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ABSTRACT
We focus on the problem of aligning ontology relations,
namely finding relation names that correspond to the same
or related concepts. Such alignment is a prerequisite to the
integration of the multiple available Knowledge Bases many
of which include similar concepts, differently termed. We
propose a novel approach for this problem, by leveraging
association rules – originally mined in order to enrich the
ontological content. Here, we treat the rules as Datalog
programs and look for bounded-depth sub-programs that
are contained in (or equivalent to) each other. Heads of
such programs intuitively correspond to related concepts,
and we propose them as candidates for alignment. The can-
didate alignments require further verification by experts; to
this end we accompany each aligned pair with explanations
based on the provenance of each relation according to its
sub-program. We have implemented our novel solution in
a system called Datalignment. We propose to demonstrate
Datalignment, presenting the aligned pairs that it finds, and
the computed explanations, in context of real-life Knowledge
Bases.
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1. INTRODUCTION
In large-scale ontologies, it is common to see semantically

related – or even equivalent – concepts that are captured
by different relations. For example, DBpedia [2] includes
the birthplace, birthP lace and placeOfBirth relations that
intuitively have the same semantic meaning, as well as other
related relations such as countryOfBirth. When we look
at multiple ontologies – say YAGO [11] and DBpedia – we
observe many further cases of semantically related relations,
such as wasBornIn in YAGO or birthP lace in DBpedia.
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Ontology alignment aims at merging such semantically
equivalent relations, thereby enriching the ontological knowl-
edge. Some approaches to ontology alignment focus on sim-
ilarity of relation content, but the latter may not reveal the
full picture: for instance, the aforementioned birthplace and
birthP lace DBPedia relations share less than 2% of common
tuples. Due to the Open World Assumption, where absence
of ontology data does not indicate its falseness, such low in-
tersection rate is not necessarily an evidence of dissimilarity.

Instead, we focus in this work on an alternative novel ap-
proach, as follows. We leverage correlation rules between
relations, which may be found using systems for mining log-
ical rules from Knowledge Bases (KBs), such as AMIE [7].
Such system produces rules of the form wasBornIn(x,y) ∧
isLocatedIn(y,z) ⇒ isCitizenOf(x,z).
As observed in [5], the rules produced by AMIE, when com-
bined, may be viewed as possibly recursive datalog pro-
grams. The programs may be very complex, and contain
large number of rules. To illustrate, the number of different
rules that may be used to directly derive a single fact in
AMIE exceeds 20, many of these rules are recursive (in the
datalog sense). While the rules may be intricate, they can
reveal complex relationships between properties and con-
cepts of the KBs.

Our main observation here is that with this view, align-
ment of ontology relations corresponds to equivalence of dat-
alog programs – the rules of these programs are the frag-
ments reachable from each of the relation names that one
wishes to align. In the following example we illustrate such
a simple program using a fragment of rules mined by AMIE.

Example 1.1. Consider the program with goal relation
wasBornIn, consisting the following rules:
r1 wasBornIn(x,y):-pb(x,y)

r2 wasBornIn(x,y):-birthPlace(x,y),placeOfBirth(x,y)
r3 pb(x,y):-placeOfBirth(x,y)

where pb stands for placeofbirth, for the sake of brevity
and avoiding confusion with placeOfBirth. Note that r3
was added to this program because pb appeared in the body
of r1. Relations birthPlace and placeOfBirth do not ap-
pear in any head.

Further, this gives rise to another kind of correlation: if
the corresponding datalog programs are not equivalent but
rather strictly contained in each other, we can infer semantic
containment of the relations.

Towards this end we present Datalignment, a system for
ontology alignment via datalog containment. The general
framework of Datalignment is depicted in Figure 1. The
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system is comprised of two main components. The first,
is a preprocessing step, which includes entity alignment,
and rules mining (using AMIE) on a coalesced KB. On the
second component, datalog programs are created from the
mined rules, and the system searches for containments of
programs such that their goal relations are from different
KBs. Note that this approach is similarly applicable for the
single KB case, where we refine the KB and find contain-
ments between relations. In this case we skip the preprocess-
ing step as entities are already shared between relations.

Naturally, datalog containment is undecidable, and so if
one of the sub-programs is recursive we approximate it by a
bounded-depth variant. In addition, the datalog programs
themselves are based on statistical correlations and are thus
imprecise. We thus view our solution as one that can aid
analysts in performing alignments, rather than a fully au-
tomated solution. In this respect, it is important that the
proposed alignments are explained, to allow the analyst to
understand them and verify their correctness. Our approach
is unique in that it allows such explanations, based on the
provenance of aligned relations with respect to the rules con-
tained in the datalog programs.

