
VISE: Vehicle Image Search Engine with Traffic Camera

Hyewon Choi
University of Toronto

jennachoi@cs.toronto.edu

Erkang Zhu
University of Toronto
ekzhu@cs.toronto.edu

Arsala Bangash
University of Toronto

bangashm@cs.toronto.edu

Renée J. Miller
Northeastern University
miller@northeastern.edu

ABSTRACT
We present VISE, or Vehicle Image Search Engine, to sup-
port the fast search of similar vehicles from low-resolution
traffic camera images. VISE can be used to trace and locate
vehicles for applications such as police investigations when
high-resolution footage is not available. Our system consists
of three components: an interactive user-interface for query-
ing and browsing identified vehicles; a scalable search engine
for fast similarity search on millions of visual objects; and an
image processing pipeline that extracts feature vectors of ob-
jects from video frames. We use transfer learning technique
to integrate state-of-the-art Convolutional Neural Networks
with two different refinement methods to achieve high re-
trieval accuracy. We also use an efficient high-dimensional
nearest neighbor search index to enable fast retrieval speed.
In the demo, our system will offer users an interactive ex-
perience exploring a large database of traffic camera images
that is growing in real time at 200K frames per day.

PVLDB Reference Format:
Hyewon Choi, Erkang Zhu, Arsala Bangash, and Renée J. Miller.
VISE: Vehicle Image Search Engine with Traffic Camera Images.
PVLDB, 12(12): 1842-1845, 2019.
DOI: https://doi.org/10.14778/3352063.3352080

1. INTRODUCTION
After a hit-and-run incident, police officers typically re-

view available camera footage to trace the suspected of-
fender’s vehicle. Since camera footage may be of insuffi-
cient resolution for identifying license plates, this process
can be laboriously time-consuming and may lead to missing
the best opportunity to stop the vehicle before it becomes
untraceable or abandoned. VISE, Vehicle Image Search
Engine, can be used to narrow down the locations of the
offender’s vehicle in seconds. In another use case, VISE
can also be used to investigate a vehicle’s past activities by
searching through massive historical video frames.

We developed VISE to support the fast search of highly-
similar vehicles given an existing image of a vehicle in ques-

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352080

Figure 1: Objects from different viewpoints

tion. Through a simple and intuitive user interface, our
demonstration will let users select an image of a vehicle,
and obtain a ranked list of similar vehicle images located by
traffic cameras from a large search index containing more
than approximately 600,000 identified vehicles per day. The
user can refine the search result based on time, location of
cameras, and the travel distance from the initial location of
the vehicle in question.

In Section 2, we discuss our innovations in combining Con-
volutional Neural Networks (CNNs) with our custom refin-
ing methods to improve retrieval accuracy. We also discuss
a two-stage retrieval process that enables both interactive
speed and high accuracy. In Section 3, we present the ar-
chitecture of the search engine system and discuss its capa-
bility. Finally, we present the user interface features in a
walk-through of a usage scenario in Section 4.

2. TECHNICAL OVERVIEW
In this section, we describe the details of VISE and our

innovations in searching visual objects (i.e., vehicles). The
visual object search problem can be defined as follow:

Definition 1. Given an input image of an object Q, find
images that also contain Q from a large collection of images
of objects.

In practice, we may not find images that contain exactly
Q. However, we can find images that contain Q with high
probabilities. It is important to note that objects may be
observed from different perspectives in different images. For
example, the input image may depict the front of a vehicle
and we need to be able to find images of the same vehicle
from the side or rear, as the example images in Figure 1)
demonstrates.

