The Maximum Trajectory Coverage Query in Spatial
Databases

Mohammed Eunus Ali
BUET, Bangladesh

eunus@cse.buet.ac.bd

Farhana M. Choudhury
RMIT University and University
of Melbourne, Australia

fchoudhury@unimelb.edu.au

ABSTRACT

With the widespread use of GPS-enabled mobile devices, an un-
precedented amount of trajectory data has become available from
various sources such as Bikely, GPS-wayPoints, and Uber. The
rise of smart transportation services and recent break-throughs in
autonomous vehicles increase our reliance on trajectory data in a
wide variety of applications. Supporting these services in emerg-
ing platforms requires more efficient query processing in trajectory
databases. In this paper, we propose two new coverage queries for
trajectory databases: (i) k Best Facility Trajectory Search (kBFT);
and (ii) k Best Coverage Facility Trajectory Search (kBCovFT).
We propose a novel index structure, the Trajectory Quadtree (TQ-
tree) that utilizes a quadtree to hierarchically organize trajectories
into different nodes, and then applies a z-ordering to further or-
ganize the trajectories by spatial locality inside each node. This
structure is highly effective in pruning the trajectory search space,
which is of independent interest. By exploiting the TQ-tree, we de-
velop a divide-and-conquer approach to efficiently process a kBFT
query. To solve the kBCovFT, which is a non-submodular NP-hard
problem, we propose a greedy approximation. We evaluate our al-
gorithms through an extensive experimental study on several real
datasets, and demonstrate that our algorithms outperform baselines
by two to three orders of magnitude.

PVLDB Reference Format:

Mohammed Eunus Ali, Shadman Saqib Eusuf, Kaysar Abdullah, Farhana
M. Choudhury, J. Shane Culpepper, and Timos Sellis. The Maximum Tra-
jectory Coverage Query in Spatial Databases. PVLDB, 12(3): 197-209,
2018.

DOI: https://doi.org/10.14778/3291264.3291266

1. INTRODUCTION

With the widespread use of GPS-equipped mobile devices and
the popularity of mapping services, an unprecedented amount of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 3

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3291264.3291266

Shadman Sagqib Eusuf
BUET, Bangladesh

s.sagibeusuf@gmail.com

J. Shane Culpepper
RMIT University, Australia

shane.culpepper@rmit.edu.au

197

Kaysar Abdullah
BUET, Bangladesh

kzr.buet08@gmail.com

Timos Sellis
Swinburne University of
Technology, Australia

tsellis@swin.edu.au

ST. JOHN'S
UNIVERSITY

Figure 1: An example of a kBFT query and a kBCovFT query with
12 user trajectories and 3 bus routes in NY, USA

trajectory data is becoming available for data analytics applica-
tions. For example, in Bikely' users can share their cycling routes
from the GPS devices, in GPS-wayPoints® a user can add way-
points (points on a route at which a course is changed) in a route
and share with friends, in Microsoft GeoLife® users can share their
travel routes and experience using GPS trajectories. Most of the
popular social network sites also support sharing user trajectories.

Beyond personal trips and travel routes, there are many examples
of trajectories derived from various transport services. Uber served
nearly 14.3 million users in New York City between January-June
2015%. While user trajectory data has already been used for pub-
lic transport planning, a wide range of applications remain where
planning ad-hoc transport services are of interest. As discussed in
an [EEE Spectrum report earlier this year, ride-sharing, taxi ser-
vices, and on-demand transportation services will be key sectors
in the emerging autonomous vehicle industry [18]. Consider the
following examples that highlight potential applications in ad-hoc
transportation service planning.

Scenario 1: An on-demand bus operator wants to run autonomous
vehicles on different routes of a city based on commuter demand.
Commuters can request transport services by submitting their pick-
up and drop-off locations (and their expected travel times). Assume
that the operator has a limited number (k) of vehicles operating
on n predefined routes on public transportation networks in a city.

"http://www.bikely.com
http://gpswaypoints.net

*https : / / research . microsoft .
projects/geolife/
‘https://github . com/ fivethirtyeight / uber -
tlc-foil-response

com / en — us /



Now at any time, the bus operator may need to know the top-k
routes that serve the maximum number of users.

Scenario 2: Consider a tourist city, where each tourist has a list
of POIs to visit. Now, a tour operator wants to run buses for &k
different routes to serve the maximum number of tourists. Tourists
would use the service if the number of POIs that can be visited from
their list is maximized.

The underlying problem in both the above scenarios is to select
a limited number (top-k) of facility trajectories/routes from a given
set that best “serve” user trajectories. In Scenario 1, only the start
and end points of each user trajectory are of interest, and a user
is serviced (e.g., will ride the bus) if a bus stop is within a certain
distance v of the desired locations. In this case, service of a facility
is a binary notion; a user is either served or not. In addition to
distances to the nearby stops, a user may also use the facility if
the travel route (or travel time) does not deviate much from the
original route. In Scenario 2, all the points in a user trajectory
can be important as one may want to maximize the “service” by a
facility trajectory in terms of the number of points (e.g., the number
of POIs that a tourist can visit) or the trajectory length (e.g., the
length of a journey). In this case, a user can be served partially by
a facility. We use the term “service” to refer to both these binary
and non-binary measures (details in Section 2).

In this paper, we address this new class of trajectory search prob-
lems, denoted as a k Best Facility Trajectory Search (kBFT)
query which finds £ facilities that maximize a service measure for
a set of user trajectories. Formally, given a set U of user trajecto-
ries, a set I of candidate facility trajectories, and a positive integer
k, a kBFT query returns k facilities from F' with the highest ser-
vice to U. We also address another variant of the query, the k Best
Coverage Facility Trajectory Search (kBCovFT) that returns k
facilitates from F' that combinedly serve the maximum number of
user trajectories from U. As the service value, which conceptually
is how well users are served by a facility, may vary across appli-
cations, we formally define a service value function SO(U, f) to
measure the service of a facility f on user trajectories U. For the
kBCovFT problem, the service value SO(U, F") is computed for a
subset of facilities ' C F, where the common service provided by
different facilities to the users are considered (Section 2 for details).

EXAMPLE 1. Figure 1 shows an example of a kBFT query for
user trajectories {u1, . .., u12} and facility trajectories {25, 46, 65}
representing the bus routes with stop points in Queens, NY. A user
will use a facility if there is a pickup/drop-off location of that facility
within a threshold distance from her source and destination. Thus,
U1, U2, Us can be served by 25, us, ..., us by 46, and ug, ui2 by
65. Hence the bus route 46 is the result for k=1. For a kBCovFT
query, since w10, u11 can be served jointly by 46 and 65, for k = 2
the answer is {46, 65} as they can serve {us, ..., u12}, where the
other sets of size 2, {25,46} and {25,65} can serve {u1, ua, ua,
..., ug}, and {u1, uz, u4, ug, u12}, respectively.

A major challenge with these queries is to quickly find co-located
and similarly oriented user trajectories that can be served by a facil-
ity. Moreover a user can be served partially by a facility, and a user
can be served by multiple facilities; hence another major challenge
is to track the different segments of a trajectory that can be served
by a facility trajectory. In most of the existing work on trajectories
([29, 16]), the points of the trajectories are indexed using a state-of-
the-art spatial indexing method. However, such techniques are not
amenable to our problem as both the partial service of a user tra-
jectory (e.g., the number of POIs from the list of interesting places
that a tourist can visit), and the combined service of multiple facil-
ities are required in this problem. Similarly, previous studies that

198

find trajectories within a range of a query trajectory ([28]), or find
the reverse k nearest neighbor trajectories ([32]) cannot be used,
as it would require inefficiently repeating the approaches for each
facility route. Moreover, to the best of our knowledge, there is no
existing work on trajectories that can be used to efficiently answer
kBCovFT, where a user trajectory can be served jointly by multiple
facility trajectories (Section 8 for details).

To alleviate the above limitations, we first propose a novel two-
level index structure, the Trajectory Quadtree (TQ-tree) that facil-
itates efficient processing of KBFT and kBCovFT queries. The
novelty of our work comes from the key observation that if the
points of multiple user trajectories are co-located and have a sim-
ilar orientation, then those trajectories are likely to be served by
the same facility. Hence, we store co-located, similar-extent, and
similar-oriented trajectories together in a TQ-tree node. Specifi-
cally, a quadtree structure is employed to organize the trajectories
in a hierarchy based on their extent and orientation, and then a z-
ordering is applied to organize the trajectories by spatial locality
inside a quadtree node. Such a structure is highly effective in prun-
ing the search space for different segments of trajectories based on
locality and orientation, which is of independent interest. Note that
although the TQ-tree is primarily designed for processing facility
trajectory queries, this index is also suitable for processing other
important queries such as trajectory similarity join queries [26].

Next, we present an efficient divide-and-conquer approach to an-
swer kBFT queries, where a facility trajectory is recursively di-
vided and the service value of the components of the facility is cal-
culated for that subspace. For each subspace, we apply a two-phase
pruning technique using the TQ-tree. As either the partial or the
complete service values are important based on the application, we
present a best-first strategy to efficiently process the facilities using
the service upper bound value. We also present different conditions
where the process can be early terminated safely. By exploiting the
pruning formulation of the KBFT query solution, we provide an
efficient approximation algorithm for processing kBCovFT, which
we prove to be a non-submodular NP-hard problem. The contribu-
tions of the paper are summarized as follows:

e We propose a new class of trajectory queries: (i) kBFT and
(ii) kBCovFT.
We propose a novel two-level index structure, the Trajec-

tory Quadtree (TQ-tree) based on the co-location and similar-
orientation characteristics of user trajectories.