We will demonstrate the usefulness of our system in the
context of ontology alignment using the real-life data from
YAGO and DBpedia. Using multiple examples, and interac-
tively engaging the audience, we will explore the alignments
proposed by Datalignment and their explanations.

Related Work. The problem of ontology alignment has been
extensively studied and multiple approaches were developed
to solve sub-problems in the field such as aligning enti-
ties, relations and classes of given ontologies. For instance,
PARIS [10] receives as input two ontologies and produces
one-to-one alignment of their entities, relations and classes.
Additional specialized systems such as SORAL [8], propose
a supervised machine learning model for specifically aligning
relations across two ontologies based on sampling relations
using SPARQL endpoint and evaluating relations similarity
based on multiple features. Both do not provide explana-
tion for alignments. To our knowledge, we are the first to
propose ontology alignment via datalog containment.

The approach closest to ours is that of [6]. In [6] the au-
thors define a set of alignment patterns called ROSA rules
which are used for the alignment process. The idea of [6]
subsumes state-of-the-art ontology matching by finding more
complex correlations, e.g., that one “hop” in one KB can cor-
respond to several hops in the other. ROSA rules are gen-
erated similarly to our preprocessing stage, of aligning enti-
ties, coalescing the KB and executing AMIE to mine rules.
Each ROSA rule pattern consist of a single rule produced
by AMIE. The approach we present here further process
the rules treating rules with similar heads as a datalog pro-
gram. This general approach leads to the discovery of other
complex correlation between the KBs that cannot be found
using single rule patterns. For example, Datalignment finds
containment between programs for which the intersection of
their corresponding head relations in the KB is empty.

2. TECHNICAL DETAILS
We (informally) introduce the main technical notions in-

volved in the development of Datalignment, using examples.

2.1 Preliminaries
We start by providing a brief overview of the necessary

preliminaries on Knowledge Bases, association rule mining
and datalog containment.

Knowledge Base. A Knowledge Base (KB) is a set of RDF
triplets called facts of the form <subject> <relation>

<object> where subject is an entity, object is either an
entity or a literal (string, number, etc.) and relation is the
relationship between the subject and object.

Association rule mining. Association rule mining in the
context of KBs aims at finding correlations between entities
inside a KB and expressing it using rules. AMIE [7] is an ex-
ample of a rule mining system. For example, consider the as-
sociation rule Y:wasBornIn(x,y) :- D:birthPlace(x,y),

D:placeOfBirth(x,y) mined from a KB based of YAGO
and DBpedia which means:
x Y:wasBornIn y if x D:birthPlace and D:placeOfBirth is
y, i.e if there exist entities x, y such that D:birthPlace(x,y),
D:placeOfBirth(x,y) are in the KB, then we can deduce
wasBornIn(x,y). This rule expresses a correlation between
the birthP lace, placeOfBirth and the wasBornIn relation.
Association rules are mined automatically in AMIE, and are
inherently uncertain, due to either the underlying database
contains erroneous facts or due to the mining process finding
wrong correlations. Thus, each rule is assigned some form
of confidence score. For instance, the above rule may have
a confidence score of 0.67.

Datalog programs. We assume that the reader is famil-
iar with standard datalog concepts [1], and demonstrate its
syntax in the context of our running example below; we say
that a datalog program P1 is contained in a program P2 if
for every database D, the evaluation result of P1 over D is
contained in that of P2 over D.

The following example uses a subset of real-world rules
mined by AMIE based on the YAGO and DBPedia data.
Relations prefixed by Y: and D: are from YAGO and DBpe-
dia, respectively.

Example 2.1. Let P1 = {r1, r2} and P2 = {r3, r4, r5}
be datalog programs with the goal predicates D:cityofbirth

and Y:wasBornIn, respectfully. Let r1, . . . , r5 be the follow-
ing rules:
r1 D:cityofbirth(x,y):-D:placeOfBirth(x,y) (0.51)
r2 D:cityofbirth(x,y):-D:birthPlace(x,y),

D:placeOfBirth(x,y) (0.98)
r3 Y:wasBornIn(x,y):-D:pb(x,y) (0.63)
r4 Y:wasBornIn(x,y):-D:birthPlace(x,y),

