
IHCS: An Integrated Hybrid Cleaning System

Congcong Ge†, Yunjun Gao†♯, Xiaoye Miao‡, Lu Chen§,
Christian S. Jensen§, Ziyuan Zhu†

†College of Computer Science, Zhejiang University, Hangzhou, China
‡Center for Data Science, Zhejiang University, Hangzhou, China
§Department of Computer Science, Aalborg University, Denmark

♯Alibaba–Zhejiang University Joint Institute of Frontier Technologies, Hangzhou, China
†‡{gcc, gaoyj, miaoxy, zhu zy}@zju.edu.cn §{luchen, csj}@cs.aau.dk

ABSTRACT
Data cleaning is a prerequisite to subsequent data analysis, and is
know to often be time-consuming and labor-intensive. We present
IHCS, a hybrid data cleaning system that integrates error detection
and repair to contend effectively with multiple error types. In a pre-
processing step that precedes the data cleaning, IHCS formats an
input dataset to be cleaned, and transforms applicable data quality
rules into a unified format. Then, an MLN index structure is formed
according to the unified rules, enabling IHCS to handle multiple
error types simultaneously. During the cleaning, IHCS first tack-
les abnormalities through an abnormal group process, and then, it
generates multiple data versions based on the MLN index. Finally,
IHCS eliminates conflicting values across the multiple versions,
and derives the final unified clean data. A visual interface enables
cleaning process monitoring and cleaning result analysis.

PVLDB Reference Format:
Congcong Ge, Yunjun Gao, Xiaoye Miao, Lu Chen, Christian S. Jensen,
Ziyuan Zhu. IHCS: An Integrated Hybrid Cleaning System. PVLDB, 12(12):
1874-1877, 2019.
DOI: https://doi.org/10.14778/3352063.3352088

1. INTRODUCTION
Analyses of dirty data may yield incorrect results that in turn

lead to wrong decisions with adverse financial impact on a com-
pany [5]. As a consequence, there has been a surge of interest from
both industry and academia in data cleaning [2]. Data cleaning of-
ten encompasses two stages, i.e., error detection (where dirty data is
identified) and error repair (where the data is corrected). Although
many approaches exist to detect [7] or repair errors [9], data clean-
ing remains hard as different methods have different limitations in
terms of the errors they address. There are two major reasons for
this state of affairs. First, we still lack a unified cleaning model
for handling different types of errors. Second, existing approaches
often depend too much on the availability of external clean data.
Furthermore, existing data cleaning methods tend to separate error
detection and error repair, ignoring the connection between them,

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3352063.3352088

which adversely affects the cleaning result quality. In addition, ex-
isting systems tend to integrate different error detection or repair
methods as black boxes [7], making it hard for users to observe
occurrences of errors and how they were corrected.

We address four major challenges: data quality rule multiplicity,
limitations in fixable error types, the disconnection between error
detection and repair, and the difficulty of analyzing cleaning results.
In brief, our goal is to handle different errors including both detec-
tion and repair without relying on external clean data, and to enable
users to analyse cleaning results in a friendly, visual manner. In the
next section, we present the challenges addressed in more detail,
using a real-world hospital data for illustration.

We demonstrate IHCS, an integrated hybrid data cleaning sys-
tem, to tackle the challenges mentioned above. It consists of two
parts: (i) a hybrid cleaning framework that detects and repairs dif-
ferent types of errors; and (ii) a user-friendly interactive interface.

The hybrid cleaning framework accomplishes cleaning in five
steps. First, it receives user input (i.e., a dirty dataset with related
data quality rules), formats the dataset into a standard form that
consists of a set of tuples, and transforms the rules into the unified
format of Markov logic network (MLN) rules [4]. Next, it recon-
structs the dataset according to the rules, which yields an MLN
index structure. The index is used to generate multiple data ver-
sions, and to prepare for the subsequent cleaning process. Also, it
enables IHCS to handle multiple error types simultaneously. Third,
IHCS executes an abnormal group process strategy that eliminates
abnormalities in the MLN index. Fourth, IHCS executes a strat-
egy which detects and repairs errors based on the rules within each
data version. Finally, it eliminates conflicting values and derives
the final unified clean data on top of multi-version data.