We present an efficient divide-and-conquer approach for an-
swering kBFT queries using the TQ-tree, which deploys a
two-phase pruning technique.

We prove that kBCovFT is a non-submodular NP-hard prob-
lem. We propose an efficient two-step greedy approximation
algorithm to answer kBCovFT.

We show that our approaches work for trajectories in both
Euclidean and road network data spaces, and can handle tem-
poral dimension in trajectories.

2. PROBLEM FORMULATION

Let U be a set of user trajectories where each u € U is a se-
quence of point locations, u = {p1,p2,..., P4} and F be a set
of facility trajectories, where each f € F' is a sequence of stop
points representing the pick-up or drop-off locations of a facility
route (e.g., bus route). A user trajectory can be served by a facility
in different contexts. First, we present the calculation of the service
values of a facility for a single user in different scenarios, and then
we present a generalized function to compute the service value of a
facility or a set of facilities for the set of users U.



2.1 Service value for a single user

Binary Service Function. Here, u.p1 and u.pj, are the source
and destination locations of u. A user u may only be interested
in using a facility f if there is any stop point of f within a certain
distance from the source and destination of w, i.e., dist(u.p1, f) <
W Adist(u.pjy, f) < 1. Alternatively, a user v might be only inter-
ested in using a facility f if the total distance from the source and
destination of w to the nearest the nearest stop points of f is within
a certain distance v, where dist(u.p1, f) + dist(u.ppy, f) < 1.
Here, 1) can be set based on the distance/range that a user can cover
on foot or by other means for availing the transportation facility. In
such cases, we can define the Boolean service function S(u, f) as:
_J1 ifuisserved by f

Su. f) 0 otherwise.

Note that, in the above scenarios, we consider a binary notion of
service, where a user is either served or not-served. However, in
some applications, one may want to evaluate a service score based
on how well a facility serves a user. In that case, we can compute
a service score between 0 and 1 based on the proximity of the user
from the stop points. In addition to the distance limit to the stop
points, a user might be only interested in using a facility if the travel
length using the facility does not deviate much from the current
travel length using their car.

Non-binary Service Functions. In non-binary cases where u can
be served partially by f, the service can be computed based on
the number of points in u that can be served by f, scount(u, f)
(e.g., the number of POIs that can be visited by a tourist). Then the
scount(u, f)

lul
Formally, scount(u, f)= >, Sc(u.pi, f) where,

Pi€u

service value of f is calculated as: S(u, f) =

1 ifdist(u.pi, f) <
0 otherwise.

Sc(u-pi,f)

When the interest is in maximizing the length of w served by f,
slength(u, f) (e.g., the length of journey with advertisement dis-
slength(u, f)

length(u) ~°
where length(uw) is the total length of u. Note that the length of two
trajectories with the same number of points can be different based
on the length of the segments between those points.

lu|—
Formally, slength(u, f) =
i=1
Si(u.pi, w.pit1, f) = len(u.pi, u.piy1), when dist(u.p;, f) <
P Adist(u.pit1, f) < 1; otherwise, S;(u.pi, u.pit1, f) = 0.

play), the service value is calculated as: S(u, f) =

1
Si(u.pi, u.pit1, f). Here,

2.2 Service value for the set of users

As the objective of a facility is to maximize the service to U, the
service value of a facility f for U is calculated as:

SO(U, f) = S(u, )

ueU

&)

For a collection F” of facilities, where F’ C F, we can generalize
the service value function as follows:

SO(U,F') =Y " AGGep S(u, f)

uelU

@

Since a user can be served by more than one facility in F’, we
only consider the service once if the same service is provided by
more than one facility. The function AGG takes this issue into ac-
count by aggregating the services provided by each f € F’ to u.

199

Although the AGG function is straightforward with a binary ser-
vice function, it is non-trivial for non-binary services. Let u; be a
user trajectory with three points p1,p2, ps. Assume that (p1,p2)
is served by f1 and (p2,ps) is served by fo. In this case, half of
the service value for u; is accounted for by fi, and the remaining
by f2. Now, when we combine the service value of fi and f> by
using our AGG function, we simply add these service values to
get the aggregate service value of both facilities. Again, if another
facility f3 serves (p2, p3), and if we need to find the aggregate ser-
vice value of f1, fo and f3, we need to count this service value for
(p2,p3) only once as the same portion of the trajectory is served
by both f> and f3. In this later case, if we consider non-binary ser-
vice function, we will count the service value of the facility which
yields maximum between f> and f3 while serving (p2, p3).
Problem definition. Based on the above definitions, we formally
define our trajectory queries as follows.

DEFINITION 1. (kBFT). Given a set U of user trajectories, a
set F of facilities, a positive integer k, and a service value function
SO(:), a kBFT query returns the top-k facilities F' from F such
thatVf' € F',¥f € F\ F',SO(U, f') > SO(U, f).

DEFINITION 2. (kBCovFT). Given a set U of user trajectories,
a set F' of facilities, a group size k, and a service value function
SO(+), let the set SGy, be all possible subgroups of size k from F.
The kBCovFT query returns a subgroup sg € SGy of facilities
such that for any other subgroup sg’' € SGy, \ {sg}, SO(U, sg) >
SO(U, sg’).

3. TRAJECTORY QUAD-TREE (TQ-TREE)

The key observation behind our proposed index is, the trajecto-
ries whose points are co-located, are likely to use the same facility.
Thus such trajectories should be stored together. Based on this ob-
servation we present a novel index, the Trajectory Quad (TQ) tree,
where trajectories with close spatial proximity and similar orien-
tation are grouped and stored together in an effective way. For
simplicity, we first describe the index for trajectories with two end-
points (source-destination), and later we generalize for trajectories
with any number of points. A two-level indexing is applied to in-
dex the trajectories in a TQ-tree. We explain the index construction
process and the rationale behind each step in the following.
Hierarchical organization. The space is recursively partitioned to
group spatially similar trajectories together. Specifically, a quadtree
structure is employed to partition the space. Each node E of the
quadtree, denoted as a g-node is associated with a pointer to a list
UL(E) of user trajectories. If E is a leaf node, UL(E) contains
the intra-node trajectories, which are the trajectories whose both
endpoints reside in E. Otherwise, UL(E) consists of the inter-
node user trajectories, which are trajectories whose two endpoints
reside in two immediate child nodes of F. A node of the quadtree
is partitioned until there is no such inter-node trajectories left to be
stored with that node, or contains at most 8 number of intra-node
trajectories. Here, 3 corresponds to the size of a memory block (or
a disk block for a disk-resident list UL(E)).

With each g-node E, an upper bound, s, of the service value
is stored for the trajectories stored in the subtree rooted at E. For
Scenario 1, s, of E is the total number of user trajectories, and for
Scenario 2, sy is the total number of points of the user trajectories,
in the sub-tree rooted at E, respectively.

As mentioned in prior work [31], one of the major challenges
of indexing trajectories is in organizing trajectories of different
lengths. Unlike traditional spatial hierarchical indexing, where only
the leaf nodes contain the data, we store the trajectories in both leaf



0, "10\ e _ R (L)
\. T -m
he—— |
— ".‘\
Us | m _m
L -
(13 1460\\- ,/ n \ 0,
U
_. /'- ‘, \\
< me T ATl &N gy 5 T % T o T T ]
’ il &)
o® um‘/ (0-0,1.:('11)”%0»1-2) (0-3:?')"1 (:,1-3)

Figure 2: A TQ-tree structure for trajectories.

Usg  |m 00 0T ”5._/41'0 11
u, U,
6’\\- oz 03 0@ L7 13
/.ll7 /. ° /.”7 /.
> 2
[
us‘/ /- , ° us./
/oy |
ug‘ uw‘
(a) (b) (©

Figure 3: (a) Inter-node trajectories of Qs (solid lines), (b) z-
ordering of start points, (c) z-ordering of end points.

and non-leaf nodes. In this hierarchical organization, longer trajec-
tories are more likely to be stored in upper level nodes and shorter
trajectories in lower level nodes. Such an organization will later
facilitate efficient pruning and service (either partial or complete)
calculations for both longer and shorter trajectories.

EXAMPLE 2. Figure 2 shows an example TQ-tree for the user
trajectories, {u1,...,u12}, where § = 2. The space is first di-
vided into Q1, . .., Q4. As Q4 only contains 3 intra-node trajecto-
ries, and the trajectories in Q1 and Q2 are stored as the inter-node
trajectories of the root node, these q-nodes are not partitioned fur-
ther. Qs is further divided into four quadrants. The inter-node
trajectories of Q3 are us, . . . , us, and the partitioning terminates.

