
ApproxML: Efficient Approximate Ad-Hoc ML Models
Through Materialization and Reuse

Sona Hasani‡, Faezeh Ghaderi‡, Shohedul Hasan‡, Saravanan Thirumuruganathan‡†,
Abolfazl Asudeh†, Nick Koudas‡‡, Gautam Das‡

‡University of Texas at Arlington; ‡†QCRI, HBKU;
†University of Illinois at Chicago; ‡‡University of Toronto

‡{sona.hasani@mavs,faezeh.ghaderi@mavs,shohedul.hasan@mavs, gdas@cse}.uta.edu,
‡†sthirumuruganathan@hbku.edu.qa, †asudeh@uic.edu, ‡‡koudas@cs.toronto.edu

ABSTRACT
Machine learning (ML) has gained a pivotal role in answer-
ing complex predictive analytic queries. Model building for
large scale datasets is one of the time consuming parts of
the data science pipeline. Often data scientists are willing
to sacrifice some accuracy in order to speed up this process
during the exploratory phase. In this paper, we propose
to demonstrate ApproxML, a system that efficiently con-
structs approximate ML models for new queries from pre-
viously constructed ML models using the concepts of model
materialization and reuse. ApproxML supports a variety
of ML models such as generalized linear models for super-
vised learning, and K-means and Gaussian Mixture model
for unsupervised learning.

PVLDB Reference Format:
Sona Hasani, Faezeh Ghaderi, Shohedul Hasan, Saravanan Tiru-
muruganathan, Abolfazl Asudeh, Nick Koudas, Gautam Das.
ApproxML: Efficient Approximate Ad-Hoc ML Models Through
Materialization and Reuse. PVLDB, 12(12): 1906-1909, 2019.
DOI: https://doi.org/10.14778/3352063.3352096

1. INTRODUCTION
Machine learning has become a fundamental tool to gain

insight from data. During the exploratory phase data sci-
entists repetitively build numerous ML models in order to
achieve higher accuracy. Consider a typical workflow of a
data scientist. She issues a query to retrieve data from
a data warehouse and builds an ML model (classification,
clustering, etc.) on the retrieved data. The model is then
used for analytic processing such as predicting revenue of
a particular product. These analytic queries on ML models
often have properties that allow a faster approach compared
to building models from scratch. First, they usually have a
specific business interpretation rather than being chosen at
random. For example, a data scientist may want to retrieve
data for a specific time period (month, semester, year) or for
a specific location (city, state, country), etc. Moreover, data

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352096

scientists are often willing to sacrifice some accuracy in the
exploratory phase if they can obtain good enough approxi-
mate ML models very fast. In addition, data scientists and
engineers from the same organization create many ML mod-
els for exploratory purposes that are discarded after one-
time use. There is a very high chance that in future another
member of that organization wants to build an ML model
using the same data or a superset of it. Such properties
render analytic queries good candidates for approximation
as well as enable the potential to reuse their results fully or
partially.

ML development revolves around experimentation. Re-
cently systems such as mlflow [5] and modelDB [4] are de-
veloped to streamline the process by treating ML models as
first class citizens and allow them to be stored with asso-
ciated metadata. Nevertheless, building an ML model still
remains a major bottleneck and consumes huge amount of
time and resources due to sheer size of the datasets. If we
can speed up the model building process by producing ap-
proximate models during an exploratory phase, it will dra-
matically improve the efficiency of the data scientist. In this
paper, we introduce ApproxML, a system based on [1] that
rapidly builds approximate ML models for analytic queries
by utilizing two fundamental techniques materialization and
reuse from database optimization. Suppose the analyst has
access to pre-built ML models for each month and wants to
build a model for the entire year. Currently, one builds the
model from scratch using the data from the desired year.
ApproxML allows one to combine the pre-built models to
create model for that year much more efficiently.

ApproxML is a system that enables ML model approxi-
mation and reuse for popular supervised and unsupervised
learning approaches. A demonstration session of ApproxML
consists of three parts. The first part details the core fea-
tures of the system by showcasing the approximate models
supported. Next, the user will experience tradeoffs in ac-
curacy of these approximate models compared with exact
approaches. Finally, the user will be exposed on the prac-
tical utility of the materialization of ML models for a given
workload and the ability to reuse them experiencing the as-
sociated speedups.

2. APPROXML OVERVIEW
ApproxML enables the user to build approximate model

for popular supervised and unsupervised ML models for a
given analytic query and a set of materialized models.

