
Progressive Indexes:
Indexing for Interactive Data Analysis

Pedro Holanda
CWI, Amsterdam

holanda@cwi.nl

Mark Raasveldt
CWI, Amsterdam

raasveld@cwi.nl

Stefan Manegold
CWI, Amsterdam

manegold@cwi.nl

Hannes Mühleisen
CWI, Amsterdam
hannes@cwi.nl

ABSTRACT
Interactive exploration of large volumes of data is increasingly
common, as data scientists attempt to extract interesting in-
formation from large opaque data sets. This scenario presents
a difficult challenge for traditional database systems, as (1)
nothing is known about the query workload in advance, (2)
the query workload is constantly changing, and (3) the sys-
tem must provide interactive responses to the issued queries.
This environment is challenging for index creation, as tra-
ditional database indexes require upfront creation, hence a
priori workload knowledge, to be efficient.

In this paper, we introduce Progressive Indexing, a novel
performance-driven indexing technique that focuses on au-
tomatic index creation while providing interactive response
times to incoming queries. Its design allows queries to have
a limited budget to spend on index creation. The indexing
budget is automatically tuned to each query before query
processing. This allows for systems to provide interactive
answers to queries during index creation while being robust
against various workload patterns and data distributions.

PVLDB Reference Format:
Pedro Holanda, Mark Raasveldt, Stefan Manegold and Hannes
Mühleisen. Progressive Indexes: Indexing for Interactive Data
Analysis. PVLDB, 12(13): 2366-2378, 2019.
DOI: https://doi.org/10.14778/3358701.3358705

1. INTRODUCTION
Data scientists perform exploratory data analysis to dis-

cover unexpected patterns in large collections of data. This
process is done with a hypothesis-driven trial-and-error ap-
proach [26]. They query segments that could potentially
provide insights, test their hypothesis, and either zoom in
on the same segment or move to a different one depending
on the insights gained.

Fast responses to queries are crucial to allow for interactive
data exploration. The study by Liu et al. [18] shows that any
delay larger than 500ms (the “interactivity threshold”) sig-
nificantly reduces the rate at which users make observations

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 13
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3358701.3358705

and generate hypotheses. When dealing with small data
sets, providing answers within this interactivity threshold
is possible without utilizing indexes. However, exploratory
data analysis is often performed on larger data sets as well.
In these scenarios, indexes are required to speed up query
response times.

Index creation is one of the major difficult decisions in
database schema design [8]. Based on the expected work-
load, the database administrator (DBA) needs to decide
whether creating a specific index is worth the overhead in
creating and maintaining it. Creating indexes up-front is
especially challenging in exploratory and interactive data
analysis, where queries are not known in advance, workload
patterns change frequently and interactive responses are re-
quired. In these scenarios, data scientists load their data
and immediately want to start querying it without waiting
for index construction. In addition, it is also not certain
whether or not creating an index is worth the investment
at all. We cannot be sure that the column will be queried
frequently enough for the large initial investment of creating
a full index to pay off.

In spite of these challenges, indexing remains crucial for im-
proving database performance. When no indexes are present,
even simple point and range selections require expensive full
table scans. When these operations are performed on large
data sets, indexes are essential to ensure interactive query
response times. There are two main strategies that aim to
release the DBA of having to manually choose which indexes
to create.

(1) Automated index selection techniques [1, 7, 30, 10, 6, 4,
19, 27] accomplish this by attempting to find the optimal set
of indexes given a query workload, taking into account the
benefits of having an index versus the added costs of creating
the entire index and maintaining it during modifications to
the database. However, these techniques require a priori
knowledge of the expected workloads and do not work well
when the workload is not known or changes frequently. Hence
they are not suitable for interactive data exploration.

(2) Adaptive indexing techniques such as database crack-
ing [16, 9, 24, 23, 12, 15, 17, 21, 20, 11, 14, 13] are a more
promising solution. They focus on automatically and incre-
mentally building an index as a side effect of querying the
data. An index for a column is only initiated when it is first
queried. As the column is queried more, the index is refined
until it eventually approaches the performance of a full index.
In this way, the cost of creating an index is smeared out
over the cost of querying the data many times, though not
necessarily equally, and there is a smaller initial overhead

2366



for starting the index creation. However, since the index is
refined only in the areas targeted by the workload, conver-
gence to a full index is not guaranteed and partitions can
have different sizes. The performance of the query degrades
when a less refined part of the index is queried, resulting in
performance spikes whenever the workload changes.

In this paper, we introduce a new incremental indexing
technique called Progressive Indexing. It differs from other in-
dexing solutions in that the indexing budget (i.e., the amount
of time that is spent on index creation and refinement) can be
controlled. We provide two indexing budget flavors: a fixed
indexing budget, where the user defines a fixed amount of
time to spend on indexing per query, and an adaptive index-
ing budget, where the indexing budget is adapted so that the
total time spent on query execution remains constant. As a
result, Progressive Indexing complements existing automatic
indexing techniques by offering predictable performance and
deterministic convergence independent of the workload.

The main contributions of this paper are:

• We introduce several novel Progressive Indexing tech-
niques and investigate their performance, convergence,
and robustness in the face of various realistic synthetic
workload patterns and real-life workloads.

• We provide a cost-model for each of the Progressive
Indexing techniques. The cost models are used to
automatically adapt the indexing budget.

• We experimentally verify that the Progressive Indexing
techniques we propose provide robust and predictable
performance and convergence regardless of the work-
load or data distribution.

• We provide a decision tree to assist in choosing an
indexing technique for a given scenario.

• We provide Open-Source implementations of each of
the techniques we describe and their benchmarks.1

Outline. This paper is organized as follows. In Section 2,
we investigate related research that has been performed on
automatic/adaptive index creation. In Section 3, we describe
our novel Progressive Indexing techniques and discuss their
benefits and drawbacks. In Section 4, we perform an experi-
mental evaluation of each of the novel methods we introduce,
and we compare them against adaptive indexing techniques.
In Section 5 we draw our conclusions and present a deci-
sion tree to assist in choosing which Progressive Indexing
technique to use. Finally, in Section 6 we discuss future
work.

2. RELATED WORK
Automatic index creation and maintenance has been a

challenging and long-standing problem in database research.
Even when the workload pattern is known, selecting the
optimal set of indexes is an NP-Hard problem [8]. When the
querying pattern is not known in advance, optimal a-priori
index creation is impossible. Automatic indexing techniques
can be grouped into two categories, (1) automatic index
selection and (2) adaptive index creation.

1Our implementations and benchmarks are available at
https://github.com/pdet/ProgressiveIndexing

2.1 Automatic Index Selection
Automatic index selection techniques [1, 7, 30, 10, 6, 19,

27, 4] attempt to solve the problem by, given an existing
(or expected) workload of the system, selecting the set of
indexes that would result in optimal performance. The
problem with these methods is that they can only be used
when the workload of the system is known and stable. In
an environment where the workload is unknown or rapidly
changing, beyond what is known upfront, automatic index
selection techniques do not offer much help. In addition,
these techniques require sufficient time and space to invest
in constructing a large full index upfront.

2.2 Adaptive Indexing
Adaptive indexing techniques are an alternative to a priori

index creation. Instead of constructing the index upfront,
the index is constructed as a by-product of querying the
data. These techniques are designed for scenarios where the
workload is unknown, and there is no idle time to invest in
index creation. The high investment of creating an up-front
full index is smeared out over the cost of subsequent queries.

Database Cracking [16] (also known as “Standard Crack-
ing”) is the original adaptive indexing technique. It works
by physically reordering the index while processing queries.
It consists of two data structures: a cracker column and a
cracker index. Each incoming query cracks the column into
smaller pieces and then updates the cracker index with the
reference to those pieces. As more queries are processed, the
cracker index converges towards a full index.

While database cracking accomplishes its mission of con-
structing an index as a by-product of querying, it suffers
from several problems that make it unsuitable for interactive
data analysis: (1) cracking adds a significant overhead over
naive scans in the first iterations of the algorithm, (2) the
performance of cracking is not robust, as sudden changes in
workload cause spikes in performance, and (3) convergence
towards a full index is slow and workload-dependent.

There is a large body of work on extending and improv-
ing database cracking. These improvements include better
convergence towards a full index [9, 24], more predictable per-
formance [23, 12], more efficient tuple reconstruction [15, 17,
24], better CPU utilization [20], other cracking engines [21,
11], predictive query processing [29] and handling updates [14,
13]. Below, we give an overview of the work done on improv-
ing robustness and general performance.