This problem lies in the domain of content-based image
retrieval (CBIR). There are several commercial image search
engines for CBIR: Google Image Search1 provides general
image search, and TinyEye2 provides near-duplicate image
1https://images.google.com
2https://www.tineye.com

1842

https://images.google.com
https://www.tineye.com

Figure 2: Object detection using RFCN-ResNet 101

Figure 3: Feature extraction using ResNet 50

search. These search engines are for images found on the
web, not for domain-specific images such as traffic camera
images. In addition, they are built to find highly-similar
images, not objects, which may have different perspectives.
For domain-specific CBIR, Pinterest [5] provides a feature
for finding images of similar products on its platform. They
rely on user-generated text annotations of images to classify
images into categories, and retrieve similar images within
selected categories. In our case, we do not have annotations
to guide us.

2.1 Object Detection and Feature Extraction
A traffic camera image can contain multiple objects. Fig-

ure 2 illustrates how we detect and extract objects from
each image. We use a Region-based Fully Convolutional
Networks (RFCN) [3] for object detection. We choose a 101-
layer Residual Network to be the backbone of the network.
This model is adopted because RFCN models using Resid-
ual Network generally has a good balance between accuracy
and speed. With our dataset, 1) the model has high recall
rate for object detection and 2) it also has higher inference
speed than other high-recall object detection models that
we tried, such as Faster R-CNN with Residual Network [8].
Using this model, we detect objects within each image and
detect their bounding boxes; then, to extract each object,
we crop the image to the bounding box.

Cropped images of extracted objects may not have the
same dimension. In addition, we want to represent each
object based on its semantic features rather than its raw
pixels. Thus we use another CNN model, ResNet-50 [4], to
extract the object’s features as a fixed-sized vector. ResNet-
50 is commonly used for object classification, and it is also
used for feature extraction. The last layer of this network
(before the classifier layer) collects all the features of images
that we have gained from the preceding convolutional layers.
This layer is called the Average Pooling Layer in the ResNet-
50 architecture. A vector is extracted from the Average
Pooling Layer of the model with the classifer layer removed,
as shown in Figure 3. This approach is often called “transfer
learning”, and it has been used by the text-to-image search
engine at Etsy [6].

2.2 Nearest Neighbor Search and Refinement
As mentioned earlier, we want to find images containing

similar objects. To do so, we use Hierarchical Navigable
Small World (HNSW) [7], which is a K-nearest neighbor
search index, to efficiently find objects that are highly-likely

Figure 4: Nearest neighbor search using HNSW and
result refinement using the XGBoost Classifier

to be the same object as a query object. The similarity
is determined based on the cosine distance of the feature
vectors to that of the query object.

The nearest neighbor search gives similar objects even
when viewed from a different perspective. However, the pre-
cision and recall of this similarity search may be low since
we used a CNN pre-trained on general images found on the
Web (i.e., ImageNet), rather than on a domain-specific cor-
pus. To improve the accuracy of the search index, we use two
approaches: 1) a custom classifier trained on labelled pairs
for removing false positives and 2) a technique we call multi-
object query for getting more results and avoiding false neg-
atives.

To increase retrieval precision, we train a custom clas-
sifier (XGBoost [2]) on labeled pairs of images of objects
captured by traffic cameras, as illustrated in Figure 4. Dur-
ing labeling, for every pair of cropped images of objects, we
concatenate the two feature vectors of size 2048 x 1, and
label it either a 1 if they contain the same object or 0 if
different. Manually labeling pairs one-by-one can be very
time consuming. To speed it up, we first create 11 vehicle
categories and assign images of objects (vehicles) to one of
the categories. Then, we label all pairs within each category
as 1 and all pairs from different categories as 0. Using this
approach, we generated 121,024 labeled pairs.

To improve recall, we use a different strategy by support-
ing multi-object querying: instead of using a single vehicle’s
image as a query, the user can select multiple images of the
same vehicle (identified by the user), and group them as one
query. The final search result is the union of the search re-
sults of the individual images in the query. Assuming the
probability of a false negative be pf for each search result,
in the recall of k results, the probability of a false negative

1843

Figure 5: VISE’s architecture

would be pkf . Because pkf < pf , the recall is higher for the
union.