1906



Pre-processing	phase Run-time	phase	

Dataset

ML	model	repository

Workload

Find	the	optimum	set	of	
partitions	to	prebuild	

models

Build	the	exact	models	
for	the	given	partitions

Front-end

Back-end

Cost	–based	
Optimizer

Approximate	Model	
Builder

Analytic	Query Approximate	Model

Approximate	
Model

Parse	input	Analytic	
Query	and	output	results

Figure 1: ApproxML Overview

Technical Challenges There are several challenges to tackle
in order to build efficient approximate ML models such as
a)If we have access to a set of pre-built models, would it be
possible to combine them in a few milliseconds to construct
an approximate model instead of spending minutes/hours
to build a model from scratch? b)How can we efficiently
identify the relevant models among many possible choices?
c)What information should be materialized for each model
to make it reusable in future?

ApproxML generates approximate ML models in a two-
phase approach. During “pre-processing phase”, the model
passively stores the ML models built by the data analyst to a
model DB along with small amount of additional meta-data
such as the data used and model parameters; During the
“run-time phase”, for a new query, it identifies the relevant
and reusable pre-built ML models and efficiently constructs
an approximate ML model from them.

ApproxML offers two orthogonal methods for generating
approximate ML models, a)model merging approach, and
b)coreset-based approach. In model merging approach, the
relevant models are carefully merged without going back to
the data. The merging based approach is often extremely
fast. If there is a need for approximate ML models with tun-
able approximation ratio, ApproxML offers coreset-based
approach where it builds a model from a chosen set of core-
sets. Coresets are a small weighted set of tuples such that
ML models built from the coresets are provably closer to ML
models built on the entire data. There has been extensive
work on coresets for various ML models. For more details
about the algorithms we used please refer to [1]. We im-
plemented logistic Regression and linear SVMs as examples
of Generalized Linear Models (GLMs) for supervised learn-
ing. In unsupervised learning, we implemented K-means and
Gaussian Mixture Model (GMM). Figure 1 demonstrates the
system overview of ApproxML.

2.1 Run-time phase
During the run-time phase, we assume we have access to a

repository of the pre-built models. The user submits an an-
alytic query through the front-end. Front-end will parse the
the information about the dataset, the intended ML algo-
rithm, the approximation method (model merging, coreset-
based), etc. and will pass them to the cost-based optimizer
in the back-end. The optimizer will retrieve all relevant pre-
built models from the pre-built model repository. It will
identify which of the retrieved pre-built models should be
reused and what additional partial models have to be built
from scratch. Then these partial models are passed to the
“Approximate model builder” component to be combined

efficiently to get the final approximate model. Details of
each step is explained as follows.
Cost-based optimizer To identify optimum pre-built mod-
els to reuse is a major problem. Consider a dataset with 1
million tuples from year 2010 to 2015. Let’s assume the
relevant ML models for every month and every quarter are
materialized. Given a new query for the entire year of 2014,
there are many ways to answer it. One can build a model
from scratch. Another option is to retrieve the material-
ized models for all 12 months of the year 2014 and build
an approximate model by combining them. Alternatively,
one can build a model by combining the materialized mod-
els for four quarters of year 2014. There are many more
possible options for this simple example. Cost-based op-
timizer will retrieve all relevant pre-built models from the
repository of pre-built models for the given analytic query.
The cost-based optimizer finds the optimum set of pre-built
models by taking into account different costs involved such
as (a) cost of building a model from original data, (b) cost
of merging a model and (c) cost of building a coreset. It is
possible that some parts of the input query are not covered
by the pre-built models. In that case, the exact model for
those partitions has to be built using the relevant data from
original dataset. At the end, a set of ML models are passed
to the “approximate model builder” component.
Approximate model builder In the coreset-based ap-
proach, the approximate model is built by training the in-
tended ML model using the union of the coresets as training
data. In model merging approach, for each ML algorithm
the parameters of partial models are combined through a
principled manner such that the objective function of the
approximate model is very close to the objective function
of the model built from the scratch. The reuse strategy for
each algorithm is briefly explained as follows.

For K-means, given a set of K centroids and their corre-
sponding weights, the weighted variant of K-means++ al-
gorithm is applied to the union of the given centroids and
the final K cluster centroids are returned as the output. For
GMM, the mean vectors and covariance matrices of previ-
ously built GMM models on different partitions of the data
are combined by running a hierarchical clustering algorithm
and iteratively merging two closest Gaussian components till
only K of them are left. We used Bhattacharyya distance
to measure the distance between two Gaussian components.
For supervised learning, the parameters of the approximate
model are calculated by averaging the corresponding param-
eters of the pre-built models. For Logistic Regression, model
parameter corresponds to the coefficients while for linear
SVM, it corresponds to the coefficients of the separating hy-
perplane. Please refer to [1] for further details.

