor a cluster to the workload.

2. SYSTEM OVERVIEW

NashDB is a data distribution framework for read-only OLAP
analytic applications. NashDB serves a distributed DBMS running
on an elastic cluster (e.g., a cluster built on an IaaS provider or
a private cloud). We assume a shared-nothing cluster where nodes
have access to a fixed amount of non-shared storage, e.g. local SSD
or attached Amazon EBS volumes [1].

2.1 Economic model

The primary intuition behind NashDB is an economic model of
nodes, data, and queries. NashDB models queries as customers
who purchase data from nodes. The priority of a query is modeled
as a price that the user is willing to pay to acquire the data needed to
process the query — a higher price represents a higher priority. As in
a free market, NashDB seeks to balance the supply of data with the
demand for data. This entails identifying a data distribution scheme
that is in Nash equilibrium. In order to achieve this, we depend on
economic theory and the efficiency of market systems.

Let us assume a distributed DBMS running on an elastic cluster.
Each cluster node has a cost per unit time that the node is running
(e.g., rent cost) and a certain amount of disk space for storing data.
We also assume that DBMS tables are stored in some physical or-
dering (e.g., arbitrary or clustered), and that tables are horizontally
fragmented into a set of disjoint fragments.

Each incoming query has an associated price indicating its pri-
ority. In our economic model, a query’s price is equally divided
among the tuples accessed by that query (see [9] for a formaliza-
tion). NashDB continuously monitors the tuples accessed by in-
coming queries and the price paid for each tuple in the database.
This allows us to define the value of a tuple, i.e., the total ex-
pected income earned from a particular tuple. The value of a tu-
ple is affected by (1) the price of the queries accessing the tuple
(higher-priced queries provide more value), and (2) the number of
queries accessing the data fragments that include the particular tu-
ple (a higher number of queries provide more value).

We model each tuple as a “good” that can be provided by a node.
A node is paid by queries for access to tuples, and thus each node
has an incentive to provide tuples. The higher the price of a query,
the more income the node will receive from that query. However,
nodes must pay costs for each provided tuple (e.g. storage fees).
Therefore, nodes wishing to maximize their income will choose to
provide profitable tuples.

Furthermore, tuples are replicated across the cluster nodes. As
in a market system, an increase in the supply of a good results in
a decrease in the price of that good. Specifically, as the number
of nodes providing a replica of a tuple increases (an increase in
quantity supplied), the income a node expects to receive from a
replica decreases. Eventually, we aim to replicate each tuple such
that storing a replica of that tuple is minimally profitable: all current
replicas are profitable, but the cost of storing a single additional
replica exceeds the diminished expected income from that replica.
In this setting, NashDB strives to balance supply against demand:
it seeks to replicate each tuple such that each replica is expected to
be profitable, but offering an additional replica does not increase
the expected profit for any of the cluster nodes. This condition
represents a Nash equilibrium [11].
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2.2 NashDB functionality

NashDB generates fragmentation, replication, and cluster sizing
strategies that are aware of query priorities and adapt to workload
shifts. We conceptualize the priority of each query as the price the
user is willing to pay to process that query. The higher the query
price (a.k.a. the query’s value) the more resources (i.e., replicas,
cluster nodes) will be allocated to serve that query, relatively to
lower-priced queries. Hence, higher-priced queries will enjoy im-
proved performance related to low-priced ones. Under no query
prioritization (i.e., all queries are assigned the same price), NashDB
adapts the number of replicas and the cluster size to data access pat-
terns, scaling up the cluster during workload spikes, and scaling the
cluster down during lulls in activity.

NashDB operates underneath a traditional DBMS, providing ac-
cess to the underlying data stored on disk. A high-level overview
of NashDB is depicted in Figure 1. First, a user-submitted query
is transformed into a query execution plan by a query optimizer.
The leaf nodes of this query execution plan represent operations
which access data. Instead of requesting a specific range of bytes
from a hard disk, each of these leaf operators sends those requests
to NashDB in the form of a range scan: a starting and an ending
tuple index (based on the on-disk order) to read. NashDB keeps
track of how often each tuple is read and and maintains each tuple’s
value. At a user-defined interval, NashDB uses the tuple value in-
formation to reconfigure the cluster. During cluster reconfiguration,
NashDB fragments the database by grouping together adjacent tu-
ples that have similar value. Second, NashDB replicates fragments
proportionally to their aggregated tuple value. NashDB then allo-
cates replicas onto “‘just the right number” of cluster nodes, and
routes data access requests to nodes aiming to minimize data ac-
cess latency. Collectively, these techniques can produce a system
that offer low query execution times. We next describe each of
these components in more detail.