Cracking Kernels [21, 11] addresses the low CPU effi-
ciency caused by the high number of branch mispredictions.
It suggests different cracking kernels that reorganize the ele-
ments by exploiting either predication, vectorization, SIMD
instructions, or memory rewiring. Haffner et al. [11] present
a decision tree that recommends the most efficient cracking
kernel depending on the query selectivity, type size, and data
organization.

Stochastic Cracking [12] addresses the unpredictable
performance problem by creating partitions using a random
pivot element instead of pivoting around the query predicates.
The pivot is used to perform arbitrary reorganization steps
for more robust query performance.

Progressive Stochastic Cracking [12] performs stochas-
tic cracking in a partial fashion every iteration. It takes two
input parameters, the size of the L2 cache and the number
of swaps allowed in one iteration (i.e., a percentage of the
total column size). When performing stochastic cracking,

2367



progressive stochastic cracking will only perform at most the
maximum allowed number of swaps on pieces larger than the
L2 cache. If the piece fits into the L2 cache, it will always
perform a complete crack of the piece.

Coarse-Granular Index [24] improves stochastic crack-
ing robustness by creating equal-sized partitions when the
first query is executed. It also allows for the creation of any
number of partitions instead of limiting the number of parti-
tions to two, letting the DBA decide between the trade-off
of the higher cost of the first query versus building a more
robust index.

Adaptive Adaptive Indexing [23] is a general-purpose
algorithm for adaptive indexing. It has multiple parameters
that can be tuned to mimic the data access of different adap-
tive indexing techniques (e.g., database cracking, sideways
cracking, hybrid cracking). It also uses radix partitioning
and exploits software managed buffers using nontemporal
streaming stores to achieve better performance [25].

3. PROGRESSIVE INDEXING
In this section, we introduce Progressive Indexing. The

core features of Progressive Indexing are that (1) the indexing
overhead per query is controllable, both in terms of time
and memory requirements, (2) it offers robust performance
and deterministic convergence regardless of the underlying
data distribution, workload patterns or query selectivity, and
(3) the indexing budget can be automatically tuned so more
expensive queries spend less extra time on indexing while
cheaper queries spend more.

As a result of the small initial cost, Progressive Indexing
occurs without significantly impacting worst-case query per-
formance. Even if the column is only queried once, only a
small penalty is incurred. On the other hand, if the column
is queried hundreds of times, the index will reliably converge
towards a full index and queries will be answered at the same
speed as with an a-priori built full index.

All Progressive Indexing algorithms progress through three
canonical phases to eventually converge to a full B+-tree
index: the creation phase, the refinement phase, and the
consolidation phase. The work for each phase can be divided
between multiple queries, keeping the extra indexing effort
per query strictly limited.

Creation Phase. The creation phase progressively builds
an initial “crude” version of the index by adding another δ
fraction of the original column to the index with each query.
Query execution during the creation phase is performed in
three steps:

1. Perform an index lookup on the ρ fraction of the data
that has already been indexed;

2. Scan the not-yet-indexed 1− ρ fraction of the original
column;
and while doing so,

3. Expand the index by another δ fraction of the total
column.

As the index grows, and the fraction ρ of the indexed data
increases, an ever-smaller fraction of the base column has
to be scanned, progressively improving query performance.
Once all data of the base column has been added to the index,
the creation phase is followed by the refinement phase.

Table 1: Parameters for Progressive Indexing Cost Models.
System ω cost of sequential page read (s)

κ cost of sequential page write (s)
φ cost of random page access (s)
γ elements per page

Data set N number of elements in the data set
& Query α % of data scanned in partial index

ε % of data scanned in final index
Index δ % of data to-be-indexed

ρ % of data already indexed
λ indexing budget as % of query cost

Progressive h height of the binary search tree
Quicksort σ cost of swapping two elements (s)
Progressive b number of buckets
Radixsort sb max elements per bucket block

τ cost of memory allocation (s)
B+-Tree β tree fanout

Refinement Phase. With the base column no longer
required to answer queries, we only perform lookups into
the index to answer queries. While doing these lookups, we
further refine the index, progressively converging towards a
fully ordered index. In the refinement phase, we focus on
refining parts of the index that are required for query pro-
cessing. After these parts have been refined, the refinement
process starts processing the neighboring parts. Once the
index is fully ordered, the refinement phase is followed by
the consolidation phase.

Consolidation Phase. With the index fully ordered, we
progressively construct a B+-tree from it, since a B+-Tree
provides better data locality and thus is more efficient than
binary search when executing very selective queries. Once
the B+-tree is completed, we use it exclusively to answer all
subsequent queries.

Indexing Budget. The value of δ determines how much
time is spent on constructing the index and hence deter-
mines the indexing budget. Instead of letting the user set δ
themselves, however, we let the user pick between setting ei-
ther a fixed indexing budget or an adaptive indexing budget.
For the fixed indexing budget, the user provides a desired
indexing budget tbudget to spend on indexing for the first
query. We then select the value of δ based on this budget and
use that δ for the remainder of the workload. The adaptive
indexing budget allows the user to specify a desired indexing
budget for the first query tbudget. The first query will then
execute in time tadaptive = tscan + tbudget. After the first
query, the value of δ will be adapted such that the query cost
will stay equivalent to tadaptive until the index is converged.

Cost Model. We use a cost model to determine how
much time we can spend on indexing when working with
the adaptive indexing budget. The cost model takes into
account the query predicates, the selectivity of the query
and the state of the index in a way that is not sensitive to
different data distributions or querying patterns and does
not rely on having any statistics about the data available.
The parameters of our progressive indexing cost model are
summarized in Table 1. To allow for robust query execution
times regardless of the data, we avoid branches in the code
and use predication when possible [22, 3].

In the following sections, we will introduce four Progres-
sive Indexing algorithms: Progressive Quicksort, Progressive
Radixsort (MSD), Progressive Bucketsort (Equi-Height), and
Progressive Radixsort (LSD).

2368



3.1 Progressive Quicksort
Figure 1 depicts snapshots of the creation phase, the re-

finement phase, and the consolidation phase of Progressive
Quicksort. We discuss all three phases in detail in the fol-
lowing paragraphs.

Creation Phase
In the first iteration, we allocate an uninitialized column of
the same size as the original column and select a pivot. The
pivot is selected by taking the average value of the smallest
and largest value of the column. In Figure 1, pivot 10 is the
average of 1 and 19. If sufficient statistics are available, the
median value of the column could be used instead. Unlike
adaptive indexing, the pivot selection is not impacted by the
query predicates. We then scan the original column and copy
the first N ∗ δ elements to either the top or bottom of the
index depending on their relation to the pivot. In this step,
we also search for any elements that fulfill the query predicate
and afterwards scan the not-yet-indexed 1 − ρ fraction of
the column to compute the complete answer to the query.
In subsequent iterations, we scan either the top, bottom, or
both parts of the index based on how the query predicate
relates to the chosen pivot.

Cost Model. The total time taken in the creation phase
is the sum of (1) the scan time of the base table, (2) the index
lookup time and (3) the additional indexing time. The scan
time is given by multiplying the amount of pages we need
to scan (N

γ
) by the amount of time it takes for a sequential

page access (ω), resulting in tscan = ω ∗ N
γ

. The pivoting
time, i.e., index construction time, consists of scanning the
pages of the base table and writing the pivoted elements
to the result array. The pivoting time is therefore obtained
by multiplying the time it takes to scan and write a page
sequentially (κ+ω) by the amount of pages we need to write,
resulting in tpivot = (κ+ ω) ∗ N

γ
.