The user-friendly interactive interface enables users to input rules
and dataset with different formats, track the proceedings of each
step of the cleaning process, and interact with the dataset, in or-
der to see the change before and after cleaning from both a tuple-
based perspective and an attribute-based perspective. Moreover, it
enables evaluation of cleaning results according to multiple evalu-
ation indicators, including runtime, precision, recall, and F1-score.
The interface is designed to make the entire cleaning process trans-
parent to users, and it makes it possible for users to further analyze
occurrences of errors.

2. MOTIVATION & CHALLENGES
We motivate the problem with a real-world hospital dataset and

present four challenges addressed by IHCS, namely data quality
rule multiplicity, limitations in fixable error types, the disconnec-

1874

DOTHAN

BOAZ 2567688400

AL

t2
2567688410

AK

DOTHAN

DOTH

HN CT

t1

t2

t3

t4

ALABAMA

ALABAMA

ELIZA

ELIZA

DOTHAN

BOAZ

PN

3347938701

3347938701

2567688400

ELIZA BOAZ 2567688400t5

ELIZA BOAZ 2567688400t6

ST

AL

AL

AL

AL

AL

Data quality rules

r1: CT ST

r2: ti, tj T, (ti.PN = tj.PN ti.ST tj.ST)

r3: HN(“ELIZA”), CT(“BOAZ”) PN(“2567688400”)

AL

AK

AL

AL

BOAZ

BOAZt5, t6

t4

DOTH

DOTHANt1, t3

TID CT (reason)

r1: CT(t.v) ST(t.v)

B1

G12

G13

ST

G11

AL

AK

AL

AL

2567688400

2567688400t5, t6

t4

2567638410

3347938701t1, t2

TID PN(reason)

t3

r2: (PN(ti.v1) = PN(tj.v1)) (ST(ti.v2) ST(tj.v2))

B2

G22

G23

ST

G21

2567688400

2567638410t3 ELIZA DOTHAN

t4, t5, t6 ELIZA BOAZ

r3: HN[“ELIZA”] CT[“BOAZ”] PN[“2567688400”]

TID HN (reason1) CT (reason2)

B3

PN

G31

G32

HN CT

t1

t2

t3

t4

ALABAMA

ALABAMA

ELIZA

ELIZA

DOTHAN

BOAZ

PN

3347938701

3347938701

2567688400

ELIZA BOAZ 2567688400t5

ELIZA BOAZ 2567688400t6

ST

AL

AL

AL

AL

AL

Pre-processing Cleaning

(a) (b) (c)

Figure 1: IHCS Workflow Diagram Using a Motivating Example

tion between error detection and repair, and the difficulty of ana-
lyzing cleaning results.

Example 2.1. Figure 1(a) depicts a group of tuples from a real-
world hospital dataset T complying with three data quality rules.
The tuples have four attributes, including hospital name (HN), city
(CT), state (ST), and phone number (PN). We utilize the notation
ti and tj (i ̸= j) to represent tuples. Rule r1 states that a city de-
termines a state, rule r2 states that two hospitals located in differ-
ent states have different phone numbers, and rule r3 states that the
hospital named “ELIZA” and located in city “BOAZ” has phone
number “2567688400”. Errors in the dataset, including substitu-
tion errors, typos, and values that violate data quality rules, are
highlighted in red. Substitution errors may occur when users se-
lect an incorrect value from an attribute domain that contains mul-
tiple values. For instance, t3.[CT] having value “DOTHAN” is a
substitution error, and the correct value is “BOAZ”. Typos, also
called misprints, are artifacts of the typing process. For example,
t2.[CT] having value “DOTH” is a typo, and the correct value is
“DOTHAN”. The tuple pairs (t4, t5) and (t4, t6) violate rule r1.

First, the data quality rules in the example occur in different for-
mats. It is hard to clean errors that violate rules expressed in differ-
ent formats. This leads to data quality rule multiplicity.

Second, errors may appear anywhere in the dataset and may in-
clude substitution errors, typos, and values that violate rules. How-
ever, existing methods are not able to contend with all the error
types mentioned above. Qualitative techniques [3, 7] find that tu-
ples t4, t5, and t6 represent a violation on the attribute ST w.r.t. r1.
Hence, according to the principle of minimality, these techniques
replace the value “AK” with “AL” in t4, but they fail to repair the
values of attributes CT and PN of t3. In addition, the value of at-
tribute CT of t2 cannot be repaired since it does not violate any
rule. In contrast, quantitative techniques [8, 9] do not consider
rules but instead ensure that the cleaning result conforms to sta-
tistical characteristics. Nonetheless, they rely for their functioning
on the availability of sufficient external clean data to train a reliable
model; otherwise, the result of the cleaning is of low quality.