2.2 Pre-processing phase
In the pre-processing phase, a set of models are built and

stored in the pre-built model repository. These models are
selected to be reused for the future queries in the best way
using a workload or analytic query logs from the past. To
identify the best models to materialize, first, the list of pos-
sible ML models to build for a given workload history is enu-
merated. In the next step a greedy algorithm is applied to
identify the models with highest benefit for the given work-
load. These selected models are materialized and stored in
the pre-built model repository.

1907



Repository of ML models In the pre-processing phase,
exact ML models are built for several partitions of data
and their corresponding metadata is stored in a repository.
These pre-built models may contribute to future approxi-
mate models. For model merging approach the model pa-
rameters are materialized while for coreset-based approach
the coresets and their corresponding weights are recorded.
In the model merging scenario ,for K-means ApproxML stores
K centroids and the weight associated with each cluster. In
GMM, it stores the mean vector and the covariance matrix
of each component along with their relative weights. For
Logistic Regression it stores the coefficients and for SVM it
stores the coefficients of the separating hyperplane.

2.3 User Interface
The user interface of ApproxML consists of three main

sections including configuration panel, results section, and
building partial models. Each section is described in detail
as follows.

2.3.1 Configuration section
In this section the user can submit an analytic query and

customize the following options for approximate ML model.
ML task: The user can choose if she wants to build a
classifier or a clustering model. If she chooses clustering
option, she can specify the number of clusters as well.
ML algorithm: The user can choose between Logistic Re-
gression and Linear SVM for classification task and K-means
and GMM for clustering task.
Dataset: The user will select a dataset in this section. An
overview of the dataset will be shown to the user. For any
selected dataset, appropriate query range or OLAP hierar-
chy options for customizing the query becomes available.
For example, for Flights dataset the user can customize the
analytic query range by specifying the FROM and TO pa-
rameters as shown in Figure 2(a).
Approximate/Exact: The user has the option to select
between the approximate and exact models. If she chooses
the exact model, the entire data for the given analytic query
will be retrieved from the selected dataset, and the exact
model will be built on the entire data from scratch. If the
approximate option is selected, the user can then choose
between model merging and coreset-based methods.
Model merging/Coreset-based: Based on the user’s in-
put in this section, the approximate model will be built
using either model merging or the coreset-based methods.
If coreset-based method is chosen, an approximation ratio
should also be selected.

Figure 2(a) illustrates the configuration panel for building
a Logistic Regression classifier on Flights dataset using the
data from 10 April 2015 to 15 October 2015 through a model
merging approach. Figure 3(a)shows the configuration for
building a K-means clustering model on the FIFA2019 dataset
using coreset-based approach with approximation ratio of
10% for the data of Europe.

2.3.2 Results Section
In the results section of ApproxML, the statistics and

quantitative measures of the generated ML model is re-
ported to the user. For classifiers, training accuracy and
testing accuracy are shown. Cost of building the model is
also reported to the user. In clustering scenario, Adjusted
Rand Index (ARI) and likelihood are shown for K-means

Figure 2: (a)Configuration panel for approximate Logis-

tic Regression,(b) Build partial Logistic Regression mod-

els

Figure 3: (a)Configuration panel for approximate K-

means,(b)Results

and GMM respectively. If an approximate model is built,
in addition to the total cost of building the approximate
model, the partial costs including the merging cost, cost of
building coresets, and costs of building the partial models for
the new partitions are also reported. Finally, the user can
see which pre-built models were retrieved from the pre-built
model repository and reused for this particular approximate
ML model. Figure 3(b) shows an example of results section
for an approximate K-means model with 5 clusters using
coreset-based approach.

2.3.3 Build Partial Models
In this section, the user can upload a workload, select a

dataset, and customize the parameters of an ML model. The
data is then retrieved from the dataset, partitioned into op-
timum partitions, the exact model is built for each partition,
and the corresponding metadata for the models are saved in
the ML model repository. Figure 2(b) shows an example of
this section.

2.4 System Implementation
ApproxML’s backend is implemented in Python 3.6. Scikit-

Learn (version 0.19.1) was used to train the ML models.
Pandas library was used to save the query results in dataframes.

1908



We used Flask for session management and database con-
nection tools.
Datasets: For classification, we selected 5 datasets from
the Hamlet repository [2] including Movies, Yelp, Walmart,
Books and Flights. In addition, we used Flights dataset 1.
For evaluating clustering algorithms we used Santander cus-
tomer transaction data 2 and FIFA 2019 dataset 3. Ad-
ditionally, we generated a synthetic dataset with 5M data
points, 20 features and 10 clusters using publicly available
generator [3].