The total time taken for the initial indexing process is given
by multiplying the scan time by the fraction of the base table
we need to scan. Initially, we need to scan the entire base
table, but as the fraction of indexed data (ρ) increases, we
need to scan less. Instead, we scan the index to answer the
query. The amount of data we need to scan in the index
depends on how the query predicates relate to the pivot. The
fraction of data that we need to scan is given by α, and can
be computed for a given set of query predicates. The total

16
19

7

1
4

1313

1

14

8

9
11

1

6
3

6
3
16
13
2
1
8
19
7
12
11
4
9
14

Original 
Column

A ≤ 10

10 < A

6

16

2

U
ni

ni
tia

liz
ed

Initialize

3
2

8
9
14
11
12
13

Initialize 2

A ≤ 10

10 < A

A ≤ 7

7 < A

A ≤ 15

15 < A

Refinement

Pi
vo

t=
10

Pi
vo

t=
15

Pi
vo

t=
7

14
13

4
6

1
2
3

7
8

12

16
19

Consolidation

So
rte

d

1
6
11
14

B+
 T

re
e

A ≤ 10

10 < A Pi
vo

t=
10

7

6
3
2

4
9

11
12
19

16

Figure 1: Progressive Quicksort.

fraction of the data that we scan is 1−ρ+α−δ. The fraction
of the data that we index in each step is δ. Hence the total
time taken is given by ttotal = (1−ρ+α−δ)∗tscan+δ∗tpivot.

Indexing Budget. In this phase, we set delta such that

δ =
tbudget
tpivot

. For the fixed indexing budget, we select this δ

for the first query and keep on using this δ for the remainder
of the workload. For the adaptive indexing budget, we use
this formula to select the δ for each query.

Refinement Phase
We refine the index by recursively continuing the quicksort
in-place in the separate sections. The refinement consists
of swapping elements in-place inside the index around the
pivots of the different segments. When the pivoting of a
segment is completed, we recursively continue the quicksort
in the child segments. We maintain a binary tree of the
pivot points. In the nodes of this tree, we keep track of
the pivot points and how far along the pivoting process we
are. To do an index lookup, we use this binary tree to find
the sections of the array that could potentially match the
query predicate and only scan those, effectively reducing the
amount of data to be accessed even when the full pivoting
has not been completed yet.

When we reach a node that is smaller than the L1 cache,
we sort the entire node instead of recursing any further.
After sorting a node entirely, we mark it as sorted. When
two children of a node are sorted, the entire node itself is
sorted, and we can prune the child nodes. As the algorithm
progresses, leaf nodes will keep on being sorted and pruned
until only a single fully sorted array remains.

Cost Model. In the refinement phase, we no longer need
to scan the base table. Instead, we only need to scan the
fraction α of the data in the index. However, we now need
to (1) traverse the binary tree to figure out the bounds of α,
and (2) swap elements in-place inside the index instead of
sequentially writing them to refine the index. The cost for
traversing the binary tree is given by the height of the binary
tree h times the cost of a random page access φ, resulting in
tlookup = h ∗ φ. For the swapping of elements, we perform
predicated swapping to allow for a constant cost regardless
of how many elements we need to swap. Therefore the cost
for swapping is equivalent to the cost of sequential writing,
i.e., tswap = κ ∗ N

γ
. The total cost in this phase is therefore

equivalent to ttotal = tlookup + α ∗ tscan + δ ∗ tswap.
Indexing Budget. In this phase, we set delta such that

δ =
tbudget
tswap

for the adaptive indexing budget.

Consolidation Phase
In the consolidation phase we construct a B+-tree index on
top of our sorted array. In order to progressively construct
the B+-Tree we copy every β element of our sorted array

to a parent level. In total we copy Ncopy =
∑logβ (n)

i=1 ( n
βi

)

elements. This process is depicted in the consolidation phase
of Figure 1 where β = 4 and the parent node of the array
indexes every 4th element (i.e., offsets 0, 4, 8 and 12).

Cost Model. In the consolidation phase, we use bi-
nary search in the sorted array until the B+-Tree levels
are complete. This results in tlookup = log2 (n) ∗ φ. To
construct the B+-Tree we copy every β element from one
level to the next, therefore the cost of copying the ele-
ments is the cost of access a random element from the cur-
rent level and sequentially write it to the next, defined by

2369



tcopy = Ncopy ∗κ∗γ The total cost in this phase is equivalent
to ttotal = tlookup + α ∗ tscan + δ ∗ tcopy.

Indexing Budget. In this phase, we set delta such that

δ =
tbudget
tcopy

for the adaptive indexing budget.

3.2 Progressive Radixsort (MSD)
Figure 2 depicts snapshots of the creation phase, the re-

finement phase, and the consolidation phase of Progressive
Radixsort (MSD). We discuss all three phases in detail in
the following paragraphs.

Creation Phase
In the creation phase of progressive radixsort, we perform
the radixsort partitioning into buckets that are located in
separate memory regions. We start by allocating b empty
buckets. Then, while scanning the original column, we place
N ∗δ elements into the buckets based on their most significant
log2 b bits. We then scan the remaining 1 − ρ fraction of
the base column. In subsequent iterations, we scan the [0, b]
buckets that could potentially contain elements matching the
query predicate to answer the query in addition to scanning
the remainder of the base column.

Bucket Count. Radix clustering performs a random
memory access pattern that randomly writes in b output
buckets. To avoid excessive cache- and TLB-misses, assuming
that each bucket is at least of the size of a memory page,
the number b of buckets, and thus the number of randomly
accessed memory pages, should not exceed the number of
cache lines and TLB entries, whichever is smaller [2]. Since
our machine has 512 L1 cache lines and 64 TLB entries, we
use b = 64 buckets.

Bucket Layout. To avoid having to allocate large regions
of sequential data for every bucket, the buckets are imple-
mented as a linked list of blocks of memory that each hold up
to sb elements. When a block is filled, another block is added
to the list and elements will be written to that block. This
adds some overhead over sequential reads/writes as every
sb elements there will be a memory allocation and random
access, and for every element that is added the bounds of
the current block have to be checked.

Cost Model. In the creation phase, the total time taken
is the sum of (1) the scan time of the base table, (2) the index
lookup time and (3) the time it takes to add elements to
buckets. The scan time of the base table is equivalent to the

11

4

1

13

8

14

11

3

16

16

13

3

19

8

14
14

1

6
3
14
13
2
1
8
19
7
12
11
4
16
9

6

2

Initialize Refinement

00
…

13

11

1
7

6
3
2

4

12

9

01
…

10
…

11
…

U
ni

ni
tia

liz
ed

19

00
.

01
.

10
.

11
.

1

2
4
6
7

00
.

01
.

10
.

11
.

9

12

00
…

01
…

10
…

Refinement

13

8

14

11

3

00
.

01
.

10
.

11
.

1

2
4
6
7

00
.

01
.

10
.

11
.

9

12

9

16

13

6

2
3

7
8

12

14

19

Original 
Column

Figure 2: Progressive Radixsort (MSD).

scan time (tscan) given in Section 3.1. Scanning the buckets
for the already indexed data has equivalent performance to
performing a sequential scan plus the random accesses we
need to perform every sb elements, hence the scan time of
the buckets is equivalent to tbscan = tscan + φ ∗ N

sb
. As we

determine which bucket an element belongs to only based
on the most significant bits, finding the relevant bucket for
an element can be done using a single bitshift. As we chose
the bucket count such that all bucket regions can fit in
cache, the cost of writing elements to buckets is equivalent
to the cost of sequentially writing them (κ). We need to
perform a memory allocation every sb entries, which has a
cost of τ . This results in a total cost of bucketing equal to
tbucket = (κ + ω) ∗ N

γ
+ τ ∗ N

sb
. The total cost is therefore

ttotal = (1− ρ− δ) ∗ tscan + α ∗ tbscan + δ ∗ tbucket.
Indexing Budget. In this phase, we set delta such that

δ =
tbudget
tbucket

. For the fixed indexing budget, we select this δ

for the first query and keep on using this δ for the remainder
of the workload. For the adaptive indexing budget, we use
this formula to select the δ for each query.

Refinement Phase
In the refinement phase, all elements in the original column
have been appended to the buckets. In this phase, we re-
cursively partition by the next set of log2 b most significant
digits. For each of the buckets, this results in the creation
of another set of b buckets in each of the refinement phases,
for a total of b ∗ b buckets in the second phase. To avoid the
overhead of managing these buckets to become bigger than
the overhead of actually performing the radix partitioning,
we avoid re-partitioning buckets that fit into the L1 cache
and instead immediately insert the values of these buckets in
sorted order into the final sorted array, as shown in Figure 2.
As the buckets themselves are ordered (i.e., for two buckets bi
and bi+1, we know ei < ei+1∀ei ∈ bi, ei+1 ∈ bi+1), we know
the position of each bucket in the final sorted array without
having to consider any elements in the other buckets.

