
Online Density Bursting Subgraph Detection from
Temporal Graphs ⇤

Lingyang Chu
Huawei Technologies Canada

Burnaby, Canada

lingyang.chu1@huawei.com

Yanyan Zhang
Fortinet Technology (Canada)

Burnaby, Canada

yzhang01@fortinet.com

Yu Yang
City University of Hong Kong

Hong Kong, China

yuyang@cityu.edu.hk
Lanjun Wang

Huawei Technologies Canada
Burnaby, Canada

lanjun.wang@huawei.com

Jian Pei
Simon Fraser University

Burnaby, Canada

jpei@cs.sfu.ca

ABSTRACT
Given a temporal weighted graph that consists of a poten-
tially endless stream of updates, we are interested in finding
density bursting subgraphs (DBS for short), where a DBS is
a subgraph that accumulates its density at the fastest speed.
Online DBS detection enjoys many novel applications. At
the same time, it is challenging since the time duration of a
DBS can be arbitrarily long but a limited size storage can
bu↵er only up to a certain number of updates. To tackle this
problem, we observe the critical decomposability of DBSs
and show that a DBS with a long time duration can be
decomposed into a set of indecomposable DBSs with equal
or larger burstiness. We further prove that the time dura-
tion of an indecomposable DBS is upper bounded and pro-
pose an e�cient method TopkDBSOL to detect indecom-
posable DBSs in an online manner. Extensive experiments
demonstrate the e↵ectiveness, e�ciency and scalability of
TopkDBSOL in detecting significant DBSs from temporal
graphs in real applications.

PVLDB Reference Format:
Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, Jian
Pei. Online Density Bursting Subgraph Detection from Temporal
Graphs. PVLDB, 12(13): 2353-2365, 2019.
DOI: https://doi.org/10.14778/3358701.3358704

1. INTRODUCTION
General Eric Shinseki said, “If you don’t like change,

you’re going to like irrelevance even less”. Finding the most
and fastest changing parts is a central task in analyzing tem-
poral data. For example, in a stream of snapshots of a busi-
ness collaboration network, where each vertex is a person or
a company and the weight of an edge represents the collab-
oration strength between two parties in the time duration of
a snapshot, a density bursting subgraph is a group of parties

⇤This research is partly based on Yanyan Zhang’s Master’s
thesis done at Simon Fraser University, Burnaby, Canada.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3358701.3358704

whose collaboration strengths in between increase dramat-
ically fast. Such a density bursting subgraph may indicate
that a new business consortium is forming, for example, due
to new business opportunities.

As another concrete example, taxi trips in a city naturally
form a temporal network, where each vertex is a location
in the city and the weight of an edge is the number of taxi
trips between two locations during a specific time period. In
such a network, a density bursting subgraph indeed reveals
a burst of taxi trips among a group of locations. Our case
study in Figure 2 and Section 8.1 gives two examples of such
bursts of taxi trips, which reveal interesting travel patterns
of people on weekdays and weekends, respectively.

As long as one wishes, the list of possible applications of
finding density bursting subgraphs can keep growing easily.
Surprisingly, although finding density bursting subgraphs is
interesting and has many applications, this problem has not
been touched systematically in literature. As reviewed in
Section 2, the existing works on finding dense subgraphs [1,
7, 28, 32, 34] only focus on density but do not consider
the speed of density changes. The previous works on dense
temporal subgraph detection [2, 3, 6, 24, 29, 30, 35] maintain
dense subgraphs against incremental or streaming updates,
but again do not account the change speed of density. Since
a dense subgraph may slowly accumulate a large density in
a long time, it may not necessarily be a density bursting
subgraph. Therefore, existing dense (temporal) subgraph
detection methods cannot be straightforwardly extended to
detect density bursting subgraphs.

As will be investigated in Section 5, a closer look discloses
that the problem of finding density bursting subgraphs is far
from trivial. Due to the nature of weighted graphs, a burst
can last for a long and potentially indefinite time. A static
method has to bu↵er all the snapshots involved in a burst,
thus cannot handle a large number of updates. This leaves
us no choice but to design an e�cient online algorithm for
density bursting subgraph detection.

In this paper, we tackle the novel problem of online density
bursting subgraph detection. Specifically, given a stream of
snapshots of a temporal graph, a density bursting subgraph
(DBS for short) is a subgraph that accumulates its density
at the fastest speed during a time interval. Here, the density
of a subgraph is measured by cohesiveness [20, 27], which is
the average connection strength between all vertices in the
subgraph; the speed of density accumulation is measured by
burstiness, that is, the ratio between the density gain of a
subgraph and the time to accumulate the gain. We make
the following contributions.

2353

First, we consider the static version of the top-k DBS find-
ing (TDF for short) problem, that is, all snapshots of a tem-
poral graph are available and we find the set of DBSs with
the top-k largest burstiness. We model the static TDF prob-
lem as a mixed integer programming problem and show that
it is NP-hard. We also propose a baseline method SlideWin
to find a good solution to the TDF problem by iteratively
solving a constrained quadratic programming (CQP) prob-
lem and a maximum density segment (MDS) problem.

Second, considering the general DBS detection problem,
we show that the time duration of a DBS can be arbitrarily
long, and thus a straightforward extension of SlideWin or
alike does not work. To tackle the problem systematically,
we follow a principled approach – we try to identify the
“atomic” components of DBSs. Critically, we observe that
a DBS with a large time duration can be decomposed into
a set of indecomposable DBSs with equal or larger bursti-
ness. Most importantly, we show that the time duration
of an indecomposable DBS has a non-trivial upper bound,
which makes it possible to detect indecomposable DBSs in
an online manner.

Last, we formulate the online top-k DBS finding (OTDF
for short) problem, which is to detect top-k indecomposable
DBSs online. The OTDF problem is also NP-hard. We
develop an e�cient algorithm TopkDBSOL to achieve a
2-approximation of the top-1 indecomposable DBS. Our ex-
tensive experiments and two interesting case studies clearly
show that our method is e↵ective and e�cient.

The rest of the paper is organized as follows. We review
related works in Section 2, formulate the static TDF prob-
lem in Section 3, and investigate how to find a single DBS in
Section 4. We present SlideWin and discuss the major chal-
lenge of online DBS detection in Section 5. We explore the
decomposition properties of DBSs in Section 6. In Section 7,
we present the OTDF problem and develop TopkDBSOL.
We report a systematic empirical study in Section 8 and con-
clude the paper in Section 9. By default all mathematical
proofs are provided in Appendix.

2. RELATED WORKS
Online density bursting subgraph detection is a novel task

that has not been touched in literature. Our work is related
to the maximum density segment problem, dense subgraph
detection and dense temporal subgraph detection.

The maximum density segment (MDS for short) prob-
lem [9] is to select a subsequence of at least L numbers from
a sequence of numbers Q = hq

1

, . . . , qni, such that the aver-
age sum of the selected numbers is maximized.

The MDS problem has many e�cient solutions.
Huang et al. [16] solved it in O(nL) time. Lin et al. [19] pro-
posed a right-skew method with time complexity O(n logL).
Kim et al. [18] solved it in O(n) time by finding the line
segment with maximum slope. Goldwasser et al. [15] ap-
plied locally optimal segments to solve it in O(n) time.
Chung et al. [12] extended Goldwasser’s method [15] to a
linear online method. Curtis et al. [13] proposed an online
method based on sliding window.

In our work, we employ MDS methods as a building block.
However, as proved in Section 3.2, finding density bursting
subgraphs in temporal graphs is NP-hard, dramatically dif-
ferent from the polynomial-time solvable MDS problem.

Dense subgraph detection is a well investigated task that
aims to detect dense subgraphs from static graphs [1, 7, 28,
32, 34]. Our work is most related to the cohesiveness based
methods [8, 10, 20, 21, 27], which measure the density of
a subgraph by cohesiveness, that is, a quadratic function
x>Ax of a subgraph embedding x 2 4n.

For unweighted graphs, Motzkin et al. [26] proved that
maximizing the cohesiveness is equivalent to finding the
maximum clique in the graph. For weighted graphs, Pa-
van et al. [27] proposed DS to detect clique-like dense sub-
graphs by finding local maximum points of cohesiveness in
O(n2) time. Bulò et al. [8] proposed IID to find local maxi-
mum points of cohesiveness in O(n) time. Since most dense
subgraphs exist in local regions, Liu et al. [20, 21] proposed
SEA to e�ciently search local maximum points of cohesive-
ness in small local subgraphs. All these cohesiveness based
methods cannot process the temporal information inherent
in a potentially endless stream of snapshots.

Dense temporal subgraph detection aims to detect dense
temporal subgraphs from temporal graphs [2, 3, 6, 24, 29,
30, 35]. Conventional methods detect subgraphs with large
accumulated density using bu↵ered snapshots or streaming
updates, but do not consider the change speed of the density
of a subgraph.

Bogdanov et al. [6] proposed MEDEN to detect dense tem-
poral subgraphs with a large sum of edge weights. Ma et al.
proposed FIDES [24] and FIDES+ [25], which are three or-
ders of magnitudes faster than MEDEN. Yang et al. [35]
used �-quasi-clique to find the set of most diversified �-
dense subgraphs. Boden et al. [5] employed �-quasi-clique to
find vertices densely connected by edges with similar labels.
These methods bu↵er temporal graphs in a static manner,
and have to compute from scratch when new updates arrive.
Thus, they cannot handle a temporal graph with an endless
stream of updates.

Several methods [2, 23, 3, 14, 4, 30] are dedicated to han-
dle streaming updates. For example, Liu et al. [23] proposed
a stochastic framework to find dense temporal subgraphs by
maximizing a utility function that favors high accumulated
density and large time duration. Shin et al. [30] proposed
DenseStream to maintain the densest subgraph with the
largest accumulated average degree. Most of these meth-
ods find subgraphs with large accumulated density instead
of considering how fast a temporal subgraph accumulates
density. Since a subgraph can slowly accumulate a large
density during an arbitrarily long time, a subgraph with
large density is not necessarily a density bursting subgraph.
Thus, the above methods cannot accurately find DBSs.

The DenseAlert method proposed by Shin et al. [30] can
be used to maintain the densest subgraph that has the
largest average degree within a fixed length time window.
However, DenseAlert cannot e↵ectively find top-k DBSs, be-
cause a dense subgraph with a large average degree usually
contains a large number of vertices that are not strongly con-
nected with each other [32], however, a DBS is a small clique-
like subgraph with fast growing edge connection strength
between vertices.

3. PROBLEM DEFINITION
In this section, we first introduce several essential notions,

then formalize the top-k density bursting subgraph finding
problem and investigate its computational complexity.

