
Juneau: Data Lake Management for Jupyter∗

Yi Zhang
University of Pennsylvania

Philadelphia, PA 19104

yizhang5@seas.upenn.edu

Zachary G. Ives
University of Pennsylvania

Philadelphia, PA 19104

zives@cis.upenn.edu

ABSTRACT
In collaborative settings such as multi-investigator laboratories, data
scientists need improved tools to manage not their data records but
rather their data sets and data products, to facilitate both prove-
nance tracking and data (and code) reuse within their data lakes
and file systems. We demonstrate the Juneau System, which ex-
tends computational notebook software (Jupyter Notebook) as an
instrumentation and data management point for overseeing and fa-
cilitating improved dataset usage, through capabilities for indexing,
searching, and recommending “complementary” data sources, pre-
viously extracted machine learning features, and additional training
data. This demonstration focuses on how we help the user find re-
lated datasets via search.

PVLDB Reference Format:
Yi Zhang and Zachary G. Ives. Juneau: Data Lake Management for Jupyter.
PVLDB, 12(12): 1902-1905, 2019.
DOI: https://doi.org/10.14778/3352063.3352095

1. INTRODUCTION
As data science has emerged as its own discipline, one of the

most important activities is exploratory data analysis: taking data
sets, combining and cleaning them, formulating an initial hypothe-
sis, evaluating this hypothesis (via queries, visualization, etc.), and
repeating.

Sites such as kaggle.com provide many illustrative examples
of this type of activity, and in fact their goal is to foster the devel-
opment of new algorithms and classifiers through such exploratory
analysis. For Kaggle, but also beyond, data scientists are increas-
ingly leveraging computational notebook software (Jupyter, Apache
Zeppelin, RStudio) for such tasks. In essence, such tools are the
fledgling “integrated development environments” of the data sci-
ence era: interactive, Web-driven, documented-oriented environ-
ments for performing computational steps and seeing output, which
can link to computational tools such as Python and Pandas, Apache
Spark, TensorFlow, and so on; as well as to data visualization and
web technologies.
∗Funded in part by NIH grant 1U01EB020954-01 and NSF grants
1547360 and 1640813.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352095

A challenge lies in transitioning from exploratory data analy-
sis, possibly over a small amount of data, to something that can
be regularized into a production workflow with full reproducibil-
ity and much larger datasets. Towards this goal, recent work has
proposed using notebooks as a way of encoding repeated com-
putational workflows [9], and others have developed extensions
to ensure the code within notebooks is fully versioned and repro-
ducible [10, 1, 6].

However, we argue that the next step must be to look not at note-
books as documents of code steps that access and produce data files
— but rather as compilations of (possibly shared, possibly param-
eterized) computational steps operating on objects in a data lake.
We seek to accelerate and regularize data science tasks by find-
ing and recommending data related to current objects of interest
to the user. We do this by tracking the relationships between data
sets, data products, and code [5]. With the appropriate indexing
and search capabilities, data import and data cleaning steps are
made visible to future users to be reused; data scientists may find
other related datasets with similar history provenance; users are
able to query, based on a given source table or intermediate result,
whether someone else has already linked two datasets or extracted
sets of features. Ultimately, just as shared libraries and open-source
repositories have accelerated and improved software engineering
— reusable datasets, schemas, and computational workflow steps
may improve the quality of data engineering.

In this demonstration, we present a prototype of JUNEAU system,
which provides these capabilities. Our demonstration illustrates
how indexing, searching, and reusing tabular data are supported
for tabular, CSV, and relational datasets. JUNEAU addresses scien-
tists’ need to search for prior tables (and related code) not merely
by keyword, but by querying using an existing table and its prove-
nance, to find other related tables. Within the Jupyter environment,
users may select a table (dataframe) and directly search for related
tables for different purposes.
Motivating use cases. We outline the four use cases for finding
related tables.

EXAMPLE 1.1 (AUGMENTING TRAINING DATA). Often,
data is captured in multiple sessions (perhaps by multiple users)
using the same sensor device or tool. Given a table from one such
session, the user may wish to augment his or her data, to form a
bigger training or validation set for a machine learning algorithm.

EXAMPLE 1.2 (LINKING DATA VIA ONTOLOGIES). Particul-
arly in the life sciences, records in one database may have iden-
tifiers (e.g., “accession numbers”) linking to entries in another
database or ontology. Such entries may transitively reference other
entries, and each brings in additional fields that may be useful. It

1902

!pip install …

Collecting scikit-learn …

sms_df.head()

class sms …
0 ham Go until …

Spam Classifier Task

sms_df[‘a’].hist(…)

sms_df = pd.read_csv(…)

MarkDown

IPython

Python (no output)

Python (no output)

Python (dataframe)

Python (visualization)

import pandas as pd
…

Figure 1: Example of a computational notebook, abstracted
into a data model

can be helpful for users to know about such links that are implicit
in the data.

EXAMPLE 1.3 (AUGMENTING FEATURES). Another commo-
n task for data scientists is to find additional or alternative features
for the given data instances that may lead to a better performance.
Especially in the collaborative setting, one data scientist may per-
form a specific feature engineering on a data set, while another
may do it in a different way. It can be helpful for data scientists to
be recommended with other feature engineering possibilities.