We keep track of the buckets using a tree in which the
nodes point towards either the leaf buckets or towards a
position in the final sorted array in case the leaf buckets have
already been merged in there. This tree is used to answer
queries on the intermediate structure. When we get a query,
we look up which buckets we have to scan based on the most
significant bits of the query predicates. We then scan the
buckets or the final index, where required.

When the first iteration of the refinement phase is com-
pleted, we recursively continue with the next set of log2 b
most significant digits until all the elements have been merged
and sorted into the final index. At that point, we construct
our B+-tree index from the single fully sorted array.

Cost Model. The total time taken for a query is the
sum of (1) the time taken to scan the required buckets
to answer the query predicates and (2) the time taken to
perform the radix partitioning of the elements. The time
taken to scan the buckets is the same as in the creation
phase, α ∗ tbscan. The time taken for the radix partitioning
is tbucket = (κ+ ω) ∗ N

γ
+ τ ∗ N

sb
. The total cost is therefore

ttotal = α ∗ tbscan + δ ∗ tbucket.
Indexing Budget. In this phase, we set delta such that

δ =
tbudget
tbucket

for the adaptive indexing budget.

2370



3.3 Progressive Bucketsort
Progressive Bucketsort (Equi-Height) is very similar to

Progressive Radixsort (MSD). The main difference is in the
way the initial partitions (buckets) are determined. Instead
of radix clustering, which is fast but yields equally sized
partitions only with uniform data distributions, we perform
a value-based range partitioning to yield equally sized parti-
tions also with skewed data, at the expense that determining
the bucket that a value belongs to is more expensive. Figure 3
depicts a snapshot of the creation phase and two snapshots of
the refinement phase. In the following, we discuss these two
phases in detail. The consolidation phase is the same as with
Progressive Quicksort and Progressive Radixsort (MSD).

Bucket Count. To optimize for writing and reading from
the buckets, our implementation of progressive bucketsort
uses 64 buckets, as discussed in Section 3.2.

Creation Phase
Progressive Bucketsort operates in a very similar way to
Progressive Radixsort (MSD). Instead of choosing the bucket
an element belongs to based only on the most significant
bits, the bucket is chosen based on a set of bounds that
more-or-less evenly divide the elements of the set into the
separate buckets. These bounds can be obtained either in
the scan to answer the first query or from existing statistics
in the database (e.g., a histogram).

Cost Model. In the creation phase, the cost of the
algorithm is identical to that of Progressive Radixsort (MSD)
except that determining which element a bucket belongs to
now requires us to perform a binary search on the bucket
boundaries, costing an additional log2 b time per element
we bucket. This results in the following cost for the initial
indexing process ttotal = (1− ρ− δ) ∗ tscan + α ∗ tbscan + δ ∗
log2 b ∗ tbucket.

Indexing Budget. In this phase, we set delta such that

δ =
tbudget

log2 b∗tbucket
. For the fixed indexing budget, we select

this δ for the first query and keep on using this δ for the
remainder of the workload. For the adaptive indexing budget,
we use this formula to select the δ for each query.

13
14
16

8
7

16

3
4
6

11

4

19

13

7
6

9

4
6

1
2

6
3
14
13
2
1
8
19
7
12
11
4
16
9

Original 
Column

3

1

Initialize Refinement

2
3

12

19

Refinement

A<
5

9

11

3
2
1

8

12

14

A<
5 A < 3

3<=A

5<
=A

<1
0

10
<=

A<
14

14
<=

A<
20

2
1

A < 5

5<=A

U
ni

ni
tia

liz
ed

So
rte

d

A < 10

10<=A

13
14

5<
=A

<1
0

10
<=

A<
14

14
<=

A<
20 So

rte
d

A < 8

8<=A

A < 5

5<=A

Figure 3: Progressive Bucket Sort

Refinement Phase
In the refinement phase, all elements in the original column
have been appended to the buckets. We then merge the
buckets into a single sorted array. Unlike with Progressive
Radixsort (MSD), we do not recursively keep on using pro-
gressive bucketsort. This is because the overhead of finding
and maintaining the equi-height bounds for each of the sub-
buckets is too large. Instead, we sort the individual buckets
into the final sorted list using Progressive Quicksort. Using
a progressive algorithm to sort individual buckets protects
us from performance spikes caused by sorting large buckets.

The buckets are merged into the final sorted index in
order, as such, we always have at most a single iteration
of Progressive Quicksort active at a time in which we are
performing swaps. As we are using Progressive Quicksort,
the cost model for this phase is equivalent to the cost model
of Progressive Quicksort. After all the buckets have been
merged and sorted into the final index, we have a single fully
sorted array from which we can construct our B+-tree index.

3.4 Progressive Radixsort (LSD)
Progressive Radixsort Least Significant Digits (LSD) per-

forms a progressive radix clustering on the least significant
bits during the creation phase. Given that this does not
result in a range partitioning, as with radix cluster (MSD),
we cannot perform Progressive Quicksort in the individual
buckets to refine them in-place. Instead, we perform out-
of-place radix (LSD) clustering also during the refinement
phase, to achieve a ”pure” Radixsort (LSD) in a progressive
manner. Figure 4 depicts a snapshot of the creation phase
and two snapshots of the refinement phase. In the following,
we discuss these two phases in detail. The consolidation
phase is the same as above.

Bucket Count. To optimize for writing and reading
from the buckets our implementation of progressive radixsort
(LSD) uses 64 buckets, as discussed in Section 3.2.

Creation Phase
The creation phase of this algorithm is similar to the creation
phase of Progressive Radixsort (MSD) except that we parti-
tion elements based on the least-significant bits instead of the
most-significant bits. We can use the buckets that are cre-
ated to speed up point queries because we only need to scan

9

19
3

137

13
6

14

1

6

2

6
3
14
13
2
1
8
19
7
12
11
4
16
9

Original 
Column Initialize Refinement Refinement

…
00

8

13

2
3

…
00

…
01

…
10

…
11

14

…
01

…
10

…
113

1

19

12

11

4
16

9

.0
0.

.
.0

1.
.

.1
0.

.
.1

1.
.

8

12

4

16

6

0…
.

1…
.

4

8

16

6

12
13

.0
0.

.
.0

1.
.

.1
0.

.
.1

1.
.

1

14

2

7

11

16
19

1
2
3
4
6

Figure 4: Progressive Radixsort (LSD).

2371



the bucket in which the query value falls. However, unlike
the buckets created for the Progressive Radixsort (MSD) and
Progressive Bucketsort, these intermediate buckets cannot be
used to speed up range queries in many situations. Because
the elements are inserted based on their least-significant bits,
the buckets do not form a value-based range-partitioning of
the data. Consequently, we will have to scan many buckets,
depending on the domain covered by the range query.

The cost model for the Progressive Radixsort (LSD) is also
equivalent to the cost model of the Progressive Radixsort
(MSD), except the value of α is likely to be higher for range
queries (depending on the query predicates) as the elements
that answer the query predicate are spread in more buckets.
As scanning the buckets is slower than scanning the original
column, we also have a fallback that when α == ρ we scan
the original column instead of using the buckets to answer
the query.

Refinement Phase
In the refinement phase, we move elements from the cur-
rent set of buckets to a new set of buckets based on the
next set of significant bits. We repeat this process until
the column is sorted. How many iterations this takes de-
pends on the bucket count and the value domain of the
column, which we obtain from the [min,max] values. We
can compute the amount of required iterations with the
formula dlog2(max−min)/log2(b)e. For example, for a
column with values in the range of [0, 216) and 64 buck-
ets, the amount of iterations required before convergence is
dlog2(216)/log2(64)e = 3.

Cost Model. In this phase, we scan α fraction of the
original buckets to answer the query and move δ fraction
of the elements into the new set of buckets. This results
in the following cost for the refinement process: ttotal =
α ∗ tbscan + δ ∗ tbucket.

Indexing Budget. In this phase, we set delta as δ =
tbudget
tbucket

for the adaptive indexing budget.

4. EXPERIMENTAL EVALUATION
In this section, we provide an evaluation of the proposed

Progressive Indexing methods and the performance charac-
teristics they exhibit. In addition, we provide a comparison
of the performance of the proposed methods with adaptive
indexing methods.

Setup. We implemented all our Progressive Indexing
algorithms in a stand-alone program written in C++. We in-
cluded implementations of the adaptive indexing algorithms,
provided by the authors, and implemented an adaptive crack-
ing kernel algorithm that picks the most efficient kernel when
executing a query, following the decision tree from Haffner
et al. [11]. Both the progressive indexing algorithms and
the existing techniques were compiled with GNU g++ version
7.2.1 using optimization level -O3. All experiments were con-
ducted on a machine equipped with 256 GB main memory
and an 8-core Intel Xeon E5-2650 v2 CPU @ 2.6 GHz with
20480 KB L3 cache.