3.1 Temporal Graph and Temporal Subgraph
In this paper, we consider general weighted graphs where

each edge carries a weight. Two vertices are not connected
if the weight of the edge between them is zero.

A temporal graph, denoted by G(t
0

, tc) =
hG(t

0

), G(t
1

), . . . , G(tc)i, is a sequence of snapshots
that arrive at times t

0

, t
1

. . . , tc, respectively. Each snap-
shot is a static graph, and we assume that all snapshots
share the same set of vertices V . The temporal graph
G(t

0

, tc) is initialized as an empty graph at time t
0

, that
is, snapshot G(t

0

) contains only the set of vertices V , but

2354

!1 !2
!3

!5 !6

!4

!7 !8
(a) * +, , +, = 0

3

1

2

!1 !2
!3

!5 !6

!4

!7 !8
(e) * +0 , +0 = 4

3
33
1

2 2

1

!1 !2
!3

!5 !6

!4

!7 !8
(g) *(+2, +3)

3
1

2 2

2

3

2 4

!1 !2
!3

!5 !6

!4

!7 !8
(h) *(+5, +6)(f) * +6 , +6 = 5

2
2

!1 !2
!3

!5 !6

!4

!7 !8
(b) * +2 , +2 = 1

3

1

!1 !2
!3
!5 !6

!4

!7 !8
(c) * +5 , +5 = 2

1 2

1

!1 !2
!3

!5 !6

!4

!7 !8
(d) * +3 , +3 = 3

3
1

1

!1 !2
!3

!5 !6

!4

!7 !8

1
1

1
2
2

2
1

1

Figure 1: An example of temporal graph, accumulated graph, temporal subgraph and DBS.

no edges. The changes over time happen on the weights of
edges. The snapshots G(t

1

), . . . , G(tc) carry the updates on
the weights of edges at time instants t

1

, . . . , tc, respectively.
The snapshot that arrives at time th 2 {t

1

, . . . , tc} is a
static graph denoted by G(th) = (V,A(th)), where th is the
arrival time, and A(th) is the a�nity matrix that defines the
updates on the weights of edges at time th.

Denote by n = |V | the number of vertices in V . For each
snapshot G(th), we represent the a�nity matrix A(th) by
an n-by-n non-negative matrix, where the entry Aij(th) at
the i-th row and the j-th column of A(th) is the update on
the weight of the edge between the i-th vertex vi 2 V and
the j-th vertex vj 2 V . We say there is an edge between vi
and vj in snapshot G(th) if and only if Aij(th) > 0.

Example 1. Figures 1(a)-1(f) show the snapshots of a
temporal graph G(t

0

, t
5

) = hG(t
0

), . . . , G(t
5

)i. G(t
0

) is ini-
tialized as an empty graph that only contains the set of ver-
tices V = {v

1

, v
2

, . . . , v
8

}. The weights of all edges in G(t
0

)
are zero. G(t

1

), . . . , G(t
5

) are the snapshots that carry the
updates on the edge weights at time t

1

, . . . , t
5

, respectively.

A time interval, denoted by T = (tb, te] =
{tb+1

, tb+2

, . . . , te}, is a set of time instants between begin
time tb and end time te, excluding tb. The duration of
T = (tb, te] is te � tb.

An accumulated graph during T = (tb, te] is a static
graph G(tb+1

, te) = (V,A(tb+1

, te)), where A(tb+1

, te) =Pe
h=b+1

A(th) is the accumulated a�nity matrix. Denote
by Aij(tb+1

, te) the element at the i-th row and the j-th
column of A(tb+1

, te), we write the set of vertices that are
connected by at least one edge in G(tb+1

, te) as V (tb+1

, te) =
{vi 2 V | 9Aij(tb+1

, te) > 0}.

Example 2. Figures 1(g) and 1(h) show the accumulated
graphs G(t

1

, t
3

) and G(t
2

, t
5

) during time intervals (t
0

, t
3

]
and (t

1

, t
5

], respectively. The corresponding a�nity matrices
are A(t

1

, t
3

) = A(t
1

)+A(t
2

)+A(t
3

) and A(t
2

, t
5

) = A(t
2

)+
A(t

3

)+A(t
4

)+A(t
5

), respectively. Vertex v
4

is not connected
by any edge in G(t

1

, t
3

), thus v
4

is not contained in V (t
1

, t
3

).

Denote by G(tb+1

, te) = hG(tb+1

), . . . , G(te)i the sequence
of snapshots that arrive during T = (tb, te]. A temporal
subgraph is a sequence of subgraphs that are induced by a
set of weighted vertices S ✓ V on each of the snapshots in
G(tb+1

, te). Each vertex vi in S is assigned a positive weight
xi that indicates the importance of vi in S. The weights of
all vertices in V \S are set to 0’s. In this way, we can induce S
by an n-dimensional vector x = [x

1

,x
2

, . . . ,xn]
>, such that

V
x

= S = {vi 2 V | xi > 0}. Following the conventional
dense subgraph detection settings [21], we enforce x to be
in the standard simplex, that is x 2 4n = {x |

P
i xi =

1,xi � 0}. For the rest of the paper, we write a temporal
subgraph as a tuple (x, T).

The duration of a temporal subgraph (x, T) is exactly
the duration of T . For any vertex vi 2 V , if vi 2 V

x

, we say
vi is contained in (x, T) and write vi 2 (x, T).

Example 3. In Figure 1, for T = (t
0

, t
3

] and x =
[1
3

, 1

3

, 1

3

, 0, 0, 0, 0, 0], the temporal subgraph (x, T) is the se-
quence of subgraphs induced by the set of vertices S =
{v

1

, v
2

, v
3

} on the snapshots G(t
1

), G(t
2

) and G(t
3

).

3.2 Density Bursting Subgraph
For a temporal subgraph (x, T) and time th 2 T , denote

by G
x

(th) the subgraph induced by V
x

from the snapshot
G(th). We measure the density of G

x

(th) by the cohesive-
ness [27] defined as follows.

q
x

(th) = x>A(th)x (1)

The burstiness of (x, T) measures how fast it accumu-
lates cohesiveness during time interval T = (tb, te], that is,

g(x, T) =

Pe
h=b+1

q
x

(th)

te � tb
=

x>A(tb+1

, te)x
te � tb

(2)

Next, we define density bursting subgraph (DBS).

Definition 1. Given a temporal graph G(t
0

, tc) and a
minimum duration threshold ✓, a density bursting subgraph,
denoted by (x⇤, T ⇤) where T ⇤ = (tb⇤ , te⇤], is a temporal sub-
graph in G(t

0

, tc), such that (1) x⇤ 2 4n is a local maxi-
mum point of g(x, T ⇤); (2) T ⇤ is a global maximum point of
g(x⇤, T); and (3) te⇤ � tb⇤ � ✓.

Denote by G
x

⇤(tb⇤+1

, te⇤) the subgraph induced by V
x

⇤

from the accumulated graph G(tb⇤+1

, te⇤). As illustrated
later in Section 4, condition (1) of Definition 1 requires
G

x

⇤(tb⇤+1

, te⇤) to be a small clique-like dense subgraph in
G(tb⇤+1

, te⇤) [8, 22, 27].
Given x⇤, condition (2) of Definition 1 requires T ⇤ to be

the optimal time interval, such that the temporal subgraph
(x⇤, T ⇤) achieves the largest burstiness.

In condition (3) of Definition 1, the minimum dura-
tion threshold ✓ e↵ectively disqualifies trivial temporal sub-
graphs that have large burstiness but very short durations.
According to Equation 2, a trivial temporal subgraph with
a very small duration can have a large burstiness even if its
cohesiveness is very small. More often than not, such triv-
ial temporal subgraphs consist of a single edge in snapshots
with very small durations, which are not of much interest in
real world applications.

Example 4. In Figure 1, for ✓ = 2, T = (t
0

, t
3

] and x =
[1
3

, 1

3

, 1

3

, 0, 0, 0, 0, 0], the temporal subgraph (x, T) is a DBS
satisfying all the conditions in Definition 1. The duration of
(x, T) is t

3

�t
0

= 3. The burstiness of (x, T) is g(x, T) = 2

3

.
For ✓ = 2, T 0 = (t

1

, t
5

] and x0 = [0, 0, 0, 0, 1

2

, 1

3

, 1

12

, 1

12

], the
temporal subgraph (x0, T 0) is not a DBS, because x0 is not
a local maximum point of g(x0, T 0), which violates condition
(1) of Definition 1. If ✓  1, then x00 = [0, 0, 0, 0, 0, 0, 1

2

, 1

2

]
and T 00 = (t

3

, t
4

] will induce a DBS with a large burstiness
g(x00, T 00) = 1.5. However, (x00, T 00) trivially consists of a
single edge between v

7

and v
8

in G(t
4

), which is not of much
practical interest.

2355

Algorithm 1: FindDBS(G(t
0

, tc), ✓, (x, T))

Input: G(t
0

, tc), ✓, (x, T) := an initial temporal subgraph.
Output: (x⇤, T ⇤) := a DBS in G(t

0

, tc).

1: repeat
2: Solve the CQP problem by IID [8, 10]:

x argmax
x

x>A(tb+1

, te)x, s.t. x 2 4n.

3: Solve the MDS problem by MDSD [12]:

T argmax
T

s
x

(te)�s
x

(tb)
te�tb

, s.t. te � tb � ✓.

4: until The value of g(x, T) does not increase.
5: return (x⇤, T ⇤) = (x, T).

Now we are ready to introduce the top-k DBS finding
(TDF) problem and prove that it is NP-hard.

Definition 2. Given a temporal graph G(t
0

, tc), a min-
imum duration threshold ✓, and a positive integer k, the

problem of top-k DBS finding (TDF for short) is to com-
pute the set of DBSs in G(t

0

, tc) that have the top-k largest
burstiness.

Theorem 1. The problem in Definition 2 is NP-hard.

4. FINDING A SINGLE DBS
In this section, we introduce how to find a single DBS by

solving a mixed integer programming (MIP) problem.
According to Definition 1, a DBS (x⇤, T ⇤) is a local max-

imum point of the following MIP problem.

argmax
(x,T)

g(x, T), s.t. x 2 4n, T = (tb, te], te � tb � ✓. (3)

To find a single DBS, we find a local maximum point
of the MIP problem by iteratively updating x and T to
monotonously increase g(x, T). Technically, we update x
and T by solving a constrained quadratic programming
(CQP) problem [27] and a maximum density segment
(MDS) problem [9], respectively.

First, let us introduce the CQP problem. Given a time
interval T = (tb, te] such that te� tb � ✓, by plugging Equa-
tion 2 into Equation 3 and omitting the constant factor
te � tb, we transform the MIP problem into the following
CQP problem [27].

argmax
x

x>A(tb+1

, te)x, s.t. x 2 4n.

