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ABSTRACT

As deep learning models are applied to increasingly diverse
problems, a key bottleneck is gathering enough high-quality
training labels tailored to each task. Users therefore turn
to weak supervision, relying on imperfect sources of labels
like pattern matching and user-defined heuristics. Unfor-
tunately, users have to design these sources for each task.
This process can be time consuming and expensive: domain
experts often perform repetitive steps like guessing optimal
numerical thresholds and developing informative text pat-
terns. To address these challenges, we present Snuba, a
system to automatically generate heuristics using a small
labeled dataset to assign training labels to a large, unla-
beled dataset in the weak supervision setting. Snuba gen-
erates heuristics that each labels the subset of the data it
is accurate for, and iteratively repeats this process until the
heuristics together label a large portion of the unlabeled
data. We develop a statistical measure that guarantees the
iterative process will automatically terminate before it de-
grades training label quality. Snuba automatically generates
heuristics in under five minutes and performs up to 9.74 F1
points better than the best known user-defined heuristics de-
veloped over many days. In collaborations with users at re-
search labs, Stanford Hospital, and on open source datasets,
Snuba outperforms other automated approaches like semi-
supervised learning by up to 14.35 F1 points.
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1. INTRODUCTION

The success of machine learning for tasks like image recog-
nition and natural language processing [12,14] has ignited
interest in using similar techniques for a variety of tasks.
However, gathering enough training labels is a major bot-
tleneck in applying machine learning to new tasks. In re-
sponse, there has been a shift towards relying on weak su-
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Figure 1: Snuba uses a small labeled and a large unlabeled
dataset to iteratively generate heuristics. It uses existing la-
bel aggregators to assign training labels to the large dataset.

pervision, or methods that can assign noisy training labels
to unlabeled data, like crowdsourcing [9,22,60], distant su-
pervision [8,32], and user-defined heuristics [38,39,50]. Over
the past few years, we have been part of the broader effort
to enhance methods based on user-defined heuristics to ex-
tend their applicability to text, image, and video data for
tasks in computer vision, medical imaging, bioinformatics
and knowledge base construction [4,39,50].

Through our engagements with users at large companies,
we find that experts spend a significant amount of time de-
signing these weak supervision sources. As deep learning
techniques are adopted for unconventional tasks like analyz-
ing codebases and now commodity tasks like driving market-
ing campaigns, the few domain experts with required knowl-
edge to write heuristics cannot reasonably keep up with the
demand for several specialized, labeled training datasets.
Even machine learning experts, such as researchers at the
computer vision lab at Stanford, are impeded by the need to
crowdsource labels before even starting to build models for
novel visual prediction tasks [23,25]. This raises an impor-
tant question: can we make weak supervision techniques eas-
ier to adopt by automating the process of generating heuris-
tics that assign training labels to unlabeled data?

The key challenge in automating weak supervision lies in
replacing the human reasoning that drives heuristic devel-
opment. In our collaborations with users with varying levels
of machine learning expertise, we noticed that the process to
develop these weak supervision sources can be fairly repeti-
tive. For example, radiologists at the Stanford Hospital and
Clinics have to guess the correct threshold for each heuristic
that uses a geometric property of a tumor to determine if
it is malignant (example shown in Figure 1). We instead
take advantage of a small, labeled dataset to automatically
generate noisy heuristics. Though the labeled dataset is too
small to train an end model, it has enough information to



generate heuristics that can assign noisy labels to a large,
unlabeled dataset and improve end model performance by
up to 12.12 F1 points. To aggregate labels from these heuris-
tics, we improve over majority vote by relying on existing
factor graph-based statistical techniques in weak supervi-
sion that can model the noise in and correlation among these
heuristics [2,4,39,41,48,50]. However, these techniques were
intended to work with user-designed labeling sources and
therefore have limits on how robust they are. Automatically
generated heuristics can be noisier than what these models
can account for and introduce the following challenges:

Accuracy. Users tend to develop heuristics that assign ac-
curate labels to a subset of the unlabeled data. An auto-
mated method has to properly model this trade-off between
accuracy and coverage for each heuristic based only on the
small, labeled dataset. Empirically, we find that generating
heuristics that each labels all the datapoints can degrade
end model performance by up to 20.69 F1 points.

Diversity. Since each heuristic has limited coverage, users
develop multiple heuristics that each labels a different sub-
set to ensure a large portion of the unlabeled data receives
a label. In an automated approach, we could mimic this by
maximizing the number of unlabeled datapoints the heuris-
tics label as a set. However, this approach can select heuris-
tics that cover a large portion of the data but have poor
performance. There is a need to account for both the diver-
sity and performance of the heuristics as a set. Empirically,
balancing both aspects improves end model performance by
up to 18.20 F1 points compared to selecting the heuristic
set that labels the most datapoints.

Termination Condition. Users stop generating heuristics
when they have exhausted their domain knowledge. An au-
tomated method, however, can continue to generate heuris-
tics that deteriorate the overall quality of the training labels
assigned to the unlabeled data, such as heuristics that are
worse than random for the unlabeled data. Not account-
ing for performance on the unlabeled dataset can affect end
model performance by up to 7.09 F1 points.

Our Approach. To address the challenges above, we in-
troduce Snuba, an automated system that takes as input
a small labeled and a large unlabeled dataset and outputs
probabilistic training labels for the unlabeled data, as shown
in Figure 1. These labels can be used to train a downstream
machine learning model of choice, which can operate over
the raw data and generalize beyond the heuristics Snuba
generates to label any datapoint. Users from research labs,
hospitals and industry helped us design Snuba such that it
outperforms user-defined heuristics and crowdsourced labels
by up to 9.74 F1 points and 13.80 F1 points in terms of end
model performance. Snuba maintains a set of heuristics that
is used to assign labels to the unlabeled dataset. At each
iteration, Snuba appends a new heuristic to this set after
going through the following components:

Synthesizer for Accuracy. To address the trade-off be-
tween the accuracy and coverage of each heuristic, the syn-
thesizer (Section 3.1) generates heuristics based on the la-
beled set and adjusts its labeling pattern to abstain if the
heuristic has low confidence. The synthesizer relies on a
small number of primitives, or features of the data, to gen-
erate multiple, simple models like decision trees, which im-
proves over fitting a single model over primitives by 12.12 F'1
points. These primitives are user-defined and part of open
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source libraries [35,49] and data models in existing weak
supervision frameworks [38,58]. Primitives examples in our
evaluation include bag-of-words for text and bounding box
attributes for images.

Pruner for Diversity. To ensure that the set of heuristics
is diverse and assigns high-quality labels to a large portion
of the unlabeled data, the pruner (Section 3.2) ranks the
heuristics the synthesizer generates by the weighted average
of their performance on the labeled set and coverage on the
unlabeled set. It selects the best heuristic at each iteration
and adds it to the collection of existing heuristics. This
method performs up to 6.57 F1 points better than ranking
heuristics by performance only.

Verifier to Determine Termination Condition. The
verifier uses existing statistical techniques to aggregate la-
bels from the heuristics into probabilistic labels for the unla-
beled datapoints [4,39,50]. However, the automated heuris-
tic generation process can surpass the noise levels to which
these techniques are robust to and degrade end model per-
formance by up to 7.09 F1 points. We develop a statisti-
cal measure that uses the small, labeled set to determine
whether the noise in the generated heuristics is below the
threshold these techniques can handle (Section 4).

Contribution Summary. We describe Snuba, a system
to automatically generate heuristics using a small labeled
dataset to assign training labels to a large, unlabeled dataset
in the weak supervision setting. A summary of our contri-
butions are as follows:

e We describe the system architecture, the iterative pro-
cess of generating heuristics, and the optimizers used
in the three components (Section 3). We also show
that our automated optimizers can affect end model
performance by up to 20.69 F1 points (Section 5).

e We present a theoretical guarantee that Snuba will ter-
minate the iterative process before the noise in heuris-
tics surpasses the threshold to which statistical tech-
niques are robust (Section 4). This theoretical result
translates to improving end model performance by up
to 7.09 F1 points compared to generating as many
heuristics as possible (Section 5).

We evaluate our system in Section 5 by using Snuba la-
bels to train downstream models, which generalize be-
yond the heuristics Snuba generates. We report on col-
laborations with Stanford Hospital and Stanford Com-
puter Vision Lab, analyzing text, image, and multi-
modal data. We show that heuristics from Snuba can
improve over hand-crafted heuristics developed over
several days by up to 9.74 F1 points. We compare
to automated methods like semi-supervised learning,
which Snuba outperforms by up to 14.35 F1 points.

2. SYSTEM OVERVIEW

We describe the input and output for Snuba, introduce
notation used in the rest of paper, and summarize statistical
techniques Snuba relies on to learn heuristic accuracies.

