
A Lightweight and Efficient Temporal Database
Management System in TDSQL

Wei Lu†, Zhanhao Zhao†, Xiaoyu Wang§, Haixiang Li§,
Zhenmiao Zhang†, Zhiyu Shui†, Sheng Ye§, Anqun Pan§, Xiaoyong Du†

∗

†School of Information and DEKE, MOE, Renmin University of China, Beijing, China
§Tencent Inc., China

{lu-wei, zhanhaozhao, zhzm, shuizhiyu, duyong}@ruc.edu.cn
{blueseali, xiaoyuwang, shengye, aaronpan}@tencent.com

ABSTRACT
Driven by the recent adoption of temporal expressions into
SQL:2011, extensions of temporal support in conventional
database management systems (a.b.a. DBMSs) have re-
emerged as a research hotspot. In this paper, we present a
lightweight yet efficient built-in temporal implementation in
Tencent’s distributed database management system, namely
TDSQL. The novelty of TDSQL’s temporal implementation
includes: (1) a new temporal data model with the extension
of SQL:2011, (2) a built-in temporal implementation with
various optimizations, which are also applicable to other
DBMSs, and (3) a low-storage-consumption in which only
data changes are maintained. For the repeatability purpose,
we elaborate the integration of our proposed techniques into
MySQL. We conduct extensive experiments on both real-life
dataset and synthetic TPC benchmarks by comparing TD-
SQL with other temporal databases. The results show that
TDSQL is lightweight and efficient.

PVLDB Reference Format:
Wei Lu, Zhanhao Zhao, Xiaoyu Wang, Haixiang Li, Zhenmiao
Zhang, Zhiyu Shui, Sheng Ye, Anqun Pan, Xiaoyong Du. A
Lightweight and Efficient Temporal Database Management Sys-
tem in TDSQL. PVLDB, 12(12): 2035-2046, 2019.
DOI: https://doi.org/10.14778/3352063.3352122

1. INTRODUCTION
The study on temporal data management has been going

on for decades, but only recently has some progress been
made. Temporal data management by applications brings

∗Haixiang Li and Xiaoyong Du are the corresponding au-
thors.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352122

prohibitively expensive development and maintenance over-
head. Instead, extensions to support temporal data man-
agement in conventional DBMSs have been extensively ex-
plored. Nevertheless, the temporal support offered by com-
mercially available software tools and systems is still quite
limited. Until recently, the adoption of temporal expres-
sions into SQL:2011 makes the major DBMSs provide built-
in temporal support, typically including: (1) extension of
non-temporal tables to temporal tables, (2) a unified man-
agement of both current data and historical data in a sin-
gle database, (3) query rewrite functionality by expressing
the semantics of temporal queries in equivalent conventional
(non-temporal) SQL statements.

In SQL:2011, the temporal features mainly include tem-
poral table definitions, temporal queries, and others (e.g.,
temporal constraints). As compared to the non-temporal
counterpart, a temporal table associates either valid time,
or transaction time, or both. Either valid time or transac-
tion time is a closed-open period (i.e., time interval) [s, t),
with s as start time and t as end time. Valid time is a time
period during which a fact was/is/will be true in reality, and
transaction time is a time period during which a fact is/was
recorded (i.e., current/historical) in the database.

Example 1. Table 1 shows an example of player account
balance. TT is the transaction time. As we can see, r1.4, r2.2,
r3.1 are the current records of players James, David, and
Jack, respectively, while the remaining are historical record
sets of James, David, respectively. According to the tem-
poral expressions of SQL:2011, by specifying the qualifier
‘FOR TT FROM TIMESTAMP 2018-11-08 00:00:00 TO
TIMESTAMP 2018-11-10 23:59:59’, both current and his-
torical records r1.3, r2.2, r3.1 are returned.

Thus far, we have witnessed a big burst of temporal sup-
port in conventional DBMSs, such as Oracle [3], Teradata
[6], MariaDB [2], SQL Server [5]. However, they still suffer
from limited expressiveness and poor performance.

First, existing temporal data model is inadequate. Due
to some unexpectedly erroneous transaction made by op-
erators, logical data corruption, e.g., accidental deletion of
valuable data, is difficult to avoid. Based on the existing
temporal data model, a temporal database is able to rewind
the states of the data to a specified point in time based on

2035

Table 1: Account balance
ID Player Bal Transaction Time
r1.1 James 0 [2018-05-20 06:20:00,2018-10-21 00:30:00)
r1.2 James 50 [2018-10-21 00:30:00,2018-11-01 09:01:41)
r1.3 James 1000 [2018-11-01 09:01:41,2018-11-12 00:00:10)
r1.4 James 2000 [2018-11-12 00:00:10,∞)
r2.1 David 150 [2018-10-20 20:10:10,2018-10-20 20:40:00)
r2.2 David 200 [2018-10-20 20:40:00,∞)
r3.1 Jack 200 [2018-11-08 10:12:43,∞)

the transaction time of each record. Nevertheless, it can-
not figure out the records in an erroneous transaction sim-
ply based on the transaction time in that many transactions
could occur in the same transaction time. Thus, the recovery
of logical data corruption for a given erroneous transaction
is hardly to accomplish.

Second, the transaction time in the temporal data model
is difficult to set/update. Consider the majority of con-
ventional DBMSs, including Oracle, SQL Server, MySQL,
are MVCC-based. Theoretically, for a given record r, the
start time (or end time) in its transaction time should be
set to the commit time of the transaction that creates (or
updates/deletes) r based on the snapshot isolation theorem
[7, 23, 26]. Nevertheless, most of the existing temporal im-
plementations just pick up the time when transaction starts
to execute, or the time of the operation that inserts/up-
dates/deletes the record (note that conventional DBMSs do
not maintain the commit time of the transaction with each
record by taking into consideration the performance of the
whole system) just because SQL:2011 does not enforce to
use the commit time [21]. We argue that these implemen-
tations could potentially cause an incorrect result based on
the snapshot isolation.

Third, temporal query processing suffers from poor per-
formance. On one hand, by introducing the temporal fea-
tures, the performance of conventional DBMSs degrades sig-
nificantly (see our experimental section). The reason is that
existing temporal implementations store history and current
data separately, i.e., historical table and current table, to
skip over historical data for current data query processing,
which is deemed to the dominant temporal queries. How-
ever, this separation could degrade the throughput of con-
ventional transactional workloads since any update/delete
will cause two tables to be concurrently updated. On the
other hand, temporal data is maintained in an append-only
mode, causing an ever-increasing size of temporal data. The
overhead of maintaining large volume of temporal data de-
grades the query performance.

To address the above issues, in this paper, we propose a
lightweight yet efficient built-in temporal implementation in
TDSQL. We make the following contributions.
• We present a new temporal data model. As compared to
the non-temporal counterpart, a temporal relation under the
new model can have two transaction IDs, besides the valid/-
transaction time period, defined in SQL:2011. One ID cor-
responds to the transaction that creates the record, and the
other ID corresponds the transaction that deletes/updates
the record. By introducing the transaction IDs, it is able to
identify all records that are inserted/updated/deleted in the
same transaction, thus achieving the recovery of logical data
corruption. More importantly, temporal join queries taking
the transaction time as the join key are able to be enhanced
by taking the transaction ID as the join key instead.

• We propose a built-in temporal implementation with var-
ious optimizations in TDSQL, which is also applicable to
other DBMSs.