According to the previous studies on dense subgraph
detection [8, 10, 22, 27], a local maximum point x⇤ of
the CQP problem induces a clique-like dense subgraph
G

x

⇤(tb+1

, te) in the accumulated graph G(tb+1

, te), and the
size of G

x

⇤(tb+1

, te) is usually small if G(tb+1

, te) is sparse.
We can e�ciently find a local maximum point of the CQP

problem by the IID method [8]. The time complexity of IID
is O(�n), where � is the number of iterations of IID, and
n is the volume of V . Since x 2 4n is usually very sparse,
we can e�ciently solve the CQP problem using a small sub-
matrix of A(tb+1

, te) [10].
Now we are ready to introduce the MDS problem.
Given x 2 4n, denote by s

x

(tr) =
Pr

h=0

q
x

(th) the sum
of cohesiveness from t

0

to tr. We rewrite the burstiness in
Equation 2 as g(x, T) = s

x

(te)�s
x

(tb)
te�tb

, which is exactly the

slope between two points, (tb, sx(tb)) and (te, sx(te)), in
the 2-dimensoinal Cartesian coordinate system.

Using this slope representation of burstiness, we convert
the MIP problem into the following MDS problem [9].

argmax
T

s
x

(te)� s
x

(tb)
te � tb

, s.t. te � tb � ✓.

Denote by P
x

= {(th, sx(th)) | th 2 {t
0

, . . . , tc}} the set
of points induced by x. Solving the MDS problem is equiv-
alent to finding T ⇤ = (tb⇤ , te⇤] such that te⇤ � tb⇤ � ✓, and
the points (tb⇤ , sx(tb⇤)) and (te⇤ , sx(te⇤)) in P

x

achieve the
global maximum slope.

We can e�ciently compute T ⇤ by the MDS detection
method [12]. The time complexity of this method is O(c+1),
where c+ 1 is the number of snapshots in G(t

0

, tc).
We summarize the FindDBS method in Algorithm 1,

which starts from an initial temporal subgraph (x, T) and
finds a DBS by iteratively solving the CQP problem and
the MDS problem. Here, an initial temporal subgraph
(x, T) is a tuple containing the initial values of x and T ,
which are used as the initial points to iteratively solve the
CQP problem and MDS problem. We will illustrate how to
initialize x and T for each of the proposed methods later.

5. A STATIC BASELINE AND A CHAL-
LENGE FOR ONLINE SOLUTIONS

The TDF problem requires to find multiple local max-
imum points of the non-concave MIP problem in Equa-
tion 3. Normally, to find a set of good solutions to the
non-concave MIP problem, we first find multiple DBSs by
running FindDBS multiple times with di↵erent initializa-
tions, and then return the set of DBSs that have the top-k
largest burstiness.

Following the above idea, we propose a static baseline
method, called SlideWin. To obtain as many di↵erent ini-
tializations as possible, SlideWin initializes T by every time
interval (tb, te] such that te� tb � ✓. For every T , SlideWin
initializes x in the same way as IID [8]. That is, for each
vi 2 V (tb+1

, te), we set x = u(vi), where u(vi) 2 4n is an
n-dimensional vector such that only the i-th entry is 1 and
all the other entries are 0’s. Initializing x in this way keeps
the size of V

x

small and improves the e�ciency of IID [8].
A vertex vi used to initialize x is called a seed vertex for
FindDBS. At last, SlideWin calls FindDBS with every
initialization (x, T) to find multiple DBSs, and return the
set of DBSs with the top-k largest burstiness.

The time cost of SlideWin can be measured by the num-
ber of times it calls FindDBS. In the worst case such that
V (tb+1

, te) = V and te�tb � ✓ for any time internal (tb, te] of
the temporal graph G(t

0

, tc), SlideWin will call FindDBS
nc(c+1)

2

times, where n is the number of vertices in V , and
c is the number of snapshots in G(t

1

, tc). Denote by ⌧ the
maximum time cost to call FindDBS once, the time cost of
SlideWin is O(⌧nc(c+1)

2

).
Denote by  the maximum number of edges in a snapshot,

the memory cost of SlideWin is O(c) due to its require-
ment to bu↵er all the snapshots in G(t

0

, tc).
The major drawback of SlideWin is that it costs a large

amount of time and memory when the number of snapshots
c is large. Since G(t

0

, tc) may be a long or even endless
stream of snapshots, the value of c may often be very large
in practice, which makes it infeasible to bu↵er and process
all snapshots in G(t

0

, tc). This significantly reduces the ap-
plicability of SlideWin.

As a result, we are interested in an online method that
maintains the top-k DBSs in real time using a small num-
ber of bu↵ered snapshots. However, designing an online
method for the TDF problem is still challenging, because

2356

the minimum number of snapshots to be bu↵ered by an on-
line method is lower bounded by the maximum duration of
DBSs, which, as shown in Theorem 2, can be as large as
tc � t

0

in a temporal graph G(t
0

, tc).

Theorem 2. There exists a temporal graph G(t
0

, tc) such
that the maximum duration of a DBS in G(t

0

, tc) is tc � t
0

.

Theorem 2 indicates a big challenge in designing online
methods for the TDF problem. To find a DBS with dura-
tion tc � t

0

, we have to bu↵er all the snapshots in G(t
0

, tc),
which, unfortunately, may be a long or even endless stream
of snapshots.

6. DBS DECOMPOSITION
In this section, we make a critical observation: a long

DBS can be easily decomposed into a set of shorter DBSs
that have the same or larger burstiness. We also show that
the durations of the shorter DBSs are upper bounded, which
makes it possible to design a highly e�cient online algorithm
for the TDF problem.

Given a DBS (x⇤, (tb⇤ , te⇤]), if 9th 2 (tb⇤ , te⇤] such that
tb⇤ + ✓  th  te⇤ � ✓, then (x⇤, (tb⇤ , te⇤]) is said to be
decomposable at time th. Otherwise, (x⇤, (tb⇤ , te⇤]) is in-
decomposable. If a DBS (x⇤, (tb⇤ , te⇤]) is decomposable
at time th, the two temporal subgraphs (x⇤, (tb⇤ , th]) and
(x⇤, (th, te⇤]) are called the components of (x⇤, (tb⇤ , te⇤])
at time th.

Denote by prev(te) = max{th | th  te � ✓} the time
of the last snapshot that arrives no later than te � ✓,
by next(tb) = min{th | th � tb + ✓} the time of the
first snapshot that arrives no earlier than tb + ✓, and by
T (tb, te) = {th | next(tb)  th  prev(te)} the set of times
between next(tb) and prev(te).

Clearly, (x⇤, (tb⇤ , te⇤]) is indecomposable if and only if
T (tb⇤ , te⇤) = ;. If T (tb⇤ , te⇤) 6= ;, then (x⇤, (tb⇤ , te⇤]) is
decomposable at any time th 2 T (tb⇤ , te⇤).

We make an important observation that a decomposable
DBS has exactly the same burstiness as its components.

Theorem 3. For a decomposable DBS (x⇤, T ⇤) where
T ⇤ = (tb⇤ , te⇤], any component of (x⇤, T ⇤) at time th 2
T (tb⇤ , te⇤) has the same burstiness as (x⇤, T ⇤).

According to Theorem 3, a decomposable DBS (x⇤, T ⇤)
can be decomposed into two components, (x⇤, (tb⇤ , th]) and
(x⇤, (th, te⇤]), that have the same burstiness as (x⇤, T ⇤).
However, since x⇤ may not be a local maximum point of
g(x, (tb⇤ , th]) or g(x, (th, te⇤]), the components of (x⇤, T ⇤)
may not be DBSs.

If a component (x0, T 0) of a decomposable DBS (x⇤, T ⇤)
is not a DBS, we can further increase the burstiness of
(x0, T 0) by feeding (x0, T 0) as the initial temporal sub-
graph into FindDBS. The output of FindDBS is a new
DBS (x⇤

new, T
⇤
new) such that g(x⇤

new, T
⇤
new) > g(x0, T 0) =

g(x⇤, T ⇤).
If (x⇤

new, T
⇤
new) is also decomposable, we can keep decom-

posing it and updating its components by FindDBS. Even-
tually, we can decompose a decomposable DBS (x⇤, T ⇤) into
a set of indecomposable DBSs with the same or even larger
burstiness.

Interestingly, the duration of any indecomposable DBS
(x⇤, (tb⇤ , te⇤]) is upper bounded by te⇤ � prev(prev(te⇤)),
because T (tb⇤ , te⇤) = ; if and only if tb⇤ > prev(prev(te⇤)).
This makes it possible to detect indecomposable DBSs in an
online manner without bu↵ering all snapshots.

Another reason to find indecomposable DBSs is that most
DBSs with large burstiness are indecomposable in practice.
We will analyze this phenomenon using the experiments in
Table 7 and Section 8.2.

7. ONLINE TOP-K DBS DETECTION
Enabled by the observations in Section 6, in this section,

we define the online top-k DBS finding (OTDF) problem
and develop an e�cient online DBS detection method named
TopkDBSOL.

7.1 The OTDF problem
Denote by M(tc) the set of indecomposable DBSs in

G(t
0

, tc). We define the OTDF problem as follows.

Definition 3. Given M(tc�1

) and a sequence of bu↵ered
snapshots G(ts, tc), the problem of online top-k density

bursting subgraph finding (OTDF for short) is to compute
the top-k indecomposable DBSs in M(tc).

The OTDF problem is NP-hard following the same reduc-
tion in the proof of Theorem 1.

Since the duration of any indecomposable DBS ending
at time tc is upper bounded by tc � prev(prev(tc)), we set
ts = prev(prev(tc)), so that any indecomposable DBS in
M(tc) \M(tc�1

) is an indecomposable DBS in G(ts, tc).
However, an indecomposable DBS (x⇤, T ⇤) in G(ts, tc)

may not be an indecomposable DBS in M(tc) \ M(tc�1

),
because, without the snapshots in G(t

0

, ts�1

), we cannot
verify whether or not T ⇤ is the global maximum point of
g(x⇤, T) in G(t

0

, tc). As a result, we cannot compute M(tc)
directly.

To tackle this problem, we compute a superset ofM(tc) by
finding a set of indecomposable DBS candidates, and return
the top-k indecomposable DBS candidates as the final result.
Here, an indecomposable DBS candidate in G(t

0

, tc) is a
temporal subgraph (x̂, T̂) that has a begin time t

ˆb 2 (t
0

, tc],
and is an indecomposable DBS in G(t

ˆb, tc). Obviously, the
duration of any indecomposable DBS candidate with an end
time tc is also upper bounded by tc � prev(prev(tc)).