3. THE SEARCH ENGINE SYSTEM
As illustrated in Figure 5, the VISE search engine for

vehicles consists of three major components: the image pro-
cessing pipeline, the search server, and the web-based user
interface. In this section, we describe the architecture of the
image processing pipeline and the search server.

3.1 The Image Processing Pipeline
The image processing pipeline crawls traffic camera im-

ages released through Toronto Open Data Portal3. The
images are from 281 cameras and sampled every two min-
utes. The images and metadata are first stored in a SQLite4

database, and then sent to our object detection and feature
extraction system running on Tensorflow5 and two GPUs
(GeForce GTX 1080 Ti). The extracted feature vectors are
stored to an SQLite database, and then used for calculation
of the nearest neighbor index in the backend search server,
making them available for users’ queries.

The combined object detection and feature extraction has
a throughput of approximately 13 images per second, enough
to handle the speed at which the images are coming in – 2.5
images per second on average. If the image sampling rate
were to increase in the future beyond our current capacity,
we could parallelize object detection and feature extraction
procedures on multiple GPUs.

Initially, when object detection was performed on each
image using a CPU, it took up to 5 seconds per image to
run an inference. This was due to the the depth of the Con-
volution Neural Network, RFCN-ResNet 101, which we were
using. We optimized the graph inference by using a GPU,

3https://www.toronto.ca/city-government/
data-research-maps/open-data/
4https://www.sqlite.org
5https://www.tensorflow.org

0.025 0.050 0.075 0.100
Number of Samples Per Second

0.6

0.7

0.8

0.9

1.0

Ca
pt

ur
in

g
Pr

ob
ab

ilit
y

Figure 6: Left: a partial route of a vehicle with cam-
eras; Right: the probability of capturing the vehicle
at least once in the route with respect to sample
rate.

which took up to about 0.10 second per image. Further-
more, we were able to optimize it by adopting TensorRT6,
a high performance neural network inference optimizer and
runtime engine, to about 0.07 second per image.

For extracting feature vectors, we use batches of 32 ob-
jects, which takes up to 0.25 seconds per batch on our GPU.
Thus, the objects’ feature vectors are generated at the rate of
128 per second, well within the write throughput of SQLite [1].

To further discuss the sample rate: the City of Toronto
currently publicly releases images at two-minute intervals for
every camera, but the sample rate used internally is likely
much higher. Higher sample rate surely leads to higher re-
call in finding vehicle. However, it will also lead to higher
hardware cost7 and put stress on memory and storage ca-
pacity. The question we would like to answer is what sample
rate is “good enough” for a given route, and how to upgrade
our system to handle that sample rate.

To calculate the desired sample rate, let us assume the
time it takes for a car to travel through any camera’s captur-
ing range is t seconds. Then the probability of the car being
sampled if it travels through a single camera is t · s where s
is the number of samples per second (e.g., 0.0083, or 1 per 2
minutes for the City of Toronto’s public release). If the car is
traveling in a route with x number of cameras, the probabil-
ity of capturing the car at least once is 1−(1−min(1, t ·s))x.
Assuming t = 5 and x = 20, the probability with respect to
sample rate is shown in Figure 6: to achieve 94% probabil-
ity, it only takes a sample rate of 0.025 (i.e., 3 per 2 minutes,
or 3× the current rate). Most importantly, we do not need
to update our current pipeline or add new hardware to meet
the new throughput requirement (i.e., 2.5 × 3 = 7.5 images
per second).

3.2 The Search Server
The search server hosts the nearest neighbor search index

in-memory, as well as handles requests from the web inter-
face. Due to the large number of objects generated every
day – approximately 600.000–700.000 objects per day, we
only make objects from the last 7 days searchable.

6https://docs.nvidia.com/deeplearning/sdk/
tensorrt-developer-guide/index.html
7The market price of a new GeForce GTX 1080 Ti GPU is
$1,799.98 as of March 2019.