Ordered bucketing using z-curve. Depending on the application
scenarios and the user travel patterns, the list of trajectories in a q-
node can be quite large. For example, if there are many users who
travel every day from the same suburb to the city, these user tra-
jectories may all fall under a particular gq-node. Thus, storing these
trajectories as a flat list may result in poor performance. Therefore
we use a space filling curve, specifically a z-curve (Morton order)
to order the trajectories such that the trajectories with close spatial
proximity and similar orientation are grouped together into a single
“bucket”. The list UL(E) of each g-node is arranged as a sorted list
of buckets, where the trajectories in each bucket is also sorted by
their z-ordering. Here each bucket is referred to as a z-node.
Specifically, for each g-node E: (i) We first apply the z-ordering
on the start points of the user trajectories in UL(FE). The space
enclosed by F is partitioned until each partition contains at most
[ start points. (ii) Then, we partition the space based on the end
points of the user trajectories, where each partition can contain a
maximum of 3 end points. If multiple trajectories have the same z-
id for their start points, the space is partitioned until the end point of
each such trajectory is assigned a different z-id. This step enables
us to distinguish between the trajectories with the co-located start
points. (iii) Based on the z-order numbers assigned to each points
of user trajectories, we keep them in a sorted bucket list, where
each bucket can contain at most J trajectories. If each trajectory is
an ordered sequence of points, then we order the trajectories based

0, Ui _ _ LY 0, O u e 0,
1\‘ R e '\‘\.\. .- _ -
.
he - -e—| he—e—|
oo U [ U
Usy o 1o e h Usy o o e
05 U ® - o [ ° \\ 0, 05 Ug®—e| L ° 0,
i [N | U ® o
(/' /.//. | \ . P /.//. | \
) ) ® .
u . u
. e - "‘u " < Yo /’ /! “‘11 "o
. e "1y e "1y

(a) Segmented TQ-tree (b) Full-trajectory TQ-tree
Figure 4: Multiple-point Trajectories in a TQ-tree (solid lines are
inter-node, and dashed lines are intra-node segments).

on the starting point first, and if two trajectories have the same z-
orders, we order them based on their second points, and so on. If
the trajectories are defined as non-ordered sequence of points, then
we order the points of a trajectory based on the z-order, and then
apply the aforementioned procedure to sort the trajectories.

EXAMPLE 3. Figure 3 shows the construction process of z-
nodes. The g-node Q3 points to UL(Q3) of four inter-node tra-
Jectories, us,ue,ur,us. To obtain the z-ordering, the space of
Qs is partitioned based on the start points of the trajectories, and
each partition is assigned a z-id where a partition can have at most
B = 2 start points (Figure 3(b)). As an example, the start points
of both us and ue have 0.0 as their z-ids. Next, we apply the same
partitioning strategy on the end points. The end points of us, us,
w7, and ug are assigned z-ids 1.0, 1.2, 2.0, and 1.3, respectively
and the partitioning terminates. Finally, a pair of z-ids for each
trajectory is kept in z-nodes, each of size 3 (Figure 2 (right)).

3.1 Generalization of the Index

So far we have explained our index for trajectories with two

points (source and destination), which can only serve a subset of
query scenarios. To serve other types applications that require main-
taining a sequence of points in each trajectory where a trajectory
can be served partially, we generalize our index by proposing two
approaches: a segmented approach, and a full-trajectory approach.
Segmented approach. We segment each trajectory into a se-
quence of pairs of points, and then for each pair of points (segment)
we apply the same strategies described above. Here, indexing each
segment of the trajectories in hierarchy and ordered lists will enable
us to calculate the total and the partial score of service (explained
later in Section 4. This process is depicted in Figure 4(a).
Full trajectory approach. Some applications require to consider
the entire trajectory contiguously as the objective function need to
quantify the coverage of a user trajectory served by the facilities.
For such applications, we propose a full-trajectory approach, where
we store a trajectory in the g-node at the lowest level of the quadtree
that fully contains the entire trajectory. In an intermediate g-node,
all inter-node trajectories are sorted using z-orders, and in a leaf g-
node intra-node trajectories are stored using z-orders (as described
previously). This scenario is depicted in Figure 4(b).

The main reason for using a quadtree is that it supports efficient
frequent updates. Moreover, since a quadtree partitions the space
into disjoint cells, we can apply z-orders to generate unique IDs for
the points in a trajectory.

3.2 Index Storage Cost

The space requirement of the hierarchical component of the TQ-
tree includes storing the nodes of the quadtree, specifically, O(n|E|),



Q us [ m Inter-node Trajectory List, UL(Q,)
PREEE
Vo e [Us[Ug| [ Ug]  Gyx G,
Us Pk 0010 001D 030 C13) \
/.u7 (Reduced based on start Z-ids)
n (00,10) 0012) (213)
u . ANR AN il
8./ , / // (Reduced based on end Z-ids) G3 G4
G *— Rl * Uy,
e "¢ 0012 @13) ly
(a) (b) (c)

Figure 5: (a) A g-node )3 with trajectories and facilities (b) Z-
reduce for reducing UL(Qs3) for G (c) Recursive calls for sub-
spaces with corresponding facility subgraphs, G1, G2, G, G4.

where n is the number of nodes in the tree and |E)| is the expected
size of a node. If only the source and destination points of each
trajectory is of interest, then a trajectory is stored exactly once in
an appropriate node of the TQ-tree. Thus the total size of the user
trajectory lists in all nodes, > ;7o 4 UL(E), is at most the
total number of user trajectories |U|. The same storage costs apply
for the full trajectory approach as well.

In the generalized TQ-tree, each segment of a user trajectory is
stored in an appropriate node of the TQ-tree. The total number of
segments of a trajectory u is |u| — 1, and a segment is stored exactly
once. Thus the total size of the user trajectory lists in all the nodes,
Y Berq-tree UL(E) in the generalized TQ-treeis 3, ./ [ul — 1.

3.3 Updating the Index

Since the TQ-tree uses a regular space partitioning scheme, to
insert a new user trajectory, u, we can quickly identify the corre-
sponding g-node to which u belongs to in O(h) time. Then, u
needs to be inserted in an appropriate z-node of the user trajec-
tory list. If the number of points in the corresponding z-node does
not exceed the threshold 3, no further partitioning is needed. The
points of u are assigned the appropriate z-ids, and inserted in the
sorted user trajectory list. Otherwise, the corresponding z-node is
partitioned and the z-ids are assigned to the points of u. Since the
z-ids of the existing user trajectories in that z-node may change, we
may need to re-assign z-ids to the trajectories. This re-assignment
needs to be done for at most /3 trajectories in that z-node.

4. PROCESSING BFT QUERIES

In a kBFT query, a user trajectory can be partially served by a
facility. Thus, an efficient technique is needed to calculate the ap-
propriate service value of a facility for U. In this section, we first
propose an efficient divide-and-conquer algorithm to recursively
divide a facility trajectory and traverse only the necessary nodes
of the TQ-tree to calculate the service value of the components of
the facility in that subspace. We apply a two-phase pruning tech-
nique using TQ-tree, where the g-nodes are pruned first, and then
the z-orderings are used to further prune the z-nodes. A merge step
is evoked to check if the same user trajectory can be served by the
connected components of the same facility, and an upper bound of
the service value of that facility is updated from the current state
of exploration. A best-first strategy is employed to explore the fa-
cilities based on their estimated upper bounds of service values. In
this section, we first present our algorithm for computing the ser-
vice value of a single facility f € F'. Then we present our approach
to find the top-k facilities from F' with the maximum service value.

4.1 A Divide-and-Conquer Algorithm

1.10

201

Algorithm 1: evaluateService(Q, f)
Input: A g-node @ of TQ-tree, a facility component f
Output: Service value so of f for users in subtree rooted at ()
so <+ 0
if f = o then return 0
if Q is aleaf then
\ return evaluateNodeTrajectories(Q, f)
Qchildren <~ children(Q)
fenitdren < intersectingComponents(Qchiidren, f)
fOI‘ qdc S Qchild'reny fc S fchild'ren do
‘ s0 < so+ evaluateService(qc, fc)
so < so+ evaluateNodeTrajectories(Q, f)
return so

11
1.2
13
14
15
1.6
1.7
18
1.9

Algorithm 1 shows the pseudocode for the divide-and-conquer
algorithm for computing the service value of a facility f € F'. Note
that in our application scenarios, a user u can be served by f (par-
tially or completely) if a point of « is within a threshold distance v
from any point of f. Thus, we cover f with an extended minimum
bounding rectangle (EMBR) that includes the serving area of f.
However, without loss of generality, we use the term EMBR and f
interchangeably when we match users with f. Initially, the function
evaluateService(-) is called with the root node @ of the TQ-tree
for f. First, it finds the relevant child g-nodes of @) that intersect
with f (or EMBR of f) in the function intersectingComponents(-)
(Line 1.6). If a child g-node does not intersect, that g-node can be
safely pruned. Otherwise, the EMBR of f is divided into four equal
subspaces. For each unpruned child g-node g. of @ and the corre-
sponding intersecting components of f, the function evaluateService
in Algorithm 1 is recursively called (Line 1.8).

The recursive call terminates on two conditions: (i) If f is empty
(after division there is no point left in that subspace that can server
any user (Line 1.2)); and (ii) When @ is a leaf node. For a leaf node,
the function evaluateNodeTrajectories(-) is called to compute the
service value for the intra-node trajectories in U L(Q) of that node.

The function evaluateNodeTrajectories is used to determine the
service value that is increased for serving the trajectories in UL(Q)
(Algorithm 2). To check whether the same user trajectory can be
served by the same connected components of f, a merge step is
employed as the function MakeUnion(f) . Here, the connected
components of f are assigned unique identifiers. Next, we need to
access the trajectories in UL(Q) (that are stored as a sorted list of
z-nodes according to z-order). We apply a pruning technique using
the z-order IDs of the trajectory points to get a list 7). of a reduced
size from UL(Q) using the zReduce(-) function in Lines 2.2 - 2.3
(explained later). For each user trajectory ¢; € 1}, we compute the
service value gained for serving ¢; by f. Note that the evaluation of
function serviceValue(-) is application specific. For example, for
a binary service, serviceValue(t;, f) returns 1 or 0, and for a non-
binary service, a normalized distance based service score between
[0, 1] can be returned.