Tracking tuple values NashDB examines both query prices and
query plan information from incoming queries to analyze tuples ac-
cess frequency and to estimate the “importance” of a tuple (a.k.a.
tuple value). Intuitively, tuples that are accessed frequently by
high-priority queries should have a higher value than queries that
are accessed rarely, or by low-priority queries. NashDB continu-
ally updates its estimation of each tuple’s value, using an efficient
data structure called a tuple value estimation tree [9].

Fragmentation Whenever the cluster is reconfigured, NashDB
customizes the underlying cluster to the user’s workload. To do
this, NashDB first splits up the data into consecutive groups of
tuples called fragments (e.g., the blue, green, and orange shaded
regions in Figure 1). NashDB picks fragment boundaries to min-
imize the variance of tuple value within a fragment, i.e., to group
tuples with similar tuple values together. In [9], we give an optimal
quadratic time algorithm for finding such fragment boundaries, as
well as a linear time greedy approximation.

Replication After splitting up the database into a set of fragments,
NashDB next decides how many replicas of each fragment to cre-
ate. To do this, NashDB first computes the cost of storing a frag-
ment (e.g., cloud provider storage fees) and the value of each frag-
ment (the sum of the value of each tuple within the fragment).
For example, the costs and values of three example fragments are
shown in Figure 1: F1 (blue) has a cost of 1.2 and a value of 1.5.
NashDB chooses to replicate each fragment the same number of
times as an ideal free market would choose to “produce” each frag-
ment as a product. For example, fragment F1 is replicated once,
creating a single replica of F1 which will have a cost of 1.2 and
an income of 1.5. If a second replica of F1 had been created, each
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Figure 1: Workflow of NashDB’s functionality

replica would have to pay a cost of 1.2, but would only receive an
income of 0.75 each, since queries (“patrons”) would split their ac-
cesses (“purchases”) between both replicas (“firms”). On the other
hand, fragment F2 also has a cost of 1, but since the tuples in F2
have a higher value than those in F1, fragment F2 has a higher value
of 2.5. NashDB thus creates two replicas of F2.

We present a formalization of this replication strategy in [9], and
prove that it necessarily results in a Nash equilibrium: adding any
additional replica, or removing any replica, cannot lead to an in-
crease in profit. While the Nash equilibrium does not necessar-
ily represent a global optimal, it does represent a “steady state” in
which no single change can improve performance.

Server provisioning After choosing how many replicas of each
fragment to produce, NashDB next decides how to allocate them
into a cluster. To do this, NashDB attempts to find the smallest
number of server nodes (each node incurs a fixed cost) that can (1)
hold all of the replicas (each machine has only finite disk space) and
(2) such that no two replicas of the same fragment are on the same
machine (as there is no benefit to redundantly storing the same in-
formation on the same machine). This problem, known as the class-
constrained bin packing problem, is NP-Hard. We apply a greedy
heuristic, called “Best First Fit Decreasing” [9,19], in order to come
up with an approximation of the optimal solution.

Cluster Transitioning Once a new cluster configuration is com-
puted, NashDB determines the most efficient way to transition the
cluster from its previous data distribution state to the newly com-
puted state. This involves changes to (1) fragment boundaries, (2)
the number of replicas, (3) the number of cluster nodes, and (4) the
allocation of replicas to nodes. Finding a transition strategy that
minimizes data transfer is critical to quickly transitioning between
schemes. NashDB deals with this challenge by using a bipartite
graph matching algorithm [9] which minimizes data transfer costs.

This process — fragmentation, replication, and provisioning — is
repeated periodically to keep the underlying cluster in-sync with
the demands of the user’s workload. This allows NashDB automat-
ically respond to changes in query volume and query prioritization.

3. DEMONSTRATION

Our demonstration is split into two scenarios. In the first, users
can compare NashDB’s behavior on a real-world workload, com-
paring NashDB'’s cluster configuration to a naive, value-based par-
titioning scheme. In the second, users will be able to modify the
volume and budget of queries in a synthetic workload, and observe
the changes to query latency and cluster configuration in real time.

3.1 Scenario 1: Adaptive Management

In the first scenario, we will compare NashDB’s effectiveness
with a naive, value-based partitioning scheme running on AWS [2]
t2.large instances (the cluster size ranges between 4 and 25
nodes). Both techniques are applied to two datasets provided by a
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Figure 2: Scenario 1

large corporation on the condition of anonymity. The user can ob-
serve how the NashDB’s fragmentation changes over time, and how
NashDB adapts the cluster configuration to match frequent shifts
in the workload. To facilitate a fair comparison, the value-based
scheme offers a static fragmentation and uses NashDB’s replica-
tion and server provisioning approach.