4.1 Workloads
In the performance evaluation, we use two data sets.
SkyServer. The Sloan Digital Sky Survey2 is a project

that maps the universe. The data set and interactive data ex-

2https://www.sdss.org/

(a) Data Distribution

0

108

0 50000 100000 150000

Query (#)

Q
ue

ry
 R

an
ge

(b) Workload

Figure 5: Skyserver

ploration query logs are publicly available via the SkyServer3

website. Similar to Halim et al. [12] we focus the benchmark
on the range queries that are applied on the Right Ascension
column of the PhotoObjAll table. The data set contains
almost 600 million tuples, with around 160, 000 range queries
that focus on specific sections of the domain before moving
to different areas. The data and the workload distributions
are shown in Figure 5.

Synthetic. The synthetic data set is composed of two
data distributions, consisting of 108 or 109 8-byte integers
distributed in the range of [0, n), i.e., for 109 the values are
in the range of [0, 109). We use two different data sets. The
first one is composed of unique integers that are uniformly
distributed, while the second one follows a skewed distri-
bution with non-unique integers where 90% of the data is
concentrated in the middle of the [0, n) range. The synthetic
workload consists of 106 queries in the form SELECT SUM(R.A)

FROM R WHERE R.A BETWEEN V1 AND V2. The values for V1

and V2 are chosen based on the workload pattern. The dif-
ferent workload patterns and their mathematical description
are depicted in Figure 6.

4.2 Impact of Delta (δ)
The δ parameter determines the performance character-

istics shown by the Progressive Indexing algorithms. For
δ = 0, no indexing is performed, meaning that algorithms
resort to performing full scans on the data, never converging
to a full index. For δ = 1, the entire creation phase will
be completed immediately during the first query execution.
Between these two extremes, we are interested in seeing how
different values of the δ parameter influence the performance
characteristics of the different algorithms.

In order to measure the impact of different δ parameters on
the different algorithms, we execute the SkyServer workload
using a δ ∈ [0.005, 1]. We measure the time taken for the
first query, the amount of queries until pay-off, the amount
of queries necessary for full convergence, and the total time
spent executing the entire workload.

First Query. Figure 7a shows the performance of the
first query for varying values of δ. The performance of the
first query degrades as δ increases since each query does
extra work proportional to δ. For every algorithm, however,
the amount of extra work done differs.

We can see that Bucketsort is impacted the most by in-
creasing δ. This is because determining which bucket an
element falls into costs O(log b) time, followed by a random
write for inserting the element into the bucket. Radixsort,
despite its similar nature to Bucketsort, is impacted much
less heavily by an increased δ. This is because determining
which bucket an element falls into costs constant O(1) time.

3http://skyserver.sdss.org/

2372



Figure 6: Synthetic Workloads [12].

● ●
●

●

●

●

●

●

●

●

●

●

●

3

6

9

12

0.01 0.10 1.00

δ

Q
ue

ry
 T

im
e 

(s
)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

(a) First query.

● ● ● ●

●
● ●●●●●●●

0

250

500

750

0.01 0.10 1.00

δ

Q
ue

ry
 N

um
be

r 
(#

)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

(b) Pay-off.

●

●

●
● ● ● ●●●●●●●0

1000

2000

3000

4000

5000

0.01 0.10 1.00

δ

Q
ue

ry
 N

um
be

r 
(#

)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

(c) Convergence.

●
●

● ● ● ● ●●●●●●●

0

250

500

750

0.01 0.10 1.00

δ

To
ta

l T
im

e 
(s

)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

(d) Cumulative time.

Figure 7: Progressive indexing experiments with varying deltas (X-axes in logarithmic scale).

Quicksort experiences the lowest impact from an increasing δ,
as elements are always written to only two memory locations
(the top and bottom of the array), the extra sequential writes
are not very expensive.

Pay-Off. Figure 7b shows the number of queries required
until the Progressive Indexing technique becomes worth the
investment (i.e., the query number q for which

∑
q tprog ≤∑

q tscan) for varying values of δ. We observe that with
a very small δ, it takes many queries until the indexing
pays off. While a small δ ensures low first query costs, it
significantly limits the progress of index-creation per query,
and consequently the speed-up of query processing. With
increasing δ, the number of queries required until pay-off
quickly drops to a stable level.

We see that Radixsort (LSD) needs a very high amount
of queries to pay-off for low values of δ. This is because
the intermediate index that is created cannot be used to
accelerate wide range queries until the index is converged.
When the value of δ is high, the index converges faster
and hence can be utilized to answer range queries earlier.
Quicksort also has a high time to pay-off with a low delta
because the intermediate index can only be used to accelerate
range queries that do not contain the pivots, hence in early
stages of the index the full table often needs to be scanned.
Bucketsort and Radixsort (MSD) do not suffer from these
problems, hence they pay-off fast even with lower values for
δ.

Convergence. The δ parameter affects the convergence
speed towards a full index. When δ = 0 the index will never

converge, and a higher value for δ will cause the index to
converge faster as more work is done per query on building
the index.

Figure 7c shows the number of queries required until the
index converges towards a full index. We see that Radixsort
converges the fastest, even with a low δ. It is followed by
Quicksort and then Bucketsort.

The reason Radixsort converges in so few iterations is
because it uses radix partitioning, which means that after
dlog2(n)/log2(b)e = dlog2(109)/log2(64)e = 5 partitioning
rounds the index is fully converged. The other algorithms
use quicksort pivoting, which requires more passes over the
data.

Cumulative Time. As we have seen before, a high value
for δ means that more time is spent on constructing the
index, meaning that the index converges towards a full index
faster. While earlier queries take longer with a higher value
of δ, subsequent queries take less time. Another interesting
measurement is the cumulative time spent on answering a
large number of queries. Does the increased investment in
index creation earlier on pay off in the long run?

Figure 7d depicts the cumulative query cost. We can see
that a higher value of δ leads to a lower cumulative time.
Converging towards a full index requires the same amount of
time spent on constructing the index, regardless of the value
of δ. However, when δ is higher, that work is spent earlier
on (during fewer queries), and queries can benefit from the
constructed index earlier.

Progressive Quicksort and Radixsort (LSD) perform poorly
when the delta is low. For Quicksort, this is because it will

2373



take many queries to finish our pivoting in one element.
While in Radixsort (LSD) the intermediate index that is
created cannot be effectively used to answer range queries be-
fore it fully converges, meaning a long time until convergence
results in poor cumulative time. Progressive Bucketsort and
Radixsort (MSD) perform better than Progressive Quicksort
for all values of δ, with Radixsort (MSD) slightly outper-
forming Bucketsort.

Another observation here is that the cumulative time con-
verges rather quickly with an increasing delta. The cumu-
lative time with δ = 0.25 and δ = 1 are almost identical
for all algorithms, while the penalization of the initial query
continues to increase significantly (recall Figure 7a).

4.3 Cost Model Validation
For both the fixed indexing budget and the adaptive index-

ing budget, we need the cost models presented in Section 2.2
to estimate the actual query processing and index creation
costs. For the fixed indexing budget, we need the cost model
to compute the initial value of δ based on the desired in-
dexing budget. For the adaptive indexing budget, we need
the cost model to adapt the value of δ for each query to the
current minimum query cost.

In this set of experiments, we experimentally validate our
cost models. In order to use the cost models in practice, we
need to first obtain values for all of the constants that are
used, such as the scanning speed and the cost of a cache miss.
Since these constants depend on the hardware, we perform
these operations when the program starts up and measure
how long it takes to perform these operations. The measured
values are then used as the constants in our cost model.

Fixed Indexing Budget. Before diving into the details
of choosing a variable δ per query for the adaptive indexing
budget, we first experimentally validate our cost models.
We run the SkyServer benchmark with a constant δ = 0.25
for the entire query sequence and compare the measured
execution times with the times predicted by our cost models.