D:placeOfBirth(x,y) (0.67)
r5 D:pb(x,y):-D:placeOfBirth(x,y) (0.83)
where D:pb stands for D:placeofbirth for the sake of brevity
and avoiding confusion with D:placeOfBirth. For every
possible database D (containing D:placeOfBirth and
Y:birthPlace as edb relations) it holds that P1 ⊆ P2 because
rules r2 and r4 are the same and relation Y:wasBornIn(x,y)

contains all tuples of relation D:pb(x,y) (rule r3) which in
turn contains D:placeOfBirth(x,y) (rule r5) and
D:placeOfBirth(x,y) is a shared relation (treated as edb).
Thus P1 ⊆ P2. In the other direction, P2 ⊆ P1 following a
similar rationale, concluding that P1 ≡ P2.
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2.2 Problem Statement
Our goal is to find containment relationships between re-

lations of two KBs. Given KBs KB1,KB2 we align entities
and coalesce them into a single KB which is given as input
to a mining rule system (such as AMIE) that produces a set
of rulesR. Let C1 = R1

1 . . . , R
1
n and C2 = R2

1 . . . , R
2
k be sub-

sets of idb relations in R such that Ri
j ∈ KBi for i ∈ {1, 2}.

Each pair of relations R1 ∈ C1, R
2 ∈ C2 are compared in

search for containment. To this end, the system generates
the datalog program corresponding for each relation. Rules
sharing the same relation as head relation are grouped into a
single program, and the program is recursively extended by
adding rules whose head atom appears in the body of some
rule of the program. This is repeated until no more rules
added (or the program contains all rules of R). The same
procedure may be applied for the single KB case, where we
refine the KB and find containments between relations. The
only difference in the latter case is that both C1 and C2 are
from the same KB, essentially, pairwise comparison between
R1 6= R2 ∈ KB.

We note that the datalog programs obtained by using
AMIE in the above way are restricted, in the following sense.
First, since relations in a KB are binary, so are the re-
lations in the program. Further, we say that two body
atoms of a rule are connected if they share a variable. A
rule is connected if all its body atoms are transitively con-
nected. A rule is closed if each of its variables (either in
the head or body) appear at least twice. We observe that
rules mined by AMIE are connected and closed. As example,
rule A(x,y):-A(x,z),C(z,y) is connected and closed, while
A(x,y):-A(x,y),C(z,w) is neither connected nor closed.

It is well known that general datalog containment is unde-
cidable [9]. It is further undecidable when the programs are
restricted to chain programs [3], such as those comprised of
the first rule (connected and closed) in the above example.

2.3 Solution Overview
In light of the undecidability of the problem, we have im-

plemented a simple heuristic algorithm that, naturally, is
incomplete. We first recall that undecidability is due to
the fact that datalog programs may be recursive. Indeed,
containment is decidable for non-recursive datalog. Further
analyzing (manually) the structure of the concrete datalog
programs obtained from rules mined by AMIE, we note that
although there is significant value in looking for indirect
derivation rules, the “distance” of relations with respect to
their appearance in rules matter. That is, if a fact f0 is used
in a rule that derives a fact f1 and in turn f1 is used in a
rule that derives f2, etc. up to fact fn, then naturally the
strength of connection – and in turn the importance of f0
appearing in the program of fn, diminishes quite fast as n
grows. Recall also that rules are associated with confidence
values, usually less than 1; treating this confidence as (in-
dependent) probabilities, one may claim that the confidence
in the connection also decreases exponentially with n.

We define an expansion of a datalog rule in the usual
sense, by the substitution of an idb predicate that appears
in a rule’s body with the body of another rule having the
aforementioned idb predicate as its head. The confidence
for the resulting rule is the product of all rules that were
used for expansion. The set of all possible expansion of a
rule r may be viewed as a tree, where each node represents
a rule body (i.e, a possible expansion). The root node is

Figure 1: Framework

the body of r, and children of a node r′ are rule’s bodies
obtained by a substitution of an idb predicate in r′’s body.
Then, the expansions trees of rules r1, . . . , rn with the same
head relation R can be grouped into a single tree, rooted at
R, denoted as the expansion tree of R.

We simply put a bound maxDepth on the depth of expan-
sion trees we consider, thereby “approximating” the data-
log program through a non-recursive one. We further prune
nodes that have confidence below threshold, and our expe-
rience shows that this threshold needs to be quite high, e.g.
0.7. This also means that maxDepth parameter can be set
to be quite low, e.g. 2 or 3. These parameters are of course
easily configurable.