First, our implementations of temporal data storage man-
agement are almost non-invasive. Like other temporal im-
plementations in the conventional DBMSs, we use a histor-
ical table and a current table to store historical and cur-
rent data separately. In existing implementations, any up-
date/delete of a current record will result in a synchronous
migration of newly generated historical records to the his-
torical table. On the contrary, we propose an asynchronous
data migration strategy, i.e., upon any update/delete of a
current record will not cause an immediate data migration.
Instead, all newly generated historical records are migrated
to the historical table only when the database system starts
to reclaim the storage occupied by records that are deleted or
obsoleted, which is also known as VACUUM in PostgreSQL
and PURGE in MySQL. This late data migration trans-
fers historical data in batch and is non-invasive to the orig-
inally transactional systems. Further, we propose a key/-
value store based approach to efficiently managing the his-
torical data by maintaining data changes only, thus reducing
the size of storage space.

Second, in response to the challenge that the transaction
time is difficult to set and update, we build an efficient
transaction status manager. It maintains the status for the
transactions, including the transaction commit time, in a
transaction log. A special design of the manager makes the
retrieval of the commit time of a given transaction ID at
most one I/O cost. During the data migration, we update
their transaction time for each of newly generated historical
record based on its transaction ID. For the current records
and historical records that have not yet been transferred to
the historical table, we are still able to obtain the transac-
tion time based on their transaction IDs via the manager.

Third, to support temporal query processing, we extend
parser, query executor, storage engine of TDSQL. TDSQL’s
temporal implementation supports all temporal features de-
fined in SQL:2011. For valid-time qualifiers in the temporal
query, we transform the temporal operations into equivalent
non-temporal operations; while for transaction-time quali-
fiers, we provide a native operator to retrieve current and
historical data with various optimizations.
• We conduct extensive experiments on both real and syn-
thetic TPC benchmarks by comparing TDSQL with Oracle,
SQL Server, and MariaDB. The results show that TDSQL
almost has the minimal performance loss (only 7% on av-
erage) by introducing the temporal features, and performs
the best for most of the temporal queries.

The rest of the paper is organized below. Section 2 dis-
cusses related work. Section 3 formalizes our new tempo-
ral data model. Section 4 outlines the system architecture.
Section 4 elaborates temporal query processing and storage
management. Section 6 presents the implementation. Sec-
tion 7 we present three real temporal applications in Ten-
cent. Section 8 reports the experimental results and Section
9 concludes the paper.

2. RELATED WORK
The study on temporal data management has been going

on for decades, mainly in the fields of data model develop-
ment, query processing, and implementations.

2036

Early work until 1990s mainly focused on the consensus
glossary of concepts for data modeling [12, 13, 14, 15, 16]. At
this stage, the contributions mainly include temporal table
definitions, temporal constraints and temporal queries. As
compared to the non-temporal counterpart, a temporal rela-
tion associates time, which is multi-dimensional, and can be
either valid time or transaction time, or other type of time.
The semantics of integrity constraints in the temporal data
model is also enriched [10, 27]. Entity integrity does not en-
force the uniqueness of the primary key. Instead, it requires
that no intersection exists between valid times of any two
records with the same primary key; while for reference in-
tegrity, there must exist one matching record in the parent
table whose valid time contains the valid time of the child
record. As compared to the regular query syntax, temporal
queries are formulated by expressing filtering conditions as
period predicates with extensive research work on this field
[8, 21].

Extensive efforts have been devoted to build the tempo-
ral implementation outside or inside conventional DBMSs.
After attempts with many years to build the implemen-
tation on top of conventional DBMSs, such as Oracle [3],
DB2 [1], and Ingres [28], it is well recognized that the cost,
brought by the development and maintenance of application
programs, is prohibitively expensive. For this reason, since
the late 1990s, extensions to support temporal data man-
agement using SQL have been extensively explored [9, 17,
25, 31]. Although a set of temporal extensions, like TSQL2
[11], were submitted for standardization, these attempts are
not successful until the adoption of SQL:2011 [21]. In re-
sponse to SQL:2011, the mainstream of both commercial
and open-source database management systems, including
Oracle [3], IBM DB2 [1], Teradata [6], PostgreSQL [4], have
been dedicated to offer SQL extensions for managing tem-
poral data based on the newly standardized temporal fea-
tures. Oracle introduces the Automatic Undo Management
(AUM) system to manage historical data and answers tem-
poral queries through views executing on both historical and
current data. SQL Server, DB2, and Teradata utilize cur-
rent and history tables to store current and historical data
separately. Users issue queries over the current table and
the system will retrieve the history table as needed based on
the specified point in time or between two specified points in
time. ImmortalDB [24] is an well-design research prototype
that provides transaction time support built into the SQL
Server, but it may suffer from massive storage consumption
since only the straightforward storage strategy has been em-
ployed. Orthogonal to the temporal implementation, a large
number of temporal data access methods are proposed [18,
19, 22, 29, 30]. Many of them are either B+-trees, or R-trees
which are widely used in conventional DBMSs. These access
methods are potentially used to speed up the query perfor-
mance. We do not list many other access methods which
are not variants of B+-trees or R-trees in that integrating
them to DBMSs is not trivial.

3. TEMPORAL FEATURES OF TDSQL
In this section, we describe the temporal features of our

system in terms of data model, temporal queries, and data
constraints.

3.1 Temporal Data Model
We support either of the following data models.

• Valid-time data model. As compared to the non-
temporal counterpart, a relation R under this model asso-
ciates valid time. Let {U, V T} be the attributes of R, where
U is the attribute set of the non-temporal counterpart for
R, and V T is the valid-time period.
• Transaction-time data model. As compared to the
non-temporal counterpart, a relation R under this model
associates transaction time and transaction IDs. We denote
{U, TT,CID,UID} as the attributes of R, where U is the
attribute set of the non-temporal counterpart for R, and
TT is the transaction-time period, CID is the transaction
ID that creates the record, and UID is the transaction ID
that updates/deletes the record.
• Bi-temporal data model. A relation R associates both
valid-time, transaction-time and transaction IDs, i.e., R has
attributes {U, V T, TT,CID,UID}.

We refer to a relation as a valid-time relation if it merely
has valid time, and we make similar definitions for transaction-
time relation and bi-temporal relation. We denote V T as a
closed-open period [V T.st, V T.ed), and TT as [TT.st, TT.ed).
V T.st, V T.ed, TT.st, TT.ed are four time instants. For valid-
time, a record is either currently valid if V T.st ≤ current
time < V T.ed, or historical valid if V T.ed ≤ current time, or
future valid if V T.st > current time. For transaction time, a
record is said to be a current record if TT.st ≤ current time
< TT.ed, and a historical record if TT.ed ≤ current time.

3.2 Temporal Syntax
We introduce the temporal syntax of TDSQL below.

3.2.1 Creating Temporal Tables
As compared to the non-temporal counterpart, a valid-

time relation is defined using the following SQL statement:

CREATE TABLE R (ID INTEGER, Period VT)

A transaction-time relation is created by adding a schema-
level qualifier ‘WITH SYSTEM VERSIONING’:

CREATE TABLE R (

ID INTEGER

) WITH SYSTEM VERSIONING

The syntax of creating a bi-temporal relation is the com-
bination of above.

3.2.2 Valid-time Queries
A valid-time query is defined as queries on valid-time rela-

tions. As compared to the regular SQL syntax, a valid-time
query can add valid-time predicates, like OVERLAPS and
CONTAINS, as the period predicates, which work together
with other regular predicates in the WHERE conditions.