2.1 Input and Output Data

Input Data. The input to Snuba is a labeled dataset Of,
with Nr datapoints and an unlabeled dataset Oy with Ny
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Figure 2: An overview of the Snuba system. (1) The synthesizer generates a candidate set of heuristics based on the labeled
dataset. (2) The pruner selects the heuristic from the candidate set to add to the committed set. (3) The verifier learns
heuristic accuracies and passes appropriate feedback to the synthesizer to continue the iterative process.

datapoints. Each datapoint is defined by its associated prim-
itives, or characteristics of the data, and a label. The inputs
to the system can be represented as

{xi,y; N5, (for the labeled set Or), and

{z:}NY, (for the unlabeled set Or)

where z; € RP, y* represent the primitives for a particular
object and the true label, respectively. For convenience,
we focus on the binary classification setting, in which y* €
{—1,1} and discuss the multi-class setting in Section 3.4.

The primitives for each datapoint z; € R? can be viewed
as features of the data — examples include numerical fea-
tures such as area or perimeter of a tumor for image data. or
one-hot vectors for the bag of words representation for text
data. For our collaborators using Snuba, these primitives
are usually part of data models in existing weak supervision
systems and open source libraries [35, 38,49, 58]. For ex-
ample, Scikit-image includes functions to extract geometric
properties from segmented images [49]. In our evaluation,
we do not allow users to extend the set of primitives beyond
those present in these data models and libraries, though they
could be extended in principle.

Output Data. Snuba outputs a probabilistic training label
g = Ply* = 1] € [0,1] for each datapoint in the unlabeled
set, a weighted combination of labels from different heuris-
tics. Since Snuba only relies on information about the data
encoded in the primitives and does not take advantage of
a complete representation of the data, it is advantageous
to train a downstream model that has access to the entire
input data space using probabilistic labels from Snuba as
training labels. These downstream models, such as a convo-
lutional neural network (CNN) [26] for image classification
or a long-short term memory (LSTM) architecture [19] for
natural language processing tasks, can operate over the raw
data (e.g., the radiology image of a tumor from Figure 1
or complete sentences). We discuss specific end models and
show that the end model generalizes beyond the heuristics
by improving recall by up to 61.54 points in Section 5.

2.2 Learning Heuristic Accuracies

Each heuristic Snuba generates relies on one or more prim-
itives and outputs a binary label or abstains for each data-
point in the unlabeled dataset (Section 3.1). A single bad
(but prolific) voter can compromise majority vote, which
weights all heuristics equally [39]. Snuba instead relies on
existing statistical techniques (Section 4) that can learn the
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accuracies of these heuristics without using ground truth la-
bels and assign probabilistic labels to the unlabeled dataset
accordingly [2,4, 39,41, 48,50]. We treat these statistical
techniques as black-box methods that learns heuristic ac-
curacies and refer to them as label aggregators since they
combine the labels the heuristics assign to generate a single
probabilistic label per datapoint. However, since Snuba can
generate heuristics that are much noisier than the label ag-
gregator can handle, it has to determine the conditions un-
der which the aggregator operates successfully (Section 4).

3. THE SNUBA ARCHITECTURE

The Snuba process is iterative and generates a new heuris-
tic specialized to the subset of the data that did not receive
high confidence labels from the existing set of heuristics at
each iteration. As shown in Figure 2, the three components
of Snuba are the synthesizer (Section 3.1) that generates a
candidate set of heuristics, a pruner (Section 3.2) that selects
a heuristic to add to an existing committed set of heuristics,
and a verifier (Section 3.3) that assigns probabilistic labels
to the data and passes the subset of the labeled data that
received low confidence labels to the synthesizer for the next
iteration. This process is repeated until the subset the veri-
fier passes to the synthesizer is empty, or the verifier deter-
mines that the conditions for the label aggregator to operate
successfully are violated (Section 4).

3.1 Synthesizer

The Snuba synthesizer takes as input the labeled set, or
a subset of the labeled set after the first iteration, and out-
puts a candidate set of heuristics (Figure 2). First, we de-
scribe how the heuristics are generated using the labeled
dataset and the different models the heuristic can be based
on. Then, we describe how the labeling pattern of the heuris-
tics are adjusted to assign labels to only a subset of the un-
labeled dataset. Finally, we explore the trade-offs between
accuracy and coverage by comparing heuristics Snuba gen-
erated to other automated methods.

3.1.1 Heuristic Generation

In Snuba, users can select the model they want to base
their heuristics on given the heuristic h follows the input-
output form: h(z}) — Ply; = 1] € [0,1] where z} € R is
a subset of primitives, D’ < D is the number of primitives
in this subset, and P[y; = 1] is a probabilistic label.
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Choosing subsets of size D’ from the primitives translates
to selecting D’ rows from X, as shown in function GenComb
in Algorithm 1. For D primitives, there will be a total of
(g,) distinct primitive subsets of size D’. These subsets of
primitives can be representative of a few specific words if
primitives are generated using a bag-of words model while a
subset of bounding box attribute primitives could represent
the x,y-coordinates of the bounding box. The synthesizer
generates a heuristic for each possible combination of 1 to
D primitives, resulting in Zg/zl (5,) = 2P _1 total heuris-
tics per iteration of Snuba. We find that D’ < 4 for most
real-world tasks, resulting in a maximum runtime of 14.45
minutes for Snuba on a single thread (Section 5).

Heuristic Models. In this paper, we focus on heuristics
that are based on classification models that take as input
one or more primitives and assign probabilistic labels Py; =
1] € [0,1] to the unlabeled datapoints. We consider three
different ways of generating heuristics given a subset of the
labeled data and a subset of primitives (Figure 3).

e Decision Stumps mimic the nested threshold-based
heuristics that users commonly write. To maintain the
simplicity of the heuristic, we limit the depth of each
tree to the number of primitives the heuristic depends
on. The confidence each unlabeled datapoint receives
is the fraction of labeled datapoints that belong to the
same leaf.

e Logistic Regressor allows the heuristic to learn a
single linear decision boundary. As shown in Figure 3,
it does not have to be parallel to the primitive axes,
unlike decision trees. The confidence for an unlabeled
datapoint is determined by the sigmoid function, whose
parameters are learned using the labeled datapoints.

e K-Nearest Neighbor is based on a kd-tree imple-
mentation of nearest neighbor and can lead to com-
plex decision boundaries that neither decision trees
nor logistic regressors can capture. Unlike the pre-
vious heuristic models, it does not learn a parameter
per primitive, but instead relies on the distribution of
the labeled datapoints to decide the decision bound-
aries. The confidence for a unlabeled datapoint is a
function of its distance from labeled datapoints.

The user can replace the heuristic model with another
function of choice as long as it follows the input-output cri-
teria described earlier in this section. For example, decision
trees that rely on bag-of-words primitives represent heuris-
tics that check whether a particular word, represented as a
primitive, exists or not.

3.1.2  Tuning Threshold for Abstains

We can improve performance of heuristics by modeling the
trade-off between heuristic accuracy and coverage. Snuba

Algorithm 1: Snuba Synthesis Procedure

1 function GenerateHeuristics (f, X,y")
Input: Heuristic model f € {DT, LR, NN}, Primitive
matrix X € RP*NL Labels y* € {—1,1}"¢
Output: Candidate set of heuristics H, Primitive
combinations Xcoms

2 H, Xcompy =[] for D' =1...D do
3 //generate primitive combinations of size D’
4 idXcomb = GenComb(X, D")
5 for i = 1...len(idz,,,,,) do
6 X' = X[idXcoms, )
7 h = f(Xla y*)
8 Yprob = predictProb(h,X")
9 B = FindBeta(yprob, y*)

10 H=HU{(h,B)}

11 Xcomb = Xcomb U X/

12 end

13 end

14 return H, Xcomp

15 function FindBeta (Yprob, ™)

16 betaList = [0,0.05,...0.5]

17 for j in len(betaList) do

18 beta = betalist[j]

19 F1[j] = calcF1(y™, yprob, beta)
20 end

21 return betaList[argmax(F'1)]

22 function GenComb (X, D")
23 //get all D’ length subsequences from range(D)
24 return all subsets of size D’ from D

forces heuristics to only assign labels to datapoints they have
high confidence for and abstain for the rest. To measure
confidences, Snuba relies on the probabilistic label Ply; = 1]
that each heuristic model assigns to a datapoint. We define
datapoints that heuristics have low confidence for as the
points where |Ply; = 1] — 0.5| < 8, 8 € (0,0.5). For each
heuristic, Snuba selects a threshold 8 that determines when
a heuristic assigns a label, § € {—1, 1} and when it abstains,
¢y = 0. The relation between 8 and ¢ can be defined as:

lif  Plgi=1>05+8
§i=1{0if |Plgi=1-05<8
—1if Plji=1<05-28

To choose the best threshold 3, we need a metric that
models the trade-offs between coverage and accuracy. We
calculate the precision and recall of the heuristics on the
labeled set with N datapoints as a proxy for their perfor-
mance on the unlabeled dataset. We define these metrics
below:

e Precision (P) the fraction of correctly labeled points

NL 104, —=u*
over the total points labeled, M
Zi:Ll ﬂ(gi#o)

e Recall (R) the fraction of correctly labeled points

Np o/~
Zi:L1 ﬂ(yi:y: )

over the total number of points, N,

PXxXR
P+R

e F1 Score the harmonic mean of P and R, 2

To balance precision and recall, the Snuba synthesizer se-
lects B for each heuristic that maximizes the F'1 score on the
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labeled dataset Or (Algorithm 1). The synthesizer iterates
through (default 10) equally spaced values in 8 € (0,0.5),
calculates the F1 score the heuristic achieves, and selects
the 8 that maximizes F1 score. In case of ties, the synthe-
sizer chooses the lower 3 value for higher coverage. We find
selecting 8 based on F1 score outperforms a constant 8 by
up to 5.30 F1 points (Section 5).

