
Trinity: An Extensible Synthesis Framework
for Data Science

Ruben Martins
Canergie Mellon University

rubenm@andrew.cmu.edu

Jia Chen
UT Austin

jchen@cs.utexas.edu

Yanju Chen
UCSB

yanju@cs.ucsb.edu

Yu Feng
UCSB

yufeng@cs.ucsb.edu

Isil Dillig
UT Austin

isil@cs.utexas.edu

ABSTRACT
In this demo paper, we introduce Trinity, a general-purpose
framework that can be used to quickly build domain-specific
program synthesizers for automating many tedious tasks
that arise in data science. We illustrate how Trinity can
be used by three different users: First, we show how end-
users can use Trinity’s built-in synthesizers to automate
data wrangling tasks. Second, we show how advanced users
can easily extend existing synthesizers to support additional
functionalities. Third, we show how synthesis experts can
change the underlying search engine in Trinity. Overall,
this paper is intended to demonstrate how users can quickly
use, modify, and extend the Trinity framework with the
goal of automating many tasks that are considered to be
the “janitor” work of data science.

PVLDB Reference Format:
Ruben Martins, Jia Chen, Yanju Chen, Yu Feng, and Isil Dillig.
Trinity: An Extensible Synthesis Framework for Data Science.
PVLDB, 12(12): 1914-1917, 2019.
DOI: https://doi.org/10.14778/3352063.3352098

1. INTRODUCTION
Due to the messy nature of data in different applica-

tion domains, data scientists spend a significant amount of
their time performing data preparation and wrangling tasks,
which are considered by many to be the “janitor work” of
data science. In recent years, program synthesis has emerged
as a powerful technology that can be used to automate
many tedious aspects of data analytics. For example, pro-
gram synthesizers have been used to automate spreadsheet
programming [8, 4, 5], data migration [12], SQL program-
ming [10, 13], and table and tensor transformations [3, 11].

However, one disadvantage of most existing program syn-
thesizers is that they are tied to a very specific application
scenario (e.g., number formatting in Excel [8]). While the
domain-specific nature of program synthesizers has partially

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352098

been responsible for their success, developing a useful pro-
gram synthesizer currently requires an advanced degree in
computer science. This paper aims to broaden the appli-
cability of example-guided program synthesis (i.e., progra-
mming-by-example (PBE)) by proposing a general frame-
work called Trinity that can be used to quickly develop ef-
ficient program synthesizers in a new domain. The Trinity
framework is parametrized by a domain-specific language
(DSL) and can be easily applied to new application scenar-
ios by providing a suitable DSL and its interpreter. The
user can optionally provide (lightweight) specifications of
DSL constructs to improve the efficiency of synthesis.

The Trinity framework is based on recent advances in
inductive program synthesis and incorporates the following
salient features:

• Customizability: Trinity can be easily adapted to new
application domains by providing a suitable DSL (and its
semantics) for the target application scenarios.

• Efficient synthesis: Trinity is based on an efficient syn-
thesis algorithm that combines search and lightweight de-
duction. Specifically, Trinity performs a search over the
space of DSL programs but uses the semantics of the DSL
constructs to prune large parts of the search space us-
ing lightweight deductive reasoning based on Satisfiability
Modulo Theory (SMT) solvers.

• Usability: To address the fundamentally incomplete na-
ture of specification in programming-by-example, Trin-
ity gives users fine-grained control over inductive bias
by providing so-called preference predicates that constrain
the space of synthesized programs.

In what follows, we give a high-level usage overview of the
Trinity framework (Section 2) and then discuss how differ-
ent users can use, modify and extend Trinity (Section 3).

2. USAGE OVERVIEW
Figure 1 shows how different users can interact with Trin-

ity. We split users into three categories: end-user, advanced
user, and synthesis expert.

End-user. From the perspective of end-users, Trinity pro-
vides a rich PBE environment that can be used to auto-
mate various tasks that arise in data science. In particular,
current synthesizers in Trinity can generate list and table

1914

Front-End

DSL Interpreter

Enumerator

SpecificationsPreferences

End User
Advanced User

Expert User

Trinity

Figure 1: Usage Overview

transformations, SQL queries, and programs that consoli-
date values from different sources. To perform a synthesis
task, the end-user specifies her intent by using input-output
examples. Additionally, the user can (optionally) also spec-
ify so-called preference predicates that introduce inductive
bias to the synthesizer. For example, if the user thinks that
the synthesized program should contain the concat function
for concatenating two strings, she can provide this informa-
tion to Trinity by adding a predicate like occurs(concat,

80%), where 80% indicates the user’s confidence that the tar-
get program will contain the concat function. Given such
a predicate, Trinity will bias its search towards programs
that contain at least one occurrence of the concat operator.