3.2.3 Transaction-time Queries
A transaction-time query is defined as queries over trans-

action relations. As compared to the regular SQL syntax, it
is syntactic extended in terms of the transaction time: (1)
FOR TT AS OF t, which restricts records that are readable
at t, (2) FOR TT FROM t1 TO t2, which restricts records
that are readable from t1 to (but not include) t2, (3) FOR
TT BETWEEN t1 AND t2, which restricts records that are
readable from t1 to (and include) t2.

2037

3.2.4 Transaction ID Queries
New temporal queries are enriched by introducing trans-

action IDs. On one hand, the join operation is extended
based on the transaction IDs, e.g., a reconciliation requires
a join operation on the account balance table (R) and the
expense statement table (W), shown below:

SELECT * FROM (

R FOR TT FROM ts1 TO ts2 as A

FULL OUTER JOIN

R FOR TT FROM ts1 TO ts2 as B

ON A.UID = B.CID

)

FULL OUTER JOIN

W FOR TT FROM ts1 TO ts2 as C

ON B.CID = C.UID

On the other hand, logical data corruption recovery (a.b.a.
LDCR) is fully supported. A basic LDCR is to rewind the
state of table R to a given time t below:

REPLACE INTO R

(SELECT * FROM R FOR TT AS OF t)

By introducing transaction IDs, LDCR is extended to sup-
port transaction-level recovery via the following syntax:

REWIND TRANSACTION(TID, option)

The option could be either ‘CASCADE’ (default), in which
we perform a reverse operation to recover the state of records
that are inserted/updated/deleted by the transaction with
ID = TID and its dependent transactions recursively, or
‘NON CASCADE’, in which if there do not exist dependent
transactions, we perform a reverse operation to recover the
state of the affected records.

3.3 Temporal Constraints
For valid-time data model: (1) The entity integrity is

relaxed to the case that no intersection exists between valid
time of any two records with the same primary key, e.g.,

PRIMARY KEY (ID, VT WITHOUT OVERLAPS)

(2) For reference integrity, there must exist one matching
record in the parent table whose valid time contains the
the valid time of the child record. For transaction-time
data model: (1) constraints can only be added to the cur-
rent records and follow the same logics in the conventional
DBMSs. (2) users are not allowed to assign/change the value
of transaction time and IDs, which can only be assigned/up-
dated by the database system. (3) users are not allowed
to change the historical records. For bi-temporal data
model, the constrains are the combination of the valid-time
data model and the transaction-time data model.

4. SYSTEM OVERVIEW
In this section, we outline the overall system architec-

ture of TDSQL’s temporal implementation. We also briefly

present the functionality of its main components and will
elaborate them in the next section. For ease of illustra-
tion, we use TDSQL and its temporal implementation in-
terchangeably when the context is clear.

TDSQL supports temporal features mainly based on the
extensions of three components shown in Figure 1, (1) parser,
(2) query executor and (3) storage engine. Since the query
executor relies on the storage engine, we introduce the ex-
tensions in the order of (1)(3)(2).
• Parser. We extend the parser to support the syntax of
temporal queries, translate temporal queries into a simpler
hybrid non-temporal and temporal queries, and output the
translated syntax tree to the query optimizer. It has two
main tasks. The first task is to perform the lexical and
syntax analysis of the input temporal queries, which fol-
low the SQL standard defined in SQL:2011. The other task
is to translate temporal qualifiers, perform semantic check
and output a syntax tree. In particular, valid-time involved
operations are translated into equivalent non-temporal op-
erations, as described in Section 3.2, while transaction-time
involved operations remains unchanged in the syntax tree.
Note transaction-time involved operations are implemented
as a native support in TDSQL which will be discussed later.
For illustration purposes, we give an example on the trans-
lation of a given temporal query below.

Example 2. Suppose R is an account balance relation.
Consider the following temporal SQL statement that retrieves
the account balance of player James on 2018-10-30, recorded
in DBMS at 2018-10-11 00:00:00.

SELECT ID, Player, Bal FROM R

WHERE Player = ‘James’

AND VT CONTAINS DATE ‘2018-10-30’

FOR TT AS OF TIMESTAMP ‘2018-10-11 00:00:00’

The parser will translate the valid-time involved opera-
tions, which is underlined in the above statement, into equiv-
alent non-temporal operations which is underlined in the fol-
lowing statement:

SELECT ID, Player, Bal FROM R

WHERE Player = ‘James’

AND VT.st ≤ DATE ‘2018-10-30’

AND VT.ed > DATE ‘2018-10-30’

FOR TT AS OF TIMESTAMP ‘2018-10-11 00:00:00’

For illustration purposes, we demonstrate the syntax tree and
its intermediate form in Figure 1 for a given query.

• Storage engine. Like other temporal implementations in
conventional DBMSs, TDSQL stores historical and current
data separately in which we implicitly build a historical ta-
ble to store the historical data for a transaction-time table,
Nevertheless, it adopts a completely different way to main-
tain temporal data in terms of two key mechanisms, i.e.,
(1) when to transfer data from current tables to historical
tables, and (2) how to organize the historical data consider-
ing that the historical data is ever-growing. We remain the
latter to be explained in the next section.

Existing temporal implementations process transactional
tasks on historical and current data in a synchronous mode.

2038

SELECT ID, Player, Bal FROM R

 WHERE Player= James AND

 VT CONTAINS DATE 2018-10-30

 FOR TT AS OF TIMESTAMP 2018-11-30 00:00:00

SELECT Query

SELECT Fields FROM Tables WHERE Conditions TT

ID Player Bal R AND

= VT

CONTAINS

2018-10-30

AS OF

2018-11-30 00:00:00

Player James
TT

= AND

2018-10-30

AS OF

2018-11-30 00:00:00

Player James >

VT.begin 2018-10-30VT.endQuery Processing

Optimizer

Executor

Transaction Manager

Transaction status

Historical Data Storage

Current Data Storage

Hybrid Data Storage

Migration

 Syntax intermediate form

 Syntax tree

SELECT Fields FROM WHERE Conditions

ID Player Bal AND

 Optimized query plan

SELECT Query

Tables

R

Parser Processing

Lexical Analysis

Temporal Translation

Syntax Analysis

Semantic Check

Figure 1: System Overview

Any update/delete of a current record will produce one or
multiple historical records which are then transferred from
the current table to the historical table simultaneously. To
do this, existing temporal implementations require to insert
the new current record into the current table, and migrate
the newly generated historical records from current table to
the historical table in the same transaction.

While TDSQL processes transactional tasks on historical
and current data in an asynchronous mode, we propose a
hybrid data storage system encapsulated with a novel late
data migration strategy, i.e., upon any update/delete of a
current record will not cause an immediate data migration
of the newly generated historical records. Instead, all newly
generated historical records are migrated to the historical
table when the database system starts to reclaim the stor-
age occupied by records that are deleted or obsoleted. Stor-
age reclaim in TDSQL is periodically invoked by the sys-
tem in order to improve the efficiency of storage space and
query performance. Similar operations can be found in other
DBMSs, like PURGE in MySQL and VACUUM in Post-
greSQL. Our late data migration strategy does not cause
any omissions of historical records based on the facts that
(1) an update/delete of a record in the conventional DBMSs
will not physically remove it from its table, and (2) these
deleted or obsoleted records are maintained in the rollback
segment (similar to UNDO log in MySQL and Oracle) of the
system. During the vacuum stage, we copy all newly gener-
ated historical records from the rollback segment and import
them into the historical table in batch. As compared to the
existing work, this late data migration brings two advan-
tages. (1) Data migration in batch eliminates the access to
historical table during the update/delete of current records,
and hence reducing the transaction latency. (2) Conflicts
in concurrent data access to historical tables are completely
avoided, and hence result in a significant improvement of
the transaction throughput for the whole system.
•Query optimizer and executor. Query optimizer takes
a translated syntax tree as the input and generates the query
execution plan for the executor. Except the transaction-time
qualifiers, the translated syntax tree is optimized just like
its non-temporal counterpart by the optimizer. We provide
a native support for the execution of temporal queries with
transaction-time qualifiers. Executor recognizes transaction-
time qualifiers in the query execution plan, and invokes a

native function call, including the tasks: (1) retrieving cur-
rent and historical data of interest, and (2) integrating the
query result and returning the result to the client.

