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ABSTRACT
Event streams generated by smart devices common in modern In-
ternet of Things applications must be continuously mined to moni-
tor the behavior of the underlying system. In this work, we propose
a stream pattern mining system for supporting online IoT appli-
cations. First, to solve the pattern explosion problem of existing
stream pattern mining strategies, we now design pattern seman-
tics that continuously produce a compact set of patterns that max-
imumly compresses the dynamic data streams, called MDL-based
Representative Patterns (MRP). We then design a one-pass SWIFT
approach that continuously mines the up-to-date MRP pattern set
for each stream window upon the arrival or expiration of individ-
ual events. We show that SWIFT is guaranteed to select the update
operation for each individual incoming event that leads to the most
compact encoding of the sequence in the current window. We fur-
ther enhance SWIFT to support batch updates, called B-SWIFT. B-
SWIFT adopts a lazy update strategy that guarantees that only the
minimal number of operations are conducted to process an incom-
ing event batch for MRP pattern mining. Evaluation by our indus-
try lighting lab collaborator demonstrates that SWIFT successfully
solves their use cases and finds more representative patterns than
the alternative approaches adapting the state-of-the-art static repre-
sentative pattern mining methods. Our experimental study confirms
that SWIFT outperforms the best existing method up to 50% in the
compactness of produced pattern encodings, while providing a 4
orders of magnitude speedup.
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1. INTRODUCTION
Motivation. Over the past decade, smart phones, tablets, sensors
and other Internet of Things (IoT) devices have become ubiquitous.
These devices continuously generate large volumes of data, typi-
cally in the form of streams composed of discrete events. Examples
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include control signals from Internet-connected devices like lights
and thermostats as well as log files from smartphones that record
the behavior of sensor-based applications over time. With the in-
creasing prevalence of such event streams, discovering the frequent
sequential patterns hidden in the data [1, 13] is more critical than
ever. Our work in this space is motivated by several real-world
applications we have built as described below.

Example 1. As a part of a collaboration with a major indus-
trial lighting Lab, we have been tasked to find the frequent pat-
terns that characterize typical lighting control messages exchanged
between their smart lighting devices and servers in the cloud, to
facilitate understanding whether the devices are performing as ex-
pected based on their configuration or are in an abnormal state.
For example, each lighting device is expected to routinely hand-
shake with its server. This handshake behavior regularly produces
a synchronization message (denoted as S) followed by a location
report message (denoted as L), that can be modeled by a frequent
pattern P = hS ,Li. Missing this frequent pattern in some time
interval indicates the devices might be faulty during this period.

Example 2. In a sensor-based mobile application that
records data from users as they drive, the frequent pat-
tern P = hStartTrip(A),RecordTrip(B),ReportLoc(C ),
Terminate(D)i captured from continuously generated log mes-
sages represents a typical behavior of the system, namely, after
the user starts a trip, the system continues reporting, and then
terminates when the trip finishes. The system is in a healthy
condition if this frequent pattern is consistently observed over
time. Otherwise, the system may be functioning abnormally.

Example 3. In a hospital infection control system [23] that con-
tinuously tracks healthcare workers (HCWs) for hygiene compli-
ance (for example sanitizing hands and wearing masks), sensors
are installed at doorways, beds, and disinfectant dispensers. In
such healthcare settings, a HCW is required to wash her hands
before approaching a patient. This behavior can be modeled as
a frequent pattern P = hHandWash,Enter ,ApproachPatienti.
Consistent observation of this frequent pattern indicates that the
HCW performs hygiene behavior appropriately, whereas violations
of it indicate a lack of proper hygiene protocol during a particular
shift of the HCW.
State-of-the-Art and Limitations. Existing stream pattern mining
techniques [5, 6], which detect sequential patterns from streams us-
ing traditional mining semantics [2, 24], suffer from a pattern ex-
plosion problem [2, 24]. That is, they tend to produce a huge and
highly redundant collection of frequent patterns that are difficult
to understand. For example, in our industrial lighting project, we
found that using SeqStream [5] with closed frequent pattern seman-
tics [24] produces 1,082 patterns under a standard configuration of
parameters, even though there are only 13 distinct message types in
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total and fewer than 1,000 events per window in the lighting con-
trol message stream. Among these patterns, 477 patterns contain
the same 3 event types “synchronization (S), location report (L),
and alarm (A)” in the same order. As such, most of these patterns
are not informative. For example, all 6 length-3 patterns which
could be formed by the three event types S, L, A are identified as
frequent. However, only hSLAi is an actual sequence of alarms
that should occur in the system.