According to the definition of indecomposable DBS candi-
date, any indecomposable DBS in G(t

0

, tc) is an indecompos-
able DBS candidate in G(t

0

, tc). Therefore, the set of inde-
composable DBS candidates in G(t

0

, tc), denoted by D(tc),
is a super set of M(tc).

As illustrated in the rest of this section, given D(tc�1

)
and the bu↵ered snapshots G(ts, tc), we can e�ciently find
a good solution to the OTDF problem in the following three
steps. First, we find new indecomposable DBS can-
didates (NDBSC) in D(tc) \ D(tc�1

). Second, we up-
date old indecomposable DBS candidates (ODBSC)
in D(tc�1

). Last, we return the top-k indecomposable DBS
candidates in D(tc) as the final result.

7.2 Finding the Set of NDBSCs
Since NDBSCs are indecomposable DBS candidates in

D(tc) \ D(tc�1

), a NDBSC is an indecomposable DBS can-
didate with an end time tc. Since ts = prev(prev(tc)) and
the duration of any indecomposable DBS candidate end-
ing at time tc is upper bounded by tc � prev(prev(tc)), the
bu↵ered snapshots G(ts, tc) contains all NDBSCs. As a re-
sult, to obtain the set of NDBSCs, we only need to find
indecomposable DBSs ending at time tc in G(ts, tc).

A straightforward way to find these indecomposable DBSs
in G(ts, tc) is to call SlideWin. However, SlideWin is inef-
ficient because it calls FindDBS too many times by using
every vertex vi 2 V (tb+1

, te) as a seed vertex.
Interestingly, we observed that a large proportion of the

vertices in V (tb+1

, te) are not contained in any top-k in-
decomposable DBS. Inspired by this observation, we first
derive an upper bound for the burstiness of any indecom-
posable DBS that contains a vertex vi, then we propose a
smart initialization heuristic, which applies the upper bound

2357

Algorithm 2: FindNDBSC(G(ts, tc), ✓,D(tc�1

), k)

Input: G(ts, tc), ✓,D(tc�1

), k.
Output: N (tc) := the set of NDBSCs.

1: N (tc) ; and compute ✏k(tc�1

).
2: for each tb 2 {ts, . . . , tc�1

} such that tc � tb � ✓ do
3: T (tb, tc].
4: for each vi 2 V (tb+1

, tc) do
5: if ↵(vi, T) � ✏k(tc�1

) then
6: x o(vi, T).
7: (x̂, T̂) FindDBS(G(ts, tc), ✓, (x, T)).
8: if (x̂, T̂) 62 D(tc�1

) then

9: N (tc) N (tc) [(x̂, T̂).
10: end if
11: end if
12: end for
13: end for
14: return N (tc).

Algorithm 3: UpdateODBSC(G(ts, tc), ✓,D(tc�1

))

Input: G(ts, tc), ✓, D(tc�1

).
Output: U(tc) := the set of updated ODBSCs.

1: U(tc) ;.
2: for each (x̂, T̂) 2 D(tc�1

) do
3: if t

ˆb � ts then

4: U(tc) U(tc) [FindDBS(G(ts, tc), ✓, (x̂, T̂)).
5: else if 9th 2 (ts, prev(tc)] : g(x̂, (th, tc]) > g(x̂, T̂) then
6: U(tc) U(tc) [FindDBS(G(ts, tc), ✓, (x̂, (th, tc])).
7: else
8: U(tc) U(tc) [(x̂, T̂).
9: end if
10: end for
11: return U(tc).

to filter out a large proportion of vertices that are not con-
tained in any top-k indecomposable DBS. This significantly
reduces the number of calls of FindDBS, and achieves a
speedup of two orders of magnitudes in our experiments.

Next, we show that ↵(vi, T) =
maxj Aij(tb+1,te)

te�tb
is an upper

bound of the burstiness of any indecomposable DBS that
contains a vertex vi during a time interval (tb, te].

Theorem 4. For any indecomposable DBS (x⇤, T ⇤), if
vi 2 (x⇤, T ⇤), then g(x⇤, T ⇤)  ↵(vi, T

⇤).

Now, we introduce the smart initialization method that
only calls FindDBS for a small set of selected seed vertices.

Denote by ✏k(tc�1

) the k-th largest burstiness of all ODB-
SCs in D(tc�1

). By Theorem 4, for any time interval T , if
↵(vi, T) < ✏k(tc�1

), then vi is not contained in any inde-
composable DBS (x⇤, T ⇤) such that g(x⇤, T ⇤) � ✏k(tc�1

)
and T ⇤ = T .

Since we are only interested in the top-k indecompos-
able DBSs whose burstiness is larger than ✏k(tc�1

), we
only use a vertex vi as a seed vertex for FindDBS if
↵(vi, T) � ✏k(tc�1

), and skip each vertex vh such that
↵(vh, T) < ✏k(tc�1

).
For a seed vertex vi such that ↵(vi, T) � ✏k(tc�1

), we
initialize FindDBS by x = o(vi, T) = 0.5u(vi) + 0.5u(vj),
where vj = argmaxvj

Aij(tb+1

, te) is the nearest neighbor of

vi in G(tb+1

, te). As to be shown in Theorem 6, by setting
x = o(vi, T), we achieve a 2-approximation of the top-1
indecomposable DBS.

Algorithm 2 summarizes FindNDBSC, which e�ciently
finds a set of NDBSCs by finding indecomposable DBSs with
an end time tc in G(ts, tc). The smart initialization is per-
formed in steps 5-6.

Algorithm 4: TopkDBSOL(G(ts, tc), ✓,D(tc�1

), k)

Input: G(ts, tc), ✓, D(tc�1

), k.
Output: D(tc) and TOPK(D(tc)).

1: N (tc) FindNDBSC(G(ts, tc), ✓,D(tc�1

), k).
2: U(tc) UpdateODBSC(G(ts, tc), ✓,D(tc�1

)).
3: D(tc) N (tc) [U(tc).
4: return D(tc) and TOPK(D(tc)).

7.3 Updating the Set of ODBSCs
When a new snapshot arrives at time tc, the ODBSCs in

D(tc�1

) need to be updated because a ODBSC in D(tc�1

)
may not be necessarily an indecomposable DBS candidate
in D(tc).

Denote by (x̂, T̂), T̂ = (t
ˆb, tê] an ODBSC in D(tc�1

).

If t
ˆb � ts, we can directly update (x̂, T̂) by calling

FindDBS(G(ts, tc), ✓, (x̂, T̂)).
However, when t

ˆb < ts, we cannot update (x̂, T̂) by calling

FindDBS(G(ts, tc), ✓, (x̂, T̂)), because the snapshots before
time ts are not bu↵ered in G(ts, tc). For such ODBSCs, we
show in Theorem 5 a necessary and su�cient condition to
verify whether it is contained in D(tc).

Theorem 5. For any ODBSC (x̂, T̂) 2 D(tc�1

) where
T̂ = (t

ˆb, tê] and t
ˆb < ts, (x̂, T̂) 2 D(tc) if and only if @th 2

(ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂).

For any ODBSC (x̂, T̂) with a begin time t
ˆb < ts, The-

orem 5 provides a straightforward way to verify whether it
is contained in D(tc) as follows. If @th 2 (ts, prev(tc)]
such that g(x̂, (th, tc]) > g(x̂, T̂), then (x̂, T̂) 2 D(tc), and
we keep (x̂, T̂) in D(tc). If 9th 2 (ts, prev(tc)] such that
g(x̂, (th, tc]) > g(x̂, T̂), then (x̂, T̂) 62 D(tc). In this case, we
update (x̂, T̂) by calling FindDBS(G(ts, tc), ✓, (x̂, (th, tc])),
which will find a NDBSC with a larger burstiness than the
ODBSC (x̂, T̂).

We summarize UpdateODBSC and TopkDBSOL in Al-
gorithm 3 and Algorithm 4, respectively.

Next, we show that TopkDBSOL achieves a 2-
approximation of the top-1 indecomposable DBS in G(t

0

, tc).

Theorem 6. TopkDBSOL produces a 2-approximation
of the top-1 indecomposable DBS in G(t

0

, tc).

8. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the pro-

posed methods SlideWin (SW) and TopkDBSOL (OL),
and compare OL with four baseline methods, DenseAlert
(DA) [30], DenseStream (DS) [30], DYN [14] and
FIDES+ [25]. We also implement an algorithm named
TopkDBSOLnsi (OLnsi) by disabling the smart initializa-
tion of OL to further evaluate the e↵ect of the smart initial-
ization introduced in Section 7.2.

Table 1 summarizes the default parameter settings. For all
methods, if not specified otherwise, by default the minimum
duration of detected temporal subgraphs is ✓ = 3, and the
number of temporal subgraphs to detect is k = 100. For DA
and DS, the order of the input tensor is set to N = 2 to
deal with matrix input. The window size of DA is optimally
set to 4T = 2. The approximation error of DYN is set to
✏ = 0.01 by default. The number of candidate intervals for
FIDES+ is set to C = 100.

The code of all baseline methods is provided by their au-
thors. Our algorithms are implemented in C++. All ex-
periments are conducted on a PC with Core-i7-3370 CPU

2358

Table 1: Summary of default parameter settings.
Methods ALL DA DS DYN FIDES+

Settings
✓ = 3

k = 100
N = 2
4T = 2 N = 2 ✏ = 0.01 C = 100

(3.40 GHz), 16GB main memory, and a 5400 rpm hard drive
running Windows 7 OS.

The e�ciency of a method is measured by running time
(RT). The quality of a detected temporal subgraph is mea-
sured by edge density burstiness (EDB), which is the
speed that the detected temporal subgraph accumulates
edge density [11, 32, 20].

Here, edge density is a well recognized evaluation met-
ric to measure the average connection strength between the
vertices of a subgraph [11, 20, 32]. Denote by GS(th) a sub-
graph induced by a set of vertices S from a snapshot G(th),
th 2 {t

1

, . . . , tc}. The edge density (ED) of GS(th) is
computed by

EDS(th) =

P
vi2S

P
vj2S Aij(th)

|S|(|S|� 1)
,

where |S| is the volume of S.
Since a snapshot G(th) carries the updates on the edge

weights of the accumulated graph G(t
0

, th�1

), EDS(th) is
actually the amount of edge density accumulated by the
subgraph GS(th) during time interval (th�1

, th].
Denote by (S, (tb, te]) a detected temporal subgraph in-

duced by S from the snapshots of G(tb+1

, te). The edge den-
sity accumulated by (S, (tb, te]) during time interval (tb, te]
is the sum of the edge density accumulated by each of the
subgraphs GS(tb+1

), . . . , GS(te), which is computed by

eX

h=b+1

EDS(th) =

P
vi2S

P
vj2S Aij(tb+1

, te)

|S|(|S|� 1)
.