Like other conventional DBMSs, the native TDSQL does
not maintain the commit time of any transaction with each
record. However, according to our new temporal model,
each record r needs to explicitly maintains the commit time
of the transaction that creates/deletes r. To help set the
commit time, we build an efficient transaction status man-
ager. The manager maintains the status for the transac-
tions, including commit time, in a transaction log. It helps
efficiently retrieve the commit time for a given transaction
ID. Our special design of the manager makes this retrieval
at most one I/O cost. During the data migration, we update
their transaction time for each of newly generated historical
records based on its transaction ID. For the current records
and historical records that have not yet been transferred to
the historical table, we are still able to obtain the transac-
tion time based on their transaction IDs via the manager.

Because we use current/historical tables to store curren-
t/historical records, respectively, the executor processes the
query plan over the current table and historical table sep-
arately. To fetch the current records of interest, we simply
execute the query plan over the current table. However, it is
not trivial to retrieve the historical records of interest. Re-
mind in our temporal data storage system, due to the late
data migration, historical records maintained in the histor-
ical table is incomplete, and querying the historical table
could return incomplete result. Consider that the remain-
ing historical records are still in the current table, but are
not visible to users. We propose a MVCC-based visibility
check approach to retrieving historical records of interest.
Details of the approach are elaborated in Section 5.2.

5. STORAGE AND QUERY PROCESSING
In this section, we elaborate two core techniques, temporal

data storage and temporal query processing.

5.1 Temporal Data Storage
As discussed in the previous section, we store historical

data and current data separately, and propose a late data
migration strategy to transfer newly generated historical
data in batch from the current table to the historical table.

2039

r7 r7 r7

ID Name Bal

r1.4 James 2000

r2.2 David 200 r7

TID_S

51

r7 r7 r7r3.1 Jack 200 r7102

103

r1.3

1000
101

103

James
r1.2

James

50
60

101

Current data Rollback segment

v1v2

v3

Figure 2: A multi-versioned record in TDSQL

As our data migration relies on the conventional storage en-
gine, in this part, we first review how the storage system
works in TDSQL, then present the historical data storage
and its optimization, and finally discuss the implementation
of the late data migration.

5.1.1 Current Data Storage
Like many other conventional DBMSs, including Oracle

and MySQL, TDSQL is MVCC-based. That is, in TDSQL,
when a record is updated, a new version of the record is
created and inserted into the table, while the previous ver-
sion is deleted and moved to the rollback segment. The
newly generated record always maintain a link to its previ-
ous version (if any). According to the principle of MVCC,
select/update/delete queries always locate the latest version
of the record, and follow its link recursively to find a proper
version based on the snapshot isolation mechanism [7, 26,
23]. Apparently, as compared to the temporal counterpart,
in a non-temporal relation, the latest version of a record
corresponds to the current record, and its previous versions
correspond to historical records. A previous version will not
be physically removed until the following conditions satisfy:
(1) transactions that read/write this version are either com-
mitted or aborted; (2) a vacuum cleaner thread starts to
garbage collect expired/aborted versions. For illustration
purposes, Figure 2 shows an example of a record with three
versions (labeled as v1, v2, v3) that are linked. Note its first
version v0 has been transferred to the historical table.

5.1.2 Historical Data Storage
Historical records are inserted into the historical table in

batch. As defined in SQL:2011, historical records are main-
tained in an append-only mode, i.e., any update/delete to
the historical table is not allowed. For this reason, the size
of historical data is always increasing, potentially causing a
prohibitively expensive storage overhead. To address this is-
sue, we employ the currently popular key value store instead
of conventional relation storage model as the historical data
storage. To do this, we can only maintain data changes for
each base record, and hence reduce the size of storage space.

As defined in SQL:2011, an update of attribute value(s)
of a record in a temporal relation could produce one or mul-
tiple historical records. Consider that these records are in
fact the different versions of the same entity, and share the
same values over the majority of attributes. We then focus
on the storage space optimization by eliminating the main-
tenance for duplicated attribute values. Our main idea is
to maintain the complete attribute values of the first ver-
sion, and for any subsequent updates, only data changes
are maintained so that redundant information storage are
completely avoided. Take player James shown in Figure 2
for example. r1.1 is the first version of James depicted in
the balance table, and its attribute values are completely
maintained in the historical data storage. r1.2 is the second

‘2018-10-22 00:00:00’

2018-10-21 00:30:00

2018-11-1 09:01:41, 2018-11-12 00:00:00

), Bal: 150}>

2018-05-20
06:20:00

2018-10-21
00:30:00

2018-11-01
09:01:41

2018-11-01
09:01:41

2018-11-12
00:00:00

12
00:00:00

2018-10-21
00:30:00

<{r1.3, 101, 103},{[2018-11-01 09:01:41, 2018-11-12 00:00:00), Bal:1000}>

Figure 3: Layout of the key value store with R-tree

version by changing the balance to 50, and hence only at-
tribute value 50 is stored. We store each historical record
as a key value pair. The key consists of the value of the
primary key and transaction IDs that a record associates.
The value consists of the transaction time and either the
attribute values for the first version, or the changed values
with the changed attributes for any subsequent versions. For
illustration purposes, in Figure 3, we show the layout of the
key value store that maintains the historical data shown
in Table 1. Under our design, an access to an entire his-
torical record as of a specified point in time will result in
an assembly from its first version to the specified point in
time. Because in our key value store, keys are sorted and
clustered indexed, retrieval and assembly a complete his-
torical record as a specified point in time is quite efficient.
Besides, to boost the transaction-time queries without spec-
ifying the primary key, we build a secondary R-tree index,
which is widely supported in conventional DBMSs, on two-
dimensional spaces, i.e., the start time and the end time
of the transaction time. For illustration purposes, Figure 3
also shows an example of a secondary R-tree index.

5.1.3 Data Migration
As discussed in Section 5.1.1, newly generated historical

records are maintained in the rollback segment, and have
not yet transferred to the historical table. In TDSQL, a
vacuum cleaner thread is periodically invoked to garbage
collect expired/aborted versions and physically remove them
from the rollback segment. To provide an automatic migra-
tion, we modify the logics of the vacuum cleaner thread by
copying the historical records in the rollback segment to the
historical table in batch. Our implementation is said to be
lightweight and almost non-invasive in that we do not in-
troduce new modules and simply copy the deleted/obsolete
versions, which is supposed to be physically removed by the
vacuum cleaner, to the historical table.

Algorithm 1 gives the details to migrate the historical data
from the rollback segment to historical tables. We use vari-
able undos to maintain the records to be migrated (line 1)
and kvs to store historical records in undos into key-value
format (line 2). Firstly, a coordinate thread is activated.