Third, existing cleaning methods either focus on error detection
or on error repair [9], while disregarding the connections between
them. This may decrease the cleaning result quality.

Last but not least, existing systems tend to integrate different
error detection or repair methods as black boxes, making it hard for
users to analyze cleaning results and thus understand which values
are wrong and why.

3. SYSTEM OVERVIEW
The IHCS architecture is shown in Figure 2. It is composed of

two parts: (i) a hybrid cleaning framework; and (ii) a user-friendly
interactive interface. The hybrid framework aims to detect and re-
pair different types of errors. The interface makes the cleaning pro-

User

C
le

a
n

in
g

v
is

u
a

li
z

a
ti

o
n

MLN index
construction

Dirty datasetData quality rules Data Source

Pre-processing

Deriving the

unified clean data

Cleaning multiple data
versions, including error
detection and error repair

Data Cleaning

Processing
abnormal groups

value updates load

Transformation

Unify different data
quality rules

·
Data formatting·

User Interface

In
p

u
t

cl
ea

n
in

g

p
a

ra
m

et
er

s

Process
tracking

Dataset
interaction

Result
 evaluation

Parameters
setting

Hybrid Cleaning Framework

Figure 2: IHCS Architecture

cess transparent to users, and provides an assessment of the clean-
ing results for helping users to analyze the occurrence of errors.

First, we overview each module in the hybrid cleaning frame-
work, and illustrate their functionalities using the motivating ex-
ample. The framework features a pipelined modular architecture
consisting of two phases, i.e., pre-processing and data cleaning,
which have two and three modules, respectively. A detailed de-
scription of the hybrid cleaning framework can be found in [6].

Transformation. This module implements a method that auto-
matically transforms the input dataset into a standard form with a
set of tuples. Further, it converts different data quality rules into
MLN rules, which are first-order clauses, to unify different types
of rules. An MLN rule has the form l1 ∨ l2 ∨ ... ∨ ln, where li is
a literal, i = 1, · · · , n. A literal is any expression that contains a
predicate symbol applied to a variable or a constant, e.g., CT(t.v),
HN(“ELIZA”). Each data quality rule can be considered as having
two parts, i.e., a reason part and a result part, and the result part is a
logical consequence of the reason part. There is no the same reason
to derive multiple different results. In MLN rules, we treat the last
predicate as the result part, and the other predicates as the reason
part. For rule r1, CT(t.v) is the reason, and ST(t.v) is the result.

Since the dataset in Figure 1(a) is already standardized, we only
need to transform the related rules into MLN rules. The trans-
formed rules are depicted in Figure 1(b).

MLN index construction. In this module, we develop an MLN
index, which is used to generate multiple data versions and to han-
dle multiple error types simultaneously. The first layer consists of a
set of blocks, each of which has a set of groups in the second layer.
One block corresponds to one MLN rule, and each group consists
of a set of pieces of data (γs for short) with the same reason part,
and each γ with regard to multiple values of tuples involving one

1875

Figure 3: Parameter Setting Visualization

rule. For example, G13 includes two pieces of data, denoted as
γ1 ={CT:BOAZ, ST:AK} and γ2 ={CT:BOAZ, ST:AL}. We call
the collection of γs in a block a data version. Thus, there are mul-
tiple data versions, each of which comes from a different block.

The MLN index of the sample dataset is shown in Figure 1(b).
There are three blocks B1, B2, and B3 related to three rules r1, r2,
and r3, respectively. They have 3, 3, and 2 groups, respectively.

Processing abnormal groups. Based on an MLN index, for a
tuple with errors (including substitutions and typos) in the reason
part of a rule, the corresponding piece of data (γ for short) might
erroneously forms or belongs to a group. In that case, we call that
group an abnormal group. In this module, an abnormal group
process strategy first identifies abnormal groups and then merges
them with corresponding normal groups. Each abnormal group in
a block is merged with its most similar normal group.

In the MLN index shown in Figure 1(b), groups G12, G22, and
G31 are abnormal groups. G12 is merged with G11, G22 is merged
with G23, and G31 is merged with G32.