Since the duration for the temporal graph (S, (tb, te]) to
accumulate its edge density is te � tb, we define the EDB
of (S, (tb, te]) as EDB = 1

te�tb

Pe
h=b+1

EDS(th), which is ex-

actly the speed that (S, (tb, te]) accumulates its edge density.
Obviously, a larger EDB means a faster speed in forming a

strongly connected dense subgraph, which further indicates
a higher quality of the detected temporal subgraph.

We use the following five public real world data sets.
Facebook Wall Posts (FBWP) Data Set [33]. This

data set is the wall post network of Facebook. Each vertex is
a user. Each edge represents the wall post activity between
two users. The edge weight is the number of wall posts be-
tween two users. A DBS in FBWP identifies a fast emerging
community of users who actively interact with each other.

ENRON Data Set [33]. This data set is the email com-
munication network of the Enron company. Each vertex is
an employee. Each edge represents the email communica-
tion between two employees. The edge weight is the number
of emails sent between two users. A DBS in this data set
identifies a fast emerging group of employees who frequently
communicate with each other.

DBLP Coauthorship (DBLP) Data Set [33]. This
data set is the co-authorship network in DBLP. Each ver-
tex is an author. Each edge represents the co-authorship
between two authors. The edge weight is the number of
coauthored publications. Finding DBSs in this type of data
identifies fast emerging groups of researchers who frequently
collaborate with each other.

TAXI-1 and TAXI-2 Data Sets. These data sets are
constructed using the taxi trips in July 2017 in the city of
Chicago [31].We uniformly partition the city into 362 blocks,

Table 2: Detailed information of data sets. “V”,
“E”, “S” and “TI” represent “Vertices”, “Edges”,
“Snapshots” and “Time Interval”, respectively. TI
is the time interval between the arrival time of two
neighbor snapshots.
Data Set # V # E # S TI
FBWP 46,952 585,932 1,591 1 DAY
ENRON 87,273 920,478 2,222 1 DAY
DBLP 1,282,461 7,354,929 45 1 YEAR
TAXI-1 362 88,547 96 15 MIN.
TAXI-2 362 70,202 96 15 MIN.
KAN 33,967 142,068 20 1 YEAR

Table 3: The information of locations in Figure 2.
ID Locations in Figure 2(a).

1 Downtown area, shopping centre (i.e., Nordstrom),
cosmetic boutique restaurants and so on.

2 O�ce buildings and companies.
3 Various restaurants.
4 Open bars, restaurants.
5 Companies, restaurants and bars.

ID Locations in Figure 2(b).
1 16 bars or clubs that are still open during 22:30-02:00.
2 College town surrounded by colleges and universities.
3 Oz park, clubs, midnight pubs and restaurants.
4 3 bars or clubs within 150 meters range.

each of which corresponds to a vertex in the temporal graph.
The period of one day is uniformly divided into 96 snapshots,
each of which corresponds to a time interval of 15 minutes.
The taxi trips during the same time interval of all days are
grouped into the same snapshot. For each snapshot, the
edge weight between two vertices is the number of taxi trips
between two locations. TAXI-1 and TAXI-2 consist of the
taxi trips of weekdays and weekends, respectively. As shown
in the first case study of Section 8.1, a detected DBS in
these data sets reveals a burst of taxi trips among a group of
locations, which reveals interesting travel patterns of people.

Keyword Association Network (KAN) Data Set.
This data set is a keyword association network [3] extracted
from the DBLP-Citation-Network V10 data set [17].We use
the abstracts of the papers published in some well estab-
lished data mining venues, such as KDD, ICDM, SDM,
PKDD, PAKDD, TKDE and TKDD. Each vertex is a key-
word of a paper. Each edge represents the co-occurrence of
two keywords in the same abstract. The edge weight is the
number of co-occurring abstracts. As shown in the second
case study of Section 8.1, a DBS in this data set identifies
a set of keywords that accurately describe a fast emerging
research topic.

Table 2 shows some details about the data sets. Since
the time intervals (TI for short) between neighbor snapshots
have the same duration, we use TI as the base unit of time to
measure the durations of time intervals, and directly define
the arrival time of a snapshot G(ti) as ti = i, which means
G(ti) arrives at the end of the i-th time interval.

8.1 Case Studies
In this subsection, we demonstrate the e↵ectiveness of OL

in discovering meaningful patterns by the case studies on
TAXI-1, TAXI-2, KAN, and DBLP.

First, we show some interesting patterns of taxi trips dis-
covered by finding the most significant DBSs from TAXI-1
and TAXI-2. Figure 2(a) shows the bursting taxi trips be-
tween a set of locations during 17:30-18:45 on weekdays.
The location 2 is surrounded by o�ce buildings, the loca-
tions 1, 3, 4 and 5 are surrounded by shopping centres and

2359

1

2

3
4

5

(a) Weekdays (17:30-18:45)

1

2

3

4

(b) Weekends (22:45-23:45)

Figure 2: The bursting taxi trips between a set of
locations in the city of Chicago in US. (a) shows
the number of taxi trips between a set of locations
during 17:30-18:45 on TAXI-1. (b) shows the num-
ber of taxi trips between a set of locations during
22:45-23:45 on TAXI-2. Detailed information of the
locations in (a) and (b) are listed in Table 3.

Table 4: The topics and durations of detected DBSs
by OL.
ID Top-6 sets of keywords (Years) detected by OL

1 Deep learning, image patch, feature representation.
(2012-2015)

2 Multiple type, link prediction, heterogeneous network.
(2011-2014)

3 Visual word, local feature, inverted index. (2010-2013)

4 Domain adaption, conditional probability, semg signal.
(2010-2013)

5
Graph laplacian, cluster label, feature selection
algorithm, spectral feature, unsupervised feature

selection. (2012-2015)

6 Loss function, machine learning, vast amount, large
scale. (2011-2015)

restaurants. The number of taxi trips between these loca-
tions bursts during 17:30-18:45 on weekdays, because people
often go shopping and dine out after a day’s busy work. Fig-
ure 2(b) shows an even more interesting pattern of bursting
taxi trips during 22:45-23:45 on weekends.

Where are people going at midnight? The answer lies in
the locations 1, 3 and 4, where the neighborhoods have many
mid-night pubs and restaurants that open late at night.

Who are those people? We investigate the neighborhood
of location 2 and find that it is a college town surrounded by
several universities and colleges. Most of the taxi trips are
related to location 2. Obviously, midnight parties at pubs
are one of the favourite weekend entertainments of young
students. The pubs and restaurants start to close at 22:30,
and many people go home before 00:00, therefore, the num-
ber of taxi trips bursts during 22:45-23:45.

In this simple case study, finding DBSs from the temporal
network of taxi trips discovers interesting travel patterns
that provide useful insights into people’s behavior patterns.
Such patterns can be used to, for example, improve taxis
dispatch plans and develop better public tra�c designs.

Second, we show some interesting research topics discov-
ered by finding DBSs from the KAN data set. Table 4 shows
the top-6 sets of keywords detected by OL. Each row shows a
set of keywords, which describe a meaningful research topic
that emerges at the fastest speed during the corresponding
years. These topics are: (1) learning representations by deep
learning; (2) link prediction in heterogeneous networks; (3)
image retrieval based on visual word; (4) domain adaption
for semg signal; (5) unsupervised feature selection based on
graph spectrum; and (6) large scale machine learning.

Table 5: The topics and durations of detected DBSs
by DA.
ID Top-2 sets of keywords (Years) detected by DA

1

Di↵erent population, dynamic feature, critical
challenge, twitter data, spatial correlation, shared
information, static feature, extensive experimental
evaluation, dynamic pattern, e↵ective model, model

training, multi-task learning. (2013-2016)

2

Similarity matrix, class label, loss function, scalable
approach, target data, target set, concept drift, wide
range, optimization framework, class membership,

transfer learning, unsupervised model, cluster ensemble,
soft constraint, bregman divergence, target distribution.

(2011-2014)

Table 6: The researcher groups and durations of
detected DBSs by OL.
ID Top-4 researcher groups (Years) detected by OL

1 Fatos Xhafa, Leonard Barolli, Evjola Spaho.
(2010-2013)

2 Tomoya Enokido, Makoto Takizawa, Ailixier Aikebaier.
(2009-2012)

3 Patrick Girard, Arnaud Virazel, Luigi Dilillo, Alberto
Bosio”. (2008-2012)

4 Hiroshi Harada, Chin-Sean Sum, Tuncer Baykas, Junyi
Wang, Shuzo Kato. (2007-2010)

Table 5 shows the top-2 sets of keywords detected by DA.
Comparing to the keywords detected by OL, each set of the
keywords detected by DA contains more words, but these
words hardly describe a meaningful and focused topic.

The sets of keywords detected by DS, DYN and FIDES+

contain hundreds of keywords, which are not shown here lim-
ited by space. We comprehensively analyze the performance
of these methods in Section 8.4.

To validate the emerging years of the topics, we crawled
the annual popularity of each keyword from AMINER
(https://aminer.org/), and compute the popularity of
each topic by the product of the popularities of all related
keywords. As shown in Figure 3 and Tables 4 and 5, the
durations of all topics detected by OL accurately highlight
the time when their popularities rose fast. However, the
durations of the topics detected by DA miss the time when
those topics quickly gained popularity.

In this case study, by finding DBSs in the network of KAN,
OL e↵ectively detects hot research topics, as well as the time
interval when their popularities rise fast.

Last, we show some emerging groups of researchers dis-
covered by using OL to find DBSs from the DBLP data
set. Table 6 shows the top-4 detected researcher groups
and their emerging years. To validate the emerging years
of these researcher groups, we use the names of all authors
in the same group as a query to search Google Scholar, and
regard the number of returned results as the popularity of
the researcher group. As shown in Figure 4 and Table 6, the
durations of all researcher groups detected by OL accurately
highlight the time when their popularities arise fast.

In summary, the above case studies show that finding
DBSs from the temporal graphs of TAXI-1, TAXI-2, KAN
and DBLP discovers interesting patterns in the real world.

8.2 Effect of Parameters
In this subsection, we analyze the e↵ects of parameters ✓

and k on the proposed methods OL, OLnsi and SW. The
performance of each method is evaluated in RT and the
average EDB of the top-k detected DBSs.