1844

https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.toronto.ca/city-government/data-research-maps/open-data/
https://www.sqlite.org
https://www.tensorflow.org
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html

Figure 7: Browsing through traffic camera images

Figure 8: Inspection of a selected image

The memory usage of the search server including the index
is 34.07 GB. The indexing time for 7 days of objects (∼ 4.3
millions) is 22.51 minutes. The average time for a single-
object query is 1.5 milliseconds (using a random sample of
1,000).

4. DEMONSTRATION AND CASE STUDY
We now walk through the user interface of VISE through

an interesting usage scenario.
After a hit-and-run incident, police officers review avail-

able camera footage to trace the vehicle of the suspected
offenders. The officers have learned that a white Van at
the intersection of Yonge Street and Dundas Street East in
Downtown Toronto at 10:30 AM has caused the incident. In
order to locate the vehicle in question, the officers initially
navigate to the application to see selections of traffic cam-
era images, as shown in Figure 7. The officers query “Van”
using the search bar at the top section of the page, in order
to retrieve images that contain a van. They then success-
fully narrow down the search to only images that contain a
similar van. The left-side bar contains multiple inputs that
enables them to perform advanced search by refining the
selection of images by criteria such as the camera number,
the time interval in which the images were captured, or the
location.

The officers select an image from the initial search results
that may contain the vehicle in question, and then they are

taken to the inspection page for this vehicle as shown in Fig-
ure 8. When they hover their cursor over a box surround-
ing the vehicle in question, images of the nearest neighbors
(highly similar vehicles) are retrieved from the search server,
loaded along with metadata such as camera numbers, loca-
tions of the streets, and time captured. Highly similar ve-
hicles are retrieved from the nearest neighbor search index
using the extracted feature vectors obtained from the im-
age processing pipeline. The search results are ranked by
descending order of similarity scores.

To further refine the results based on location, the officers
use the interactive map to navigate and view the locations
of highly similar vehicles. The vehicle in question (query ve-
hicle) is annotated with a pinpoint marker, while the highly
similar vehicles are represented with their image thumbnails.
By selecting one of the vehicles, the map computes the dis-
tance between the selected and the query vehicles.

Using the map, the officers have identified a candidate
match within some reasonable distance from the query ve-
hicle. To gather more candidates, they extend the current
result set by using multi-object query: each similar vehicle
has a button that adds itself to the query together with the
current query vehicle. The new search result set is the union
of the nearest neighbors of all query vehicles. Once the of-
ficers have identified the most recent location of the vehicle
in question, they can quickly deploy ground forces.

5. ACKNOWLEDGEMENTS
This work is partially funded by NSERC.

6. REFERENCES
[1] Database Speed Comparison.

https://www.sqlite.org/speed.html. Accessed:
2019-03-14.

[2] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In SIGKDD, pages 785–794, 2016.

[3] J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object
detection via region-based fully convolutional networks.
In NIPS, pages 379–387, 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In CVPR, pages
770–778, 2016.

[5] Y. Jing, D. C. Liu, D. Kislyuk, A. Zhai, J. Xu,
J. Donahue, and S. Tavel. Visual search at pinterest. In
SIGKDD, pages 1889–1898, 2015.

[6] C. Lynch, K. Aryafar, and J. Attenberg. Images don’t
lie: Transferring deep visual semantic features to
large-scale multimodal learning to rank. In SIGKDD,
pages 541–548, 2016.

[7] Y. A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. CoRR, abs/1603.09320,
2016.

[8] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster
R-CNN: towards real-time object detection with region
proposal networks. IEEE Trans. Pattern Anal. Mach.
Intell., 39(6):1137–1149, 2017.

1845

https://www.sqlite.org/speed.html

	Introduction
	Technical Overview
	Object Detection and Feature Extraction
	Nearest Neighbor Search and Refinement

	The Search Engine System
	The Image Processing Pipeline
	The Search Server

	Demonstration and Case Study
	Acknowledgements
	References