The function zReduce in Algorithm 2 prunes the inter-node tra-
jectories that cannot contribute to the service value. The idea is
to avoid searching the full list of inter-node trajectories and reduce
the list to a small relevant set of trajectories based on the spatial
properties of f and z-ordering. This function takes the inter node
trajectory list and a component of the facility as input. It prunes the
user trajectories based on the z-ids that the facility intersects.

EXAMPLE 4. We explain the zReduce(-) function with Figure 5.
The figure shows a facility trajectory G, and a list Ty of inter-node
trajectories {us,us,ur,us} with start and end z-ids {(0.0,1.0),



Algorithm 2: evaluateNodeTrajectories(Q, f)

Algorithm 4: relaxState(.S)

Input: A g-node @ of TQ-tree, a facility component f
Output: Service value so of f for trajectories stored in )
us < MakeUnion(f)
T, + UL(Q)
T, < zReduce(Ty, f)
so <+ 0
for t; € T do
| so = so+ serviceValue(t;, f)
return so

2.1
22
23
24
25
2.6
2.7

Algorithm 3: TopKFacilities(F, k)
Input: A set of facilities F', a positive integer k
Output: Top k facility collections F”

31 Initialize a max-priority queue PQ; F’ <+ @
32 if I = @ then return F’

33 for f; € F do

34 Q@ < containingQNode( f;)

35 qfPair < makePair(Q, f;)

3.6 Initialize a state .S with id i

37 Insert(S.qgflist, gfPair)

38 S.aserve < 0; S.hserve <+ Q.Sup
39 | fserve(S) < S.aserve + S.hserve
3.10 PQ.push(S, fserve(S))

311 repeat

312 S < PQ.pop()

3.13 if S.qflist = @ then

314 | Insert(F",S.id)

3.15 else

3.16 S, <— relaxState(.S)

317 PQ.push(S,... fserve(S.))
318 until |[F'| =k

319 return F’

(0.0,1.2), (0.3,2), (2,1.3)} of Qs. Assume, G intersects nodes with
z-ids 0.0,0.1,1.2,1.3,2, 3 fully or partially — the stop points in
G are within i distance to serve fully or some portions of these
z-nodes. Thus, trajectory wr is pruned since its start z-id 0.3 is
not covered by G. So we get a reduced list {us, ue,usg} with z-
ids {(0.0,1.0), (0.0,1.2), (2,1.3)}. Next we look at the z-ids of end
points for further pruning. Here, us is pruned since its end z-id
is 1.0, and we get the final reduced list {ue,us}. After reduc-
ing UL(Q) to {ue,us} (Figure 5(b)), we divide G into four sub-
spaces, G1,G2,Gs, Gy, and evaluate the service values of these
subspaces by calling Function evaluateService(-) (Figure 5(c)).

Multi-point trajectory processing. The serviceValue(-) function
returns a normalized score that is achieved for serving a multi-point
trajectory ¢; by f (Algorithm 2). The normalized score depends on
the requirements of the applications: one may want to count the
number of points in w served by f, or find length of the segments
of u served by f. To accommodate such applications, the service
value calculation changes accordingly.

Based on our above algorithms, we now propose an approach
that finds the top-k facilities from a set F’ of facilities.

4.2 Finding Top-« Facilities

Algorithm 3 shows the pseudocode for finding the top-k facili-
ties. The key idea is to apply a best-first technique to explore fa-
cilities based on their predicted service upper bounds. The upper

Input: Current state of a collection of facilities, S
Output: Relaxed state S,

4.1 Initialize S,

42 for each pair (Q, f) € S.¢flist do

43 Sr.aserve < Sy.aserve + evaluateNodeTrajectories(Q),
)

44 Qchitaren <— children(Q)

45 Sonitaren <— intersectingComponents(Q uiaren, f)

4.6 for gc € Quiarens fe € fenitaren dO

47 if f. # @ then

4.8 cqgPair < makePair(q., fc)

49 Insert(S;.qflist, cqgPair)

4.10 Sy.hserve < Sy..hserve + qc.Sup

4.1 return S,

202

bound of the service value, fserve of a facility (or a collection of
facilities) is computed by combining the value of the actual service
function, aserve, from the current state of exploration and the op-
timistic value of the service function, Aserve, which is estimated
based on a heuristic, i.e., the maximum service value that can be
achieved by further exploration of the facility. For each facility
fi € F, we maintain a tuple S to preserve its current state of ex-
ploration. S contains: facility id, a list gflist of {g-node, facility-
component) pair that overlaps with each other, the actual service
value aserve of the facility based on the actual number of users
served so far, and the maximum value of the service hserve that
can be achieved by f; in the remaining exploration. We maintain
a max-priority queue, PQ of the tuples S according to the upper
bound values, fserve, where, fserve = aserve + hserve (i.e., the
sum of the actual service value achieved and the upper bound of
the service value that can be achieved by the facility).

The result set F” and the priority queue PQ is initialized (Line 3.1)
as empty. The states are initialized for each facility, and inserted in
PQ (Lines 3.4 - 3.10). Function containingQNode( f;) returns the
smallest g-node, () that contains f; (Line 3.4). A pair is formed
with the facility component f; and the corresponding Q). The pair
(Q, fi) is inserted in gflist of S. We initialize aserve with 0 (as
no user trajectories has been matched with f;) and hserve with the
upper bound s,,; of the service values stored with the node @ in the
TQ-tree. As described in Section 3, depending on the application,
the upper bound of the service value is different. For example, for
scenario 1, s, of a node @ is the number of trajectories contained
in Q. We insert the current state S of f; along with the total up-
per bound of the service value, fserve(.S), achieved so far by the
current state of facility exploration.

Next, we progressively explore user trajectories by relaxing dif-
ferent parts of facility trajectories to find the top-k facilities that
maximize the service. In each iteration (Lines 3.12 - 3.17), the fa-
cility component with the maximum fserve value is dequeued from
PQ, and the state is updated by relaxing the component through a
function call relaxState(.S) that explores the children of the corre-
sponding g-node, updates aserve and hserve, and inserts the new
state into PQ. If gflist of the dequeued facility is empty, it implies
that all components of this facility trajectory are explored, thus the
facility is added to the result set. The process terminates when top-
k facilities are found, and the result list F is returned.

State relaxation. Algorithm 4 shows the pseudo-code of how to
relax the state of a facility component. The input is the current state,
the relaxed (or more expanded) state is returned as output. First, we
initialize the variables of the new relaxed state S, as S,.id < S.id,



Sr.aserve < S.aserve, Sr.hserve < 0, and S,.qflist + O.
Next, for pair (Q, f) of q-node and facility component in the gflist
of input state S, we expand the component with respect to the
children of Q. In this expansion and update process, we update
aserve, which is the number of users already served by adding the
number of inter-node trajectories of the corresponding g-node, that
are served by f. For this purpose, we compute the service value
of that g-node by calling the evaluateNodeTrajectories(-) function,
and add this value to Sr.aserve, as Sy.aserve denotes the value
of trajectories already served (Line 4.3). Next we get the child g-
nodes and corresponding components of the facility. In the loop
presented in Lines 4.6 - 4.10 we update the list of (q-node, facil-
ity component) pair for each of the child nodes and the maximum
value of service S,.hserve with the upper bound service value s
stored in the child g-nodes (Line 4.10). The outer loop terminates
when we complete the computation for all members of (Q, f) pair
list of the current state. Finally the relaxed state .S, is returned.

5. PROCESSING BCovFT

The kBCovFT query is a variant of the maximum coverage prob-
lem, which is NP-hard. A similar problem was presented by Choud-
hury et al. [8], where given a set of facility locations F', a set of user
locations U, and a positive integer k, the problem is to find the top-
k facilities from F' such that these facilities combinedly serve the
maximum number of users from U. In that study, a user is served
by a facility if the user is one of the reverse nearest neighbors of
that facility, and the problem was shown to be NP-hard. As our
problem is very similar to that problem, we omit the proof of NP-
hardness from this paper for brevity. Please refer to Lemma 1 in
Choudhury et al. for the proof of NP-hardness.

The exact solution of our problem is to iterate through all pos-
sible combinations of k facilities from | F'| facilities, calculate the
service value of each of them, and then return the combination with
the maximum value. Although a greedy solution exists with theo-
retically known best approximation ratio for the maximum cover-
age problem ([12]), the assumption of the solution is that the objec-
tive function is submodular. However, the objective function of the
kBCovFT problem is non-submodular, and thus the approximation
ratio of that solution does not hold.

LEMMA 1. The service value function of the kBCovFT problem
is non-submodular.

PROOF. Let g(-) be a function that maps a subset of a finite
ground set to a non-negative real number. The function g(-) is sub-
modular if it satisfies the natural “diminishing returns” property:
the marginal gain from adding an element x to a set A is at least as
high as the marginal gain from adding x to a superset of A. For-
mally, for all elements z and all pairs of sets A C B, a submodular
function satisfies g(A U z) — g(A) > g(BUx) — g(B).

We will prove this lemma by contradiction. Assume that the
service function SO(-) of the kBCovFT problem is submodular. Let
A be a set of facilities, and SO(U, A) be the maximum number of
user trajectories that are combinedly served by A. Now suppose
that we add another facility x to A such that SO(U, A U )
SO(U, A) (no additional user is served by adding x). If SO(-) is
submodular, then SO(U, B) > SO(U, B U x) must be true.