Since SW detects DBSs by scanning every possible time
intervals of a temporal graph in a brute force manner, it usu-

2360

2000 2004 2008 2012 2016
Year

0
0.5

1
PO

P (a) OL, ID=1

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (b) OL, ID=2

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (c) OL, ID=3

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (d) OL, ID=4

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (e) OL, ID=5

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (f) OL, ID=6

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (g) DA, ID=1

2000 2004 2008 2012 2016
Year

0
0.5

1
PO

P (h) DA, ID=2

Figure 3: The normalized popularity (POP) of de-
tected topics on KAN. x-axis is the time line of
years. (a)-(f) show the POP of OL. (g)-(h) show the
POP of DA. The IDs are shown in Tables 4 and 5.

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (a) DBLP, ID=1

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (b) DBLP, ID=2

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (c) DBLP, ID=3

2000 2004 2008 2012 2016
Year

0
0.5

1

PO
P (d) DBLP, ID=4

Figure 4: The normalized popularity (POP) of de-
tected researcher groups on DBLP. The x-axis is the
time line in years. The IDs are shown in Table 6.

ally produces a very good DBS detection result. Therefore,
SW can serve as a strong baseline to compare with OLnsi

and OL. However, the major problem of SW is that it runs
too slow on the full data sets of FBWP, ENRON and DBLP.
Therefore, we sample a small data set from each full data
set to conduct our experiments in this subsection.

For DBLP, we first sample 10, 000 vertices from the accu-
mulated graph of all snapshots by a breath-first search, and
then use the temporal subgraph induced by the sampled
vertices from each snapshot to form a sample of a snapshot.
For FBWP and ENRON, we use the complete set of vertices,
and sample two temporal graphs with continuous durations
of 30 days and 50 days, respectively.

Figure 5 shows the e↵ect of ✓. We can see that the aver-
age EDB decreases when ✓ increases. This is because most
social events in FBWP only heat up at the fastest speed
for a short time, the email frequencies between colleagues
in ENRON do not stay high for long, and most co-authors
in DBLP do not stay highly productive together for a long
time. When ✓ increases, the RT of OL and OLnsi increases,
because a large ✓ increases the number of bu↵ered snapshots
in G(ts, tc), which increases the running time of FindDBS
in Algorithm 2 and Algorithm 3. The RT of SW stays stable,
because increasing ✓ increases the time cost of FindDBS,
however, reduces the number of times to call FindDBS in
SlideWin.

Figure 6 shows the e↵ect of k. Since the detected DBSs
are ranked by burstiness, the average EDB decreases when k
increases. The e�ciency of OLnsi and SW are irrelevant to k,
thus their RT stays stable. The RT of OL increases, because
a larger k decreases the value of ✏k(tc�1

), which is the k-th
largest burstiness of all ODBSCs in D(tc�1

). This increases
the number of times to call FindDBS in Algorithm 2.

2 4 6 8 10
3

0

5

10

15

Av
er

ag
e

ED
B (a) FBWP

2 4 6 8 10
3

0

4

8

Av
er

ag
e

ED
B (b) ENRON

1 2 3 4 5
3

10

15

20

25

Av
er

ag
e

ED
B (c) DBLP

2 4 6 8 10
3

100

102

104

R
T(

se
c)

(d) FBWP

2 4 6 8 10
3

100

102

104

R
T(

se
c)

(e) ENRON

1 2 3 4 5
3

100

102

104

R
T(

se
c)

(f) DBLP

OL OLnsi SW

Figure 5: The e↵ect of parameter ✓ when k = 30.

10 40 70 100
k

6

10

14

18

Av
er

ag
e

ED
B (a) FBWP

10 40 70 100
k

2

4

6

8

Av
er

ag
e

ED
B (b) ENRON

10 40 70 100
k

10

15

20

25

Av
er

ag
e

ED
B (c) DBLP

10 40 70 100
k

100

102

104

R
T(

se
c)

(d) FBWP

10 40 70 100
k

100

102

104

R
T(

se
c)

(e) ENRON

10 40 70 100
k

100

102

104

R
T(

se
c)

(f) DBLP

OL OLnsi SW

Figure 6: The e↵ect of parameter k when ✓ = 3.

As shown in Figures 5 and 6, the average EDB of OL and
SW are highly comparable, because both OL and SW call
FindDBS to find DBSs. The di↵erence lie in their ways to
bu↵er snapshots and generate initializations for FindDBS.
SW bu↵ers all the snapshots and calls FindDBS with as
many initializations as possible in a brute force manner,
however, OL bu↵ers a limited number of snapshots and ap-
plies smart initialization to significantly reduce the number
of times to call FindDBS. As a result, OL is dramatically
faster than SW by orders of magnitudes without sacrificing
the quality of detected DBSs.

We can also see that the average EDB performance of OL
and OLnsi are identical for all values of ✓ and k. This demon-
strates that the smart initialization proposed in Section 7.2
does not a↵ect the average EDB of OL.

Table 7 shows the e↵ect of ✓ on the numbers of indecom-
posable DBS and decomposable DBS. Both #INDEC and
#DEC decrease when ✓ increases, because ✓ is the mini-
mum duration threshold of DBS, and a larger ✓ rules out
more DBSs whose duration is smaller than ✓.

We can also see from Table 7 that #DEC is less than
1% of all detected DBSs, and the decomposable DBS with
the largest burstiness has a very low RANK. These results
verify our observation in Section 6: regarding the necessary
condition in Theorem 3 for a DBS to be decomposable, most
DBSs with large burstiness are indecomposable in practice.

8.3 Scalability Analysis
In this subsection, we compare the scalability of OL, OLnsi

and SW on FBWP, ENRON and DBLP. To obtain a series
of samples of di↵erent sizes, for each data set, we sample
four temporal graphs as follows.

First, we start a breadth first search from a randomly
picked vertex on the accumulated graph of all snapshots.
Second, let S be the set of all vertices visited by the breadth
first search, we use S to induce a subgraph from each of the
snapshots of the original temporal graph. Last, we use the
sequence of induced subgraphs as a sampled temporal graph.

2361

Table 7: The numbers of indecomposable DBSs
(#INDEC) and decomposable DBSs (#DEC) de-
tected by SW. We rank all DBSs in descending order
of burstiness, and RANK is the rank of the decom-
posable DBS with the largest burstiness.

Data set ✓ # INDEC # DEC RANK

FBWP
2 35,788 47 310
5 29,988 0 N/A
10 23,806 0 N/A

ENRON
2 9,074 14 244
5 6,197 0 N/A
10 4,355 0 N/A

DBLP
2 4,985 51 613
3 3,915 6 402
5 2,684 0 N/A

Table 8: The numbers of vertices (#V) and edges
(#E) of the data sets sampled from FBWP, ENRON
and DBLP. The 5-th data set (i.e., ID=5) is simply
the complete data set.

ID
FBWP ENRON DBLP

#V
(⇥103)

#E
(⇥105)

#V
(⇥103)

#E
(⇥105)

#V
(⇥103)

#E
(⇥105)

1 2.0 0.2 1.0 0.5 20.0 2.5
2 6.0 0.9 5.0 2.3 100.0 11.6
3 10.0 1.8 9.0 4.8 300.0 30.8
4 20.0 3.8 15.0 6.3 500.0 46.0
5 47.0 5.9 87.3 9.2 1282.5 73.5

The numbers of vertices and edges of the sampled temporal
graphs are listed in Table 8.

Figure 7 shows the RT performance of OL, OLnsi and SW,
respectively. We do not report the RT of SW on FBWP and
ENRON, because SW cannot finish in 24 hours due to its
quadratic time complexity with respect to the number of
snapshots. Since the smart initialization e↵ectively reduces
the number of calls of FindDBS in Algorithm 2, OL al-
ways completes in less than 100 seconds, which is 2 orders
of magnitudes faster than OLnsi and is at least 4 orders of
magnitudes faster than SW.

8.4 Comparison with Baseline Methods
In this subsection, we evaluate the DBS detection perfor-

mance of OL and four baseline methods, such as DA [30],
DS [30], DYN [14] and FIDES+ [25].

The methods OL, DA, DS and FIDES+ model an accu-
mulated graph as a weighted graph that accumulates the
real-valued weights of edge updates. However, DYN only
accepts binary edge updates, and it models an accumulated
graph as an unweighted graph that does not add up the
weights of edge updates.

To accommodate the above inconsistency between the in-
puts of DYN and the other methods, we convert the orig-
inal data sets FBWP, ENRON and DBLP into temporal
graphs with binary edge updates by quantizing the weights
of all edge updates. If an edge is updated by a posi-
tive weight between vertices vi and vj at time t, we set
Aij(t) = 1; otherwise, we set Aij(t) = 0. We write the con-
verted data sets as FBWP-B, ENRON-B and DBLP-B,
respectively.

It is also di�cult to directly compare the outputs of DA,
DS, DYN and FIDES+ with that of OL. Because OL is
designed to find top-k dense temporal subgraphs, however,
DA, DS and DYN cannot maintain more than one dense
subgraph at a time, and FIDES+ only finds one dense tem-
poral subgraph in a temporal graph.

2 4 6
Edges#105

100

102

104

R
T

(s
ec

)

> 24h (a) FBWP

OL OLnsi SW

0 5 10
Edges#105

100

102

104

R
T

(s
ec

)

> 24h (b) ENRON
OL OLnsi SW

2 4 6 8
Edges#106

100

102

104

R
T

(s
ec

)

(c) DBLP

OL OLnsi SW

Figure 7: The RT of OL, OLnsi and SW on the
temporal graphs sampled from FBWP, ENRON and
DBLP. The parameters are ✓ = 3 and k = 30.

10 40 70 100
k

0

0.5

1

Av
er

ag
e

ED
B (a) FBWP-B

10 40 70 100
k

0

0.5

1

Av
er

ag
e

ED
B (b) ENRON-B

10 40 70 100
k

0

0.5

1

Av
er

ag
e

ED
B (c) DBLP-B

10 40 70 100
k

0

20

40

Av
er

ag
e

ED
B (d) FBWP

10 40 70 100
k

0

20

40

Av
er

ag
e

ED
B (e) ENRON

10 40 70 100
k

0

20

40

Av
er

ag
e

ED
B (f) DBLP

OL DA DS DYN FIDES+

Figure 8: The average EDB of top-k detected tem-
poral subgraphs.

We tackle this problem by extending DA, DS, DYN and
FIDES+ to produce multiple dense temporal subgraphs.

The extension on FIDES+ is straightforward. Since
FIDES+ detects k candidate dense temporal subgraphs be-
fore it selects the best one, we extend FIDES+ by simply
returning all the k candidates.