Figure 8 shows the results for all four Progressive Index-
ing techniques we propose. The graphs clearly depict the
individual phases of our algorithms (cf., Section 3) and show
that significant improvements in query performance happen
mostly with the transition from one phase to the next. Given
that δ determines the fraction of data that is to be consid-
ered for index refinement with each query (rather than a
fraction of the full scan cost), the different techniques depict
different per query cost, depending on the respective index
refinement operations performed as well as the efficiency of
the respective partially built indexes. The graphs also show
that our cost models predict the actual costs well, accurately
predicting each phase transition as well as the point when
the full index has been finalized, and no further indexing is
required.

Adaptive Indexing Budget. With our cost models val-
idated, we now run the SkyServer benchmark with all four
Progressive Indexing techniques with the adaptive indexing
budget. We select tbudget = 0.2∗ tscan, i.e., the indexing bud-
get is selected as 20% of the full scan cost. Figure 9 depicts
the results of this experiment for each of the algorithms. In
all graphs, we observe that the total execution time stays
close to constant at a high level, matching the given budget
until the index is fully built, and no further refinement is
required.

In Figure 9a, the measured and predicted time are shown

for the Progressive Quicksort algorithm. Initially, the cost
model accurately predicts the performance of the algorithm.
However, close to convergence, the cost model predicts a
slightly higher execution time. This is because as the pieces
become smaller, they start fitting inside the CPU caches
entirely, which results in faster swaps than predicted by our
cost model.

In Figure 9b, the measured and predicted time are shown
for the Progressive Radixsort (MSD) algorithm. In the
initialization phase, the cost model matches the measured
time initially, but the measured time slightly decreases below
the cost model as the initialization progresses. This is because
the data distribution is relatively skewed, which results in
the same buckets being scanned for every query, which will
then be cache resident and faster than predicted. In the
refinement phase, there are some minor deviations from the
cost model caused by smaller radix partitions fitting in CPU
caches, which our cost model does not accurately predict.

In Figure 9c, the measured and predicted time are shown
for the Progressive Radixsort (LSD) algorithm. The cost
model accurately predicts the performance of the initializa-
tion and refinement phases of the algorithm but results in
several spikes later in the refinement phase. These spikes
occur because the workload we are using consists of very wide
range queries. These range queries can only take advantage
of the LSD index depending on the exact range queries issued.
Because of this, certain queries can be answered much faster
using the index, whereas others cannot use the index at all.
As our cost model is pessimistic, this results in the measured
time being faster than the predicted time.

In Figure 9d, the measured and predicted time are shown
for the Progressive Bucketsort algorithm. In the initialization
phase, the cost model closely matches the measured time.
After it, Progressive Quicksort is used to merge the different
buckets into a single sorted array. The different iterations
of Progressive Quicksort each have small downwards spikes
when the pieces start fitting inside the CPU caches.

4.4 Adaptive Indexing Comparison
In the remainder of the experiments section, we will be

comparing the progressive indexing techniques with existing
adaptive indexing techniques. In particular, we focus on
standard cracking (STD), stochastic cracking (STC), pro-
gressive stochastic cracking (PSTC), coarse granular index
(CGI) and adaptive adaptive indexing (AA).

The implementations for the Full Index, Standard Crack-
ing, Stochastic Cracking, and Coarse Granular Index were
inspired by the work done in Schuhknecht et al. [24]4. The
implementation for Progressive Stochastic Cracking was in-
spired by the work done in Halim et al. [12]5. Progressive
stochastic cracking is run with the allowed swaps set to 10%
of the base column. The implementation for the adaptive
adaptive indexing algorithm has been provided to us by the
authors of the Adaptive Adaptive Indexing work [23], and
we use the manual configuration suggested in their paper.

We compare all the progressive indexing techniques that we
have introduced in this work: Progressive Quicksort (PQ),
Progressive Bucketsort (PB), Progressive Radixsort LSD
(PLSD) and Progressive Radixsort MSD (PMSD). For each
of the techniques, we use an adaptive indexing budget where

4https://infosys.uni-saarland.de/publications/
uncracked_pieces_sourcecode.zip
5https://github.com/felix-halim/scrack

2374



1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(a) P. Quicksort.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(b) P. Radixsort (MSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(c) P. Radixsort (LSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(d) P. Bucketsort.

Figure 8: SkyServer Workload with Fixed Indexing Budget (all axes in log scale)

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(a) P. Quicksort.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(b) P. Radixsort (MSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(c) P. Radixsort (LSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e 
(s

)

Measured
Cost Model

(d) P. Bucketsort.

Figure 9: SkyServer Workload with Adaptive Indexing Budget (all axes in log scale)

we set tbudget = 0.2 ∗ tscan, i.e., the cost of each query will
be equivalent to 1.2 ∗ tscan until convergence.

For reference, we also include the timing results when only
performing full scans on the data (FS) and when constructing
a full index immediately on the first query (FI). The full
scan implementation uses predication to avoid branches, and
the full index bulk loads the data into a B+-tree after which
the B+-tree is used to answer subsequent queries.

Metrics. The metrics that we are interested in are the
time taken for the first query, the amount of queries required
until convergence, the robustness of each of the algorithms
and the cumulative response time. The robustness we com-
pute by taking the variance of the first 100 query times.

SkyServer Workload

Table 2: SkyServer Results
Index First Q Convergence Robustness Cumulative

FS 0.75 x 0 118743.7
FI 34.10 1 x 121.4

STD 5.26 x 0.290 1082.2
STC 4.99 x 0.250 245.6

PSTC 4.89 x 0.240 254.5
CGI 5.71 x 0.320 1008.9
AA 8.50 x 0.800 188.4
PQ 0.90 150 0.002 202.9

PMSD 0.90 119 0.030 157.5
PLSD 0.81 368 3.4e-05 377.4

PB 0.83 138 0.009 166.4

In the first part of the experiments section, we execute the
full SkyServer workload using each of the different indexing
techniques. The results for each of the indexing techniques
are shown in Table 2. The algorithms have been divided into
three sections: the baseline, the adaptive indexing techniques,
and the progressive indexing techniques.

The results for the baseline techniques are not very sur-
prising. The full scan method is the most robust method,
as we use predication, and no index is constructed the cost
of each query is identical. The full scan method is also the
cheapest method when it comes to the cost of the first query
as no time is spent on indexing at all. The full scan, how-
ever, takes significantly longer to answer the full workload
than the other methods. Answering the full workload takes
almost 30 hours, whereas all the other techniques finish the
entire workload in under 20 minutes. The full index lies at
the other extreme. It takes 50x longer to answer the first
query while the index is being constructed, however, it has
the lowest cumulative time as the index can be utilized to
quickly answer all of the remaining queries.

For the adaptive indexing techniques, we can see that their
first query cost is significantly lower than that of a full index,
but still significantly higher than that of a full scan. Each of
the adaptive indexing methods perform a significant amount
of work copying the data and cracking the index on the first
query that result in a very high cost for the first query. They
do achieve a significantly faster cumulative time than the
full scans, however, in sum, they take longer than the full
index to answer the workload. Standard cracking and coarse
granular indexing perform particularly poorly because of
the sequential nature of the workload, as shown in Figure 5.
Stochastic cracking and adaptive indexing perform better as
they do not choose the pivots based on the query predicates.
Adaptive adaptive indexing has the best cumulative perfor-
mance, which is consistent with the results in Schuhknecht
et al. [23].

The progressive indexing methods all have approximately
the same cost for the first query, which is 1.2x the scan
cost. This is by design as we set the indexing budget
tbudget = 0.2 ∗ tscan for each of the algorithms. The main
difference between the algorithms is the robustness and the

2375



●

Index 
 (0.000003)

1.2x Scan
 (0.9)

10 1000

Query (#)

Q
ue

ry
 T

im
e 

(lo
g(

s)
)

● AA Idx
P. Quick
P. Stc 10%

Figure 10: Progressive Quicksort vs Adaptive Indexing. (all
axes in log scale)

time until convergence. As we are executing range queries,
the Radixsort LSD performs the worst. The LSD partition-
ing cannot assist in answering the range queries, and hence,
the intermediate index does not speed up the workload prior
to convergence. Radixsort MSD performs the best, as the
data set is rather uniformly distributed the radix partitioning
works to very efficiently create a partitioning of the data,
which can be immediately utilized to speed up subsequent
queries. For each of the progressive indexing methods, we
see that they converge relatively early in the workload. As
we have set every query to take 1.2 ∗ tscan until convergence,
a significant amount of time can be spent on constructing
the index for each query, especially in later queries when
the intermediate index can already be used to efficiently ob-
tain the answer. We also note that the progressive indexing
methods each have a significantly higher robustness score
than the adaptive indexing methods. Progressive indexing
presents up to 4 orders of magnitude lower query variance
when compared to the adaptive indexing techniques. This is
achieved by our cost model balancing the per query execu-
tion cost to be (almost) the same until convergence, while
adaptive indexing suffers from many performance spikes.

