Making an RDBMS Data Scientist Friendly

Advanced In-database Interactive Analytics with Visualization Support

Joseph Vinish D’silva
joseph.dsilva@mail.mcgill.ca

Florestan De Moor
florestan.demoor@mail.mcgill.ca

Bettina Kemme
kemme@cs.mcgill.ca

School of Computer Science, McGill University
Montréal, Canada

ABSTRACT

We are currently witnessing the rapid evolution and adop-
tion of various data science frameworks that function exter-
nal to the database. Any support from conventional RDBMS
implementations for data science applications has been lim-
ited to procedural paradigms such as user-defined functions
(UDFs) that lack exploratory programming support. There-
fore, the current status quo is that during the exploratory
phase, data scientists usually use the database system as the
“data storage” layer of the data science framework, whereby
the majority of computation and analysis is performed out-
side the database, e.g., at the client node. We demonstrate
AIDA, an in-database framework for data scientists. AIDA
allows users to write interactive Python code using a de-
velopment environment such as a Jupyter notebook. The
actual execution itself takes place inside the database (near-
data), where a server component of AIDA, that resides in-
side the embedded Python interpreter of the RDBMS, man-
ages the data sets and computations. The demonstration
will also show the visualization capabilities of AIDA where
the progress of computation can be observed through live
updates. Our evaluations show that AIDA performs several
times faster compared to contemporary external data sci-
ence frameworks, but is much easier to use for exploratory
development compared to database UDF's.

PVLDB Reference Format:

Joseph Vinish D’silva, Florestan De Moor, Bettina Kemme. Mak-
ing an RDBMS Data Scientist Friendly: Advanced In-database

Interactive Analytics with Visualization Support. PVLDB, 12(12):

1930-1933, 2019.
DOI: https://doi.org/10.14778/3352063.3352102

1. INTRODUCTION

Data scientists typically need to work with data from a va-
riety of sources, including those stored in conventional Rela-
tional Database Management System (RDBMS) implemen-
tations. However, traditional RDBMSes have been cautious
to adapt to the needs of the data science community at large.
This is because introducing support for many non-relational

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 12

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3352063.3352102

operations such as linear algebra require significant changes
to the RDBMS engine. Further, SQL was never envisioned
to be a language with the high level language (HLL) capa-
bilities that a typical data science project requires.

This has resulted in the evolution of specialized data sci-
ence frameworks that are external to the database [8, 3].
However, these systems incur data transfer delays from the
database [6] and often have to duplicate the relational pro-
cessing capabilities. On the other hand, when it comes
to conventional RDBMS implementations, so far the only
popular attempt to support the needs of the data science
community has been to integrate interpreted HLLs, such as
Python and R. This approach requires the users to write
their processing logic in an HLL function which is then ex-
ecuted in the database space in the form of a user defined
function (UDF) [6, 5]. While computationally efficient, this
approach fares poorly when it comes to the easiness of use
[6], as UDFs are quite restrictive in terms of supporting in-
teractive exploratory work and visualization.

We demonstrate AIDA (Abstraction for Advanced In-
database Analytics) [1] that couples database engine and
HLL in a quite different way. AIDA is a data science frame-
work that performs all the computations inside the database
while allowing users to write interactive Python code for ex-
ploration. The main features of AIDA are:

User-friendly syntax. AIDA’s client API is written in
Python and emulates the syntax and semantics of popular
data science packages such as NumPy and pandas, thereby
reducing the learning curve for users.

Thin client. Users can use a regular Python interpreter
or data science environments like Jupyter notebooks, to use
AIDA’s client API package. All data transformations re-
quested by the user are transparently sent to AIDA’s server
inside the RDBMS, ensuring near-data computation.

Exploratory programming paradigm. Unlike
database UDFs that are strictly procedural, AIDA’s pro-
gramming semantics facilitate interactive programming in
a similar way as most “outside-the-database” data science
frameworks, allowing the users to analyze the outcome of
a set of operations before deciding further transformations.
To this extent, AIDA also supports both explanatory and
exploratory data visualizations.

A unified abstraction for computation. Data sets in
AIDA are represented as TabularData objects and can be
used to encapsulate the data inside a database table or a
table-like Python data structure. TablularData serves as a
unified abstraction that supports both relational and linear
algebra operations seamlessly. Relational operations are in-

1930

Embedded Python Interpreter RDBMS

NumPy TabularData
column
NumPyArra ata u = E
Matenallze DB Table /Resultset
Algebra Operators
Operators Table UDF Mok .
+*@ ..

Figure 1: TabularData Abstraction [1].

ternally executed using the underlying RDBMS and linear
algebra operations are performed using NumPy.