2040

It scans data pages in rollback segment and collects all the
records to be migrated, which are not locked by current run-
ning transactions (line 3–5). Subsequently, several worker
threads will be invoked to transform historical records in
undos into key/value pairs, which are then complemented
with transaction commit time by searching it in the trans-
action manager (line 6–8). The key/value pairs kvs will
be sent and stored in the key/value store in batch (line 9).
Finally, the truncate function is invoked to clean up the
rollback segment and exits (line 10).

Algorithm 1: migration(rollback segment)

1 undos← ∅; // unvacuumed undo records

2 kvs← ∅; // key-value pairs for historical

records

// step#1:fetch rollback records

3 foreach page ∈ rollback segment do
// page.max id:maximum transaction id

operates this segment

// S:the oldest snapshot that is still in

use

4 if page.max id < S.min then
5 undos← undos ∪ getUndo(page);

// step#2:transform

6 foreach undo ∈ undos do
7 kv = parse2KV (undo);
8 kvs← kvs ∪ {kv};
// step#3:call key-value pairs insert

protocol

9 historical storage::put(kvs);
// step#4:cleanup

10 truncate(rollback segment);

5.2 Temporal Query Processing
In the query executor, as mentioned before, we rewrite

the valid-time queries into conventional queries while re-
maining the transaction-time qualifiers unchanged in the
query plan. Thus, in this section we mainly focus on the
transaction-time query processing with the objective to effi-
ciently retrieve current and historical data of interest, given
that they are stored separately. Unless otherwise specified,
a relation/table mentioned in this section is referred to as a
transaction-time relation/table.

Processing transaction-time queries is not trivial because
the transaction time in the data model is difficult to assign
and update. Recall that each record r associates a transac-
tion time TT . Theoretically, when r is created by a transac-
tion Ts, its TT.st should be assigned to the commit time of
Ts. Similarly, when r is deleted/updated by another trans-
action Te, its TT.ed should be updated to the commit time
of Te. The reason is that based on the snapshot isolation the-
orem [7, 26], given a record r, and a transaction T , whether
r is visible to T , i.e., whether T is able to read r, only if
the start time of T is after the commit time of the trans-
action that creates r, and before the commit time of the
transaction that updates/deletes r. To guarantee satisfac-
tory performance of the whole system, conventional DBMSs,
including TDSQL, do not maintain the commit time of the
transaction that creates/updates/deletes with each record.

In practice, it is also inefficient to set and update the trans-
action time for all inserted/deleted/updated records upon a
transaction is committed. Interestingly, SQL:2011 leaves the
transaction time up to SQL-implementations to pick an ap-
propriate value for the transaction timestamp of a transac-
tion. While many temporal implementations in conventional
DBMSs, either pick up the start time of the transaction, or
the time of the operation that inserts/updates/deletes the
record, we argue that this could potentially cause an incor-
rect result based on the snapshot isolation theorem. For this
reason, we first propose a transaction status manager based
on which transaction times for records can correctly be ob-
tained. We then develop an MVCC-based visibility check
approaches based on which the transaction-time queries can
be correctly answered.

5.2.1 Transaction Time Maintenance
We propose a transaction status manager that maintains

the status for transactions, including commit time, a run-
ning/committed/aborted state in a transaction log. Given
a transaction T , we insert the status of T into the manager
when T starts to execute, and update the commit time, state
of T upon T is committed/aborted. Note that we do not
necessarily maintain the transaction IDs. This is because
that the length of each status data structure is fixed, and
we store the status of each transaction in the offset of the
transaction log by multiplying the transaction ID and the
status length. Hence, retrieving the status of each trans-
action by a given transaction ID requires at most one I/O
cost.

Based on the proposed transaction manager, records are
able to associate the transaction time implicitly or explic-
itly. On one hand, during the data migration, for each newly
generated historical record r in the rollback segment, via the
transaction ID associated with r, we replace its transaction
time with the commit time that is maintained in the transac-
tion status manager. Thus, we can explicitly maintain the
transaction time with records in the historical table. On
the other hand, for the records in the current table or in the
rollback segment, although they do not associate the trans-
action time, it is able to obtain the transaction time based
on the transaction status management by providing their
transaction IDs.

5.2.2 Record Visibility Check
A non-temporal query in either TDSQL or other conven-

tional DBMSs are almost snapshot based. A snapshot is cre-
ated when a transaction T starts to execute, and in essence,
it logically stores all latest versions that are inserted/updat-
ed/deleted by the transactions that have been committed
before T starts. Thus, a non-temporal query is to retrieve
records of interest that are logically stored in the snapshot.
In other words, given a snapshot S, records that are read-
able in S are returned as the query result if they satisfy the
requirements specified in the query conditions.

As presented in Section 3.2, the semantics of a transaction-
time query is to retrieve records that are current either as of
a specified point s in time (namely time-travel query) or be-
tween any two points s, t in time (namely time-slice query).
Correctly answering time-travel queries requires to recon-
struct the snapshot at time s, and retrieve all records that
are readable in this snapshot and satisfy the requirements
specified in the query conditions. Correctly answering time-

2041

r1.1 r2.1 r3.1
t0

t1

t2

t3

t4AS OF

BETWEEN
t0 AND t2

t5

Align

r1.2

r1.3

r3.2

r3.3

r2.2

r2.3

Figure 4: Transaction-time query processing

slice query requires to reconstruct all the snapshots during
the period [s, t], and retrieve all records that are readable
in these snapshots and satisfy the requirements specified in
the query conditions. For illustration purposes, we give an
example to show how a transaction-time query works in Ex-
ample 3.

Example 3. Suppose there exist three records, r1.1, r2.1
and r3.1 in a transaction-time table, shown in Figure 4.
First, a transaction T1 committed at time t1 updates r1.1
to r1.2. Subsequently, another transaction T2 committed at
time t2 updates r2.1 to r2.2, and r3.1 to r3.2. Next, transac-
tion T3 committed at time t3 updates r1.2 to r1.3, and r3.2
to r3.3; transaction T4 committed at t5 updates r2.2 to r2.3.
Suppose we issue a time-travel query at time t4. As discussed
above, we need to reconstruct the snapshot at time t4, and
all records that are readable in this snapshot are returned,
i.e., r1.3, r2.2, r3.3. If we issue a time-slice query between t0
and t2, then r1.1, r2.1, r3.1, r1.2, r2.2, r3.2 are returned.

Retrieval of records with multiple versions from historical
data storage is straightforward due to the explicitly main-
tained transaction commit time. We then focus on the cur-
rent data storage which include current table and rollback
segment, as discussed in Section 5.1.1. Thus, our objective
is to fetch versions of interest from both parts. We propose
a snapshot based approach to check whether a version can
be visible to a given temporal query. First, each transaction
will be assigned with an unique snapshot when the transac-
tion starts. The snapshot S includes the following four vari-
ables: (1) S.tids includes all active transactions’ IDs when
a snapshot is generated; (2) S.min represents the minimum
transaction ID in S.tids; (3) S.max is the first unassigned
transaction ID; (4) S.creator is the snapshot owner’s trans-
action ID.

Algorithm 2 shows how to fetch versions of interest in
the current data storage. The pseudo-code from line 2 to
line 12 is to answer as of queries while line 13–21 is to an-
swer time-period queries. Due to the space limitations, we
merely elaborate the as of query processing as time-period
query processing follows a similar way. We sequentially scan
items in Candidates that maintains records qualifying the
non-temporal conditions (line 3). For each record, we will
first check whether the latest version is visible in this trans-
action’s S (line 5–7) and the temporal query constraints
(8–12). If either of them is violated, the previous version
will be taken out (line 6, 12) and continues to check on it.