If we can find an instance where SO(U, B) #? SO(U,B U z)
when SO(U,A U z) = SO(U, A), SO(-) is non-submodular by
contradiction. Consider Scenario 1 where a user u is served by
a facility when both the source and destination of u is within
distance from any point of the facility. Let the source of a user u
be within 1) from a facility in B but not A, and the destination of u
is not within v from either A or B (u is not served by either). Let

203

the facility « be within v distance from only the destination of .
Therefore, u will be served by B U x (source is served by B, and
destination is served by ). That is, SO(U, B U z) > SO(U, B).
However u is not served by AUz as the source of  is not served by
Aorz,ie., SOU, AU z) = SO(U, A), which is a contradiction.
So, SO(-) of the kBCoVvFT problem is non-submodular. []

To the best of our knowledge there is no greedy solution with a
guaranteed approximation ratio for non-submodular functions for
this problem. There are several optimization approaches, including
genetic algorithms, simulated annealing, or ant colony optimiza-
tion that could be used to find the maximum value of the objective
function. However, all of these solutions are offline and may re-
quire many iterations to converge to an optima, so these solutions
are not suitable for the online computation of ad-hoc route planning
problems. Therefore, we present a greedy solution of the kBCovFT
problem, where the challenge is to efficiently find the users and the
user segments that can be combinedly served by multiple facilities,
and compute the combined service value, as a user can be served
by multiple facilities and there can be overlaps in the service. We
exploit the TQ-tree for our solution, as this structure enables us to
efficiently address these challenges.

5.1 Greedy Solution

Inspired by the greedy algorithm proposed by Fiege [12], which
is the best-possible polynomial time approximation algorithm for
the maximum coverage problem, we present a greedy solution for
the kBCovFT problem. A straightforward adaptation is to first
compute the service value for each facility and iteratively choose
a facility that serves the maximum number of users that have not
been served, considering the service overlap of multiple facilities
for a user. Since this straightforward approach requires to evaluate
the services for all facilities and keeping track of all users who have
been served by each facility, this approach can be expensive when
the number of users and facilities are large.

To overcome the above limitations, we propose a two-step greedy
approach, where in the first step we compute a subset (k' > k)
of the highest serving facilities using the kBFT algorithm. In the
second step we apply the above mentioned greedy algorithm to it-
eratively choose a facility from those facilities that serve the maxi-
mum number of users that have not been served. We find that this
approach is highly effective in practical scenarios and can respond
to queries in milliseconds. Due to space constraint, we omit the
details, but present its experimental evaluation in Section 7.

6. EXTENSIONS

6.1 Temporal Trajectories

Without loss of generality, our solutions are also applicable for
trajectories with temporal information. Our proposed TQ-tree is
described for indexing spatial trajectories in Section 3. We can
adopt similar concept of hierarchically partitioning the trajectories
by clustering the user trajectories based on their time ranges. Let
each trajectory, u, consists of a sequence of tuples u = {(p1, t1),
(p2,t2), s (P|u|> tju|)}, Where py is the location and ¢; is the time-
stamp when the user u is located at p1, and [t; — t),,] is the time
range of u. To index time range of all trajectories, we use a bi-
nary tree to recursively partition the time window (e.g., 0-24 hrs)
into two equal halves, until each leaf node of the tree contains a
desired threshold time range (e.g., 1.5 hr). Each node (both inter-
nal and leaf) of this temporal tree will index all trajectories whose
time range entirely fall in the time span of this node. For exam-
ple, suppose a branch of the tree contains a leaf node with time



range [9:00-10:29] and another node with time range [9:00-11:59]
as its parent. If a trajectory time range is [9:30-10:15], then the
trajectory will fall under the leaf node for the corresponding time
range [9:00-10:29]; on the other hand if a trajectory time range is
[9:15-10:45] then it will fall under the node with time range [9:00-
11:59]. A node of the temporal tree manages all trajectories under
the node. In particular, each node of the temporal tree, has a pointer
to the TQ-tree corresponding to the trajectories that belong to the
node. Similarly, a facility query trajectory is represented as a se-
quence of stop points with expected time range. Thus, the temporal
value of the query trajectory is a single time range covering the time
ranges of all stop points. To process such a query, we need to check
the TQ-tree of the temporal-tree nodes whose time ranges intersect
with the query time range. However, if the query time range cov-
ers a longer time span, we may need to visit many temporal nodes.
Thus, alternatively, we can partition the time range of the query
trajectory as multiple smaller time ranges covering different parts
of the query trajectory, and then execute these smaller segments of
the query trajectory on the index. This helps us to answer the query
with reduced number of node access.

6.2 Road Networks

For ease of presentation, we have used Euclidean space to ex-
plain our approaches so far. Without loss of generality our proposed
approaches also work for road network space. Let G = (V, E) be
aroad network, V' is a vertex set and E is an edge set. Eachv € V'
represents a road junction or an end of aroad, and eachedge e € E
is a road segment. Both facility trajectories and user trajectories
are map-matched on the spatial networks, and are embedded in the
road network graph [1]. When a point of a facility trajectory or
a user trajectory map to a vertex then we do not need to alter the
road network graph; however, when a facility point or a user point
falls on a road segment, then a new vertex is introduced and the
corresponding edge is divided into two edges.

Our approach for processing the kBFT query in Euclidean space
(Section 4), applies two-phase pruning on the TQ-tree based on a
Euclidean distance between a facility trajectory point and a user
trajectory point. Since we retrieve user trajectories that are within
1 (Euclidean) distance from a facility point, it is guaranteed that all
user trajectories that have road network distance less than or equal
9 are already retrieved. Thus, the algorithm may retrieve some
extra candidate trajectories. Therefore, as a last step of the pro-
cess, we filter those user trajectories whose road network distance
from facility points is less than the given threshold using Dijkstra’s
spatial network expansion approach [9] on the road network graph
w.r.t. each facility point.

7. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation for our
solutions to answer the kBFT and kBCovFT queries. As there is
no prior work that directly answers these problems, we compare
our solutions with a baseline. Specifically, for the kBFT query, we
compare the following three methods: (i) Baseline (BL): In this ap-
proach, for each facility, the user trajectories that are within v dis-
tance are retrieved by executing a range query in a traditional index
(in our experiments, a quadtree). The service value of each facil-
ity is computed, and the top-k facilities are returned as the result.
(i1) TQ-tree Basic (TQ(B)): In this method, we use a simple TQ-
tree that hierarchically organizes user trajectories using a quadtree,
but keeps a linear list for storing trajectories in each g-node as the
index structure. The algorithm presented in Section 4 is applied
on this index. (iii) TQ-tree Z-order (TQ(Z)): We use our proposed

204

Table 1: Facility trajectory datasets

Name # Facilities | # of stop points
NY Bus Route 2,024 16,999
Beijing Bus Route 1,842 21,489

Table 2: User trajectory datasets

Name # Trajectories Type
NY Taxi-trips (NYT) 1,032,637 point-to-point
NY Foursquare (NYF) 212,751 multi-point
BJ Geolife (BJG) 30,266 multi-point

TQ-tree, where the trajectories in the hierarchical structure are or-
dered using a z-curve and indexed using their z-ids in each g-node
of the quadtree, and apply the algorithm presented in Section 4.
We present our approach with both TQ(B) and TQ(Z) to show the
additional benefits of using the z-ordered bucketing in the index.

For the kBCovFT problem, we compare four different methods:
(1) Greedy baseline (G-BL) that uses baseline service evaluation
strategy in the straightforward greedy approach, (ii) Greedy TQ-
tree Basic (G-TQ(B)) that runs our greedy solution using TQ-tree
basic, (iii) Greedy TQ-tree Z-order (G-TQ(Z)) using TQ-tree z-
order, and (iv) Genetic-TQ-tree Z-order (Gn-TQ(Z)) that employs
genetic algorithm using TQ-tree z-order.

7.1 Experimental settings

Algorithms are implemented in Java and ran on a PC equipped
with Intel core i5-3570K processor and 8 GB of RAM. In all our
experiments, we use in-memory data structures, but can easily be
adapted to disk-based solutions.

Facility Datasets. We use two real bus network datasets: (i) New
York (NY) and Beijing (BJ) bus routes as our facility datasets. Ta-
ble 1 shows the summary of the facility datasets. We use subset of
facility routes from these real bus networks as our query datasets.
User Trajectory Datasets. To accommodate a wide range of real-
world user movements with different types and volumes, we use
the following three datasets: (i) Yellow taxi trips® in New York
(NYT), (ii) Foursquare check-ins®in New York (NYF), and (iii) Ge-
olife GPS traces’ in Beijing (BJG). The taxi-trips are essentially
pairs of pick-up and drop-off locations of passengers, and thus can
be considered as user trajectories with two points. In contrast, the
Foursquare dataset consists of user check-in data for different users
in NY, where each check-in is a stop point for a trajectory. We refer
these trajectories as multi-point. We also use Geolife GPS trajecto-
ries that contain the user movement traces of 182 users over three
years period of time resulting 30, 266 trajectories in Beijing. This
Geolife data can also be considered as multi-point user trajectories.
Table 2 summarizes the datasets used.

Performance Evaluation and Parameterization. We studied the
efficiency, scalability, and effectiveness for the baseline and our
proposed approaches by varying several parameters. The list of
parameters with their ranges and default values in bold are shown
in Table 3. For all experiments, a single parameter is varied while
keeping the rest as the default settings.