User Extensions. While AIDA provides the most com-
monly used operators for relational and linear algebra pro-
cessing, users can write custom operators using a simple
Python syntax, allowing them to integrate external data
transformation libraries into their workflow.

Table 1 summarizes AIDA’s capabilities in comparison
with contemporary popular data science tools.

Table 1: AIDA Vs. Popular Data Science Tools.

] S
= - I B
S| 5| F| S| ¢
g |1 88| 7|5
3
Languages 5 5 < f
AIDA Python v v v v v
DB UDF | Python, SQL X X v X v
pandas Python v v X v X
Spark Scala v v X v X

2. AIDA OVERVIEW

In this section, we provide a brief overview of AIDA’s
architecture and programming interface. Interested readers
can find detailed information about AIDA in [1].

AIDA primarily consists of a data abstraction called Tab-
ularData and two software components (i) A client-side API
that is a Python package which can be used with any regular
Python interpreter or more popular data science program-
ming environments such as Jupyter Notebooks. (ii) AIDA’s
server component, that resides in the embedded Python in-
terpreter of the RDBMS and is responsible for overseeing
computational operations and maintaining data sets.

2.1 TabularData

AIDA encapsulates all the data sets using an abstraction
called TabularData. A TabularData object resides in the
database and can be used to represent the data in a database
table, the result set of a database query, or any table-like
Python object such as a NumPy array (see Figure 1). Users
can apply various data transformations on TabularData ob-
jects using a large repertoire of methods that AIDA’s API
provides. TablularData objects are immutable and trans-
forming a TabularData object creates a new one. How-
ever, for optimization reasons, in many cases, AIDA does
not “materialize” the data of a TabularData object unless
there is a need for it.

2.2 User APIs

The detailed client-server architecture of AIDA is shown
in Figure 2. AIDA’s client-side API is Python based and

Client System RDBMS

Jupyter Notebook Embedded Python Interpreter

Pythor'{nl.r'{;c'erpreter «—hNumPy |
E=)/5tb], - !! TabularData I . @l

User | [AIDA | (bl] E

Code | [Client s s AIDA SaL

Space| |API & = o2 TP Engine

;v@] ” TabularData I DB Tables

Figure 2: AIDA - High level architecture [1].

is intentionally modeled after popular data science packages
such as NumPy and pandas for familiarity. Its interactive
programming syntax supports both exploratory program-
ming needs and incremental solution development. How-
ever, beyond the syntactic similarities, AIDA’s client API
serves the function of seamlessly shifting the computations
to AIDA’s server which performs these computations inside
the database. This is a fundamental advantage that AIDA
has over such packages which need to retrieve the data from
the database to perform the computations.

Relational Operations. Users can perform relational
operations on a TabularData object using an object-relational
mapping (ORM) [4] based syntax. Below is an example of
aggregating the supplier table of TPC-H, to compute the
number of suppliers and the total account balance.

si =

supplier.agg ((,{COUNT(’x"):
,{SUM(’s_acctbal’):

’numsup’ }
>totsbal’}))

AIDA will keep track of such relational transformations in-
stead of executing them immediately. When they need to be
materialized, AIDA internally translates the ORM expres-
sions into the equivalent SQL and leverages the RDBMS
engine to execute the operation. If the original data set
happens to be a Python object, it will dynamically gener-
ate a table-UDF [6] to expose it to the RDBMS for SQL
processing (see Figure 1).

Linear Algebra. The linear algebra syntax for operating
on TabularData objects are based on NumPy’s, which itself
is mathematically intuitive and compact. In the example be-
low, we are performing a matrix based division on the above
TabularData object to represent the number of suppliers in
thousands and total account balance in millions.

res si/numpy. asarray ([1000, 1000000]); ‘

1931

If the original data set happens to be in the database, AIDA
will internally execute a SQL to fetch it (see Figure 1). It is
also capable of leveraging database optimizations like zero-
copy [2] that minimizes any data transfer overheads.

User Extensions. Further, AIDA lets users extend the
operator repertoire by allowing them to write custom oper-
ators. For example, in one of the demo scenarios, we will
demonstrate how to perform a custom transformation to
compute the geodesic distance between two coordinates us-
ing a third party Python package.

Data Visualizations. Visualizations are an important
resource in any data science project. AIDA provides visual-
ization support using plotly' which is a very popular Python
based interactive graphing library. Users can, for example,
use a Jupyter Notebook to interact with the visualization
components of AIDA (see Figure 2). They can also observe

"https://dash.plot.ly/

800+ = Data Load [| [14000

600+ == [Feature Eng - r 12000

4001 B Model Training — 110000
4 200 mmm Model Testing £ 8000
g E=3 Character Count
S g
& 150+ 6000 5
< o
= [}
£ l ‘ . . £
'g 100 r4000 v
] O
g o
£ 501 r2000 ©
=} E=
Q. v
§ J_J_._ J
o
v 0- 0

DB-UDF AIDA pandas Spark

Figure 3: Linear regression on Bixi data set [1].

the progress of the training of a model by watching live up-
dates of error rate graphs, a scenario that we will be covering
in our demonstration.