As an example, if the synthesizer uses a decision tree as
the heuristic model, it trains a normal decision tree on the
small labeled dataset and learns appropriate parameters for
a specific subset of primitives (e.g., D = 2 means two primi-
tives, or two rows of X in Algorithm 1) to decide on a label.
Then, the synthesizer learns (3, which adjusts these deci-
sion tree thresholds to abstain for low-confidence datapoints.
This adjusted decision tree is then added as a heuristic to
the candidate set, and the process is repeated for different
subsets of primitives as inputs to the decision tree.

3.1.3  Synthesizer Tradeoffs

We explore the trade-offs that result from allowing the
heuristics to abstain in terms of the effect on end model
performance. We compare to automated baseline methods
(more details in Section 5.1) that assign labels to the entire
unlabeled dataset. We generate a synthetic experiment (Fig-
ure 4) using one of the datasets from our evaluation, the
Visual Genome dataset [25] (more details in Section 5.1).
To study how Snuba performs given varying amounts of
unlabeled data, we set up the following simulation: given
N1, = 100 labeled datapoints, we varied the amount of unla-
beled data available to Snuba from Ny = 100 to Ny = 500.
Each of the methods assigned training labels to the unla-
beled dataset, and this dataset was used to fine-tune the
last layer of GoogLeNet [47].

Ny = Ny Case: Since Snuba only labels a portion of
the unlabeled data, the end model has fewer training labels
to learn from compared to the other methods that do not
abstain. Since the unlabeled set is small in this situation
(N = Ny = 100), the baseline methods have better end
model performance.

Ny << Ny Case: Heuristics Snuba generates continue to
only assign labels with high confidence, leading to a smaller
labeled training set than other methods, but high quality
training labels for that portion. This is promising for ma-
chine learning applications in which the bottleneck lies in
gathering enough training labels, while unlabeled data is
readily available. Semi-supervised learning also performs
better as the amount of unlabeled data increases; however,
it still performs worse than Snuba when the amount of un-
labeled data is more than 3x larger than labeled data since
semi-supervised methods do not abstain. Snuba also out-
performs these baseline methods when the unlabeled data is
between 2x to 1000x as much as labeled data (Section 5).

3.2 Pruner

The pruner takes as input the candidate heuristics from
the synthesizer and selects a heuristic to add to the commit-
ted set of heuristics (Figure 2). We want the heuristics in
the committed set to be diverse in terms of the datapoints in
the unlabeled set they label, but also ensure that it performs
well for the datapoints it labels in the labeled dataset.

A diverse heuristic is defined as one that labels points
that have never received a label from any other heuristic.
Therefore, we want to be able to maximize the dissimilarity
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Figure 4: Linear performance increase of end model

trained on labels from Snuba w.r.t. unlabeled data.

Algorithm 2: Snuba Pruning Procedure

1 function SelectBestHeuristic (H, Hc,y™, X1, Xvu,n,w)
Input: Candidate (H) and committed set (H¢) of
heuristics, Labels y* € {—1,1}"%, Primitives
X1 € RP*Ne Xy, € RPXMu 1f label assigned
n € {0,1}v, Weight for F1 w € [0,0.5]
Output: Best heuristic in candidate set, hyeste € H

2 hpest = None

3 bestScore = 0

4 for h; € H do

5 9% = applyHeuristic(hi, X1,)

6 fscore = calcF1(jt,y™)

7 94 = applyHeuristic(hi, Xv)

8 Jscore = cachaccard(g){}, n)

9 if W(Jscore + fscore) > bestScore then
10 hbest - hz
11 //default w=0.5
12 bestScore = (1 — w) * jscore + W * fscore
13 end
14 end

15 return hpest

between the set of datapoints a heuristic labels and the set
of datapoints that previous heuristics in the committed set
have already labeled. Let n; € {0,1}"V represent whether
heuristic j from the candidate set has assigned labels to the
datapoints in the unlabeled set. Let n € {0,1}V represent
whether any heuristic from the committed set has assigned a
label to the datapoints in the unlabeled set. To measure the
distance between these two vectors, we rely on the Jaccard
distance metric [20], the complement of Jaccard similarity,
as a standard measure of similarity between sets. For a
particular heuristic h; in the candidate set, the generalized
Jaccard distance is defined as:
Jj=1- n;MNn
n;uUn

To measure performance on the labeled dataset, Snuba
uses the F'1 score of each heuristic in the candidate set, as
defined in the previous section. As the final metric to rank
heuristics, the pruner uses a weighted average of the Jaccard
distance and F'1 score and selects the highest ranking heuris-
tic from the candidate set and adds it to the committed set
of heuristics. This process is described in Algorithm 2. For
our experirTnents, we use both w = 0.5 for a simple average

1°'n

and w = N (percentage of unlabeled set with at least one
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label). The latter weights the F1 score more as coverage
of the unlabeled dataset increases. We find that considering
both performance on the labeled set and diversity on the un-
labeled set improves over only considering diversity by up
to 18.20 F1 points and over only considering performance
by up to 6.57 F1 points in Section 5.

3.3 Verifier

The verifier uses the label aggregator (Section 4) to learn
accuracies of the heuristics in the committed set without
any ground truth labels to produce a single, probabilistic
training label for each datapoint in the unlabeled dataset.

Algorithm 3: Snuba Verifier Procedure

1 function FindFeedback (He,y™, X1, Xu)
Input: Committed set of heuristics He, H[i] = h(X]),
Labels y* € {—1,1}"2, Primitives
XL c RDXNL’ XU c RDXNU
Output: Subset of labeled set, O7, Prob. labels, i
& = learnAcc (He, Xu)
& = calcAcc (He, X1,y")

yu = calcLabels (&, Xv)
g1, = calcLabels (&, Xr)

€ = findEps(Ny, M)
v = findNu(M)
if ||&@ — @||so > € then
| return 07 =0, ju
end
else
‘ return o; € OF, if |7t — 0.5 < v, ju
end

[S " w N

© w3

10
11
12
13

These probabilistic labels also represent how confident the
label aggregator is about the assigned label. Datapoints that
have not received a single label from heuristics in the com-
mitted set will have a probabilistic label P[y* = 1] = 0.5,
equal chance of belonging to either class. Ply* = 1] close
to 0.5 represent datapoints with low confidence, which can
result from scenarios with low accuracy heuristics labeling
that datapoint, or multiple heuristics with similar accura-
cies disagreeing on the label for that datapoint. Since Snuba
generates a new heuristic at each iteration, we want the new
heuristic to assign labels to the subset that currently has low
confidence labels. Snuba identifies datapoints in the labeled
set that receive low confidence labels from the label aggrega-
tor. It passes this subset to the synthesizer with the assump-
tion that similar datapoints in the unlabeled dataset would
have also received low confidence labels (Algorithm 3).

Formally, we define low confidence labels as |g; — 0.5] <
v where g is the probabilistic label assigned by the label
aggregator and v = % where the n > 1 parameter

2 m

(default n = 3) controls the rate at which the definition
of low confidence changes with number of heuristics in the
committed set (M). As the number of heuristics increases,
we expect that fewer datapoints will have confidences near
0.5 and adjust what is considered low confidence accordingly.
We also compare to a weighted feedback approach in which
the weights are the inverse of the label confidence (w,
1 —|§ — %|) normalized across all datapoints.