EXAMPLE 1.4 (FINDING WORKFLOWS FOR DATA). Given a
widely used and related table, a data scientist may want to see ex-
amples of how the table is loaded or cleaned, what analysis have
been performed on it, and so on. Generally, this requires us to
search for workflows using the table or related tables, potentially
featuring specific operations.

Related work. Our work relates to both data link discovery sys-
tems [2] and those for discovery of related and unionable data [4,
7, 8]. Our novelty is in incorporating data provenance information,
code, and a more general notion of search – all from within a com-
putational notebook environment. Our work directly builds upon
techniques for reproducible notebooks [10, 1, 6].

2. THE JUNEAU SYSTEM

2.1 Preliminaries: Computational Notebooks
A Jupyter Notebook, or more broadly, a computational notebook,

is an editable document in which data scientists may add cells with
code (to be executed in a kernel sitting outside the notebook with
its own internal state) and text (in the MarkDown language). As
the code in each cell is executed, its output, whether scalar, tabular,
matrix, or visualization, may be directly embedded in the notebook.
The web-based Jupyter Notebook environment enables interactive
data analysis.

Figure 1 shows a sample computational notebook, as well as a
higher-level abstraction of the notebook. The notebook’s content is
a sequence of cells, which may be code cells (conceptually, these
are in effect code modules in a workflow defined by the notebook),
or MarkDown cells, which let the user document the computational
process using rich text. As these are entered by the user, code cells
are executed and their output is injected into the notebook, or Mark-
Down cells are translated into formatted text and images and em-
bedded into the notebook.

Figure 2: Demo Step 1. The user clicks on the Show Notebook
Datasets button in the tool bar, and JUNEAU lists all datasets (tables) in
the current notebook.

Importantly, standard computational notebook software does not
reason about how cells produce side effects in terms of state passed
from one cell to another, or about files that are created (which may
be read by a future cell execution that may even occur in another
notebook). Moreover, computational notebooks do not fully pre-
serve either the history of cell versions and outputs, nor the order in
which cells were executed — which may result in non-reproducible
notebooks. However, several recent projects have introduced repro-
ducible notebooks [10, 1, 6]. Building upon those ideas, we have
replaced the notebook software’s storage layer with JUNEAU’s data
lake management system to index and store external files as well
as intermediate and final data products produced within notebooks.
Additionally, we have enhanced the notebook software interface it-
self.

2.2 Juneau Architecture and Components
The JUNEAU System replaces Jupyter Notebook’s back-end and

extends it user interface. Our back-end “data lake management”
subsystem integrates relational and key-value stores to capture and
index (1) any external files loaded by the notebooks; (2) interme-
diate data products produced by computational steps (cells) within
the notebooks; (3) versioned cell content and notebook content, as
in the right-hand side of Figure 1; (4) indices for rapidly retrieving
tables and their provenance.

We illustrate the basic architecture and functionality in Figure 4.
As in the existing Jupyter Notebook software, the notebook inter-
face interacts with a kernel (language interpreter) every time the
user executes a cell. The cell contents are executed in the kernel,
thus updating state in the kernel as well. JUNEAU fetches any new
or changed tables (dataframes) from the kernel after each step, and
it imports and indexes those in the backend.

The user may interactively select any table within the notebook,
and query the JUNEAU search engine for other tables already stored
and indexed in the data lake which are related to the selected item.
As we described in the introduction, users often want to search for
other related tables using an existing table as a model, and possibly
adding other filter criteria such as author, attribute name or con-
tent, or the name of a computational process that was involved in
the provenance of the search result. The search may not purely be
based on whether other tables have a common schema or joinable
fields, but may also consider similarity of computational (prove-
nance) steps.

1903

Figure 3: Demo Step 2. The user selects a table with a search mode, and the system will rapidly return a ranked list of tables that are related. In
this example, the user selects “D”, which means the user is looking for augmenting training or validation data.

Kernel
(Python/R)

List all tables
in the notebook

1. request

2. tables

Data Lake

Search related tables
for table 𝑻

Server
Search Engine

1. query

2.
search

3. return a ranked list of
tables

4. import table 𝑻"

5. insert a new cell

Generate the code

to import table 𝑻 "

Notebook
(Workflow)

Cell 1

Cell 2

Figure 4: The architecture of JUNEAU

Our main technical focus has been on JUNEAU’s search and in-
dexing capabilities. We target three classes of table search, which
each address a different task.

Additional Training/Validation Data. Data scientists accumulate
additional data, e.g., as additional training or test sets. The data
usually shares the same schema and similar computational steps,
while having minimal row overlap.

Linkable tables. The second class of search involves discovering
“linkable tables.” The most obvious version of this comes from
data integration: we want to find conceptually related base tables
in a dataset, with which we can join [2].

Alternative features. In many data science settings, the tables of
greatest interest to the user may not be base data — but rather other
users’ derived tables that take rows from the base data, and extract
features or do additional processing for each row (e.g., it adds a
record-linking attribute to describe a mapping to a row in another
table). Such tables should be linkable by the query tables, and the
user would prefer those with minimal column overlap.