Advanced user. From the perspective of an advanced user
(or domain expert), Trinity can be used to build new syn-
thesizers or extend the functionality of existing synthesizers.
For example, to build a new synthesizer on top of Trinity,
the domain expert only needs to provide a domain-specific
language (DSL) that is suitable for the target class of tasks.
In addition to the syntax of the DSL and its interpreter,
the user can also provide logical specifications for the DSL
constructs in order to speed up synthesis. However, these
logical specifications need not precisely specify the seman-
tics of the DSL construct. For example, consider the concat

operator that concatenates two strings a and b and returns a
string c. We can encode the semantics of this operator using
the logical specification len(c)=len(a)+len(b), where len

denotes the length of the string. Note that this specification
gives a partial rather than complete description of what the
concat operator does. Internally, Trinity’s synthesis al-
gorithm uses such specifications to dramatically prune the
search space of possible programs.

Synthesis expert. For users with some knowledge of pro-
gram synthesis, Trinity’s synthesis engine can be customi-
zed to more efficiently search for programs that satisfy the
user-provided examples. At its core, Trinity’s synthesis al-
gorithm performs backtracking search over DSL programs
but leverages program semantics to significantly prune the
search space. Furthermore, the search algorithm in Trin-
ity is conflict-driven in that it can learn useful “lemmas”
based on failed synthesis attempts (i.e., conflicts) [2]. An
advanced user with some knowledge of program synthesis
can further customize the underlying algorithm in Trinity
by either changing its search strategy or by integrating a
statistical model (e.g., in the style of DeepCoder [1]) into
the enumeration engine.

3. DEMO
In this section, we demonstrate three use cases of Trinity:

(i) Synthesizing programs for data wrangling tasks in R, (ii)
extending the DSL for data wrangling tasks to synthesize
new programs, (iii) changing the enumerator to incorporate
statistical models trained from a corpus.

3.1 Data Wrangling in R

Demo 1. To get a sense of the data wrangling tasks that
we can automate using Trinity, consider a data frame re-
shaping tasked posted on StackOverflow 1 where a data sci-
entist wants to convert data from long to wide format. To
get help from other StackOverflow users, he provides the in-
put data frame shown in Table 1 and the output data frame
in Table 2.

Table 1: Input table

Student Grade Score1 Score2

Greg A 75 76
Greg B 86 85
Sally A 85 86
Sally B 80 78

Table 2: Output table

Student B Score1 B Score2 A Score1 A Score2

Greg 86 85 75 76
Sally 80 78 85 86

Given only this simple input-output example, Trinity can
automatically synthesize the following R program using the
tidyr library:

df1=gather(input,Score,Grade,Score1,Score2)

df2=unite(df1,AllScores,Time,Score)

output=spread(df2,AllScores,Grade)

While not necessary for this relatively simple example, the
user can optionally help the synthesizer by providing prefer-
ence predicates, such as occurs(gather, 60%), which would
cause the synthesizer to bias the search towards programs
that contain the gather function from the tidyr library.

Demo 2. As another example, consider the following sce-
nario described on a StackOverflow post 2 where a user needs
to collapse multiple columns of a data frame into a single col-
umn. In particular, the diagnosis columns (1-3) in Table 3
correspond to binary values that denote the presence or ab-
sence of the diagnosis. The user would like to reshape her
data from the format shown in Table 3 to the format shown
in Table 4 but fails to do so after many attempts as described
in the StackOverflow post:

“No matter how many times I read the documentation on
reshape/reshape2/tidyr I just can’t manage to wrap my head
around their implementation.” 2

Trinity can help this user by automatically synthesizing
the following R code using the tidyr and dplyr libraries:

1https://stackoverflow.com/questions/29775461
2https://stackoverflow.com/questions/29447325

1915

https://stackoverflow.com/questions/29775461
https://stackoverflow.com/questions/29447325

Table 3: Input table

ID Diagnosis 1 Diagnosis 2 Diagnosis 3

A 1 0 0
A 1 0 0
B 0 1 0
C 0 1 0
D 0 0 1
E 0 1 0
E 1 0 0

Table 4: Output table

ID Diagnosis

A 1
A 1
B 2
C 2
D 3
E 2
E 1

df1=gather(input,Patient,Value,-‘ID‘)

df2=separate(df1,‘Patient‘,

into=c(’Patient’,’Diagnosis’))

df3=filter(df2,‘Value‘ > 0)

output=select(df3,‘ID‘,‘Diagnosis‘)

How does it work? The data wrangling synthesizer built
into Trinity is based on a DSL (a subset of which is pro-
vided in Figure 2) that uses functions provided by the tidyr

and dplyr libraries. As mentioned earlier, Trinity performs
an enumerative search over the space of programs in this
DSL but uses lightweight deductive (SMT-based) reason-
ing to significantly prune the search space [2]. In particular,
each of the DSL constructs shown in Figure 2 come equipped
with a logical specification that can be used to prove that
no program of a certain shape will be consistent with the
input-output examples. Such logical reasoning capabilities
dramatically reduce the space of programs that need to be
explored by Trinity.