For efficiency and scalability, we studied the impact of each pa-
rameter on (i) the runtime and the number of blocks (i.e., I/Os) ac-
cessed while calculating the service value of a facility, and (ii) the

Swww.nyc.gov/html/tlc/html/about/trip_record_data.shtml
Swww.kaggle.com/chetanism
www.microsoft.com/en-us/download/details.aspx?id=52367



Table 3: Parameters

Parameters Ranges

Routes NY, BJ

Datasets NYT, NYF, BIG

# Trajectories 203308, 357139, 697796, 1032637
# Stops (.5) 8, 16, 32, 64, 128, 256, 512

# Facilities (IV) | 16, 32, 64, 128, 256, 512

k 4,8, 16,32

total runtime and the number of block accessed of answering the
kBFT query. Since we use in-memory data structures in our exper-
iments, we simulate the I/Os as follows. Assume that a memory
block B can contain | B| user trajectories, and thus we need a total

of [%—‘ memory blocks to store |T'| trajectories. For each trajec-

tory, the TQ-tree keeps the pointer to a memory block where the
original trajectory is stored. Then we count the number of mem-
ory blocks that are accessed by each approach while evaluating the
queries. In our experiments, | B| is set to 128 by default, assuming
that each trajectory is 32 bytes and a disk block is 4096 bytes.

We evaluate the performance on the user trajectory dataset with
both source-destination points, and multiple points. In each case we
generate 100 sets of queries with the same settings and report the
average performance. For each set of query generation, we select
N number of facilities with required criteria (e.g., number of stops)
from a randomly chosen spatial region of the facility dataset.

As the greedy solutions provide an approximate result, we also
report the effectiveness of our solutions as (i) the total number of
users served, and (ii) approximation ratio.

7.2 Experimental results

Computing the service value. We vary different parameters and
present the processing time & /O cost for calculating the service
value of a single facility in the following.

(i) No. of user trajectories: We vary the number of taxi trips in
NYT dataset as 203,308 (NYT-0.5), 357,139 (NYT-1), 697,796
(NYT-2), and 1,032,637 (NYT-3), which corresponds to the taxi
trips in 12 hours, 1 day, 2 days, and 3 days, respectively. Fig-
ures 6 (a) & (c) show the average processing time and the number
of block access, respectively, for the baseline (BL), TQ-tree Basic
(TQ(B)), and TQ-tree Z-order (TQ(Z)). As the TQ(B) organizes the
trajectory segments in hierarchy in contrast to indexing points in a
quadtree in BL, TQ(B) is 1 order of magnitude faster than the base-
line. The spatial z-ordering of the trajectories in TQ(Z) results is 2
orders of magnitude faster than TQ(B) for calculating the service
value of a single facility. Figure 6 (c) shows that the number of
block accesses (which resembles I/Os in a disk based system) in
TQ(Z) is at least 2 orders of magnitude less than that of BL, and
the number of block accesses in TQ(B) is on average 3.5 times less
than that of the baseline.

(ii) No. of facility stops: We vary the number of stops of each fa-
cility from 8 to 512, and report the average processing time & 1/0
cost to compute the service value of a facility. The results (Fig-
ure 6 (b)) show that TQ(B) and TQ(Z) outperform the baseline by
around 1 order of magnitude and 2 — 3 orders of magnitude, re-
spectively. Here, the runtime of all of the approaches gradually
increase with the number of stops, as more users become eligible
to be served. The benefit of the divide-and-conquer approach in the
TQ-tree based approaches is higher for a lower number of stops.
Figure 6 (d) shows that TQ(Z) takes at least 2 orders of magnitude
fewer block accesses than the baseline and 1 — 2 orders of magni-
tude fewer block accesses than TQ(B).

205

(iii) Distance threshold 1): Although more users are likely to be
eligible to be served with the increase of 1), we do not observe any
significant change in the performance of our algorithms other than
the baseline. We omit the graphs varying v for brevity.
Processing kBFT. We evaluate our proposed algorithms for kBFT,
and compare the performance with the baseline.

(i) No. of user trajectories: The algorithm using the TQ(Z) in-
dex outperforms the baseline by at least 2 — 3 orders of magnitude
and TQ(B) by around 2 orders of magnitude (Figure 7(a)). As the
number of trajectories in the user list of each g-node increases with
the total number of user trajectories, the benefits of TQ-tree based
indexes decrease gradually. The number of unique z-ids in the z-
ordering, and the number of z-nodes also increase with the number
of user trajectories, thus the processing time in TQ(Z) increases
at a higher rate than the other two approaches. In Figure 8(a) the
number of block accesses in TQ(Z) is at least two orders of magni-
tude less than that of the baseline. However, the TQ(B) requires on
average 3.5 times fewer block accesses than the baseline.

(ii) No. of results (k): We vary the number of the required answers
k and compare the performance. As the baseline computes the ser-
vice value of each facility and return k facilities with the maximum
values, the processing time of the baseline do not vary for k. The
runtime of both TQ-tree based approaches slightly increase with the
increase of k as more iterations in the divide-and-conquer approach
are likely to be required for a higher k (Figure 7(b)). Similarly, Fig-
ure 8(b) shows that the number of block accesses show the similar
trends to that of the processing time.

(iii) No. of stops: Similar to the previous results shown for com-
puting the service value of a facility, the processing time when vary-
ing the number of stops of each facility gradually increases for all
of the approaches (Figure 7(c)). The runtime of TQ(B) is around
1 order of magnitude faster than the baseline for fewer stops, but
the benefit decreases as the number of stops increases. The reason
is that the number of iterations in the divide-and-conquer approach
increases with the number of stops, and the list of trajectories in the
user list of a g-node needs to be searched linearly in the TQ(B) each
time (as there is no ordering of the trajectories in the list). TQ(Z)
consistently outperforms the baseline by around 3 orders of magni-
tude with the help of the efficient two-level index. Figure 8(c) also
shows that TQ(Z) consistently outperforms the baselines in a large
margin in terms of number of block access.

(iv) No. of facilities: As more computations are required to find
the top-k facilities from a higher number of candidate facilities,
the runtime increases for all approaches at around the same rate as
shown in Figure 7(d). Although TQ(B) consistently outperforms
the baseline, the runtime of the baseline and TQ(B) may not suit-
able for an efficient ad-hoc route planning with a higher number
of facilities. TQ(Z) answers the query on the scale of millisec-
onds, and is around 3 orders of magnitude faster than the baseline.
Similarly, we also observe similar performance trends in all three
methods in terms of number of block accesses (Figure 8(d)). We
also observe that TQ(Z) requires at least two orders of magnitude
fewer block accesses than the BL.

So far we have observed that the processing and the number of
block accesses show similar trends in all experimental evaluations.
Hence, for brevity we omit the graph of number of block accesses
in the remainder of the experiments.
kBFT for multi-point datasets. NYF Dataset: Since each user
trajectory in the NY Foursquare-check-ins dataset is a sequence of
points, we evaluated kKBFT queries using the two generalized ver-
sions of the index: Segmented TQ-tree (S-TQ) and Full trajectory
TQ-tree (F-TQ) (please see Section 3.1). In S-TQ, two consecu-
tive check-ins of a user are considered as a segment, and all such



100
BL —+— BL —+— BL —+— BL —+—
10 | TQ(B) —>— | L TQ(B) —x— s 107 FTQ(B) —%— | TQ(B) —>%—
~ TO(Z) K | TQ(z) —%— % TO(Z) —*— TQ(z) —*—
9 1y o 210° ¢ - [
@ 6
N 0.17T | o
E 0.01 | — L K T 3
0.001F %%,/
‘ ‘ R § X
10 ‘ ‘ e
0.5 1 2 3 8 16 32 64 128256512 o.s 1 5 3 8 16 32 62 128 256 512
User trajectories (days) No. of Stops User trajectories (days) No. of Stops
(@) (b) © ()
Figure 6: Evaluating service values for varying number of user trajectories (a & c) and stops (b & d) in NYT dataset.
BL ——— BL —+— BL —+— BL —+—
TQ(B) —X— TQ(B) —X— TQ(B) —X— TQ(B) —xX—
~ 100 [ TQ(Z) —*— | TQ(Z) —K— | TQ(Z) —*— ¢ | TQ(Z) —*— |
0 /
9 10 | il | | i
< 1 ¥ 1 j
© L
L *
E 0.1 K | L wf H ¥
0.01¢— K ¥ e e
0.001 | o kX L %/K [ ¥
0.5 1 2 3 4 8 16 32 8 16 32 64 128256512 16 32 64 128 256 512
User trajectories (days) k No. of Stops No. of Facilities
(a) (b) (©) (d)

Figure 7: The processing time for evaluating KBFT for varying (a) users, (b) k, (c) stops, and (d) facilities for NYT datasets.

segments of all users are indexed using the TQ-tree. For F-TQ, we
consider the sequence of check-ins in a day of a user as a single
multi-point trajectory, and index these trajectories using the TQ-
tree. For both approaches, we compare the performance for both
the TQ-tree basic and the TQ-tree z-order indexes.