The execution time for each of the queries in the SkyServer
workload is shown in Figure 10. For clarity, we focus on the
best adaptive indexing methods (Adaptive Adaptive Index-
ing in terms of cumulative time, and Progressive Stochastic
10% in terms of first query cost and robustness) and progres-
sive quicksort. We can see that both the adaptive indexing
methods start with a significantly higher first query cost,
and then fall quickly. Neither of them sufficiently converges,
however, and both continue to have many performance spikes.
Progressive quicksort, on the other hand, starts at the speci-
fied budget and maintains that query cost until convergence,
after which the cost drops to the cost of a full index.

Synthetic Workloads
In the second part of our experiments, we execute all syn-
thetic workloads described in Section 4.1. All results are
presented in tables, each table is divided into four parts, each
representing one set of experiments. The first three are on
data with 108 elements and use random distribution, skewed
distribution, and only point queries respectively. The final
one is on 109 elements on random distribution. With the
exception of point queries and the ZoomIn and SeqZoomIn
workloads, all queries have 0.1 selectivity. From the adaptive
indexing techniques, adaptive adaptive indexing presents the

best cumulative time. Hence we select it for comparison. As
previously, we set the indexing budget tbudget = 0.2 ∗ tscan
for each progressive indexing algorithm.

Table 3: First query cost
Workload PQ PB PLSD PMSD AA

U
n

if
o
rm

R
a
n

d
o
m

SeqOver 0.15 0.15 0.14 0.14 1.4
ZoomOutAlt 0.15 0.15 0.14 0.14 1.4

Skew 0.15 0.15 0.14 0.14 1.4
Random 0.15 0.15 0.14 0.14 1.4

SeqZoomIn 0.15 0.15 0.14 0.14 1.4
Periodic 0.15 0.15 0.14 0.14 1.4

ZoomInAlt 0.15 0.15 0.14 0.14 1.4
ZoomIn 0.15 0.15 0.14 0.14 1.4

S
k
ew

ed

SeqOver 0.15 0.15 0.14 0.14 1.5
ZoomOutAlt 0.15 0.15 0.14 0.13 1.5

Skew 0.15 0.15 0.14 0.13 1.5
Random 0.15 0.15 0.13 0.13 1.5

SeqZoomIn 0.15 0.15 0.14 0.13 1.5
Periodic 0.15 0.15 0.14 0.13 1.5

ZoomInAlt 0.15 0.15 0.14 0.14 1.5
ZoomIn 0.15 0.15 0.14 0.14 1.5

P
o
in

t
Q

u
er

y SeqOver 0.15 0.15 0.21 0.14 1.4
ZoomOutAlt 0.15 0.15 0.21 0.14 1.4

Skew 0.15 0.15 0.21 0.14 1.4
Random 0.15 0.15 0.21 0.14 1.4
Periodic 0.15 0.15 0.21 0.14 1.4

ZoomInAlt 0.15 0.15 0.21 0.14 1.4

1
0
9

SeqOver 1.5 1.5 1.4 1.7 13.9
Skew 1.5 1.5 1.4 1.7 13.8

Random 1.5 1.5 1.4 1.7 25.4

Table 3 depicts the cost of the first query for all algorithms.
All progressive indexing algorithms present a similar first
query cost. Which accounts for approximately 1.2x the scan
cost, as chosen in our setup. Adaptive indexing has a higher
cost due to the complete copy of the data and by completing
a full partition step in the first query. In general, progressive
indexing has one order of magnitude faster first query cost
than adaptive indexing.

Table 4: Cumulative Time
Workload PQ PB PLSD PMSD AA

U
n

if
o
rm

R
a
n

d
o
m

SeqOver 19.0 17.9 48.2 16.2 20.7
ZoomOutAlt 20.7 28.3 59.5 26.7 22.1

Skew 18.8 17.7 48.1 15.9 10.1
Random 24.7 22.8 53.1 21.1 29.1

SeqZoomIn 22.0 20.9 53.5 19.3 21.1
Periodic 23.3 22.0 63.9 20.4 18.4

ZoomInAlt 20.8 23.3 54.2 21.6 21.7
ZoomIn 167.0 165.0 210.0 164.0 277.0

S
k
ew

ed

SeqOver 21.8 30.0 59.7 21.7 17.5
ZoomOutAlt 21.5 30.2 64.4 63.7 41.1

Skew 17.4 15.3 45.5 17.3 5.7
Random 24.0 21.6 51.5 23.8 23.9

SeqZoomIn 23.3 21.2 52.6 23.1 18.3
Periodic 23.3 21.3 64.2 23.3 17.0

ZoomInAlt 22.2 25.1 54.8 21.8 33.5
ZoomIn 938.0 919.0 934.0 917.0 1655.0

P
o
in

t
Q

u
er

y SeqOver 16.7 15.7 13.2 14.0 15.1
ZoomOutAlt 17.7 15.8 13.0 14.0 15.5

Skew 16.6 15.5 12.7 13.7 5.6
Random 18.4 16.5 13.6 14.7 14.4
Periodic 16.8 15.7 13.0 14.3 5.7

ZoomInAlt 17.7 15.9 13.2 14.1 15.2

1
0
9

SeqOver 516 493 924 480 653
Skew 538 513 885 487 582

Random 773 718 1579 692 1104

Table 4 depicts the cumulative time of fully executing each
workload. Under uniform random data, we can see that

2376



progressive indexing outperforms adaptive indexing in most
workloads, with the exception of the skewed and the peri-
odic workload. This comes with no surprise since adaptive
indexing techniques have been designed to refine, and boost
access, to frequently accessed parts of the data. From the
progressive algorithms, radixsort (MSD) is the fastest since
radixsort is capable to outperform other techniques under
randomly distributed data.

For the skewed distribution, adaptive indexing outperforms
progressive indexing in almost all workloads, due to its refine-
ment strategy. However, progressive indexing outperforms
adaptive indexing for ZoomIn/Out workloads, since each
query accesses a different partition in different boundaries of
the data, which leads to adaptive indexing accessing large
unrefined pieces in the initial queries. From the progressive
algorithms, bucketsort presents the fastest times since it gen-
erates equal-sized partitions for skewed data distributions.

For point queries, radixsort (LSD) outperforms all algo-
rithms in all workload since its intermediate index can be
used early on to accelerate point queries.

Finally, for the 109 data size, progressive indexing manages
to outperform adaptive indexing even for the skewed work-
load, the key difference here is that the chunks of unrefined
data are bigger, and progressive indexing actually spends
the time on fully converging them into small pieces while
adaptive indexing must manage larger pieces of data.

Table 5: Robustness
Workload PQ PB PLSD PMSD AA

U
n

if
o
rm

R
a
n

d
o
m

SeqOver 2.4e-04 5.8e-04 2.2e-05 2.1e-04 0.02
ZoomOutAlt 1.7e-04 6.0e-04 2.1e-05 2.1e-04 0.02
Skew 2.5e-04 6.2e-04 2.9e-05 2.3e-04 0.02
Random 2.1e-04 6.5e-04 2.3e-05 2.0e-04 0.02
SeqZoomIn 2.3e-04 5.5e-04 2.6e-05 2.1e-04 0.02
Periodic 2.4e-04 6.6e-04 1.9e-05 2.1e-04 0.02
ZoomInAlt 2.4e-04 5.4e-04 2.2e-05 2.1e-04 0.02
ZoomIn 2.3e-04 3.8e-04 3.1e-05 1.4e-04 0.02

S
k
ew

ed

SeqOver 3.7e-04 7.5e-04 1.6e-05 2.5e-03 0.03
ZoomOutAlt 3.1e-04 7.6e-04 1.4e-05 2.7e-04 0.03
Skew 3.5e-04 7.9e-04 1.4e-05 2.5e-03 0.03
Random 3.4e-04 7.8e-04 1.9e-05 2.5e-03 0.03
SeqZoomIn 3.6e-04 8.5e-04 1.4e-05 2.5e-03 0.03
Periodic 3.2e-04 8.2e-04 1.5e-05 2.4e-03 0.03
ZoomInAlt 3.4e-04 7.5e-04 1.4e-05 2.5e-03 0.02
ZoomIn 1.9e-05 2.3e-04 1.4e-05 1.4e-03 0.02