In short, existing techniques are neither effective nor efficient
at supporting online stream applications. These techniques have
quadratic or worse CPU computation complexity, resulting in pro-
hibitively large response time for large data sets. Worse yet, human
operators are overwhelmed when having to continuously examin-
ing such large pattern sets over time.
Challenges. In this work we thus target on designing an effective
yet efficient stream pattern mining system amenable for online IoT
applications. Designing such a system is challenging, because the
need to solve the pattern explosion problem contradicts the strin-
gent response time requirement for the real time monitoring of the
system status and prompt action when abnormal phenomena occur.

More specifically, to solve the pattern explosion problem, the
produced set of patterns has to be very compact. On the other
hand, however, this compact set of patterns has to be rich enough
to capture the typical behaviors of the system. Otherwise missing
the representative patterns might lead to a loss of huge fortune or
even human life. Intuitively, the pattern explosion problem could
be solved by using some post-processing strategy that carefully se-
lects a compact set of patterns from all possible patterns. For exam-
ple, the minimum description length (MDL) principle [20], widely
used in text compression, could be used as a mechanism to select
a reduced set of patterns [14, 15, 22]. These MDL-decided pat-
terns, if used as a dictionary, have the potential to maximally com-
press the data into a compact pattern encoding. Therefore, they are
considered to effectively represent the whole sequence. However,
the problem of selecting a set of patterns based on MDL is NP-
hard [21, 28]. Therefore, this approach inevitably adds substantial
extra costs to the already expensive pattern mining task, while in
online IoT applications, the approach has to be lightweight to meet
the real time response requirement.
Proposed Approach. In this work, we propose the first stream pat-
tern mining system that continuously finds the representative pat-
terns in sliding window event streams using the MDL principle. It
uses a new algorithm we call SWIFT1. Key contributions include:

• We present MDL-based Representative Patterns (MRP), which
are the first stream pattern mining semantics that leverage the MDL
principle to continuously model a compact set of representative pat-
terns in sliding window stream.

• We describe a one-pass algorithm, SWIFT, that efficiently dis-
covers a set of representative patterns that match the MRP seman-
tics using an incremental strategy. SWIFT, as a one-pass solution
that touches each new arrival event only once, is well-suited to IoT
streaming data. This allows SWIFT to scale to large volume event
streams – processing up to 100,000 events per second. We prove
that SWIFT is guaranteed to select the update operation for each
individual incoming event that most reduces the description length
of the sequences in the current window.

• We also design an extended SWIFT approach, called B-
SWIFT, for supporting batch updates. The key idea is that in-
stead of immediately updating the pattern set whenever an indi-
vidual event arrives, B-SWIFT adopts a lazy update strategy that
refreshes the MRP pattern set only once per window. We show that

1Sliding WIndow-based Frequent paTterns

B-SWIFT conducts update operations guaranteed to cause a change
in the MRP pattern set representing the current window.

• Evaluation by our industry lighting lab collaborators shows
that it successfully solves their use cases and produces more useful
patterns than the alternative approaches which are adapted from
the state-of-the-art static compressing pattern mining work [14, 15,
22]. Furthermore, we demonstrate that SWIFT outperforms the
best existing method by up to 50% in compressing the real IoT
event sequences, while at the same time providing up to a 4 orders
of magnitude speedup. Additional experiments on synthetic data
also confirm its scalability to large volume event streams.

2. PRELIMINARIES

2.1 Basic Terminology
An event sequence stream corresponds to a series of events

continuously produced by a single device. At each time ti, the
device generates an event ei of type Ei, denoted as (ei , ti).
Typically a sliding window (of size W ) [9] is applied to spec-
ify a finite subset of the most recent events from the event
streams. A window sequence (or sequence) is a list of or-
dered events falling in the current window at time ti, denoted as
S = h(ei�W+1 , ti�W+1 )(ei�W+2 , ti�W+2 ) . . . , (ei , ti)i. The
window slides when a new event (ei+1 , ti+1 ) is received. The
new event is inserted into the current window. The obsolete event
(ei�W+1, ti�W+1) produced W time units ago is discarded from
the window. Besides sliding by one, the window can slide every
B time units or after every B tuples. The new events produced af-
ter ti are added to the window, while the events produced before
ti�W+B+1 are removed.

A sequence pattern (or pattern) P = hE1E2 . . .Emi is an or-
dered list of event types Ei. An occurrence of P in window
sequence S, denoted by OS

P = h(e1 , t1 ) (e2 , t2 ) . . . (em , tm)i,
is a list of events ei ordered by time ti, where 8 (ei , ti)
2 OS

P (i 2 [1 . . .m]), (ei , ti) 2 S and ei represents an event type
Ei 2 P .

We say a pattern Q = hE 0
1E

0
2 . . .E 0

l i is a sub-pattern of a pat-
tern P = hE1 E2 . . .Emi (l  m), denoted Q v P , if integers
1  i1 < i2 < · · · < il  m exist such that E 0

1 = Ei1 , E 0
2 = Ei2 ,

. . . , E0
l = Eil . Alternately, we say P is a super-pattern of Q. For

example, pattern Q = hAC i is a sub-pattern of P = hABC i.