Figure 9 shows the results of our approaches when varying (a)
the number of stops and (b) number of facilities. The F-TQ based
approaches perform better than S-TQ as the number of trajecto-
ries increases significantly in the segmented approach. The per-
formance gap between the S-TQ-tree Basic (S-TQ(B)) and the S-
TQ(Z) is around 1 order of magnitude, which is smaller than the
previous experiments. The underlying reason is that for smaller
segments, TQ-tree contains fewer trajectories in the internal nodes
and thus z-order based performance gain cannot be achieved. For
the same reason, the F-TQ based approaches outperform S-TQ .
In all cases, our proposed approaches for processing kBFT using
multi-point trajectories significantly outperform the baseline.

BJG dataset: We evaluated our algorithms on another multi-
point trajectory dataset from the Geolife project. Since the dataset
is small, we run the experiments with the segmented TQ-tree ap-
proach, and consider every pair of points as a single trajectory.
Figure 10 shows that even for a small dataset our TQ-tree based
approaches significantly outperform the baseline.

Evaluating kBCovFT. We evaluated our greedy algorithm, and
compare between the competitive approaches. Figure 11 shows the
processing time for varying the number of users and facilities for
processing kKBCovFT in NYT dataset. The G-TQ(Z) outperforms
other approaches by a large margin. We also evaluate the quality of
our approaches in terms of number of users served (Figure 11(b),
Figure 11(d)) and as the approximation ratio with the exact solution

206

Table 4: Index size and construction time

# Trajectories | TQ(B): MB (sec) | TQ(Z): MB (sec))
203,308 92 (0.74) 136 (1.03)
357,139 159 (0.95) 237 (1.86)
697,796 301 (2.42) 450 (4.23)
1,032,637 435 (3.74) 655 (9.95)

(Figure 12). Experimental evaluation shows that the approximation
ratio of our greedy TQ(Z) is close to the exact solution in most of
the cases, and at least achieves 0.9 ratio. The genetic algorithm (20
iterations) performs poorly in terms of the number of users served
when the number of facilities is large (Figure 11(d)).

Index construction and update. In this section we evaluate the
index building and updating cost of our proposed index structure.

Memory size and build time: Table 4 shows the index size in
MB and the index construction time in seconds for NYT dataset.
TQ(Z) takes slightly more space than TQ(B) to store the z-nodes.
The index also takes only a few seconds to be built. The overhead
for TQ(Z) are marginal when compared to the performance gains
achieved by the index.

Index update cost: Our index structure can gracefully handle
updates from frequent queries, and has little overall performance
impact on the query answer. For example, it takes on average 5
micro-seconds to update a user trajectory in an index of approxi-
mately 1 million existing user trajectories. The results show that
TQ(Z) takes 3 to 7 times longer and incurs 2 times more I/O than
that of TQ(B) while updating the index (graphs are not shown).



BL —+—
TQ(B) —X—
o TQ(Z) —kK—
A
8 T S
~ XX
m L
b
5 |
%10 —K
— K _x
R %
103 . . . .
0.5 1 2 3 4 8 16 32
User trajectories (days) k
(@) (b)

32 64 128 256

No.

16 32 64 128 256 512 512

No. of Facilities

(d

of Stops

©

Figure 8: The number of block accesses for evaluating kBFT for varying (a) users, (b) k, (c) stops, and (d) facilities for NYT datasets.

S-BL + F-BL
S-TQ(B) X F-TQ(B)
S-TQ(Z) ¥ F-TQ(Z) &

S-BL +  F-BL
S-TQ(B) * F-TQ(B)
| S-TQ(Z) ¥ F-TQ(Z) &

S

=

A

Time (sec)

0.001 . . . . . . . . .
8 16 32 64 128256512 16 32 64 128 256 512
No. of stops No. of facilities
(@) (b)

Figure 9: Evaluating £BFT for varying number of (a) stops (b)
facilities for New York Foursquare multi-point datasets.

8. RELATED WORK

The related body of work mostly includes studies in trajectory
indexing and query processing, facility location selection problems,
and the route planning algorithms.

Trajectory Indexing and Queries. There have been studies for
finding human mobility patterns [20, 25] and detecting taxi trajec-
tories [2]. However, as we only use the user trajectories directly as
input, the methods for constructing trajectories is outside the scope
of this paper. Other relevant studies on trajectories are as follows.

Trajectory Search by Similarity. Frentzos et al. [13] define a
dissimilarity metric between two trajectories and apply a best-first
technique to return the & most similar trajectories to a query trajec-
tory. Chen et al. [5] address the problem of finding similar trajec-
tories based on the edit distance. A comparative review of different
measures of similarity is presented in [30]. Shang et al. [27] study
a variant of this problem, where both location and textual attributes
of the trajectories are considered. The significance of each point in
a query trajectory is taken into consideration in [28], where users
can specify a weight for each point in the query trajectory to find
the k£ most similar trajectories using the weights in the similarity
function. The general idea is to take each point along the query
and check whether a circle with the point as centre and a threshold
based on the weight as the radius, touches any trajectory. Based
on whether a trajectory covers certain points, a lower and upper
similarity bound is calculated, and different pruning techniques are
applied. However, this approach is not directly amenable to our
problem, as this computation needs to be repeated for each of the
facilities, which will incur a high computational cost and unnec-

207

BL —+—
TQ(B) —X B
—_ L TQ(Z) —K—
[0}
Q
9}
© ]
’E_:—'.‘ %//éé
2] L B /y(//
x
8 16 32 64 128256512 16 32 64 128 256 512

of facilities

(b)

No.

(@)

of stops No.

Figure 10: Evaluating kBFT for varying number of (a) stops (b)
facilities for Beijing Geolife multi-point datasets.

essary, repeated retrieval of trajectories. Moreover, this approach
cannot efficiently answer the kBCovFT query, where an user tra-
jectory can be served jointly by multiple facility trajectories.
Trajectory Search by Point Location. Given a set of query
points, Tang et al. [29] answer the k nearest trajectories, where the
distance to a trajectory is the sum of the distances from each query
point to its nearest point in that trajectory. Han et al. [16] find the
top-k trajectories that are close to the set of query points w.r.t. trav-
eling time. Each of these solutions use R-tree variations to store
trajectory points. As computing both the individual and partial ser-
vice is important in our case, these techniques are not useful for
our problem. Adapting these approaches would affect our pruning
strategy greatly, resulting in higher computational complexity as it
would not be easy to exclude the inter-node trajectories by index-
ing the points independently. Also, the queries (facilities) in our
problem are also trajectories, not just points.

Reverse kNN Trajectory Queries. Given a set of user trajectories
U, aset of facility (bus) trajectories F', and a new facility trajectory
f & F, an RENN query returns the user trajectories from U for
which f is one of the k nearest facilities. While addressing this
problem, Wang et al. [32] consider each user trajectory as transi-
tions (trajectories with just pickup and drop-oft points), and Rahat
et al. [23] consider multi-point user trajectories. In contrast to their
work, we assume a user can be served by a facility if the trajectories
(stop points) are sufficiently close. Moreover, their approach can-
not be used to solve the kBCovFT query, where a user trajectory
can be served jointly by multiple trajectories.



. ‘ 1 . T T T
G(BL) —+— G(BL) ® G.To(2)
G-TQ(B) —»<— 't G-TO(B) W Gn-TO(Z)
—_ G-TQ(Z) —HK— ;
[9) 100 f Gn-TQ(2) ] :
9] == | ;
; 1 0 : //+// hv \/</
g | % 5K
) o —F a
] n x%yg% .
0.01 % #
0.001

. . . . 1K
16 32 64 128 256 512

No.

16 32 64 128256512

of facilities No.

©)

of facilities

(@)

Figure 11: Evaluating KBCovFT for varying (a)-(b) users (c)-(d) facilities for NYT datasets.

30K : . ‘ ‘
G(BL) —t+— G(BL) W G-TQ(Z)
G-TQ(B) —>— B e | OTR(R) ®Gn-10(2)
N 100 F G-TQ(2) ERON a
[6) Gn-TQ(Z) 8. & :
’ 0 e & 20K
2 . — :
: 0-17 P E 15K |-
& K i
B 0.01°T :
0.001 - e
‘ ‘ 1K
0.5 1 2 3 T
User trajectories (days) User trajectories (days)
(@ o
G-TQ(Z) WM Gn-TQ(Z) ™ G-TQ(Z) WM Gn-TQ(Z) m
o 1
Bl
-1 0.98 [
©
o 0.96
3 0.94
B‘ 0.92 |
g o.
< 0.9
0.88

16

32 64

0.5 1 2 3

No. of facilities

(b)

User trajectories (days)

(a)

Figure 12: Approximation ratio for evaluating K BCovFT for vary-
ing (a) users (b) facilities for NYT datasets.

Other Storage Techniques. Other index structures, e.g., Tra-
JjTree [24], SharkDB [31] are also proposed to efficiently store tra-
jectories. However, as segmentation of trajectories is required to
construct TrajTree [24], this index is not amenable to our problem
when computing the served portions of the individual user trajecto-
ries. SharkDB [31] is an in-memory column oriented timestamped
storage solution used for indexing trajectory data. This index can
support kNN and window queries in the spatio-temporal domain,
but cannot be directly applied to solve kBCovFT where identifying
trajectories can be partially served by a facility trajectory.
Distributed Processing of Trajectories. Big trajectory data re-
quire distributed framework for efficiency and scalablility. Xie et
al. [36] proposed a spatial in-memory big data analytics engine,
Simba, to support spatial queries such as kNN, distance join, and
join. Simba extends Spark to support spatial queries, and adopts a
two-level spatial indexing strategy, composed of local and global
indexing, where the global index keeps track of the summarized
view of all partitions and the local index accelerates the query pro-
cessing inside a partition. Later, Xie et al. [35] propose a dis-
tributed Spark based framework that support similarity search over
trajectories. Ding et al. [10] propose a unified platform for big
trajectory data management, namely UlTraMan, that solves sev-
eral limitations of Spark to handle big trajectory data. They also
support distributed computation by using an abstraction called Tra-
jDataset, which is compatible with MapReduce and RDDs. These
studies [36, 35, 10] are orthogonal to ours. Interestingly, our pro-
posed TQ-tree based index can be easily adapted for distributed
frameworks where the first level TQ-tree as a global index and the
second level TQ-trees as local indexes can be used.