The interface for this scenario is shown in Figure 2. The “Play”
button at the top runs the real-world workload from the corpora-
tion. Users will be able to see the tuple value graph (left) and
the cluster configuration (right) for both NashDB (top) and a naive
value-based partitioning scheme (bottom). The tuple value graph
shows the tuple index on the x-axis and the tuple’s monetary value
on the y-axis. Each colored range of tuples corresponds to a dif-
ferent fragment indicating where the fragmentation boundaries are
defined. For example, in the top tuple value graph, one can observe
that four fragments are defined (e.g., the blue fragment includes



tuples 1-200). The graph also indicates that this fragmentation cre-
ates a high variance in tuple values, with the green fragment having
the “hottest” tuples followed by the orange fragment.

The right hand side of the plot depicts the cluster configuration.
Each outer box represents a cluster node (the top right shows 4
nodes, the bottom right shows 6 nodes), and each colored box (e.g.,
the blue box labeled (0, 199)) corresponds to a fragment on that
node. Fragments that are over-replicated (i.e., it would be more
profitable to have fewer of them) glow in blue, whereas fragments
that are under-replicated (i.e., it would be more profitable to have
more of them) glow in red. In Figure 2, the purple fragment appears
over-replicated since there are no queries requesting it (tuples val-
ues are zero for that fragment). Under-replicated fragments indi-
cate bottlenecks: too many queries are accessing those fragments.
Over-replicated fragments indicate waste: not enough queries are
accessing a fragment to justify paying for the fragment. NashDB
must create at least one replica of each fragment, regardless of its
usage, otherwise the data would be lost.

Additionally, the user can compare the current throughput of
each system (i.e., queries per second (QPS)), as well as the mone-
tary cost incurred by each system so far (the numbers appear on the
top right corner of the tuple value graph). At this point in the sim-
ulation, NashDB is operating at 60 QPS and has incurred a cost of
$4.98, whereas the naive approach is operating at a lower through-
put (41 QPS) and has incurred a higher cost ($6.72).

The audience member may press the “Play” button at the top, or
use the slider to manually select a time, to progress or rewind the
workload (best viewed in the accompanying video). This allows
the audience member to (1) understand how NashDB reconfigures
a cluster to match a shifting workload, and, via comparison with
the naive method, (2) the importance (in terms of cost and perfor-
mance) of adaptive systems in general.

3.2 Scenario 2: Query Prioritization

In the second scenario, we will show a live NashDB system
executing queries from a synthetic workload on a cloud provider
(AWS [2]). Figure 3 depicts the user interface for the second sce-
nario. In the top left, the audience can use the sliders to adjust the
volume and price (priority) of a number of (synthetic) simple range
queries. The audience member may also insert their own values for
a simple range query (Q7). The tuple value graph in the bottom
left, and the cluster configuration in the bottom right, will update
in real-time as the audience member moves any slider.

In the top right, the audience will see the average latency of each
range query, computed using a sliding window. The predicate of
each range query can be viewed by hovering over them. The au-
dience member can switch between a bar plot or a line graph of
query latency using the toggle button (upper right). In Figure 3, the
latency of Q5 (yellow) is especially low because the user was will-
ing to pay a high price. If the audience member were to increase
the budget for Q1 and decrease the budget for Q5, NashDB would
reconfigure the cluster in real-time (the new fragments and provi-
sioning scheme would be shown in the bottom right), and the user
would be able to see the affect on query latency in the upper right
plot: the orange bar would fall and the blue bar would rise. This
stresses the importance of adaptive elastic systems. By changing
the underlying physical layout of the data based on the workload,
we can create systems that adapt to user needs. Additionally, the
second scenario allows the audience member to gain an intuition
for the relationship between query priority and replication: when a
particular tuple receives significant traffic, it makes sense to repli-
cate it many times, and, on the other hand, if a tuple is hardly read
at all, a smart DBMS will maintain as few copies of it as possible.
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Figure 3: Scenario 2

4. CONCLUSION

NashDB provides an economics-driven method for automatically
adapting an elastic database to the user’s workload needs. Our
demonstration will allow the audience to explore NashDB’s be-
havior on a real-world workload, emphasizing the importance of
adaptive fragmentation systems. Additionally, audience members
can change the query volume and prioritization in a real-time work-
load, directly observing how workload requirements can translate
into a cluster configuration to benefit cost and query latency.
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