Cleaning multiple data versions. In the MLN index, the data
pieces in a group share the same value(s) on the reason part of the
corresponding rule. Ideally, if the data is clean, one group con-
tains exactly one piece of data, meaning that the same values of
the reason part cannot derive different values on the result part.
When one group contains multiple pieces of data, dirty values ex-
ist. Therefore, we include a strategy that cleans dirty values within
each group. The strategy determines which piece of data contained
in a group is clean using the concept of reliability score. The higher
the reliability score is, the more likely it is that a piece of data is
clean. The clean data then replaces the remaining dirty data, so that
each group eventually has exactly one piece of data.

In our motivating example, the first clean data version contains
{CT: DOTHAN, ST: AL} in G11 and {CT: BOAZ, ST: AL} in
G13. The second clean data version incorporates {PN: 3347938701,
ST: AL} in G21 and {PN: 2567688400, ST: AL} in G23. The third
one contains {HN: ELIZA, CT: BOAZ, PN: 2567688400} in G32.

Deriving the unified clean data. This module forms the final
clean data on top of the multi-version data, in which values that
conflict across different data versions are resolved. This module
provides the second opportunity to clean errors, including substitu-
tions and typos, which are not (or are incorrectly) repaired in the
previous cleaning step. First, all conflict values in each tuple are
detected. Then, IHCS regenerates each value of the tuple contain-
ing conflicts. Since there are multiple different conflict values for
each tuple, we get a series of regenerated results for each tuple. The

Figure 4: Cleaning Processing Visualization

novel concept of fusion score is introduced to calculate the Markov
weight of each regenerated result, so as to get the most likely clean
version as the final result for each tuple.

Take tuple t3 in Figure 1(a) as an example. After finishing this
cleaning step, t3.[CT] has two different values (i.e., “DOTHAN”
and “BOAZ”) from the different versions. Thus, there is a conflict
for attribute CT of t3, which should be eliminated to get the final
clean t3. In addition, although {CT: DOTHAN, ST: AL} conforms
to rule r1, there might still exist errors w.r.t t3 if it is erroneously
classified into a group and thereby could not be repaired correctly
in the previous cleaning step. After executing this module, the final
regenerated result of t3, i.e., {HN: ELIZA, CT: BOAZ, ST: AL,
PN: 2567688400}, is obtained. The final cleaning result is illus-
trated in Figure 1(c).

Next, we cover each module in the user interface.
Parameters setting. In this module, users are required to input

a dirty dataset and its corresponding data quality rules. We accept
datasets with different formats (e.g., .csv, .txt, .json) and rules using
different logical languages (i.e., first-order logic and clausal form).
Further, since users may not have sufficient knowledge associated
with the dataset, it may be difficult for them to state rules. We in-
tegrate an effective rule generation algorithm [1] that automatically
generates a series of possible rules based on the dataset.

Process tracking. In this module, users can track the cleaning
process through two components, i.e., a progress bar and a progress
tab. The progress bar is used to show the completion extent of the
current cleaning task. The progress tab offers more detail. It reports
the step in which the current task is executed (corresponding to
the five cleaning steps included in the framework) and the results
produced by each step.

Dataset interaction. This module enables users to view modi-
fications, including value corrections and tuple deduplication, be-
tween the dirty dataset and the final cleaned result. For value cor-
rection, users can see changes from two perspectives: (i) a tuple-
based perspective and (ii) an attribute-based perspective. When us-
ing the tuple-based perspective, the module marks tuples that con-
tain fixes and shows the values before and after cleaning. When
using the attribute-based perspective, the module enables users to
view the values of each attribute before and after cleaning. For
deduplication, the module aggregates duplicate tuples, and thus,
users are provided information about how many tuples are in each
aggregation. Based on this, users can choose whether to keep du-
plicates when saving the cleaned dataset.

Result analysis. This module enables users to evaluate the run-
time and accuracy of the cleaning result. It also records histori-

1876

(a) Tuple-based perspective (b) Attribute-based perspective (c) Result evaluation

Figure 5: Cleaning Result Analysis Visualization

cal evaluation results, which reflect the cleaning effect of IHCS on
datasets with different source or scale.

4. DEMONSTRATION
The IHCS system is built as a cross-platform desktop applica-

tion. The basic interface is shown in Figure 3. The left navigation
bar illustrates three main parts of the demo: the setting part, the
cleaning part, and the results part. We demonstrate IHCS using a
real-world hospital dataset (https://data.medicare.gov/data).