2.3 Client-server Architecture

As previously mentioned, AIDA’s server resides in the em-
bedded Python interpreter of the RDBMS, thus facilitating
the execution of the computation in the database address
space. The transformations that the users initiate in the
user code space are transparently sent by AIDA’s client
API to the server using remote method invocation (RMI)
(see Figure 2). AIDA also has optimizations to reduce RMI
overhead for iterative statements such as loops by shifting
the complete iteration logic to the server side.

2.4 Performance and Usability Evaluation

We study the usability and performance of our system by
performing an exploratory workflow analysis and compare it
with the contemporary in-database approach of using UDF's
and popular external-to-database approaches such as pan-
das and Spark. We use the Bixi bicycle trip data set® to
perform a linear regression to predict the duration of a trip,
given the distance between two bicycle stations. From the
performance metrics in Figure 3 (left y-axis), we can see that
both the in-database approaches are on par, while external
systems such as pandas and Spark perform poorly, predom-
inantly due to their data transfer overhead and less efficient
relational operation implementations. Overall AIDA turns
out to be 56 times faster than Spark and 14 times faster
than pandas. On the usability analysis, we resort to com-
paring using the source code size given the variation in pro-
gramming paradigms (right side y-axis). While AIDA is
on par with pandas and Spark, database UDFs take about
twice the amount of source code. Therefore, we can see that
AIDA provides a highly user-friendly in-database program-
ming paradigm without sacrificing performance.

3. DEMONSTRATION DESCRIPTION

In our demonstration, we will cover two primary use cases
of AIDA. In the first one, we will go over a detailed data sci-
ence workflow written in AIDA, consisting of various phases
of a data science project such as data set exploration, feature
engineering, data visualization, model training, etc. In the
second scenario, we will demonstrate how easy it is to rep-
resent complex queries such as those found in the TPC-H
using AIDA’s API and how it supports developing inter-
active widgets capable of dynamically updating the results
based on user inputs.

Zhttps:/ /www.kaggle.com/aubertsigouin /biximt]

3.1 User Interface

Users can load AIDA’s client packages in any Python in-
terpreter and perform their work. However, advanced data
science environments like Jupyter notebook can help users
leverage the full potential of AIDA such as using interactive
visualization capabilities. Therefore, for our demonstration,
we will use Jupyter notebook as the user interface of choice.
Users can load AIDA’s Python client package into a Jupyter
notebook and login to the database.

3.2 Exploratory Data Science Using AIDA

In our primary demo workflow, we walk the users through
a scenario where they have to explore the Bixi bicycle trip
data set. Here the “data scientist” is in the process of de-
veloping a model that can predict the duration of a trip,
using the distance between the bicycle stations. This is a
concise workflow that covers various real-world aspects of
exploratory data science such as analyzing the data sets
including visualizing them, eliminating outliers and noisy
data, performing feature engineering, training a model and
monitoring the progress of error rate and finally comparing
the performance of the model against the test data.

Once the users log into the database using AIDA’s client
API, they will be able to explore the data sets in the database.
AIDA’s connection object allows users access to the database
tables through the TabularData abstraction. The underly-
ing RMI framework provides stubs (see Figure 2) to these
TabularData objects for the user code to operate upon.

In-database data exploration. Similar to contempo-
rary data science packages, users can take a look at some
of the sample records or a detailed summary of statistical
characteristics of various attributes in the data set. Since
providing such information incurs only minimal data trans-
fers, this is a key advantage for AIDA that keeps the bulk
of the data in the database unlike the external data science
frameworks that need to take out all of the data from the
database to work with.

Visualization. Further, similar to contemporary data
science packages that allow users to programmatically visu-
alize various aspects of the data set, users can visualize data
in AIDA using the Plotly package support integrated into
it. To this extent, users will learn how to visualize the geo-
graphical locations of the bicycle stations in the data set on
a map along with the density distribution of those stations
in the data set (see Figure 4).

Relational operations without SQL. As part of pre-
processing the data set, users will observe how easy it is to
perform relational processing operations such as selection,
join, aggregation, etc., using AIDA’s ORM syntax, elimi-
nating the dependency on the knowledge of SQL. In this
aspect, users will also experience how such processing can
be done through an interactive widget. For example, users
will be able to use a histogram chart and a slider to limit
the range of outliers that we should accommodate in our
working data set (see Figure 5).