Algorithm 3 shows the temporal constraints for queries on
current storage. Since data in current storage maintains the
transaction time in transaction log, we should get the com-
mit time of v.cid and v.uid from transaction log (line 2–3).

Algorithm 2: currentStorageRead(S,µ))

input : snapshot S, query type µ
output: versions ϕ meet the temporal condition

1 ϕ← ∅;
2 if µ=as of then

// Candidates:records should be check

3 foreach rec ∈ Candidates do
4 while rec <> null do
5 if rec.cid >= S.max ∨ (rec.cid ∈

S.tids ∧ rec.cid <> S.creator) then
// fetch the previous version

6 rec← prevV er(rec);
7 continue;

8 if temporalCheck(rec) then
9 ϕ← ϕ ∪ {rec};

10 break;

11 else
12 rec← prevV er(rec);

13 if µ=from to ∨ µ=between and then
14 foreach rec ∈ Candidate do
15 while rec <> null do
16 if rec.cid >= S.max ∨ (rec.cid ∈

S.tids ∧ rec.cid <> S.creator) then
// fetch the previous version

17 rec← prevV er(rec);
18 continue;

19 if temporalCheck(rec) then
20 ϕ← ϕ ∪ {rec};
21 rec← prevV er(rec);

Then we follow the temporal semantics defined in SQL:2011
to examine whether version υ satisfies the temporal con-
straints (line 4–12).

Algorithm 3: temporalCheck(υ)

1 switch µ do
// get commit time from trsancation log

2 γst ← getCommitT ime(υ.cid);
3 γed ← getCommitT ime(υ.uid);
4 case as of do
5 if γst ≤ ts ∧ γed > ts then
6 return true;

7 case from to do
8 if γst < ts2 ∧ γed > ts1 then
9 return true;

10 case between and do
11 if γst ≤ ts2 ∧ γed > ts1 then
12 return true;

13 return false;

6. IMPLEMENTATION
Although we have presented a built-in temporal support

on TDSQL, our proposed techniques are also applicable to
other MVCC-based DBMSs, like Oracle, MySQL, PostgreSQL.

2042

In this section, we shall briefly discuss the temporal imple-
mentation of our key techniques on MySQL.

System architecture. MySQL’s system architecture
consists of two layers, server layer and storage engine layer.
The former mainly takes charge of parsing, query process-
ing and optimization. The latter is mainly responsible for
transaction processing, data storage and retrieval. Consider
InnoDB is the currently most popular storage engine for
MySQL, all our discussion is based on MySQL/InnoDB.

Table 2: Our implementation and major APIs
Return
Type

Function Description

void Sql cmd dml::translate Syntax translation
dberr t row search history Retrieval function for

historical data
dberr t row search current Retrieval function for

current data
ulint t row purge migrate Data migration

As discussed before, extensions of temporal query pro-
cessing in TDSQL require to a modification of parser, query
executor, storage engine, and transaction processing system.
For reference, we list the main APIs that have been either
modified or newly introduced in Table 2 .
• Parser. We extend the parser API to support the recogni-
tion of temporal qualifiers to ensure the correctness of syntax
check. We also add a translator API, Sql cmd dml::translate(),
to transform the valid-time involved operations to equivalent
non-temporal operations in the parse tree.
• Query executor. We extend the executor API to recog-
nize the transaction-time qualifiers. If there are no transaction-
time qualifiers, then logics of the executor remain unchanged;
otherwise, the query executor runs the query execution plan
over the current table and the historical table separately. To
retrieve a complete set of historical records of interest, we
mainly introduce two new APIs: (1) row search history()
is to extract records of interest from historical table, (2)
row search current() is to extract historical records from
current table according to the given temporal condition us-
ing the MVCC-based visibility check approach, depicted in
Algorithm 2.
• Storage engine. We extend the storage engine so that
it can manage both current data and historical data au-
tomatically. Our extension is based on the MySQL purge
feature. An update/delete of a record in MySQL will not
cause a physical remove. In contrast, all physical removes
of deleted records are conducted in batch by the purge op-
eration, which is periodically invoked by the system. To
implement our late data migration, we modify the purge
by adding an API row purge migrate() to transfer all newly
generated historical data from current table to historical ta-
ble in batch.
•Transaction processing system. MySQL/InnoDB does
not maintain any transaction status of each record when a
transaction is committed for the purposes of performance-
critical aspect. While in our temporal data model, each
record associates transaction time and IDs, it is necessary
to extend the transaction processing system of InnoDB by
assigning/updating each record with transaction time when
a transaction is committed. We add a transaction manager
that maintains and searches the status of all transactions.
The manager consists of two modules: (1) a transaction log

that is particularly designed to maintain the status, includ-
ing commit time, running/committed/aborted state, for all
transactions; (2) efficient data structures to query the status
of a given transaction ID. Each record is assigned/updated
with transaction IDs when it is generated/updated/deleted.
Its transaction time is either retrieved or updated with a
transaction ID via the manager if necessary. Hence, our
temporal implementation is applicable to MySQL/InnoDB.

7. APPLICATIONS
In this section, we present three real temporal applications

that have already adopted TDSQL.
•Account reconciliation. Account reconciliation is a core
business in Tencent for payment and gaming services. It pe-
riodically examines the account balance with the expense
statement for every customer/player. Once an account im-
balance occurs, it is necessary to efficiently trace the trans-
actions that possibly destroy the account balances. For illus-
tration purposes, we show how to do account reconciliation
in TDSQL using a single SQL statement below, in which
account and water are two tables that maintain account
balances and expense statements, respectively.

SELECT * FROM (

account FOR TT FROM ts1 TO ts2 as A

FULL OUTER JOIN

account FOR TT FROM ts1 TO ts2 as B

ON A.UID = B.CID

)

FULL OUTER JOIN

water FOR TT FROM ts1 TO ts2 as C

ON B.CID = C.UID

• Logical data corruption recovery. Logical data cor-
ruption could occasionally occur in some critical services,
e.g., accidental deletion of one or multiple friends in WeChat
or games, erroneous transfer by typing an incorrect bank
account in the payment. Using the transaction ID query
proposed in TDSQL, it is able to do fast and robust logical
data corruption recovery. For example, an erroneous trans-
action with ID 123456 was made and successfully submitted
by some operator. In TDSQL, it is convenient for users to
perform reverse operations so that all affected account bal-
ances can be rewound using the following SQL statement.

REWIND TRANSACTION(123456, ‘CASACDE’)

• Cloud resource management. Tencent cloud has hun-
dreds thousands of storage and computing nodes, serving
billions of users and millions of enterprises. Typical queries
include how many nodes were/are in use given a point in
time, given two points in time, details that a machine is
actually used in this duration, the history of resource use
of a given user. For example, the following SQL statement
retrospects the usage of the server with ID 123456 during a
historical period which is from 2018-01-01 00:00:00 to 2019-
01-01 00:00:00.

SELECT ID, type, status, department

FROM servers

2043

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5 10 15 20 25 30

#
 o

f
re

c
o

rd
(×

1
0

6
)

Day

Figure 5: Number of expense statements per day

FOR TT FROM TIMESTAMP ’2018-01-01 00:00:00’

TO TIMESTAMP ’2019-01-01 00:00:00’

WHERE ID=123456

As discussed before, TDSQL stores current/historical data
separately, and data migration from the current table to the
historical table is periodically executed. One benefit, not
mentioned before and brought by the late data migration, is
that during the data migration we can transfer the historical
data to another OLAP system. In this way, OLAP system
is responsible for processing historical queries, and conven-
tional TDSQL is still used to process transactional queries,
thus avoiding the performance degradation of TDSQL by in-
troducing the temporal support. From this perspective, our
design makes the system become a hybrid transaction and
analysis processing cluster (a.b.a HTAC) for current data
and historical data managment.