The iterative process terminates if: (1) the statistical mea-
sure discussed in Section 4 suggests the generative model in
the synthesizer is not learning the accuracies of the heuristics
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properly, or (2) there are no low confidence datapoints, as
defined by v, in the small, labeled dataset. Empirically, we
find that (1) is a more popular termination condition than
(2). In both cases, it is likely for some datapoints in the
large, unlabeled set to not receive a label from any heuris-
tic in the committed set; however, since Snuba generates
training labels, the downstream end model can generalize
to assign labels to these datapoints.

3.4 Discussion

We discuss the extension of the Snuba architecture to the
multi-class setting, intuition behind the greedy approach,
alternative heuristic models, and limitations of the system.

Multi-Class Setting. While we focus on the binary set-
ting, Snuba can be extended to the multi-class setting with-
out additional changes. We include an example of a three-
class classification task in [52]. Statistics like F1 and Jaccard
score in the synthesizer and pruner are calculated using only
overall accuracy and coverage, which apply to the multi-class
setting. The label aggregator in the verifier can operate over
multi-class labels [38,39] and pass feedback using the prob-
abilistic label of the most likely class.

Greedy Approach. Our intuition behind generating heuris-
tics greedily was to mimic the the user process of manually
developing heuristics. The iterative approach tries to ensure
each heuristic labels a subset of the data that does not have
labels from existing heuristics and ensure a large portion of
the datapoints receive high confidence labels. We use a sta-
tistical method to determine the optimal stopping condition
for the iterative approach (Section 4, Figure 5).

Alternative Heuristic Models. While we only discuss
three possible heuristic models in this paper, Snuba can
handle any heuristic model that follows the input-output
schema described in Section 3.1. The user can therefore de-
sign different heuristic models that are specialized for their
classification task. For example, the user can use a regex
heuristic model that can perform more complex operations
over bag-of-words primitives than a decision tree.

Limitations. First, the performance of the Snuba heuris-
tics is bounded by the quality of the input primitives. For
example, if the primitives for the tumor classification task
only contained age, which was a poor signal of tumor malig-
nancy, then the heuristics Snuba generated would not assign
high quality training labels. Second, Snuba heuristics can
only rely on the input primitives and no external knowledge
about the task, such as knowledge bases, which is a limi-
tation compared to user-defined heuristics (more details in
Section 5.2.3). Finally, Snuba is likely to overfit and not
perform well on the unlabeled dataset if the small, labeled
dataset is not representative of the unlabeled dataset. For
the tumor classification task, the images in the small, labeled
set could be taken from one perspective while the ones in
the larger, unlabeled dataset are from a different perspec-
tive. This can lead the distribution of the primitives to be
significantly different across the two datasets and prevent
Snuba from generating high quality heuristics.

4. SNUBA SYSTEM GUARANTEES

We provide an overview of generative models [4,39,50,53]
that serve as the label aggregator for Snuba. As discussed in
Section 2, these models can learn the accuracies of the noisy
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Figure 5: (a,c) show the learned and true accuracies of the committed set of heuristics at the last iteration. (b,d) show the
allowed error and the measured error between learned and empirical accuracies across all iterations. The marked heuristic in
each figure shows Snuba successfully stops generating heuristics when the new heuristic’s true accuracy is worse than random.

heuristics without using any ground truth data and can as-
sign probabilistic labels to the unlabeled data accordingly.
However, these generative models are designed to model
the noise in user-defined heuristics, which are much more
accurate than automatically generated heuristics. Specifi-
cally, the generative model assumes that heuristics always
have accuracies better than 50%; however, Snuba-generated
heuristics can easily violate this assumption as described in
Section 4.2. Therefore, a key challenge in Snuba is recogniz-
ing whether the committed set includes heuristics that are
worse than random for the unlabeled dataset without access
to ground truth labels. We introduce a statistical measure
in Section 4.3 that relies on the accuracies the generative
model learns and the small labeled dataset. In Section 4.4,
we formally define this statistical measure and provide a the-
oretical guarantee that it will recognize when the generative
model is not learning heuristic accuracies successfully.

4.1 Generative Model

Generative models are a popular approach to learn and
model the accuracies of different labeling sources like user-
defined heuristics and knowledge bases when data is labeled
by a variety of sources [11,39]. In Snuba, we could also
rely on the accuracies of the heuristics on the small, labeled
dataset, &; however, this could degrade end model perfor-
mance by up to 8.43 F1 points (Section 5). Formally, the
goal of the generative model is to estimate the true accura-
cies of the heuristics, a* € RM, using the labels the heuris-
tics assign to the unlabeled data, Y € { — 1,0, 1}M*Nv It
models the true class label Y* € {—1,1}YV for a datapoint
as a latent variable in a probabilistic model and in the sim-
plest case, assumes that each labeling source is independent.
The generative model is expressed as a factor graph:

Y * 1 > *

(Y, Y") = ——exp (7VY") (1)
2

where Z is a partition function to ensure 7 is a normalized

distribution. The parameter ¢ € R™ is used to calculate

ljr%% € RM (defined point-

wise). It is estimated by maximizing the marginal likelihood
of the observed heuristics Y, using a method similar to con-
trastive divergence [18], alternating between using stochastic
gradient descent and Gibbs sampling [4,39]. The genera-
tive model assigns probabilistic iraining labels by computing
Y = m4(Y" | Y) for each datapoint. These probabilistic
training labels can be used to train any end model with

the learned accuracies & =
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noise-aware loss [38,39]

Ny

min ZE?/N{’ [[(ho (0i),y)]

i=1

where 0; € Oy is an object in the unlabeled dataset and Y
are the probabilistic training labels. In our experiments, we
adjust the loss functions of several popular machine learning
models to the use the noise-aware variant.

4.2 Assumption Violation

Since the generative model requires no ground truth labels
to learn heuristic accuracies @, it has to solve an underde-
termined problem where the heuristics could have accuracies
a or 1 — &. The generative model assumes that the label-
ing sources always perform better than random (a* > 0.5),
which is a reasonable assumption for user-defined heuris-
tics [4,39,50]. Since Snuba generates these heuristics auto-
matically, it is possible for the heuristics to be accurate for
the labeled set but violate the generative model’s assump-
tion that o > 0.5. An example of such a situation is shown
in Figure 5(a),(c) for two real datasets. The 8th and 12th
heuristics, respectively, have an accuracy worse than 50% on
the unlabeled dataset. However, since the generative model
does not know that this assumption has been violated, it
learns an accuracy much greater than 50% in both cases.
If these heuristics are included in the generative model, the
generated probabilistic training labels degrade end model
performance by 5.15 F1 and 4.05 F1 points, respectively.

4.3 Statistical Measure

Snuba can take advantage of the small, labeled dataset
to indirectly determine whether the generated heuristics are
worse than random for the unlabeled dataset. We define the
empirical accuracies of the heuristics as

1 &
di:ﬁi;ﬂ(ﬁj:yj),

for i = 1...M. Yi; € {—1,0,1} is the label heuristic i as-
signed to the j-th datapoint in the labeled set O, and N;
is the number of datapoints where Y; € {1, —1}. Our goal is
to use the empirical accuracies, & to estimate whether the
learned accuracies, & are close to the true accuracies, o™, de-
fined as || — &||eo < 7, the maximum absolute difference
between the learned and true accuracies being less than ~, a
positive constant to be set. Toward this end, we define the



Table 1: Dataset Statistics and Descriptions. N, Ny are size of labeled and unlabeled datasets.

NL . ratio of unlabeled

Ny

to labeled data, D: number of primitives. Label sources are previous sources of training labels (DT: decision tree, UDF:
user-defined functions, DS: distant supervision with knowledge base.)

Application Domain Nt Nu % D Label Source Task

Bone Tumor Image 200 400 2.0 17 DT + User Aggressive vs. Non-aggressive Tumor
Mammogram Image 186 1488 8.0 10 UDF Malignant vs. Benign Tumor

Visual Genome Image 429 903 2.1 7 UDF Identify ‘person riding bike’

MS-COCO Multi-Modal 6693 26772 4.0 105 UDF Identify whether person in image

IMDb Text 284 1136 4.0 322 UDF/Crowd Action vs. Romance Plot Descriptions
Twitter Text 123 14551 118.3 201 Crowd Positive vs. Negative Tweets

CDR Text 888 8268 9.3 298 UDF + DS Text relation extraction

Hardware Multi-Modal 100 100,000 1000 237 UDF Richly formatted data relation extraction

measured error between the learned and empirical accura-
cies as ||& — @||oo. To guarantee with high probability that
the generative model learns accuracies within v, we want
to find e, the largest allowed error between the learned and
empirical accuracies, ||& — @||cc < € at each iteration. We
discuss the exact form of € in Section 4.4.