Searching In JUNEAU. To support the search capabilities for

different use cases, we design a ranking function that mainly incor-
porate the following three ranking components. To further make
the search process efficient, JUNEAU uses a novel extension to the
top-k threshold algorithm [3] (TA), which adaptively prioritizes its
ranking components.

Schema Mapping. To compute the relatedness between tables,
we first map between columns within the query and target tables.
The schema mapping is detected based on the similarity between
instances of columns from two tables, and we speed it up via sketches
(as done by Aurum [4]) and reusing the mapping already detected.

Key-based Row Mapping. Once we have discovered a candidate
schema mapping, we find a row-to-row mapping, which generates
the row similarity for our ranking. This mapping is detected based
on the predicted key-to-key and key-to-foreign key relationships
for detecting both linkable tables and alternative features.

Provenance Similarity. Provenance similarity augments data that
may have minimal row overlap, but is semantically similar and
useful for training or testing. To compute the provenance similar-
ity, we represent the workflow (notebook) producing the table as a
dataflow graph between tables, and approximately match the tables
by their content, position and dependencies. Then the similarity
can be computed by some edit distance between dataflow graphs.

Our TA-based algorithm starts by computing a list of matches
along the most efficient components, then estimates the others, so
that we can avoid computing computation-heavy components for
most unrelated tables. We also use approximation for further per-
formance improvement.

3. DEMONSTRATION DESCRIPTION
Our demonstration is based on common data science use cases.

On the Kaggle data science competition site, data scientists are
given new datasets and tasks. They frequently share their note-
book code — which starts with simple “eyeballing” and wrangling
of data, followed by various exploratory analyses to understand the
data relationships, before a final approach is determined and pur-
sued. If one browses the Kaggle site, many notebooks exhibit many
of the same computational steps.

1904

Figure 5: Demo Step 3. The user clicks on a table of interest, and JUNEAU adds a new cell to the notebook that loads the table.

JUNEAU accelerates the process for a new data scientist to come
“up to speed.” We leverage a corpus of notebooks crawled from
public Kaggle competitions (Housing prices, biomechanical fea-
tures of orthopedic patients, and several others) and store, in the
JUNEAU data lake, all intermediate tables generated by those note-
books. Our demonstration illustrates how the data scientist can be-
gin by loading a starter notebook that reads the Kaggle datasets.
From this, JUNEAU can let them quickly see excerpts from all ta-
bles (lists, arrays and dataframes) in the current notebook (see the
red box of Figure 2).

Subsequently, the user will identify which dataset he or she wishes
to start with, and will search by task: looking for additional train-
ing and validation data , linkable tables or additional, extracted
features.

Figure 3 illustrates a set of matches when the user searches for
additional training data. The rankings adjust based on usage pat-
terns, as some tables are incorporated into larger numbers of note-
books than others. (Table popularity is one element of our ranking
algorithm.)

Once the user finds a table that would be useful within the note-
book, she or he can select whether to import the table as a mate-
rialized artifact, or to import the sequence of cells (workflow) that
were responsible for generating the table (Figure 5).

Our demonstration subsequently presents common options of ac-
tions to apply to the resulting table: to train and test a classifier
(using k-fold validation), visualize the data, or cluster the data.
We track how much work was saved by the search capability (how
many lines and cells would have been necessary), and we also show
how many Kaggle competitors performed a similar task.

This initial demonstration of JUNEAU shows that (1) an impor-
tant data science task can be addressed by database technologies,
(2) JUNEAU offers a visual and intuitive tool for data lake manage-
ment, and (3) it provides a new type of content- and provenance-
based search and indexing technology to support data lake manage-
ment for data science.

4. REFERENCES
[1] L. A. Carvalho, R. Wang, Y. Gil, and D. Garijo. Niw:

Converting notebooks into workflows to capture dataflow
and provenance. In Conference on Knowledge Capture
(K-CAP), 2017.

[2] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang,
M. Stonebraker, A. K. Elmagarmid, I. F. Ilyas, S. Madden,
M. Ouzzani, and N. Tang. The data civilizer system. In
CIDR, 2017.

[3] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of computer and system
sciences, 66(4):614–656, 2003.

[4] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden,
and M. Stonebraker. Aurum: A data discovery system. In
2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 1001–1012. IEEE, 2018.

[5] Z. G. Ives, S. Han, Y. Zhang, and N. Zheng. Data
relationship management systems. 2019.

[6] D. Koop and J. Patel. Dataflow notebooks: encoding and
tracking dependencies of cells. In TaPP, 2017.

[7] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.
Exemplar queries: Give me an example of what you need.
PVLDB, 7(5):365–376, 2014.

[8] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union
search on open data. PVLDB, 11(7):813–825, 2018.

[9] nteract team. Papermill: Parameterize, execute, and analyze
notebooks. https:
//papermill.readthedocs.io/en/latest/,
2018.

[10] T. Petricek, J. Geddes, and C. Sutton. Wrattler:
Reproducible, live and polyglot notebooks. In TaPP.
USENIX Association, 2018.

1905