208

Facility Location Selection Problem. Several studies have inves-
tigated the problem of finding a location or region to establish a
new facility such that the facility can serve the maximum number
of customers based on a specified optimization criteria. The facil-
ity location problem (FLP) and the optimal location query (OLQ)
are the two most popular query types, where in FLP the new fa-
cility is selected from given a set of a limited number of possible
facility locations [19, 15, 14], and in OLQ, the new facility can be
anywhere in the whole space [11, 34, 6]. Another related problem,
the Maximizing Bichromatic Reverse kNN query [33, 37] finds the
optimal region in space for a new facility f such that the number
of customers for which f is one of the kNN, is maximized. These
queries focus on point data and thus they are not directly applicable
to our problem.

Route/Trip Planning. Bus network design is known to be a com-
plex, non-linear, non-convex, multi-objective NP-hard problem [3].
Based on mobility patterns, there are a number of solutions for
recommending driving route [4], discovering popular routes [7],
or recommending modification of existing routes/introducing new
routes [20]. The MaxRANNT query [32] focuses on constructing
an optimal bus route based on a Reverse kNN trajectory query.
Lyu et al. [21] propose new bus routes by processing taxi trajecto-
ries while other works [17, 4] aimed at constructing bus routes by
analyzing hotspots of user trajectories. In contrast, our proposed
queries focus on finding a subset of the query trajectories that serve
the highest number of users locally and globally, respectively. So
unlike some of the aforementioned works that find the best route
offline, we can support online query processing.

9. CONCLUSION

We proposed a novel index structure, the Trajectory Quadtree
(TQ-tree) that utilizes a quadtree to hierarchically organize trajec-
tories into different quadtree nodes, and then applies a z-ordering
to further organize the trajectories by spatial locality inside each
node. We have demonstrated that such a structure is highly ef-
fective in pruning the trajectory search space for processing a new
class of coverage queries for trajectories: (i) k Best Facility Trajec-
tory Search (kBFT); and (ii) k£ Best Coverage Facility Trajectory
Search (kBCovFT). We have evaluated our algorithms through an
extensive experimental study on several real datasets, and demon-
strated that our algorithms outperform common baselines by 2 to 3
orders of magnitude. In future work, we will investigate the effec-
tiveness of TQ-tree for other variants of trajectory queries.
Acknowledgement. This work was conducted at Datal.ab, BUET

and partially supported by Australian Research Council DP170102231.



10. REFERENCES
[1] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On

map-matching vehicle tracking data. In VLDB, pages

853-864, 2005.

C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, and S. Li.

Real-time detection of anomalous taxi trajectories from GPS

traces. In MobiQuitous, pages 63-74, 2011.

C. Chen, D. Zhang, N. Li, and Z. Zhou. B-planner: Planning

bidirectional night bus routes using large-scale taxi GPS

traces. IEEE Trans. Intelligent Transportation Systems,

15(4):1451-1465, 2014.

C. Chen, D. Zhang, Z. Zhou, N. Li, T. Atmaca, and S. Li.

B-planner: Night bus route planning using large-scale taxi

GPS traces. In PerCom, pages 225-233, 2013.

L. Chen, M. T. Ozsu, and V. Oria. Robust and fast similarity

search for moving object trajectories. In SIGMOD, pages

491-502, 2005.

[6] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and
C. Long. Efficient algorithms for optimal location queries in
road networks. In SIGMOD, pages 123-134, 2014.

[7]1 Z. Chen, H. T. Shen, and X. Zhou. Discovering popular
routes from trajectories. In ICDE, pages 900-911, 2011.

[8] F. M. Choudhury, J. S. Culpepper, T. Sellis, and X. Cao.
Maximizing bichromatic reverse spatial and textual k nearest
neighbor queries. PVLDB, 9(6):456-467, 2016.

[9] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numer. Math., 1(1):269-271, 1959.

[10] X. Ding, L. Chen, Y. Gao, C. S. Jensen, and H. Bao.
Ultraman: A unified platform for big trajectory data
management and analytics. PVLDB, 11(7):787-799, 2018.

[11] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In
SSTD, pages 163-180, 2005.

[12] U. Feige. A threshold of In n for approximating set cover. J.
ACM, 45(4):634-652, 1998.

[13] E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based
most similar trajectory search. In ICDE, pages 8§16-825,
2007.

[14] Y. Gao, S. Qi, L. Chen, B. Zheng, and X. Li. On efficient

k-optimal-location-selection query processing in metric

spaces. Inf. Sci., 298(C):98-117, 2015.

Y. Gao, B. Zheng, G. Chen, and Q. Li.

Optimal-location-selection query processing in spatial

databases. IEEE Transactions on Knowledge and Data

Engineering, 21(8):1162-1177, 2009.

Y. Han, L. Chang, W. Zhang, X. Lin, and L. Wang.

Efficiently retrieving top-k trajectories by locations via

traveling time. In ADC, pages 122-134, 2014.

[17] Y. Huang, F. Bastani, R. Jin, and X. S. Wang. Large scale

real-time ridesharing with service guarantee on road

networks. PVLDB, 7(14):2017-2028, 2014.

”IEEE”. Test autonomous ride sharing. spectrum. ieee.

org/cars-that-think/transportation/self-

driving/driveai-partners-with-lyft-for-
autonomous—ride-sharing-pilot. [Online;

accessed 17-09-2017].

[19] Q. Jianzhong, Z. Rui, L. Kulik, D. Lin, and X. Yuan. The
min-dist location selection query. In ICDE, pages 366-377,

(2]

(3]

(4]

(]

[15]

[16]

(18]

209

2012.
Y. Liu, C. Liu, N. J. Yuan, L. Duan, Y. Fu, H. Xiong, S. Xu,
and J. Wu. Exploiting heterogeneous human mobility

patterns for intelligent bus routing. In ICDM, pages 360-369,
2014.

Y. Lyu, C. Chow, V. C. S. Lee, Y. Li, and J. Zeng. T2CBS:
mining taxi trajectories for customized bus systems. In
INFOCOM, pages 441-446, 2016.

[22] S. Ma, Y. Zheng, and O. Wolfson. T-share: A large-scale
dynamic taxi ridesharing service. In ICDE, pages 410421,
2013.

[23] T. A. Rahat, A. Arman, and M. E. Ali. Maximizing reverse

k-nearest neighbors for trajectories. In ADC, pages 262-274,

2018.

S. Ranu, D. P, A. D. Telang, P. Deshpande, and S. Raghavan.

Indexing and matching trajectories under inconsistent

sampling rates. In ICDE, pages 999-1010, 2015.

S. Shafique and M. E. Ali. Recommending most popular

travel path within a region of interest from historical

trajectory data. In MobiGIS, pages 2-11, 2016.

S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and

P. Kalnis. Trajectory similarity join in spatial networks.

PVLDB, 10(11):1178-1189, 2017.

[27] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis.
User oriented trajectory search for trip recommendation. In
EDBT, pages 156-167, 2012.

[28] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and
X. Zhou. Personalized trajectory matching in spatial
networks. VLDB J., 23(3):449-468, 2014.

[29] L. A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han.
Retrieving k-nearest neighboring trajectories by a set of point
locations. In SSTD, pages 223-241, 2011.

[30] H. Wang, H. Su, K. Zheng, S. W. Sadiq, and X. Zhou. An E
ectiveness study on trajectory similarity measures. In ADC,
pages 13-22,2013.

[31] H. Wang, K. Zheng, X. Zhou, and S. W. Sadiq. Sharkdb: An
in-memory storage system for massive trajectory data. In
SIGMOD, pages 1099-1104, 2015.

[32] S. Wang, Z. Bao, J. S. Culpepper, T. K. Sellis, and G. Cong.
Reverse k nearest neighbor search over trajectories. CoRR,
abs/1704.03978, 2017.

[33] R. C. Wong, M. T. Ozsu, P. S. Yu, A. W. Fu, and L. Liu.
Efficient method for maximizing bichromatic reverse nearest
neighbor. PVLDB, 2(1):1126-1137, 2009.

[34] X. Xiao, B. Yao, and F. Li. Optimal location queries in road
network databases. In ICDE, pages 804-815, 2011.

[35] D. Xie, F. Li, and J. M. Phillips. Distributed trajectory
similarity search. PVLDB, 10(11):1478-1489, 2017.

[36] D. Xie, FE. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba:
Efficient in-memory spatial analytics. In SIGMOD, pages
1071-1085, 2016.

[37] Z.Zhou, W. Wu, X. Li, M. Lee, and W. Hsu. Maxfirst for
maxbrknn. In /ICDE, pages 828-839, 2011.

[38] C. Zhu, J. Xu, C. Liu, P. Zhao, A. Liu, and L. Zhao. Efficient

trip planning for maximizing user satisfaction. In DASFAA,

pages 260-276, 2015.

[20]

[21]

[24]

[25]

[26]