We compare the measured error ||& — @[ to the maxi-
mum allowable value of € at each iteration, as shown in Fig-
ure 5(b),(d). If the measured error is greater than e, then
we stop the iterative process of generating heuristics and
use the probabilistic training labels generated at the previ-
ous iteration (since the heuristic generated at the current
iteration led to measured error being greater than €). As
shown in Figure 5, this stopping point maps to the iteration
at which the new heuristic generated has a true accuracy
o™ worse than 50% for the unlabeled dataset (we only cal-
culate a* for demonstration since we would not have access
to ground truth labels for real-world tasks). Intuitively, we
expect that once the synthesizer generates a heuristic that
is worse than random for the unlabeled dataset, it will never
generate heuristics that will be helpful in labeling the data
anymore. Empirically, we observe that this is indeed the
case as shown for two real tasks in Figure 5(a) and (c).

4.4 Theoretical Guarantees

Assuming that the objects in the labeled set O are in-
dependent and identically distributed, we provide the fol-
lowing guarantee on the probability of the generative model
learning the accuracies successfully:

Proposition 1: Suppose we have M heuristics with
empirical accuracies &, accuracies learned by the generative
model &, and measured error ||& — @||co < € for all M iter-
ations. Then, if each heuristic labels a minimum of

N > !

> g ()

datapoints at each iteration, the generative model will suc-
ceed in learning accuracies within ||a* — &l|oo < v across all
iterations with probability 1 — 0.

We provide a formal proof for this proposition in [52]. We re-
quire each heuristic to assign labels to at least N datapoints
to guarantee that the generative model will learn accuracies
within 7 of the true accuracies, given the measured error
is less than e for all iterations. We solve for the maximum
allowed error € at each iteration:

2M?
5
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This value is plotted against the value of the measured error
||& — &||o in Figure 5(b,d). Snuba stops generating new
heuristics when the measured error surpasses the allowed
error. The above proposition relies only on the measured
error to guarantee whether the generative model is learning
accuracies successfully.

5. EVALUATION

We compare the performance of end models trained on
labels generated by Snuba and other baseline methods. We
seek to experimentally validate the following claims:

e Training labels from Snuba outperform labels
from automated baseline methods We compare
Snuba to models that generate heuristics using only
the labeled data, such as boosting and decision trees,
and semi-supervised methods, which utilize both la-
beled and unlabeled datasets. Snuba outperforms these
methods by up to 14.35 F1 points. We also compare to
transfer learning using only the labeled dataset, which
Snuba outperforms by up to 5.74 F1 points.

Training labels from Snuba outperform those
from user-developed heuristics We compare the
performance of heuristics generated by Snuba to heuris-
tics developed by users. Snuba can use the same amount
of labeled data as users to generate heuristics and im-
prove end model performance by up to 9.74 F1 points.

Each component of Snuba boosts overall sys-
tem performance We evaluate separate components
of the Snuba system by changing how the 8 parameter
is chosen in the synthesizer, how the pruner selects a
heuristic to add to the committed set, and different
label aggregation methods in the verifier. Compared
to the complete Snuba system, we observe that per-
formance can degrade by up to 20.69 F1 points by
removing these components.

5.1 Experiment Setup

We describe the datasets, baseline methods, performance
metrics, and implementation details for Snuba.

5.1.1 Datasets

We consider real-world applications and tasks over open
source datasets for image, text, and multi-modal classifica-
tion. For each of the tasks, previous techniques to assign
training labels included using crowdsourcing, user-defined
functions, and decision trees based on a small, labeled dataset.



Table 2: Improvement of end model (F1 Score) trained on labels from Snuba compared to labels from automated baselines
and UDFs (+: Snuba better). *Hardware UDF's tuned on 47,413 labeled datapoints, other baselines on 100 labeled datapoints.

Snuba Improvement Over

Application Snuba F1 Score Decision Tree Boosting Transfer Learning Semi-Supervised UDF
Bone Tumor 71.55 +6.37 +8.65 - +6.77 +9.13
Mammogram 74.54 +5.33 +5.02 +5.74 +3.26 +9.74
Visual Genome 56.83 +7.62 +6.20 +5.58 +5.94 +6.38
MS-COCO 69.52 +1.65 +2.70 +2.51 +1.84 +2.79
IMDb 62.47 +7.78 +12.12 +3.36 +14.35 +3.67
Twitter 78.84 +5.03 +4.43 - +3.84 +13.8
CDR 41.56 +5.65 +11.22 - +7.49 -12.24
Hardware 68.47 +5.20 +4.16 - +2.71 -4.75%

Summary statistics are provided in Table 1 and additional
details are in [52].

Image Classification. We focus on two real-world medical
image classification tasks that we collaborated on with ra-
diologists at Stanford Hospital and Clinics. The Bone Tu-
mor and Mammogram tumor classification tasks demon-
strate how Snuba-generated heuristics compare to those de-
veloped by domain experts. The first dataset uses domain-
specific primitives while the second relies on simple geomet-
ric primitives. Working with graduate students in the Stan-
ford Computer Vision lab, we identify images of “person
riding bike”. We use the Visual Genome database [25]
with bounding box characteristics as primitives and study
how Snuba performs with severe class imbalance.

Text and Multi-Modal Classification. We applied Snuba
to text and multi-modal datasets to study how well Snuba
operated in domains where humans could easily interpret
and write rules over the raw data. We generate primitives
by featurizing the text using a bag-of-words representation.
The MS-COCO dataset [30] had heuristics generated over
captions and classification performed over associated im-
ages, and the IMDDb plot summary classification [1] is purely
text-based. The Twitter sentiment analysis dataset relied
on crowdworkers for labels [31] while the chemical-disease re-
lation extraction task (CDR) [57] relies on external sources
of information like knowledge bases. The Hardware re-
lation extraction task over richly formatted data classifies
part numbers and electrical characteristics from specifica-
tion datasheets® as valid or not. We use visual, tabular, and
structural primitives extracted using Fonduer [58].

5.1.2 Baseline Methods

We compare to pruned decision tree [42] and boost-
ing [16] (AdaBoost), which use the labeled dataset to gen-
erate one complex or multiple, simple decision trees, respec-
tively. We compare to semi-supervised learning [61],
which uses both the labeled and unlabeled dataset to assign
training labels and represents a single ‘heuristic’ in the form
of a black-box model. For select tasks, we perform transfer
learning using pre-trained models. We use GLoVE embed-
dings [36] for IMBd and Twitter only tune the last layer
of a VGGNet [43] for MS-COCO, and tune the weights of
a GoogLeNet [47] pre-trained on ImageNet [12] for Visual
Genome and Mammogram (more details in [52]).

As shown in Table 1, training labels for all tasks were pre-
viously generated by some user-driven labeling method,

Thttps://www.digikey.com
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such as user-defined heuristics, distant supervision, or crowd-
sourcing. These were developed by users, ranging from do-
main experts to machine learning practitioners and input to
label aggregators we developed [38, 50, 51]. For tasks like
CDR, Bone Tumor, and Mammogram that required specific
domain knowledge, the time taken for bioinformatics experts
and radiologists to manually develop heuristics ranged from
a few days to a few weeks. For tasks that did not require do-
main expertise, such as IMDb and Visual Genome, graduate
students wrote a small number of heuristics over a period
of a few hours. In all cases, users encoded their domain
knowledge in heuristics and evaluated their performance on
a small, held-out labeled set in an iterative manner.
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Figure 6: We observe a maximum of D’ = 1 for our text
and D’ < 4 for our image and multi-modal tasks.

5.1.3 Implementation Details

Primitives for Snuba. Since text-based tasks used a bag-
of-words representation, the primitives are sparse and num-
ber in the hundreds of thousands. We filter bag-of-words
primitives by only considering primitives that are active for
both the labeled and unlabeled dataset, and for at least 5%
of the unlabeled dataset to ensure a minimim coverage for
generated heuristics. The 5% threshold had the best per-
formance for our text datasets but this threshold can be
user-defined in practice.

For our image-based tasks, we found that Snuba never
generated heuristics that relied on more than 4 primitives as
input, while for text-based tasks, it only generated heuris-
tics that relied on a single primitive (Figure 6). Heuris-
tics rely on a small number of primitives since this limits
their complexity and prevents them from overfitting to the
small, labeled dataset. Moreover, relying on multiple prim-
itives can also lower the coverage of the heuristics, and a
fairly accurate heuristic that relies on several primitives be-
ing present is filtered by the pruner, which relies on both
coverage and performance. The relatively small number of



Table 3: Precision (P), Recall (R) and F1 scores for user-defined heuristics, Snuba-generated heuristics, and end model
trained on labels from Snuba-generated heuristics. Lift reported is from user to Snuba heuristics, then Snuba heuristics to
end model. Snuba heuristics have lower precision than users’ and end model improves recall.