8. EVALUATION
Our experiments are carried out on a server with an Intel

24-core Xeon 2.4GHz CPU, 128GB Memory, and a 12-disk
RAID 0 Enterprise Performance 10K HDD drive, running a
CentOS 6.2 operation system with kernel version 3.10.106.
We compare TDSQL with Oracle 11g, SQL Server 2017,
and MariaDB 10.3.11 in the experiments as these RDBMs
provide temporal support. We use the default configurations
for the systems that participate in the comparison, except
that the buffer pool and the thread pool are set to 8GB and
48, respectively if the systems provide these two parameters.

We conduct the experiments using the following one real
and two synthetic benchmarks.
• Tencent-RB is a real benchmark abstracted from the
Tencent billing service platform. It has two relations. One
relation R depicts user account balances which are fairly
stable with nearly 500 million of records. The other relation
W depicts the expense statements. We collect the recent
one month expense statements and store them in W . For
illustration purposes, we show the number of every single
consumption per day of the month in Figure 5.
• TPC-C is a popular OLTP benchmark with a mixture of
read-only and update intensive transactions that simulate
the activities in order-entry and delivery, payment process,
and stock monitoring. The major metric of TPC-C is tpmC,
which is measured in the number of new-order transactions
per minute. To support temporal data management, we
add transaction time as an additional attribute to each of

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30

R
u

n
n

in
g

 t
im

e
(s

)

Day

TDSQL-T
TDSQL

Figure 6: Evaluation on Tencent-RB

the nine relations in the benchmark. When a record is cre-
ated/updated/deleted, the start/end time of its transaction
time is set to the time when the transaction is committed.
• TPC-BiH [20] is a recently proposed benchmark, which
is particularly designed for the evaluation over temporal
databases. It builds on the solid foundations of TPC-H
benchmark but extends it with a rich set of temporal queries
and update scenarios that simulate real-life temporal appli-
cations from SAP’s customer applications.

8.1 Evaluation on Tencent-RB
For ease of illustration, we use TDSQL and TDSQL-T

to denote TDSQL without and with temporal support, re-
spectively. We first run regular queries to do daily account
reconciliation on TDSQL as usual and collect the query per-
formance. As a comparison, we transform the regular query
into equivalent temporal query, run it on TDSQL-T, and
collect the query performance as well.

Figure 6 shows the result by comparing the performance of
TDSQL and TDSQL-T. It can be observed that TDSQL-T
is in general significantly faster than TDSQL, ranging from
1.32× to 9.12×, depending on the data size. In this one
month duration, the performance of TDSQL-T is less sen-
sitive when the data size varies, and is always better than
TDSQL. The reason of this advantage in essence is that
TDSQL-T deals with less data. TDSQL executes account
reconciliation in two steps: (1) compute account changes
by scanning the whole relation R, in which the number of
records is about 500 million; (2) join all account changes
with the expense statements in W , in which the number
of records is shown in Figure 5. As TDSQL-T has already
maintained the changed accounts automatically, of which
the number varies from 2 million to 5 million, TDSQL-T
only needs to join the changed accounts with W , which re-
sults in much less join computation than that of TDSQL.

8.2 Evaluation on TPC-C
We study the effect by introducing the temporal support

on TPC-C benchmark for the conventional DBMSs. Let
tpmCtemporal and tpmCnon−temporal be the number of new-
order transactions per minute by running TPC-C workload
in conventional DBMSs with and without temporal support.
Note that all regular queries in TPC-C retrieve current data,
and we do not rewrite them to temporal DML queries. We
introduce a new metric, namely performance drop ratio,

which is defined as 1 − tpmCtemporal

tpmCnon−temporal
, to do the perfor-

mance study.
Figure 7 shows the effect on the drop ratios by varying

the number of data warehouses. From the figures, we make

2044

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

16 32 64 128 256 512

D
ro

p
 r

a
ti
o
(%

)

Threads

TDSQL
SQL Server

MariaDB
Oracle

(a) 256 warehouses

 0

 10

 20

 30

 40

 50

 60

 70

 80

16 32 64 128 256 512

D
ro

p
 r

a
ti
o
(%

)

Threads

TDSQL
SQL Server

MariaDB
Oracle

(b) 512 warehouses

 0

 10

 20

 30

 40

 50

 60

 70

 80

16 32 64 128 256 512

D
ro

p
 r

a
ti
o
(%

)

Threads

TDSQL
SQL Server

MariaDB
Oracle

(c) 1024 warehouses

Figure 7: Effect on the drop ratio by introducing temporal support

 0

 10

 20

 30

 40

 50

 60

tp
m

C
(1

0
3
)

Time(s)

temporal
non-temporal

Figure 8: Drop ratio & time

two observations. First, the drop ratio of TDSQL is 7% on
average, and varies from 2% to 14%, showing that TDSQL’s
temporal implementation is lightweight. Second, the drop
ratio of TDSQL is comparable to that of Oracle when the
number of data warehouses varies from 256 to 512. While
the number of data warehouses reaches 1024, TDSQL shows
its superiority, achieving 8% to 21% smaller drop ratio than
Oracle. In all cases, the drop ratio of TDSQL is signifi-
cantly smaller than that of MariaDB and SQL Server, fur-
ther showing its lightweight feature. As repeatedly discussed
before, TDSQL transfers the historical data in batch only
during the garbage collection, which is periodically invoked
by the system, while the other systems manipulate histori-
cal records and current records synchronously, and hence re-
sults in smaller drop ratios. To make a further performance
study of TDSQL, we run TDSQL with and without tempo-
ral support in continuous 600 seconds, separately, and collect
tpmCtemporal and tpmCnon−temporal every 10 seconds. We
plot the result in Figure 8. Again, we can see that the drop
ratio is stable between 2% to 9%.

8.3 Evaluation on TPC-BiH
We study the performance of various temporal implemen-

tations on TPC-BiH benchmark. The benchmark contains
four categories of queries, namely time-travel query, pure-
key query, bi-temporal query, and range-timeslice query.
Each category of queries contains 5 to 10 queries. We set
the scale factor to 1 and make 100,000 updates in TPC-BiH.

Figures 9(a)(b)(c)(d) illustrate the execution time of run-
ning TPC-BiH on the comparative systems. For answering
time-travel queries that retrieve records in a given point in
time, it can be observed that on average TDSQL runs 1×,
4×, 29× faster than Oracle, SQL Server, MariaDB, respec-
tively. In particular, TDSQL runs constantly faster than
others in all queries except Q1, Q2, and Q4, in which Or-
acle performs the best, followed by TDSQL, SQL Server,
and MariaDB. Interestingly, for answering pure-key queries

that retrieve all records with the same keys, i.e, all current
and historical versions of the same entity, SQL Server per-
forms the best, followed by TDSQL, Oracle, and MariaDB.
For answering bi-temporal queries with both valid time and
transaction time, and answering range-timeslice queries that
retrieve records with transaction time locating between two
points in time, as we can see, the performance follows similar
trends of that in answering time-travel queries. The reason,
as discussed in Section 5, is that various optimizations are
applied to the temporal query processing including an effi-
cient key value store, with a clustered index and a secondary
R-tree index built on the transaction time.