P
o
in

t
Q

u
er

y SeqOver 2.4e-04 7.0e-04 1.5e-03 2.2e-04 0.02
ZoomOutAlt 1.8e-04 6.3e-04 1.6e-03 2.1e-04 0.02
Skew 2.6e-04 6.8e-04 1.6e-03 2.3e-04 0.02
Random 2.2e-04 6.6e-04 1.6e-03 2.5e-04 0.02
Periodic 2.2e-04 6.8e-04 1.1e-03 2.1e-04 0.02
ZoomInAlt 2.3e-04 6.8e-04 1.5e-03 3.3e-04 0.02

1
0
9

SeqOver 0.02 0.03 2.8e-04 0.04 2.1
Skew 8.1e-03 0.03 1.0e-04 0.03 2.1
Random 0.01 0.03 2.4e-04 0.02 7.0

Table 5 presents the robustness of the indexing algorithms.
Progressive indexing presents up to four orders of magni-
tudes less variance than adaptive indexing. This is due to
the design characteristic of progressive indexing to inflict a
controlled indexing penalty. For uniform random and skewed
distributions, radixsort LSD presents the least variance. This
is due to out cost model noticing that the intermediate index
created by LSD cannot be used to boost query access, hence
knowing the precise cost of executing the query (i.e., a full
scan cost). However, for point queries, the intermediate
index from LSD can already be used, which reduces the cost
model accuracy.

Figure 11: Progressive Indexing Decision Tree.

5. CONCLUSION
In this paper, we introduce Progressive Indexing, a novel

incremental indexing technique that offers robust and pre-
dictable query performance under different workloads. Pro-
gressive techniques perform indexing within an interactivity
threshold and provide a balance between fast convergence to-
wards a full index together with a small performance penalty
for the initial queries. We propose four different progressive
indexing techniques and develop cost models for all of them
that allow for automatic tuning. We show how they perform
with both real and synthetic workloads and compare their
performance against adaptive indexing techniques. Based on
the main characteristics of each algorithm and the results of
our experimental evaluation, we conclude our work with the
decision tree shown in Figure 11, that provides recommenda-
tions on which technique to use in different situations.

6. FUTURE WORK
We point out the following as the main aspects to be

explored in progressive indexing future work:

• Approximate Query Processing. One could also
resort to using approximate query processing tech-
niques [5] to allow for a faster convergence. We can
then build a progressive index as a by-product of the
approximate query processing, leading to better accu-
racy and faster responses as the data is queried more
often.

• Indexing Methods. Other techniques can be adapted
to work progressively with different benefits. For ex-
ample, instead of constructing the complete hash table,
we only insert n ∗ δ elements and scan the remainder
of the column. The partial hash table can be used to
answer point queries on the indexed part of the data.
Another example is column imprints [28] where instead
of immediately building imprints for the entire column,
only build them for the first fraction δ of the data.

• Interleaving Progressive Strategies. As depicted
in our decision tree, different progressive strategies
can be more efficient in different scenarios. When the
indexing budget is small, the indexes can take longer to
fully converge, and the workload patterns might change
dramatically. Detecting these changes and changing
the progressive strategy on-the-fly can be beneficial for
these cases.

7. ACKNOWLEDGMENTS
This work was funded by the Netherlands Organisation

for Scientific Research (NWO), projects “Data Mining on
High-Volume Simulation Output” (Holanda) and “Process
Mining for Multi-Objective Online Control” (Raasveldt).

2377



8. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.

Automated Selection of Materialized Views and
Indexes in SQL Databases. In Proceedings of the 26th
International Conference on Very Large Data Bases,
VLDB ’00, pages 496–505, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[2] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10,
1999, Edinburgh, Scotland, UK, pages 54–65, 1999.

[3] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In CIDR, 2005.

[4] N. Bruno. Automated Physical Database Design and
Tunning. CRC-Press, 2011.

[5] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using wavelets.
The VLDB JournalThe International Journal on Very
Large Data Bases, 10(2-3):199–223, 2001.

[6] S. Chaudhuri and V. Narasayya. AutoAdmin “What-if”
Index Analysis Utility. ACM SIGMOD Record,
27(2):367–378, 1998.

[7] S. Chaudhuri and V. R. Narasayya. An Efficient,
Cost-Driven Index Selection Tool for Microsoft SQL
Server. In VLDB, volume 97, pages 146–155, 1997.

[8] D. Comer. The Difficulty of Optimum Index Selection.
ACM Transactions on Database Systems (TODS),
3(4):440–445, 1978.

[9] G. Graefe and H. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. In Proceedings of the
13th International Conference on Extending Database
Technology, pages 371–381. ACM, 2010.

[10] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D.
Ullman. Index Selection for OLAP. In Data
Engineering, 1997. Proceedings. 13th International
Conference on, pages 208–219. IEEE, 1997.

[11] I. Haffner, F. M. Schuhknecht, and J. Dittrich. An
Analysis and Comparison of Database Cracking Kernels.
In Proceedings of the 14th International Workshop on
Data Management on New Hardware, DAMON ’18,
pages 10:1–10:10, New York, NY, USA, 2018. ACM.

[12] F. Halim, S. Idreos, P. Karras, and R. H. Yap.
Stochastic Database Cracking: Towards Robust
Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 5(6):502–513, 2012.

[13] P. Holanda and E. C. de Almeida. SPST-Index: A
Self-Pruning Splay Tree Index for Caching Database
Cracking. In EDBT, pages 458–461, 2017.

[14] S. Idreos, M. L. Kersten, and S. Manegold. Updating a
Cracked Database. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’07, pages 413–424, New York, NY,
USA, 2007. ACM.

[15] S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing Tuple Reconstruction in Column-stores.
SIGMOD, pages 297–308, 2009.

[16] S. Idreos, M. L. Kersten, S. Manegold, et al. Database
Cracking. In CIDR, volume 3, pages 1–8, 2007.

[17] S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging What’s Cracked, Cracking What’s Merged:
Adaptive Indexing in Main-Memory Column-Stores.
PVLDB, 4(9):586–597, 2011.

[18] Z. Liu and J. Heer. The Effects of Interactive Latency
on Exploratory Visual Analysis. Visualization and
Computer Graphics, IEEE Transactions on,
20:2122–2131, 12 2014.

[19] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah, et al.
Self-Driving Database Management Systems. In CIDR,
2017.

[20] E. Petraki, S. Idreos, and S. Manegold. Holistic
Indexing in Main-memory Column-stores. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1153–1166.
ACM, 2015.

[21] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and
M. Kersten. Database Cracking: Fancy Scan, not Poor
Man’s Sort! In Proceedings of the Tenth International
Workshop on Data Management on New Hardware,
page 4. ACM, 2014.

[22] K. A. Ross. Conjunctive selection conditions in main
memory. In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 3-5, Madison, Wisconsin,
USA, pages 109–120, 2002.

[23] F. M. Schuhknecht, J. Dittrich, and L. Linden.
Adaptive adaptive indexing. ICDE, 2018.

[24] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The
Uncracked Pieces in Database Cracking. PVLDB,
7(2):97–108, 2013.

[25] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich.
On the surprising difficulty of simple things: the case of
radix partitioning. PVLDB, 8(9):934–937, 2015.

[26] T. Sellam, E. Mller, and M. Kersten. Semi-Automated
Exploration of Data Warehouses. In CIKM, pages
1321–1330, 10 2015.

[27] A. Sharma, F. M. Schuhknecht, and J. Dittrich. The
Case for Automatic Database Administration using
Deep Reinforcement Learning. arXiv preprint
arXiv:1801.05643, 2018.

[28] L. Sidirourgos and M. Kersten. Column Imprints: A
Secondary Index Structure. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 893–904,
New York, NY, USA, 2013. ACM.

[29] E. Teixeira, P. Amora, and J. C. Machado.
Metisidx-from adaptive to predictive data indexing. In
EDBT, pages 485–488, 2018.

[30] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and
A. Skelley. DB2 Advisor: An Optimizer Smart Enough
to Recommend Its Own Indexes. In Data Engineering,
2000. Proceedings. 16th International Conference on,
pages 101–110. IEEE, 2000.

2378