User transforms for feature engineering. The abil-
ity to write custom transformations is key to the feature
engineering aspect of a data science project. To facilitate
this, AIDA supports the concept of user transformations.
In our demo workflow, users will observe how they can use
the geographical coordinates of bicycle stations to compute
the geodesic distance [7] between them using a third party
Python package to enrich the working data set.

1932

Jupyter BixiExplorer L

B+ % @B 4 ¥ Han

In (13]: def m
i

tlat'1))/2
*stlong'1))/2}

1500, 'height':500}

Bixi stations of interest

* Jupyter BixiExplorer ast che

5 + > @B+ ¥ HRn

€ [» | [Markdour

In [20]: pltp = dw. Page(chooseTrips);
show(pltp) ;

Trip duration historgram

In [21]: head(dw.selTrips);

updated.

Figure 5: Updating a data set through visual interaction.

Linear algebra and model development. As we con-
tinue the exploratory workflow development, users will fa-
miliarize themselves on how to develop new models easily
using AIDA’s API. In this concise example, users will see
how to define an error function and a gradient descent func-
tion that is required to develop a linear regression model. As
these functions are primarily based on linear algebra, users
will notice the simple syntax of AIDA’s linear algebra API
on par with contemporary data science packages, thus re-
quiring no learning curve. Further, they will also observe
the programming convenience of the TabularData unified
abstraction that supports both relational and linear algebra
operations on the underlying data sets without the users be-
ing burdened with moving data sets back and forth between
the database and the statistical packages.

Live visualization for monitoring. As we move into
the training phase, users have the opportunity to observe
the error rates being updated on a live graph as the model
training progresses. Such capabilities play a significant role
in improving the overall productivity of the data scientist.

We will conclude the workflow by applying the trained
model on our test data and verifying its predictions.

Finally, to understand the performance benefits of AIDA,
which performs all the computations within the database,
users will have the opportunity to compare its execution

1933

with a workflow written in pandas, a popular data science
package, that has to first extract the data from the database
before doing any analysis.

3.3 Conventional Analytics

AIDA’s programming versatility and capability to sup-
port visualization and interactive widgets from within the
database environment also opens up interesting options when
it comes to providing conventional analytics capabilities such
as those that are common in decision support systems used
for business intelligence.

To this extent, users will be able to go through various
workflows that are modeled over the TPC-H database. For
example, in one such scenario, the TPC-H query 5 that looks
at the revenue from each country based on the geographical
regions, will be presented with its results visually overlayed
over a world map. This is a fairly complex query consisting
of 6 tables in the join along with selection conditions and ag-
gregations and is easily expressible in AIDA without writing
any SQL. The user can interactively change the date range
of the query and switch the geographical region of interest
and the query will automatically refresh the data displayed
over the map.

As AIDA provides interactive visualizations and widgets
through libraries that support contemporary web scripting
languages, the results produced by AIDA can be easily in-
corporated into a web server. We are currently in the process
of facilitating the additional platform support required for
this. With this, a data scientist will be able to easily develop
a workflow to analyze some new concept and only publish
the end-user facing visualizations or interactive widgets to
their user community without having to share the complex
programming nuances associated with typical data science
workflows. This will help streamline the prototype - user
validate process flow of data science projects.

4. REFERENCES

[1] J. V. D’Silva, F. De Moor, and B. Kemme.
AIDA-Abstraction for Advanced In-Database
Analytics. PVLDB, 11(11):1400-1413, 2018.

J. Lajus and H. Miihleisen. Efficient Data Management
and Statistics with Zero-Copy Integration. In SSDBM,
pages 12:1-12:10. ACM, 2014.

W. McKinney. pandas: a Foundational Python Library
for Data Analysis and Statistics. Python for High
Performance and Scientific Computing, pages 1-9,
2011.

S. Melnik, A. Adya, and P. A. Bernstein. Compiling
Mappings to Bridge Applications and Databases.
Transactions on Database Systems, 33(4):22, 2008.

H. Miihleisen and T. Lumley. Best of Both Worlds:
Relational Databases and Statistics. In SSDBM, pages
32:1-32:4. ACM, 2013.

M. Raasveldt and H. Miihleisen. Vectorized UDFs in
Column-Stores. In SSDBM, pages 16:1-16:12. ACM,
2016.

T. Vincenty. Direct and Inverse Solutions of Geodesics
on the Ellipsoid with Application of Nested Equations.
Survey Review, 23(176):88-93, 1975.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing With Working
Sets. HotCloud, 10(10-10):95, 2010.

2]

3]

(4]

[5]

(6]

[7]

(8]