As mentioned earlier, Trinity can also use preference
predicates optionally provided by the user to guide its search.
In addition to the occurs predicate discussed earlier, Trin-
ity also supports other unary and binary predicates that
can be used to constrain the search space. For instance, a
predicate such as is parent(foo, bar) indicates that the
return value of bar is an argument of function foo. Inter-
nally, Trinity uses a Maximum Satisfiability Modulo The-
ory (Max-SMT) solver to convert these preferences into a
set of soft constraints and prioritizes its search strategy to
maximize the satisfaction of these constraints.

3.2 Extending the DSL for Data Wrangling

Demo 3. Trinity is a modular synthesizer that allows
the user to extend existing synthesizers or create new ones.
For instance, suppose that the user wants to extend the data
wrangling synthesizer described in Section 3.1 by adding a
new DSL function called summarise that aggregates values in
a column. In this case, the user can extend the synthesizer
by adding this new summarise function to the existing DSL:

TABLE → input | select(TABLE, LIST)

unite(TABLE, COL, COL) | separate(TABLE, COL)

spread(TABLE, COL, COL) | gather(TABLE, LIST)

filter(TABLE, COL, OP, C)

LIST → [1] | [1,2] | ...| [4,5]

COL → 1 | ...| 5

OP → < | = | >

C → 0 | ...| 10

Figure 2: Part of the DSL for data wrangling tasks in R

TABLE → summarise(TABLE, AGG, COL)

AGG → min | max | mean | sum

Optionally, the user can also provide (coarse) specifica-
tions that will be used by Trinity to prune infeasible pro-
grams. For instance, the user may provide the following
specification for summarise:

1 func summarise: Table r -> Table a,
2 Aggr b, ColInt c {
3 row(r) < row(a);
4 col(r) <= col(a) + 1;
5 }

Here, lines 1 and 2 specify the signature of the summarise

function, which takes as input a table a, an aggregate func-
tion b, and a column c and returns a table r. The logical
specification in lines 4–5 describes the relationship between
the input and output table with respect to the number of rows
and columns. Finally, the user also needs to provide an in-
terpreter for the new DSL construct. For instance, the fol-
lowing “interpreter” for summarise is a simple wrapper that
invokes the corresponding function in R:

1 class MorpheusInterpreter(Interpreter):
2 def eval_summarise(self , node , args):
3 ...
4 _script =
5 ’{ret_df} <-
6 {table} %>% summarise ({TMP} =
7 {aggr} (.[[{ col}]])) ’
8 .format(ret_df=ret_df_name ,
9 table=args[0],

10 TMP=get_fresh_col (),
11 aggr=str(args [1]),
12 col=str(args [2]))
13 return robjects.r(_script)

How does it work? Given a DSL and an interpreter,
Trinity can synthesize any well-typed programs that can
be implemented in that DSL. Specifically, Trinity uses the
provided interpreter to check if a given program is consis-
tent with all of the input-output examples. In addition,
the logical specifications provided by the domain expert al-
low Trinity to prune the search space by (a) determining
whether a partial (i.e., incomplete) program has any com-
pletions that can satisfy the input-output examples, and (b)
identifying a set of programs that are equivalent to previ-
ously rejected programs. By decoupling the semantics of
the DSL from the inner workings of the synthesizer, Trin-
ity allows users to build effective synthesizers on top of its
underlying search engine without having to write a new syn-
thesizer from scratch.

1916

3.3 Modifying the Search Engine

Demo 4. Expert users can also customize the underly-
ing search engine of Trinity to further speed up their syn-
thesizer. In particular, users can provide statistical models
(e.g., deep neural network, n-gram) that can be used to pre-
dict the most likely programs. Then, Trinity’s underlying
search engine explores programs in this DSL by consulting
the provided statistical model. That is, programs that are
assigned a higher score by the model are prioritized during
the search. Such a statistical model could be obtained in a
variety of ways: For instance, if there are many existing pro-
grams in the target DSL, the user could train their model on
an existing code corpus and enumerate programs according
to their frequency in the corpus. Alternatively, the model
could also be guided by the examples rather than existing
code: For instance, one could train a deep neural network to
predict which DSL constructs are likely to occur in the target
program based on the input-output examples [1].