3. DEMONSTRATION PLAN

3.1 System Setup and Audience Interactions
We shall provide 3 laptops with ApproxML pre-installed

on them. The datasets and repository of the pre-built mod-
els are stored on a server. We will also keep local copies
of the datasets and the ML repository on the demo laptops
in case of a broken internet. We will store a set of pre-
built models in the ML model repository for each dataset.
Visitors to the demo can freely select the dataset and ML
algorithm of interest, specify the query of interest, and then
observe the accuracy and efficiency of the output approxi-
mate models and compare them with the exact model built
from the scratch. Additionally, they can experience the pre-
processing phase by materializing ML models for a given
workload.

3.2 Demonstration Scenarios
In this section, we describe several scenarios about how

the audience can interact with ApproxML.
A: Classification using Flights 2015 data In the con-
figuration panel, the user can choose classification for ML
task and Logistic Regression as ML algorithm. After select-
ing the Flights dataset and adjusting query range, the user
can once build the approximate model with model merging
and once with coreset-based approach. The pre-built models
that are reused for the approximate model will be reported
to the user along with different costs involved in making the
approximate models. She can then choose to build the exact
model from scratch for the same configuration and compare
its efficiency and accuracy with those of the approximate
models. The same process can be repeated for generating
approximate linear SVM model.
B: Clustering using FIFA 2019 data In the configura-
tion panel, the user can select clustering as the ML task,
K-means as the ML algorithm, and set the number of clus-
ters. After selecting the FIFA 2019 dataset, and setting
“category” to “continent” and “value” to “Europe”, she can
build an approximate model once with model merging and
once with coreset-based approach. To compare the efficiency
and accuracy of the approximate models, she can choose to
build an exact model with the same configuration and eval-
uate the Adjusted Rand Index for goodness of clustering,
cost of building the model for the exact model and various
costs involved in the approximate models. She can repeat
the same steps for GMM as well. In order to compare the

1https://www.kaggle.com/miquar/explore-flights-csv-
airports-csv-airlines-csv/data
2www.https://www.kaggle.com/c/santander-customer-
transaction-prediction/data
3 https://www.kaggle.com/karangadiya/fifa19

approximate and exact GMM models, the likelihood mea-
sure is shown for clustering similarity.
C: Materialize models for Flights 2015 data In the
“Build partial model” panel, user can choose the ML model
as clustering, the ML algorithm as K-means, select num-
ber of clusters, and choose Flights 2015 dataset. We will
provide a text file containing a workload that the user can
upload to the system. The user can submit the request once
for model merging approach and once for coreset-based ap-
proach with approximation ratio set to 10%. The user will
see the optimum partitions identified by ApproxML for ma-
terialization. We will also show the saved centroids and core-
sets and their corresponding weights in the pre-built model
repository. The same process can be repeated for Logistic
Regression, linear SVM, and GMM.

4. SUMMARY
We demonstrate ApproxML, a system that efficiently con-

structs approximate ML models for new queries from pre-
viously constructed ML models by leveraging the concepts
of model materialization and reuse. In order to generate
approximate ML models, ApproxML takes a two-phase ap-
proach. In the pre-processing phase it partitions the data
and builds exact ML models on each partition and saves
their meta data in a pre-built model repository. During the
run-time phase, it reuses the pre-built models and combines
them efficiently to create an approximate model for a new
analytic query.

5. ACKNOWLEDGEMENT
The work of Gautam Das was supported in part by grant

W911NF-15-1-0020 from the Army Research Office, grant
1745925 from the National Science Foundation, and a grant
from AT&T.

6. REFERENCES
[1] S. Hasani, S. Thirumuruganathan, A. Asudeh,

N. Koudas, and G. Das. Efficient construction of
approximate ad-hoc ml models through materialization
and reuse. PVLDB, 11(11):1468–1481, 2018.

[2] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu. To
join or not to join?: Thinking twice about joins before
feature selection. In SIGMOD, pages 19–34. ACM,
2016.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. JMLR, 12(Oct):2825–2830, 2011.

[4] M. Vartak, H. Subramanyam, W.-E. Lee,
S. Viswanathan, S. Husnoo, S. Madden, and
M. Zaharia. Modeldb: A system for machine learning
model management. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, HILDA ’16, pages
14:1–14:3, New York, NY, USA, 2016. ACM.

[5] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A.
Hong, A. Konwinski, S. Murching, T. Nykodym,
P. Ogilvie, M. Parkhe, F. Xie, and C. Zumar.
Accelerating the machine learning lifecycle with mlflow.
In IEEE Data Engineering Bulletin, 41(4), 2018.

1909