User Heuristics

Snuba Heuristics

Snuba + End Model

Application ™" Tp g FI P R Lift(F1) FI P R Lift(F1)
Bone Tumor 30.91 89.47 18.68 31.58 33.75 29.67 +0.67 71.55 58.86 91.21  +39.97
Visual Genome 34.76 98.28 21.11 46.06 48.10 44.19 +11.30 56.83 41.34 90.91  +10.77
MS-COCO 21.43 63.66 12.88 24.41 29.40 41.49  +12.98 69.52 55.80 92.16 +35.11
IMDb 20.65 76.19 11.94 46.47 48.03 45.52  425.82 62.47 45.42  100. +16.00
primitives heuristics used as input leads to a maximum sin- ESO ®|UDH
gle threaded runtime of 14.45 mins for the Hardware task g O Snuba
on a Xeon E7-4850 v3 CPU. %*
Performance Metrics. To measure performance, we re- gjz
port the F1 score of an end model trained on labels from 5 .—‘ T — J_‘
Snuba and the baseline methods on a test set. We report F1 0

Bone Tumor  Mammogram MS-COCO IMDb CDR

score instead of accuracy since some datasets have class im-
balance that can lead to high accuracy by naively predicting
the majority class for all datapoints. The F1 scores for the
end model are defined in terms of true positives instead of
correctly classified datapoints (this is different Section 3.1.2,
since the end models never abstain).

End Models. While Snuba can generate training labels ef-
ficiently, they rely only on the user-defined primitives. The
end model trained on these labels can use the raw data or
representations of the data based on pre-trained models. For
example, the end model can operate over the entire raw im-
age, sentence or representation from a pre-trained model as
opposed to measurements of the tumor, bag-of-words rep-
resentation, or bounding box coordinates. For image clas-
sification tasks, we use popular deep learning models like
GoogLeNet and VGGNet that take the raw image as input,
while for text tasks we use a model composed of a single
embedding and a single LSTM layer that take the raw text
sentence(s) as input. These models take as input the proba-
bilistic or binary training labels from Snuba or the baseline
methods and minimize the noise-aware loss, as defined in
Section 4. While the tasks explored in this section are all
binary classification, the system can be easily generalized to
the multi-class case (Section 3.4).

5.2 End to End System Comparison

We demonstrate that a downstream model trained on the
labels from Snuba generalizes beyond the Snuba heuristics,
improving recall by up to 61.54 points (Section 5.2.1), out-
performs automated baseline methods by up to 12.12 F1
points (Section 5.2.2) and user-driven labeling by up to 9.74
F1 points (Section 5.2.3).

5.2.1 Generalization beyond Heuristics

One of the motivations for designing Snuba is to efficiently
label enough training data for training powerful, downstream
machine learning models like neural networks. Heuristics
from Snuba are not used directly for the classification task
at hand because (1) they may not label the entire dataset
due to abstentions, and (2) they are based only on the user-
defined primitives and fail to take advantage of the raw data
representation. For datasets like MS-COCO, the end model
also operates over a different modality than the heuristics.
To demonstrate the advantage of training an end model, we
compare the performance of Snuba heuristics to standard

Figure 7: Snuba generates fewer heuristics than users for
our image tasks and usually more for text tasks.

end models trained on labels from Snuba on a test set in
Table 3. The end model improves over the heuristics’ per-
formance by up to 39.97 F1 points. The end model helps
generalize beyond the heuristics, as a result of more power-
ful underlying models and access to raw data, and improves
recall by up to 61.54 points.

5.2.2 Automated Methods

Table 2 shows that Snuba can outperform automated base-
line methods by up to 14.35 F1 points. Snuba outperforms
decision trees, which fit a single model to the labeled dataset,
by 7.38 F1 points on average, the largest improvement com-
pared to other baselines. The method that performs the
closest to Snuba for most tasks is semi-supervised learning,
which takes advantage of both the unlabeled and unlabeled
dataset, but fails to account for diversity, performing worse
than Snuba by 6.21 F1 points on average. Finally, compared
to transfer learning which does not have to learn a represen-
tation of the data from scratch, Snuba performs up to 5.74
F1 points better using the same amount of labeled data.
This demonstrates how for many tasks, using a larger train-
ing set with noisy labels is able to train a better end model
from scratch than fine tuning a pre-trained model with a
small labeled dataset.

5.2.3 User-Driven Labeling Methods

We compare end model performance trained on labels
Snuba generates to labels from manually generated label-
ing sources in Table 2 and report the precision, recall, and
F1 score of Snuba-generated and user-defined heuristics in
Table 3. The labels from the heuristics are combined using
the Snuba label aggregator, the generative model in Sec-
tion 4. Overall, Snuba generates heuristics that perform
up to 25.82 F1 points better than user-defined heuristics.
Note that users develop heuristics that are very high preci-
sion, up to 98.28 points. Snuba-generated heuristics, on the
other hand, balance both precision and recall. This supports
the design of the system since the synthesizer optimizes for
F1 score, which relies on both precision and recall, and the
pruner optimizes for both accuracy and coverage, which are
related to both precision and recall.
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Table 4: Improvement of best heuristic type over others
and Snuba choosing 3 over never abstaining (8 = 0) and
midpoint value (8 = 0.25). 0.00 is best heuristic type that
was best for each task. DT: decision tree, LR: logistic re-
gressor; NN: nearest neighbor.

F1 Improvement Over

Dataset DT LR NN =0 pB=025
Bone Tumor +2.73  0.00 +4.62 +2.35 +3.77
Visual Genome +3.22 +3.38 0.00 +7.99 +5.30
MS-COCO 0.00 0.00 +0.24 +2.51 +2.51
IMDb 0.00 0.00 +14.32 +20.69 +2.13

For image domains, Snuba generates fewer heuristics (Fig-
ure 7) that depend on more primitives than user-defined
heuristics. Primitives for image domains are numerical and
require guessing the correct threshold for heuristics, a pro-
cess Snuba automates while users guess manually. For the
Bone Tumor classification task, the user-defined heuristics
were manually tuned versions of decision trees fit to the la-
beled set. Therefore, Snuba only improves 0.67 F1 points
over this partially automated approach. For text datasets
(MS-COCO and IMDbD), Snuba generates almost 5x as many
heuristics as users since each heuristic relies only on a single
primitive and improves F1 score by up to 25.82 points (Ta-
ble 3). For CDR, users relied on distant supervision through
the Comparative Toxicogenomics Database [10]. Snuba only
relies on the primitives it has access to and cannot incor-
porate any external information, leading to 12.24 F1 points
lower performance than user-defined heuristics using distant
supervision. Finally, for Hardware, Snuba uses only 100 la-
beled datapoints to generate heuristics while users had ac-
cess to 47,413, which leads to Snuba performing 4.75 F1
points worse in terms of end model performance.

5.3 Micro-Benchmarking Results

We evaluate the individual components of the Snuba sys-
tem and show how adjustments to each component can affect
end model performance by up to 20.69 F1 points.

5.3.1 Synthesizer

First, we compare how different heuristic models perform
for select tasks in Table 4 and show how much better the best
heuristic type (marked as 0) performs compares to alternate
heuristic types. For text-based tasks, decision tree and lo-
gistic regressor based heuristics perform the same since they
both rely on a single primitive and learn the same threshold
to make a binary decision. These heuristic models essen-
tially check whether a word exists in a sentence.

Next, we set 8 = 0 to prevent heuristics from abstaining
and set it to a constant S = 0.25, the midpoint of possible
values 8 € (0,0.5) (Table 4). Allowing heuristics to abstain
can improve end model performance by up to 20.69 F'1 points
and choosing the correct 8 value can improve end model
performance by up to 5.30 F1 points.

5.3.2 Pruner

We show the performance of the pruner compared to only
optimizing for either performance (with F1 score) or diver-
sity (with Jaccard distance) in Table 5. For text tasks, only
optimizing for performance comes within 2.15 F1 points of
the Snuba pruner since each heuristic selecting a different
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Table 5: Snuba pruner optimizing for only performance
(F1) and diversity (Jaccard) compared to performance and
diversity individually and a weighted average.

F1 Improvement Over

Dataset F1 Only Jaccard Only Weighted
Bone Tumor +3.86 +8.84 +2.74
Visual Genome +6.57 +7.33 +3.74
MS-COCO +2.51 +18.2 +0.80
IMDb +2.15 +14.23 +0.37

Table 6: Snuba verifier aggregation compared to using &
instead of &, no termination condition, majority vote (MV)
across labels, feedback with weighted samples.