In summary, besides an enriched expressiveness, TDSQL
can achieve better query performance in many applications,
like account reconciliation. Compared with other temporal
database systems, TDSQL almost has the minimal perfor-
mance loss by introducing the temporal features, and per-
forms the best for most of the temporal queries.

9. CONCLUSION
In this paper, we present a lightweight yet efficient built-in

temporal implementation in TDSQL. Our implementation
not only supports the temporal features defined in SQL:2011,
but also makes an extension of the temporal model. We
propose a novel late data migration strategy to manage cur-
rent data and historical data in a very lightweight way. We
also develop a native operator to support transaction-time
queries with various optimizations. Extensive experiments
are conducted on both real and synthetic TPC benchmarks,
and the results show TDSQL almost has the minimal perfor-
mance loss by introducing the temporal features, and per-
forms the best for most of the temporal queries.

10. ACKNOWLEDGMENTS
This work was partially supported by National Key Re-

search and Development Program of China under Grant
2018YFB10044401, National Natural Science Foundation of
China under Grant 61732014, Beijing Municipal Science and
Technology Project under Grant Z171100005117002, Ten-
cent Rhino-Bird Joint Research Program.

11. REFERENCES
[1] DB2. https://www.ibm.com/analytics/us/en/db2.

[2] Mariadb. https://mariadb.com/kb/en/library/
system-versioned-tables/.

[3] Oracle. https://www.oracle.com.
[4] PostgreSQL. https://www.postgresql.org.

[5] SQL Server. https://docs.microsoft.com/en-us/
sql/relational-databases/tables/temporal-tables.

2045

 0

 10

 20

 30

 40

 50

 60

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Avg

R
u
n
n
in

g
 t
im

e
(s

)

TDSQL
SQL Server

MariaDB
Oracle

(a) Time-travel Query

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

Q2 Q3 Q4 Q12 Q13 Avg

R
u
n
n
in

g
 t
im

e
(s

)

TDSQL
SQL Server

MariaDB
Oracle

(b) Pure-key Queries

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q11Avg

R
u
n
n
in

g
 t
im

e
(s

)

TDSQL
SQL Server

MariaDB
Oracle

(c) Bi-temporal Query

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Q1 Q3 Q4 Q7 Q8 Avg

R
u
n

n
in

g
 t

im
e
(s

)

TDSQL
SQL Server

MariaDB
Oracle

(d) Range-timeslice Query

Figure 9: Performance study on TPC-BiH

[6] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam,
J. Chimanchode, and S. P. Pakala. Temporal query
processing in teradata. In Joint 2013 EDBT/ICDT
Conferences, EDBT ’13 Proceedings, Genoa, Italy, March
18-22, 2013, pages 573–578, 2013.

[7] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL isolation
levels. In SIGMOD Conference, pages 1–10. ACM Press,
1995.

[8] M. Böhlen and C. Jensen. Temporal Data Model and Query
Language Concepts, pages 437–453. 12 2003.

[9] C. X. Chen and C. Zaniolo. Sqlst : A spatio-temporal data
model and query language. In ER, volume 1920 of Lecture
Notes in Computer Science, pages 96–111. Springer, 2000.

[10] J. Chomicki. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM Trans.
Database Syst., 20(2):149–186, 1995.

[11] J. Clifford, C. E. Dyreson, R. T. Snodgrass, T. Isakowitz,
and C. S. Jensen. ”now”. In The TSQL2 Temporal Query
Language, pages 383–392. 1995.

[12] R. Elmasri and G. T. J. Wuu. A temporal model and query
language for ER databases. In ICDE, pages 76–83. IEEE
Computer Society, 1990.

[13] S. K. Gadia and C. Yeung. A generalized model for a
relational temporal database. In SIGMOD Conference,
pages 251–259. ACM Press, 1988.

[14] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. J.
Hayes, and S. Jajodia. A consensus glossary of temporal
database concepts. SIGMOD Record, 23(1):52–64, 1994.

[15] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T.
Snodgrass. A glossary of temporal database concepts.
SIGMOD Record, 21(3):35–43, 1992.

[16] C. S. Jensen, C. E. Dyreson, M. H. Böhlen, J. Clifford,
R. Elmasri, S. K. Gadia, F. Grandi, P. J. Hayes, S. Jajodia,
W. Käfer, N. Kline, N. A. Lorentzos, Y. G. Mitsopoulos,
A. Montanari, D. A. Nonen, E. Peressi, B. Pernici, J. F.
Roddick, N. L. Sarda, M. R. Scalas, A. Segev, R. T.
Snodgrass, M. D. Soo, A. U. Tansel, P. Tiberio, and
G. Wiederhold. The consensus glossary of temporal
database concepts - february 1998 version. In Temporal
Databases, Dagstuhl, pages 367–405, 1997.

[17] C. S. Jensen and R. T. Snodgrass. Temporal data
management. IEEE Trans. Knowl. Data Eng., 11(1):36–44,

1999.

[18] L. Jiang, B. Salzberg, D. B. Lomet, and M. B. Garćıa. The
bt-tree: A branched and temporal access method. In
VLDB, pages 451–460. Morgan Kaufmann, 2000.

[19] M. Kaufmann, P. M. Fischer, N. May, C. Ge, A. K. Goel,
and D. Kossmann. Bi-temporal timeline index: A data
structure for processing queries on bi-temporal data. In
ICDE, pages 471–482. IEEE Computer Society, 2015.

[20] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and
D. Kossmann. Tpc-bih: A benchmark for bitemporal
databases. In TPCTC, volume 8391 of Lecture Notes in
Computer Science, pages 16–31. Springer, 2013.

[21] K. G. Kulkarni and J. Michels. Temporal features in SQL:
2011. SIGMOD Record, 41(3):34–43, 2012.

[22] A. Kumar, V. J. Tsotras, and C. Faloutsos. Access methods
for bi-temporal databases. In Temporal Databases,
Workshops in Computing, pages 235–254. Springer, 1995.

[23] H. Li, Z. Zhao, Y. Cheng, W. Lu, X. Du, and A. Pan.
Efficient time-interval data extraction in mvcc-based
rdbms. World Wide Web, 2018.

[24] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu. Transaction time support inside a
database engine. In ICDE, page 35. IEEE Computer
Society, 2006.

[25] N. A. Lorentzos and Y. G. Mitsopoulos. SQL extension for
interval data. IEEE Trans. Knowl. Data Eng.,
9(3):480–499, 1997.

[26] D. R. K. Ports and K. Grittner. Serializable snapshot
isolation in postgresql. PVLDB, 5(12):1850–1861, 2012.

[27] A. P. Sistla and O. Wolfson. Temporal conditions and
integrity constraints in active database systems. In
SIGMOD Conference, pages 269–280. ACM Press, 1995.

[28] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The
design and implementation of INGRES. ACM Trans.
Database Syst., 1(3):189–222, 1976.

[29] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal
access method for timestamp and interval queries. In
PVLDB, pages 431–440. Morgan Kaufmann, 2001.

[30] Y. Tao, D. Papadias, and J. Sun. The tpr*-tree: An
optimized spatio-temporal access method for predictive
queries. In VLDB, pages 790–801. Morgan Kaufmann, 2003.

[31] J. R. R. Viqueira and N. A. Lorentzos. SQL extension for
spatio-temporal data. VLDB J., 16(2):179–200, 2007.

2046