How does it work? Trinity views each program as an
Abstract Syntax Tree (AST), and its search engine enumer-
ates ASTs that correspond to well-typed programs in the
DSL. The enumeration of ASTs is guided by the statisti-
cal model. Furthermore, Trinity supports both explicit
and symbolic search, and the expert user can integrate their
statistical model into both of these search strategies. For
explicit search, Trinity performs backtracking search over
ASTs and uses the statistical model to decide which AST
node to expand next and how to expand it. For symbolic
search, the predictions of the statistical model are expressed
as preference predicates which are then encoded as soft con-
straints for a MaxSMT solver. Since the solver finds assign-
ments that satisfy the maximum number of soft constraints,
the programs that are enumerated first correspond to those
deemed more likely by the model. Both the explicit and the
symbolic search options have their respective advantages:
For instance, while it is easier to incorporate the statistical
model into the explicit search mode, the symbolic search op-
tion allows Trinity to perform more aggressive pruning by
learning new constraints from failed synthesis attempts.

4. RELATED WORK
The Trinity system is related to a long line of work on

programming-by-example (PBE) that has gained increasing
popularity over the last several years [4, 2, 3, 10, 14]. In
what follows, we discuss other related work in this space.

The existing synthesizers built on top of Trinity are most
closely related to other PBE systems that automate table
transformations [10, 14, 6, 5]. However, we are not aware of
any other synthesizers (other than the ones built on top of
Trinity) that automate data wrangling tasks.

Trinity is a best viewed as a general framework for quickly
developing program synthesizers for new domains. As dis-
cussed in Sections 3.2 and 3.3, advanced users can build new
synthesizers on top of Trinity by coming up with new DSLs
for the target application domain or customizing Trinity’s
underlying search strategy. Thus, Trinity is not just lim-
ited to automating data wrangling tasks in R but can tar-
get other programming languages as well as other types of
tasks. Viewed as a general synthesis framework, Trinity
bears resemblance to other synthesis frameworks such as

Prose [7], Rosette [9], Blaze [11], and Neo [2]. Among these,
the most closely related one is Neo. In particular, Trin-
ity is a second-generation version of Neo that extends it
in several ways. First, Trinity gives finer-grain control to
users by allowing them to provide preference predicates to
guide search. Second, the underlying search engine of Trin-
ity incorporates a MaxSMT solver that ensures maximal
satisfaction over user preferences. Finally, it is much eas-
ier to build new synthesizers on top of Trinity compared
to Neo. Trinity differs from other synthesis framework in
that it combines conflict-driven backtracking search with de-
ductive SMT-based reasoning. We believe that this design
makes Trinity quite extensible, as one can build efficient
synthesizers on top of Trinity by just providing coarse,
easy-to-write logical specifications of DSL constructs.

5. CONCLUSION
We have presented Trinity, a novel synthesis framework

(written in Python) that makes it easy to build new syn-
thesizers. We have also presented a program synthesizer
built on top of Trinity that simplifies tedious aspects of
data analytics by automating a wide range of data wran-
gling tasks that arise in the context of R programming. The
documentation and source code of the Trinity framework
is available at https://fredfeng.github.io/Trinity/.

Acknowledgments. This work is supported in part by
NSF awards #1762299, #1762363, #1811865, and CMU/A-
IR/0022/2017 grant.

6. REFERENCES
[1] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and

D. Tarlow. Deepcoder: Learning to write programs. In
ICLR, 2017.

[2] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program
synthesis using conflict-driven learning. In PLDI, 2018.

[3] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and
S. Chaudhuri. Component-based synthesis of table
consolidation and transformation tasks from examples. In
PLDI, 2017.

[4] S. Gulwani. Automating string processing in spreadsheets
using input-output examples. In POPL, 2011.

[5] W. R. Harris and S. Gulwani. Spreadsheet table
transformations from examples. In PLDI, 2011.

[6] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish.
Foofah: Transforming data by example. In SIGMOD, 2017.

[7] O. Polozov and S. Gulwani. Flashmeta: a framework for
inductive program synthesis. In OOPSLA, 2015.

[8] R. Singh and S. Gulwani. Synthesizing Number
Transformations from Input-Output Examples. In CAV,
2012.

[9] E. Torlak and R. Bod́ık. A lightweight symbolic virtual
machine for solver-aided host languages. In PLDI, 2014.

[10] C. Wang, A. Cheung, and R. Bodik. Synthesizing highly
expressive sql queries from input-output examples. In
PLDI, 2017.

[11] X. Wang, I. Dillig, and R. Singh. Program synthesis using
abstraction refinement. In POPL, 2018.

[12] N. Yaghmazadeh, X. Wang, and I. Dillig. Automated
migration of hierarchical data to relational tables using
programming-by-example. PVLDB, 11(5):580–593, 2018.

[13] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer:
query synthesis from natural language. In OOPSLA, 2017.

[14] S. Zhang and Y. Sun. Automatically synthesizing sql
queries from input-output examples. In ASE, 2013.

1917

https://fredfeng.github.io/Trinity/

	Introduction
	Usage Overview
	Demo
	Data Wrangling in R
	Extending the DSL for Data Wrangling
	Modifying the Search Engine

	Related Work
	Conclusion
	References