F1 Improvement Over

Dataset & No Term. MYV  Weighted
Bone Tumor +5.42 +5.15 +3.78 +1.76
Visual Genome +8.43 +7.09 +6.59 +4.42
MS-COCO +7.98 +3.70 +3.00 +2.22
IMDb +5.67 +4.05 +1.80 +1.63

word automatically accounts for diversity. On the other
hand, only optimizing for diversity in text domains can affect
performance by up to 18.20 F1 points since it could result in
a large portion of the unlabeled dataset receiving low-quality
labels. We also compare to weighting the F1 score by how
much of the unlabeled dataset is covered, which performs
closest to the simple average case for text-based tasks. This
suggests that other domain-specific weighting schemes, like
weighting coverage more than accuracy given sparse primi-
tives can further improve performance.

5.3.3  Verifier

Finally, we look at how learning heuristic accuracies for
label aggregation compares to majority vote in Table 6. Text
domains in which the number of heuristics generated is more
than 15, the majority vote score comes within 1.80 F'1 points
of the Snuba verifier. With a large number of heuristics, each
datapoint receives enough labels that learning accuracies has
little effect on the assigned labels [28].

We compare to using the empirical accuracies of the heuris-
tics & rather than learning accuracies based on labels as-
signed to the unlabeled data. This method performs worse
than the Snuba verifier by up to 8.43 F1 points. We also
generate heuristics till there are no more datapoints in the
small, labeled dataset with low confidence labels and find
that this can degrade end model performance by up to 7.09
F1 points as shown in Table 6.

We compare to passing a weighted version of the small,
labeled dataset as feedback to the synthesizer instead of a
subset and find it performs up to 4.42 F1 points worse than
passing a subset. We posit that heuristics fit to a weighted
set can lead to more low confidence labels and eventually a
higher rate of abstentions for the unlabeled dataset.

6. RELATED WORK

We provide an overview of methods that label data auto-
matically based on heuristics, use both labeled an unlabeled
data, and aggregate noisy sources of labels.



Rule Learning. The inspiration for Snuba comes from pro-
gram synthesis, where programs are generated given access
to a set of input-output pairs [15,44], reference implementa-
tions [3], or demonstrations [21]. The design is based loosely
on counter-example guided inductive synthesis (CEGIS) in
which a synthesizer generates programs, passes it to the veri-
fier that decides whether the candidate program satisfies the
given specifications, and passes relevant feedback to the syn-
thesizer [15,21,44,46]. However, unlike Snuba, such mod-
els only synthesize programs that match all the specified
input-output pairs. Other works also generate heuristics to
help interpret the underlying data labels [54, 55], but nei-
ther methods use unlabeled data since the programs gener-
ated either mimic the desired program perfectly or provide
interpretations for existing labels. While Snuba focuses on
generating training labels for various domains, rule learn-
ing has been widely studied in the context of information
extraction [33,45]. Recent works can learn logical rules for
knowledge base reasoning [59], interleave beam search with
parameter learning [24], select rules from a restricted set us-
ing lasso regression [27], and use alternate gradient-based
search to find parameters for probailistic logic [56]. While
these methods are more sophisticated than Snuba, they use
a large amount of training data and rely directly on the
generated rules for prediction. Incorporating these methods
into the Snuba synthesizer could be interesting for future
work, especially for text-based tasks.

Training Label Generation. Focusing on the problem of
generating training data, Snorkel [38] is a system that relies
on domain experts manually developing heuristics, patterns,
or distant supervision rules to label data noisily. While users
in Snorkel rely on a small, labeled dataset to evaluate and
refine their heuristics, Snuba automatically generates heuris-
tics using the labeled and unlabeled data it has access to.
Snorkel and Snuba both use the generative model to ag-
gregate heuristic labels, but Snuba can generate heuristics
that are noisier than the generative model can account for.
Therefore, it uses a statistical measure to determine when
the generative model can be used (Section 4). Other meth-
ods that rely on imperfect sources of labels that are par-
tially user-defined include heuristic patterns [6,17] and dis-
tant supervision [8,32], which relies on information present
in knowledge bases.

Utilizing Labeled and Unlabeled Data. To train a deep
learning model with a small, labeled dataset, a common ap-
proach is using transfer learning, or retraining models that
have been trained for different tasks that have abundant
training data in the same domain [34]. However, this ap-
proach does not take advantage of any unlabeled data avail-
able. Semi-supervised learning leverages both labeled and

unlabeled data, along with assumptions about low-dimensional

structure and smoothness of the data to automatically as-

sign labels to the unlabeled data [7,61]. Unlike semi-supervised

learning, which generates a single black-box model, Snuba
generates multiple, diverse heuristics to label the unlabeled
data. Moreover, as demonstrated in Section 5, Snuba per-
forms better than a specific semi-supervised model, label
spreading [61], when the amount of unlabeled data is larger
than than the amount of labeled data. Co-training [5] also
takes advantage of both labeled and unlabeled data and
trains two independent models on two separate views of the
data. Snuba does not require access to separate feature sets
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as views and can generate more than two heuristics (classi-
fiers) that can be correlated with each other (Section 4).

Combining Noisy Labels. Combining labels from multi-
ple sources like heuristics is well-studied problem [11], espe-
cially in the context of crowdsourcing [9,22,60]. However,
these methods assume the labeling sources are not gener-
ated automatically and requires a labeled dataset to learn
the accuracies of the different sources. Other methods, in-
cluding our previous work [39, 50, 53], rely on generative
models to learn accuracies and dependencies among labeling
sources [2,41,48]. Areas like data fusion [13,37,40] and truth
discovery [29] also look at the problem of estimating how re-
liable different data sources are while utilizing probabilistic
graphical models like Snuba.

7. CONCLUSION

Snuba is a system to automatically generate heuristics
using a small labeled dataset to assign training labels to
a large, unlabeled dataset, which can be used to train a
downstream model of choice. It iteratively generates heuris-
tics that are accurate and diverse for the unlabeled dataset
using the small, labeled dataset. Snuba relies on a statis-
tical measure to determine when generated heuristics are
too noisy and therefore when to terminate the iterative pro-
cess. We demonstrate how training labels from Snuba out-
perform labels from semi-supervised learning by up to 14.35
F1 points and from user-defined heuristics by up to 9.74 F1
points in terms of end model performance for tasks across
various domains. Our work suggests that there is potential
to use a small amount of labeled data to make the process
of generating training labels much more efficient.

Acknowledgments

We thank Christopher Aberger, Jared Dunnmon, Avner May,
Shoumik Palkar, Theodoros Rekatsinas, Sahaana Suri, and Sandeep
Tata for their valuable feedback, and Sen Wu for help with the
Hardware dataset. We gratefully acknowledge the support of
DARPA under Nos. FA87501720095 (D3M) and FA86501827865
(SDH), NIH under No. N000141712266 (Mobilize), NSF under
Nos. CCF1763315 (Beyond Sparsity) and CCF1563078 (Volume
to Velocity), ONR under No. N000141712266 (Unifying Weak Su-
pervision), the Moore Foundation, NXP, Xilinx, LETI-CEA, In-
tel, Google, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accen-
ture, Ericsson, Qualcomm, Analog Devices, the Okawa Founda-
tion, and American Family Insurance, the National Science Foun-
dation Graduate Research Fellowship under Grant No. DGE-
114747, the Joseph W. and Hon Mai Goodman Stanford Gradu-
ate Fellowship,and members of the Stanford DAWN project: In-
tel, Microsoft, Teradata, Facebook, Google, Ant Financial, NEC,
SAP, and VMWare. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views,
policies, or endorsements, either expressed or implied, of DARPA,
NIH, ONR, or the U.S. Government.

8. REFERENCES

(1] IMDDb Dataset. https://www.imdb.com/interfaces/.

[2] E. Alfonseca, K. Filippova, J.-Y. Delort, and G. Garrido.
Pattern learning for relation extraction with a hierarchical
topic model. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short
Papers-Volume 2, pages 54-59. Association for
Computational Linguistics, 2012.

R. Alur, R. Bodik, G. Juniwal, M. M. Martin,

M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In

3]



(4]

(5]

[6]

[7

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]
20]

21]

(22]

23]

Formal Methods in Computer-Aided Design (FMCAD),
2013, pages 1-8. IEEE, 2013.

S. H. Bach, B. He, A. Ratner, and C. Ré. Learning the
structure of generative models without labeled data. In
International Conference on Machine Learning, pages
273-282, 2017.

A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh annual
conference on Computational learning theory, pages
92-100. ACM, 1998.

R. Bunescu and R. Mooney. Learning to extract relations
from the web using minimal supervision. In Proceedings of
the 45th Annual Meeting of the Association of
Computational Linguistics, pages 576-583, 2007.

O. Chapelle, B. Scholkopf, and A. Zien. Semi-supervised
learning (Chapelle, O. et al., eds.; 2006)[book reviews].
IEEE Transactions on Neural Networks, 20(3):542-542,
2009.

M. Craven, J. Kumlien, et al. Constructing biological
knowledge bases by extracting information from text
sources. In ISMB, volume 1999, pages 77-86, 1999.