Now we illustrate how to extend DA, DS and DYN. Each
of DA, DS and DYN maintains the top-1 densest subgraph
that may change when edges are updated. Every time the
maintained subgraph changes, we get its set of vertices, de-
noted by S, and search the entire temporal graph to find the
optimal time interval (tb, te], te � tb � ✓ that maximizes the
EDB of temporal subgraph (S, (tb, te]). Then, (S, (tb, te]) is
returned as a detected temporal subgraph. Since the main-
tained subgraph changes many times along the stream of
edge updates, the extended DA, DS and DYN can find mul-
tiple dense temporal subgraphs.

However, as to be shown in Figures 8, 9 and 10, the ex-
tended DA, DS and DYN still cannot find as many dense
temporal subgraphs as OL on some data sets. The reason is
that the maintained top-1 densest subgraph is stably dom-
inated by a small number of dense subgraphs, thus it does
not change many times along the stream of edge updates.

We evaluate the performance of all methods in finding
top-k (k  100) dense temporal subgraphs ranked in de-
scending order of EDB. OL, DA, DS and FIDES+ are eval-
uated on both the original data sets and the converted data
sets. However, since DYN cannot process the weighted edge
updates in the original data sets, it is only evaluated on the
converted data sets.

Figure 8 shows the average EDB of the top-k dense tem-
poral subgraphs detected by each of the compared methods.
OL achieves the best average EDB performance on all data
sets, because it focuses on detecting DBSs that rapidly gain
a large cohesiveness in a short time.

In Figures 8(a) and 8(d), DA achieves a similar average
EDB to OL. This is due to the highly sparse networks of
FBWP-B and FBWP, which force both DA and OL to find

2362

10 40 70 100
k

100

103

106

Ve
rti

ce
s (a) FBWP-B

10 40 70 100
k

100

103

106

Ve

rti
ce

s (b) ENRON-B

10 40 70 100
k

100

104

108

Ve

rti
ce

s (c) DBLP-B

10 40 70 100
k

100

103

106

Ve

rti
ce

s (d) FBWP

10 40 70 100
k

100

103

106

Ve

rti
ce

s (e) ENRON

10 40 70 100
k

100

104

108

Ve

rti
ce

s (f) DBLP

OL DA DS DYN FIDES+

Figure 9: The average number of vertices in top-k
detected temporal subgraphs.

10 40 70 100
k

100

103

106

Ed

ge
s (a) FBWP-B

10 40 70 100
k

100

103

106

Ed

ge
s (b) ENRON-B

10 40 70 100
k

102

105

108

Ed
ge

s (c) DBLP-B

10 40 70 100
k

100

103

106

Ed

ge
s (d) FBWP

10 40 70 100
k

100

103

106

Ed

ge
s (e) ENRON

10 40 70 100
k

100

104

108

Ed

ge
s (f) DBLP

OL DA DS DYN FIDES+

Figure 10: The average number of edges in top-k
detected temporal subgraphs.

small dense temporal subgraphs with similar EDB. How-
ever, as shown in Figures 8(b), 8(c), 8(e) and 8(f), the dif-
ference between the average EDB of OL and DA becomes
more significant on the denser networks, such as ENRON-B,
DBLP-B, ENRON and DBLP.

As shown in Figure 8, most of the baseline methods do
not achieve a good average EDB performance due to the
fact that they are not designed to find DBSs.

For example, FIDES+ detects connected subgraphs with
large sum of edge weights in an accumulated graph, thus it
naturally favours large subgraphs with low edge density. As
shown in Figures 8, 9 and 10, FIDES+ always detects large
temporal subgraphs that contain thousands of vertices and
edges, but have a very low average EDB.

DS and DYN maintain the densest subgraph with the
largest average degree in an accumulated graph. However,
since a subgraph can slowly accumulate a large density dur-
ing an arbitrarily long time, a subgraph with large density
is not necessarily a density bursting subgraph. As a result,
both DS and DYN tend to detect temporal graphs that ac-
cumulate a large average degree for a long time. As shown
in Figure 8, these subgraphs usually have a low EDB.

DA maintains a temporal subgraph that has the largest
average degree in a time window with a fixed length. How-
ever, according to Tsourakakis et al. [32], such a dense sub-
graph with the largest average degree is typically a large
graph with large diameter and small edge density. As a re-
sult, we can see in Figures 8, 9 and 10 that the temporal
subgraphs detected by DA usually have a larger size but a
lower average EDB than the DBSs detected by OL.

A closer look at Figures 9 and 10 shows that the DBSs
found by OL are small in size. As illustrated in Section 4,
every DBS is a dense subgraph that have a large cohesiveness
in an accumulated graph. These dense subgraphs are usually
small clique-like subgraphs that have a large edge density in
sparse accumulated graphs [20, 21, 27].

As already shown in the case studies of Section 8.1, the
small clique-like DBSs detected by OL accurately identify
interesting real world patterns, which could be easily missed
by methods that find large subgraphs with small EDB.

9. CONCLUSIONS
In this paper, we tackle the novel problem of finding top-k

DBS from temporal graphs. We formulate the top-k DBS
finding problem as a MIP problem and, as a baseline, solve
it by SlideWin. By investigating the decomposition prop-
erty of DBSs, we further design TopkDBSOL to find the set
of top-k indecomposable DBSs in an online manner. Exten-
sive experiments show that TopkDBSOL finds a compara-
bly good solution as SlideWin, and improves the e�ciency
of SlideWin by orders of magnitudes. As future work, we
will extend TopkDBSOL to detect DBSs from signed tem-
poral networks.

APPENDIX
A.1 The Proof of Theorem 1

Proof. We only need to prove that the top-1 (i.e., k =
1) DBS finding (TDF) problem is NP-hard. Consider an
arbitrary unweighted and undirected graphG, whose a�nity
matrix is A. The entries of A are either 0 or 1. We create
an instance of the TDF problem by constructing a temporal
graph G(t

0

, tc) = hG(t
0

), . . . , G(tc)i, such that tc � t
0

= ✓ =
1, A(tc) = A and the a�nity matrices of all the snapshots
in G(t

0

, tc�1

) are matrices of all 0’s.
Since tc � t

0

= ✓ = 1, it follows Definition 1 that
T ⇤ = (t

0

, tc] is the only optimal time interval for any DBS
in G(t

0

, tc). Thus, the following optimization problem

argmax
x

g(x, T ⇤), s.t. x 2 4n

can be reduced to the TDF problem. Since T ⇤ = (t
0

, tc]
and tc � t

0

= 1, we have g(x, T ⇤) = x>Ax. The above
optimization problem is rewritten as

argmax
x

x>Ax, s.t. x 2 4n,

which is a NP-hard problem [26].

A.2 The Proof of Theorem 2

Proof. We prove by constructing a temporal graph
G(t

0

, tc) such that tc � t
0

� ✓, every snapshot in G(t
1

, tc)
has exactly the same non-empty a�nity matrix, and 8i 2
{1, . . . , c� 1}, ti � ti�1

= ti+1

� ti.
According to Definition 1, for any local maximum point

x⇤ 2 4n of q
x

(t
1

), (x⇤, (t
0

, tc]) is a DBS in G(t
0

, tc).

A.3 The Proof of Theorem 3

Proof. Consider the slope representation of (x⇤, T ⇤) in
Figure 11(a), where z

1

and z
2

are contained in P
x

⇤ .
First, we prove by contradiction that the triangle regions

P and Q do not contain any point in P
x

⇤ . Assume P con-
tains z

3

2 P
x

⇤ . Then, the slope between z
1

and z
3

is larger
than the slope between z

1

and z
2

. Thus, T ⇤ is not the global
maximum ponit of the MDS problem. This contradicts with
the condition that (x⇤, T ⇤) is a DBS. Therefore, P does not
contain any point z

3

in P
x

⇤ . Similarly, Q does not contain
any point z

4

in P
x

⇤ .
Second, we prove that (x⇤, T ⇤) and its components have

the same burstiness. Since (x⇤, T ⇤) is decomposable, we
know T (tb⇤ , te⇤) 6= ; and (x⇤, T ⇤) is decomposable at any
time th 2 T (tb⇤ , te⇤). Recall that any point zh in P

x

⇤

2363

!" !#

$"

$#

Time

%&'(!))
$+

,

-
!.!"/ 0123(!#)!4

!+

(a) (b)
!"∗ !"∗+ - !6∗!6∗
$7 Time

%8∗(!))

!4

P
Q $9

$:$;
- -

$4

--

Figure 11: (a) shows the slope representation of a
decomposable DBS (x⇤, T ⇤), where T ⇤ = (tb⇤ , te⇤] and
T (tb⇤ , te⇤) 6= ;. z

1

and z
2

are contained in P
x

⇤ . P and
Q are the two blue triangle regions, respectively. (b)
shows the slope representation to prove Theorem 5.
L is an auxiliary line that crosses zc 2 P

ˆx

. The slope

of L is g(x̂, T̂), and tq = prev(tc).

cannot be contained by P or Q, since 8th 2 T (tb⇤ , te⇤),
tb⇤ + ✓  th  te⇤ � ✓, zh must reside on the segment be-
tween z

1

and z
2

. By the slope representation of burstiness,
g(x⇤, (tb⇤ , th]) = g(x⇤, (th, te⇤]) = g(x⇤, T ⇤).

A.4 The Proof of Theorem 4

Proof. Since (x⇤, T ⇤) is an indecomposable DBS, x⇤ is
a local maximum point of x>A(tb⇤+1

, te⇤)x. Since vi 2
(x⇤, T ⇤), we have vi 2 V

x

⇤ .
Since vi 2 V

x

⇤ and x⇤ is a local maximum point of
x>A(tb⇤+1

, te⇤)x, the following equation holds [22].

(x⇤)>A(tb⇤+1

, te⇤)x
⇤ =

X

j

x⇤
jAij(tb⇤+1

, te⇤).

Therefore, we have

g(x⇤, T ⇤) =
(x⇤)>A(tb⇤+1

, te⇤)x
⇤

te⇤ � tb⇤
=

P
j x

⇤
jAij(tb⇤+1

, te⇤)

te⇤ � tb⇤
.

Since x⇤ 2 4n, we can derive
P

j x
⇤
jAij(tb⇤+1

, te⇤)

te⇤ � tb⇤
 maxj Aij(tb⇤+1

, te⇤)
te⇤ � tb⇤

.

Recall that ↵(vi, T
⇤) =

maxj Aij(tb⇤+1,te⇤)

te⇤�tb⇤
, we have

g(x⇤, T ⇤)  ↵(vi, T
⇤).

A.5 The Proof of Theorem 5

Proof. Please refer to the slope representation in Fig-
ure 11(b) for the following proof.