Then, the algorithm is quite straightforward. It is given
as input two datalog programs P1, P2 with goal relations
R1, R2 whose containment one wishes to check. It is also
given as parameters maxDepth that limits the depth of ex-
pansion trees and a minimal confidence level as threshold
under which nodes in the tree are discarded. It then exhaus-
tively expand the two programs up to the required depth,
computing the confidence of each node in the expansion tree
as the multiplication of confidence values of its “ancestor”
rules used for derivation. If this node has confidence below
threshold it is discarded, otherwise it is kept, and we ob-
tain Conjunctive Queries (CQs) whose containment can be
verified via Chandra and Merlin algorithm [4].

Explanations. Each candidate containment is accompanied
with an explanation for the analyst. An explanation is based
on the (bounded) expansions trees of each relation in a con-
tainment pair. Assuming R1 is contained in R2, an expla-
nation is an implicit mapping between each node of the ex-
pansion tree of R1 to a containing node (CQ-wise) in the
expansions tree of R2. The system displays the expansions
tree of each program for an analyst to interactively exam-
ine the derivation process and the containment relationships
between corresponding nodes.

3. SYSTEM OVERVIEW
We have implemented our solution of ontology alignment

based on datalog containment in a system prototype called
Datalignment. The prototype has been implemented in
Python 3, and runs on a multi-core Linux server. The user
interface was implemented in JavaScript and Node.js.

The general framework of our system is depicted in Figure
1. The system is comprised of two main components. As
input we receive two KBs. The first step is to align the
entities of both KBs using owl:sameAs links or by using an
entity aligning system. Next, we coalesce the KBs into a
single new KB while prefixing every relation name with a
unique identifier corresponding to its original KB. AMIE is
executed on the coalesced KB and rules are mined. Datalog
programs are created from the mined rules. The system
pairwise checks for containments of programs P1, P2 such
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(a) Relations Containments (b) Explanations

Figure 2: System Interface

that the goal relation of P1 is from KB1 and the goal relation
of P2 is from KB2 and outputs all containments for the user.

For the second step, the user provides the system two
parameters: threshold for pruning low confidence rules and
maxDepth for limiting the number of rule expansions. Once
the inputs are fed, the system compute candidate contain-
ments using the method explained in the previous section,
and present them to the user as shown in Figure 2a. The
user can then examine the results by browsing the entire list,
or filter the results to quickly find the relation of interest.
Each containment is associated with an explanation, that in-
tuitively present the sequence of rules expansion “leading”
to the containment, and the user can double click on any
containment pair to explore its explanation.

The explanations screen (Figure 2b) allows the user to ex-
plore how different rules are utilized in the expansion process
of the algorithm. Each program is presented using a hier-
archical graph, depicting the expansion tree structure. The
root node of each program is its goal relation, each child
node represents a possible expansion using a single rule of
the program, and the label of each rule used for expansion
is shown on the edge. The confidence level in each node,
based on the rules used to derive it is displayed in brackets.
Double clicking on a single node in program 1 highlights the
node itself along with one of its containing nodes in pro-
gram 2. Whereas, double clicking on a node in program 2,
highlights it and all nodes in program 1 which it contains.

4. DEMO SCENARIO
We will demonstrate the usefulness of our system in the

context of ontology alignment using real-world data from
YAGO and DBpedia. We will use rules mined by AMIE on a
coalesced version of the KBs. The participants will be asked
to play the role of data analyst, examining the usefulness of
Datalignment in the process of ontology alignment.

We will start by presenting the audience the pre-mined
rules and let them set the threshold and maxDepth pa-
rameters. Next, we will run the system and examine the
proposed alignments and containments. We will walk the
audience through the process of analyzing the results, as
follows. We will ask the participant to pick a proposed
alignment pair in order to further examine the correspond-
ing programs. Upon selection of a pair we will let the user
expand the programs graphs, looking at the relevant rules.
If the participant finds a rule that appears erroneous to her,
she will be able to delete it and re-execute the system, ob-
serving the effect of her decision on the alignment results.

The system provides a sample of tuples for the relations en-
abling the analyst to justify the correctness of containments.
If needed, we will allow the participants to perform further
iterations until verifying the alignment results that are of
interest to her.

Finally, we will let the audience “look under the hood”.
In particular, we will show relevant tuples from the original
KBs of the relations pairs of which we explore, as well as
relevant intermediate results of our algorithm execution.
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[6] L. A. Galárraga, N. Preda, and F. M. Suchanek. Mining
rules to align knowledge bases. In AKBC@CIKM, pages
43–48, 2013.
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