N. Dalvi, A. Dasgupta, R. Kumar, and V. Rastogi.
Aggregating crowdsourced binary ratings. In Proceedings of
the 22nd international conference on World Wide Web,
pages 285-294. ACM, 2013.

A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, B. L.
King, R. McMorran, J. Wiegers, T. C. Wiegers, and C. J.
Mattingly. The comparative toxicogenomics database:
update 2017. Nucleic acids research, 45(D1):D972-D978,
2016.

A. P. Dawid and A. M. Skene. Maximum likelihood
estimation of observer error-rates using the EM algorithm.
Applied statistics, pages 20-28, 1979.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A large-scale hierarchical image database. In
Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248-255. IEEE, 2009.
X. L. Dong and D. Srivastava. Big data integration.
Synthesis Lectures on Data Management, 7(1):1-198, 2015.
A. Graves and J. Schmidhuber. Framewise phoneme
classification with bidirectional LSTM and other neural
network architectures. Neural Networks, 18(5-6):602—-610,
2005.

S. Gulwani. Synthesis from examples: Interaction models
and algorithms. In Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), 2012 1/th International
Symposium on, pages 8-14. IEEE, 2012.

T. Hastie, S. Rosset, J. Zhu, and H. Zou. Multi-class
AdaBoost. Statistics and its Interface, 2(3):349-360, 2009.
M. A. Hearst. Automatic acquisition of hyponyms from
large text corpora. In Proceedings of the 14th conference on
Computational linguistics- Volume 2, pages 539-545.
Association for Computational Linguistics, 1992.

G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural computation,
14(8):1771-1800, 2002.

S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735-1780, 1997.

P. Jaccard. Lois de distribution florale dans la zone alpine.
Bull Soc Vaudoise Sci Nat, 38:69—-130, 1902.

S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering- Volume 1, pages
215-224. ACM, 2010.

M. Joglekar, H. Garcia-Molina, and A. Parameswaran.
Comprehensive and reliable crowd assessment algorithms.
In Data Engineering (ICDE), 2015 IEEE 31st
International Conference on, pages 195-206. IEEE, 2015.
J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. L. Zitnick, and R. Girshick. Clevr: A diagnostic dataset

235

[24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37)

(38]

(39]

(40]

for compositional language and elementary visual reasoning.
In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, pages 1988-1997. IEEE, 2017.
S. Kok and P. Domingos. Statistical predicate invention. In
Proceedings of the 24th international conference on
Machine learning, pages 433-440. ACM, 2007.

R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata,

J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma,
et al. Visual Genome: Connecting language and vision
using crowdsourced dense image annotations. International
Journal of Computer Vision, 123(1):32-73, 2017.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012.

N. Lao and W. W. Cohen. Relational retrieval using a
combination of path-constrained random walks. Machine
learning, 81(1):53-67, 2010.

H. Li, B. Yu, and D. Zhou. Error rate analysis of labeling
by crowdsourcing. In ICML Workshop: Machine Learning
Meets Crowdsourcing. Atalanta, Georgia, USA. Citeseer,
2013.

Y. Li, J. Gao, C. Meng, Q. Li, L. Su, B. Zhao, W. Fan, and
J. Han. A survey on truth discovery. ACM Sigkdd
Ezplorations Newsletter, 17(2):1-16, 2016.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft
COCO: Common objects in context. In Furopean
conference on computer vision, pages 740-755. Springer,
2014.

C. Metz. Crowdflower dataset: Airline Twitter sentiment,
2015. https://www.crowdflower.com/data/
airline-twitter-sentiment/.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant
supervision for relation extraction without labeled data. In
Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2, pages 1003—1011.
Association for Computational Linguistics, 2009.

R. Mooney. Relational learning of pattern-match rules for
information extraction. In Proceedings of the Sizteenth
National Conference on Artificial Intelligence, volume 334,
1999.

S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on knowledge and data engineering,
22(10):1345-1359, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning
in Python. Journal of machine learning research,
12(Oct):2825-2830, 2011.

J. Pennington, R. Socher, and C. Manning. GloVe: Global
vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language
processing (EMNLP), pages 1532-1543, 2014.

R. Pochampally, A. Das Sarma, X. L. Dong, A. Meliou, and
D. Srivastava. Fusing data with correlations. In Proceedings
of the 2014 ACM SIGMOD international conference on
Management of data, pages 433—-444. ACM, 2014.

A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and
C. Ré. Snorkel: Rapid training data creation with weak
supervision. PVLDB, 11(3):269-282, 2017.

A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré.
Data programming: Creating large training sets, quickly. In
Advances in Neural Information Processing Systems, pages
3567-3575, 2016.

T. Rekatsinas, M. Joglekar, H. Garcia-Molina,

A. Parameswaran, and C. Ré. SLiMFast: Guaranteed
results for data fusion and source reliability. In Proceedings
of the 2017 ACM International Conference on
Management of Data, pages 1399-1414. ACM, 2017.



[41]

42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

B. Roth and D. Klakow. Combining generative and
discriminative model scores for distant supervision. In
Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 24-29, 2013.

S. R. Safavian and D. Landgrebe. A survey of decision tree
classifier methodology. IEEFE transactions on systems,
man, and cybernetics, 21(3):660-674, 1991.

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXi:1409.1556, 2014.

R. Singh and S. Gulwani. Synthesizing number
transformations from input-output examples. In
International Conference on Computer Aided Verification,
pages 634-651. Springer, 2012.

S. Soderland. Learning information extraction rules for
semi-structured and free text. Machine learning,
34(1-3):233-272, 1999.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and

V. Saraswat. Combinatorial sketching for finite programs.
ACM Sigplan Notices, 41(11):404-415, 2006.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich,

et al. Going deeper with convolutions. Cvpr, 2015.

S. Takamatsu, I. Sato, and H. Nakagawa. Reducing wrong
labels in distant supervision for relation extraction. In
Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume 1,
pages 721-729. Association for Computational Linguistics,
2012.

S. Van der Walt, J. L. Schonberger, J. Nunez-Iglesias,

F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and

T. Yu. scikit-image: image processing in Python. PeerJ,
2:e453, 2014.

P. Varma, B. D. He, P. Bajaj, N. Khandwala, I. Banerjee,
D. Rubin, and C. Ré. Inferring generative model structure
with static analysis. In Advances in Neural Information
Processing Systems, pages 239-249, 2017.

P. Varma, D. Iter, C. De Sa, and C. Ré. Flipper: A
systematic approach to debugging training sets. In
Proceedings of the 2nd Workshop on Human-In-the-Loop
Data Analytics, page 5. ACM, 2017.

P. Varma and C. Ré. Snuba: Automating weak supervision
to label training data, 2018.
https://paroma.github.io/tech_report_snuba.pdf.

P. Varma, R. Yu, D. Iter, C. De Sa, and C. Ré. Socratic
learning: Correcting misspecified generative models using
discriminative models. arXiv preprint arXiv:1610.08123,
2017.

F. Wang and C. Rudin. Falling rule lists. In Artificial
Intelligence and Statistics, pages 1013-1022, 2015.

T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and
P. MacNeille. Or’s of and’s for interpretable classification,
with application to context-aware recommender systems.
arXiv preprint arXiv:1504.07614, 2015.

W. Y. Wang, K. Mazaitis, and W. W. Cohen. Structure
learning via parameter learning. In Proceedings of the 23rd
ACM International Conference on Conference on
Information and Knowledge Management, pages
1199-1208. ACM, 2014.

C.-H. Wei, Y. Peng, R. Leaman, A. P. Davis, C. J.
Mattingly, J. Li, T. C. Wiegers, and Z. Lu. Overview of the
biocreative v chemical disease relation (CDR) task. In
Proceedings of the fifth BioCreative challenge evaluation
workshop, pages 154-166. Sevilla Spain, 2015.

S. Wu, L. Hsiao, X. Cheng, B. Hancock, T. Rekatsinas,

P. Levis, and C. Ré. Fonduer: Knowledge base construction
from richly formatted data. In Proceedings of the 2018
International Conference on Management of Data, pages
1301-1316. ACM, 2018.

F. Yang, Z. Yang, and W. W. Cohen. Differentiable
learning of logical rules for knowledge base reasoning. In

236

[60]

[61]

Advances in Neural Information Processing Systems, pages
2319-2328, 2017.

Y. Zhang, X. Chen, D. Zhou, and M. I. Jordan. Spectral
methods meet EM: A provably optimal algorithm for
crowdsourcing. In Advances in neural information
processing systems, pages 1260-1268, 2014.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and

B. Scholkopf. Learning with local and global consistency. In
Advances in neural information processing systems, pages
321-328, 2004.