(Direction only-if) Suppose 9th 2 (ts, prev(tc)] such
that g(x̂, (th, tc]) > g(x̂, T̂). Since t

ˆb < ts < th  prev(tc),

T̂ is not a global maximum point of g(x̂, T) in G(t
ˆb, tc). Since

tc�th � ✓, (x̂, T̂) is not an indecomposable DBS in G(t
ˆb, tc),

which means (x̂, T̂) 62 D(tc). As a result, if (x̂, T̂) 2 D(tc),
then @th 2 (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂).

(Direction if) First, we prove @tb 2 (t
ˆb, ts] such that

g(x̂, (tb, tc]) > g(x̂, T̂) by contradiction.
Suppose 9tb 2 (t

ˆb, ts] such that g(x̂, (tb, tc]) > g(x̂, T̂).
Then, as shown in Figure 11(b), zb 2 P

ˆx

must be un-
der L. Since @th 2 (ts, prev(tc)] such that g(x̂, (th, tc]) >

g(x̂, T̂), hence for tq = prev(tc) in Figure 11(b), zq 2 P
ˆx

must be above or on L. This means that the slope of
the segment (zb, zq) is larger than the slope of L, thus

g(x̂, (tb, tq]) > g(x̂, T̂). Since t
ˆb < tb, tq = prev(tc)  tc�1

and tq�tb � tq�ts � ✓, it follows g(x̂, (tb, tq]) > g(x̂, T̂) that
T̂ is not a global maximum point of g(x̂, T) in G(t

ˆb, tc�1

),

which means (x̂, T̂) 62 D(tc�1

). This contradicts with the
condition (x̂, T̂) 2 D(tc�1

). Therefore, @tb 2 (t
ˆb, ts] such

that g(x̂, (tb, tc]) > g(x̂, T̂).
Second, we prove the direction if of the theorem.
Since @tb 2 (t

ˆb, ts] such that g(x̂, (tb, tc]) > g(x̂, T̂) and

@th 2 (ts, prev(tc)] such that g(x̂, (th, tc]) > g(x̂, T̂), it is
obvious that @tb 2 (t

ˆb, prev(tc)] such that g(x̂, (tb, tc]) >

g(x̂, T̂). Recall that (x̂, T̂) 2 D(tc�1

), since @tb 2
(t

ˆb, prev(tc)] such that g(x̂, (tb, tc]) > g(x̂, T̂), T̂ is also a
global maximum point of g(x̂, T) in G(t

ˆb, tc). Therefore,

(x̂, T̂) is an indecomposable DBS in G(t
ˆb, tc), which means

(x̂, T̂) 2 D(tc). As a result, if @th 2 (ts, prev(tc)] such that
g(x̂, (th, tc]) > g(x̂, T̂) then (x̂, T̂) 2 D(tc).

A.6 The Proof of Theorem 6
Proof. Denote by (x̃, T̃) the real top-1 indecomposable

DBS in G(t
0

, tc), where T̃ = (t
˜b, tẽ].

First, we prove TopkDBSOL will produce a 2-
approximation of g(x̃, T̃) when tc = tẽ.

By Theorem 4, we have

8vi 2 (x̃, T̃), g(x̃, T̃)  ↵(vi, T̃). (4)

Denote by ✏k(tẽ�1

) the k-th largest burstiness of all inde-
composable DBSs in D(tẽ�1

). Since (x̃, T̃) is the top-1 in-
decomposable DBS, we have ✏k(tẽ�1

)  g(x̃, T̃)  ↵(vi, T̃).
For tc = tẽ, since ↵(vi, T̃) � ✏k(tẽ�1

), step 7 of
FindNDBSC will call FindDBS with an initialization
(o(vi, T̃), T̃) to find a NDBSC (x̂, T̂) 2 D(tẽ).

Since FindDBS monotonically increases the density of a
temporal subgraph, we have

g(o(vi, T̃), T̃)  g(x̂, T̂). (5)

By definition of (o(vi, T̃), T̃), we expand g(o(vi, T̃), T̃) as

0.5 ⇤ 0.5 ⇤maxj Aij(t˜b+1

, tẽ) + 0.5 ⇤ 0.5 ⇤maxj Aij(t˜b+1

, tẽ)

tẽ � t
˜b

,

which is equal to 0.5 ⇤ ↵(vi, T̃).
Since g(o(vi, T̃), T̃) = 0.5 ⇤ ↵(vi, T̃), we can derive from

Equation 5 that

0.5 ⇤ ↵(vi, T̃)  g(x̂, T̂). (6)

Since (x̃, T̃) is the real top-1 indecomposable DBS in
G(t

0

, tc), we have

g(x̂, T̂)  g(x̃, T̃). (7)

Now, we can derive from Equations 4, Equation 6 and
Equation 7 that 0.5 ⇤ ↵(vi, T̃)  g(x̂, T̂)  g(x̃, T̃) 
↵(vi, T̃), which means g(x̂, T̂) is a 2-approximation of
g(x̃, T̃).

Second, we prove TopkDBSOL will produce a 2-
approximation of g(x̃, T̃) when tc > tẽ.

For tc > tẽ, there are two cases discussed as follows.
Case 1: if (x̂, T̂) 2 D(tc), then g(x̂, T̂) is already a 2-

approximation of g(x̃, T̃).
Case 2: if (x̂, T̂) 62 D(tc), UpdateODBSC will update

(x̂, T̂) to increase its burstiness. Obviously, the burstiness
of the updated temporal subgraph is still a 2-approximation
of g(x̃, T̃).

2364

A. REFERENCES
[1] J. Abello, M. Resende, and S. Sudarsky. Massive

quasi-clique detection. Theoretical Informatics, pages
598–612, 2002.

[2] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin. On dense
pattern mining in graph streams. PVLDB,
3(1-2):975–984, 2010.

[3] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
PVLDB, 5(6):574–585, 2012.

[4] S. Bhattacharya, M. Henzinger, D. Nanongkai, and
C. Tsourakakis. Space-and time-e�cient algorithm for
maintaining dense subgraphs on one-pass dynamic
streams. In ACM Symposium on Theory of
Computing, pages 173–182, 2015.

[5] B. Boden, S. Günnemann, H. Ho↵mann, and T. Seidl.
Mining coherent subgraphs in multi-layer graphs with
edge labels. In KDD, pages 1258–1266, 2012.

[6] P. Bogdanov, M. Mongiov̀ı, and A. K. Singh. Mining
heavy subgraphs in time-evolving networks. In ICDM,
pages 81–90, 2011.

[7] C. Bron and J. Kerbosch. Algorithm 457: Finding all
cliques of an undirected graph. ACM
Communications, 16(9):575–577, 1973.

[8] S. R. Bulò and I. M. Bomze. Infection and
immunization: a new class of evolutionary game
dynamics. GEB, 71(1):193–211, 2011.

[9] K. Chao. Maximum-density segment. In Encyclopedia
of Algorithms, pages 1–99. 2008.

[10] L. Chu, S. Wang, S. Liu, Q. Huang, and J. Pei. ALID:
scalable dominant cluster detection. PVLDB,
8(8):826–837, 2015.

[11] L. Chu, Z. Wang, J. Pei, J. Wang, Z. Zhao, and
E. Chen. Finding gangs in war from signed networks.
In KDD, pages 1505–1514, 2016.

[12] K. M. Chung and H. I. Lu. An optimal algorithm for
the maximum-density segment problem. SIAM
Journal on Computing, 34(2):373–387, 2005.

[13] S. Curtis and S. C. Mu. Calculating a linear-time
solution to the densest-segment problem. Journal of
Functional Programming, 25, 2015.

[14] A. Epasto, S. Lattanzi, and M. Sozio. E�cient densest
subgraph computation in evolving graphs. In WWW,
pages 300–310, 2015.

[15] M. H. Goldwasser, M. Y. Kao, and H. I. Lu.
Linear-time algorithms for computing
maximum-density sequence segments with
bioinformatics applications. JCSS, 70(2):128–144,
2005.

[16] X. Huang. An algorithm for identifying regions of a
dna sequence that satisfy a content requirement.
Bioinformatics, 10(3):219–225, 1994.

[17] KAN. DBLP-Citation-Network v10 data set.
https://static.aminer.org/lab-datasets/

citation/dblp.v10.zip.
[18] S. K. Kim. Linear-time algorithm for finding a

maximum-density segment of a sequence. IPL,
86(6):339–342, 2003.

[19] Y.-L. Lin, T. Jiang, and K.-M. Chao. E�cient
algorithms for locating the length-constrained heaviest
segments with applications to biomolecular sequence
analysis. JCSS, 65(3):570–586, 2002.

[20] H. Liu, L. J. Latecki, and S. Yan. Fast detection of
dense subgraphs with iterative shrinking and
expansion. TPAMI, 35(9):2131–2142, 2013.

[21] H. Liu and S. Yan. Common visual pattern discovery
via spatially coherent correspondences. In CVPR,
pages 1609–1616, 2010.

[22] H. Liu and S. Yan. Robust graph mode seeking by
graph shift. In ICML, pages 671–678, 2010.

[23] X. Liu, T. Ge, and Y. Wu. Finding densest lasting
subgraphs in dynamic graphs: A stochastic approach.
In ICDE, 2019.

[24] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai. Fast
computation of dense temporal subgraphs. In ICDE,
pages 361–372, 2017.

[25] S. Ma, R. Hu, L. Wang, X. Lin, and J.-P. Huai. An
e�cient approach to finding dense temporal
subgraphs. IEEE Transactions on Knowledge and
Data Engineering, 2019.

[26] T. S. Motzkin and E. G. Straus. Maxima for graphs
and a new proof of a theorem of turán. Canad. J.
Math, 17(4):533–540, 1965.

[27] M. Pavan and M. Pelillo. Dominant sets and pairwise
clustering. TPAMI, 29(1):167–172, 2007.

[28] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph
quasi-cliques. In KDD, pages 228–238, 2005.

[29] K. Shin, B. Hooi, J. Kim, and C. Faloutsos. D-cube:
Dense-block detection in terabyte-scale tensors. In
WSDM, pages 681–689, 2017.

[30] K. Shin, B. Hooi, J. Kim, and C. Faloutsos.
Densealert: Incremental dense-subtensor detection in
tensor streams. In KDD, pages 1057–1066, 2017.

[31] TAXI-1 and TAXI-2. Taxi trip data of the city of
chicago. https://data.cityofchicago.org/
Transportation/Taxi-Trips/wrvz-psew.

[32] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. In KDD, pages 104–112, 2013.

[33] UKL. Konect. http://konect.uni-koblenz.de/,
2018.

[34] J. Wang and J. Cheng. Truss decomposition in
massive networks. PVLDB, 5(9):812–823, 2012.

[35] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C.
Lui. Diversified temporal subgraph pattern mining. In
KDD, pages 1965–1974, 2016.

2365