First, a user inputs a dirty dataset with corresponding data quality
rules in the setting part as depicted in Figure 3. IHCS accepts dirty
datasets with different formats. Since the target group of IHCS in-
cludes both domain experts and ordinary users, IHCS provides two
options for giving rules: one is to enter rules manually (for experts),
and the other is to generate rules automatically (for ordinary users).
When the user selects the checkbox at the bottom of the page, the
system automatically generates rules, and rules can no longer be
uploaded manually.

After the parameters are prepared, the user can click the ”Next”
button to initiate the cleaning. Meanwhile, the system proceeds
to the cleaning part. The user can track the progress of the clean-
ing through the progress bar and the progress tabs. As shown in
Figure 4, the current cleaning progress is in the fourth step, i.e.,
cleaning multiple data versions. The result produced at this step
is shown below the tab, and it displays a set of clean data versions
with their corresponding tuples. After finishing this step, the tuples
with changes in attribute values are marked in red. Further, the user
can switch among tabs to review the results generated in each step
that has been executed. Unexecuted steps are not able to be clicked.

When the cleaning process is completed, the system proceeds
to the results part that consists of two subparts, i.e., dataset inter-
action and result evaluation. In the dataset interaction part, IHCS
enables the user to see the change to the dataset from tuple and
attribute perspectives. In the tuple-based perspective, as depicted
in Figure 5(a), the cleaned dataset is organized as a set of unique
tuples. All modified tuples are marked with black dots to the left.
When the user hovers over a dot, the modifications to each attribute
value of the tuple are shown. Detected duplicate tuples are hidden
by default, and the user can click on each tuple to see how many
tuples have the same values as it does. Also, before the user clicks
the ”Download” button to save the cleaned result, it is possible to
decide whether or not to keep duplicates by selecting the checkbox
at the bottom of this page. Using the attribute-based perspective,
IHCS displays the changes to the value of each attribute before and
after the cleaning in charts, as shown in Figure 5(b). The user can
switch between charts by clicking on the attribute name. The user
can infer where errors are likely to occur based on changes to the
number of attribute values.

In the result evaluation part, as depicted in Figure 5(c), IHCS
evaluates the current cleaning result according to multiple evalu-
ation indicators, including runtime and accuracy (e.g., precision,
recall, and F1-score). The runtime is recorded after cleaning, while
the accuracy measurement requires the user to provide a ground
truth file. Moreover, IHCS allows the user to review historical
cleaning result evaluations. As shown in Figure 5(c), we record
three evaluations of the hospital dataset, and the results show that
IHCS can achieve high cleaning accuracy.

5. ACKNOWLEDGMENTS
This work was supported in part by the National Key R&D Pro-

gram of China under Grant No. 2018YFB1004003, the NSFC un-
der Grants No. 61522208, the NSFC-Zhejiang Joint Fund under
Grant No. U1609217, the ZJU-Hikvision Joint Project, and the
Fundamental Research Funds for the Central Universities. Yunjun
Gao is the corresponding author of the work.

6. REFERENCES
[1] F. Chiang and R. J. Miller. Discovering data quality rules.

PVLDB, 1(1):1166–1177, 2008.
[2] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data cleaning:

Overview and emerging challenges. In SIGMOD, pages
2201–2206, 2016.

[3] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F.
Ilyas, M. Ouzzani, and N. Tang. NADEEF: A commodity data
cleaning system. In SIGMOD, pages 541–552, 2013.

[4] P. M. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2009.

[5] W. W. Eckerson. Data quality and the bottom line: Achieving
business success through a commitment to high quality data.
The Data Warehousing Institute, pages 1–36, 2002.

[6] Y. Gao, C. Ge, X. Miao, H. Wang, B. Yao, and Q. Li. A hybrid
data cleaning framework using markov logic networks. arXiv
preprint arXiv1903.05826, 2019.

[7] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani,
P. Papotti, J. Quiané-Ruiz, N. Tang, and S. Yin. BigDansing:
A system for big data cleansing. In SIGMOD, pages
1215–1230, 2015.

[8] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg.
Activeclean: Interactive data cleaning for statistical modeling.
PVLDB, 9(12):948–959, 2016.

[9] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean:
Holistic data repairs with probabilistic inference. PVLDB,
10(11):1190–1201, 2017.

1877