2.2 Mining Representative Patterns with
MDL

The Minimum Description Length (MDL) principle introduced
in [20] is widely used in data compression as a measure to se-
lect the encoding model that best compresses the data [11, 12,
3]. Given a set of models M, the best encoding model Mi 2 M
is the one that minimizes L(Mi) = L(Di) + L(S |Di), where Di

corresponds to the dictionary of Mi, L(Di) represents the length
of Di, and L(S |Di) represents the length of the data after being
encoded with dictionary Di. L(Di) and L(S |Di) are measured in
the number of characters.

In [15, 22], to solve the pattern explosion problem, MDL is used
as a metric to select the pattern set that most compresses a static
sequence dataset, where the occurrences of the patterns in this set
do not overlap with each other – each event is used by at most
one pattern occurrence. This pattern set is considered as the best,
because it lets analysts understand the key features of the sequence
dataset with a minimal amount of information.

For example, consider the sequence fragment S = h(s, 1 )(l , 2 )
(a, 3 )(s, 4 ) (l , 5 )(a, 6 ) (s, 7 )(l , 8 )(s, 9 )(l , 10 )i extracted from
the lighting application shown in Fig. 1. Using traditional pattern
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TimeLine
Input:           (s,1) (l,2) (a,3) (s,4) (l,5) (a,6) (s,7) (l,8) (s,9) (l,10) …
Pattern Set-1:  {},     … {SL} {SLA} {SLA,SL}
Pattern Set-2 {}, … {SL} …

Figure 1: Stream Representative Pattern Mining Example

semantics [2] to mine the frequent patterns, we consider a pattern as
frequent if its frequency is larger than a predefined support thresh-
old. When the support threshold is set to 2, this produces two fre-
quent patterns P1: hSLAi and P2: hSLi. P1 has 2 occurrences and
P2 has 4 occurrences. In this case, events (s,1), (l,2), (s,4), (l,5)
are used in both P1 and P2. Put differently, the two occurrences of
P1 (h(s, 1 )(l , 2 )(a, 3 )i and h(s, 4 )(l , 5 )(a, 6 )i) overlap with the
first two occurrences of P2 (h(s, 1 )(l , 2 )i and h(s, 4 )(l , 5 )i).

Thus we can construct the pattern set P1 =
{P1 : SLA,P2 : SL}. Each pattern in P1 uses 2 occurrences. The
first two occurrences of hSLi are not used, because they overlap
with the two hSLAi occurrences. Alternatively, we could construct
a pattern set P2 = {P2 : SL} that contains only one pattern hSLi
but with all of its 4 non-overlapping occurrences.

Using P1 and P2 as two distinct dictionaries, the sequence S

could be encoded as S 0
1 = hP1 [1 ,2 ,3 ] P1 [4 ,5 ,6 ] P2 [7 ,8 ] P2 [9 ,10 ]i

and S 0
2 = hP2 [1 ,2 ] (a, 3 ) P2 [4 ,5 ] (a, 6 ) P2 [7 ,8 ] P2 [9 ,10 ]i. We

record the timestamps of the events covered by each pattern for
compactness of presentation.

We use M1 and M2 to denote the encoding models correspond-
ing to P1 and P2 . Based on description length, L(M1 ) = L(P1) +
L(S 0

1 ) = 7 + 4 = 11, while L(M2 ) = L(P2) + L(S 0
2 ) = 3 + 6 = 9.

Therefore, by the MDL principle, P2 should be selected.

3. PROBLEM FORMULATION
We now introduce our semantics for continuously mining repre-

sentative patterns from event stream based on the MDL principle.
Adapting MDL. In the traditional definition of minimum descrip-
tion length (MDL), the length of the dictionary L(Pi), which is
part of the length of the encoding L(Mi), corresponds to the num-
ber of characters used by the dictionary. This penalizes long pat-
terns. In the example shown in Sec. 2.2, P2 containing one pattern
P2 = hSLi outweighs P1 that contains two patterns P1 = hSLAi
and P2 = hSLi, because the length of P1, denoted by L(P1) = 7,
is much larger than the length of P2, L(P2) = 3. This unfortunately
causes it to miss the longer hSLAi pattern which corresponds to the
behavior of the lighting devices’ alarm reporting. In our context,
summarizing system behavior with the longest possible repeating
pattern is intuitively preferable to using shorter patterns, because
long patterns can model complex system behaviors.

Given this observation, we now slightly alter MDL to use the
number of distinct patterns in the dictionary Pi as L(Pi). With this
revised MDL definition, L(P1) + L(S 0

1 ) = 2+4 = 6, while L(P2)
+ L(S 0

2 ) = 1+6 = 7. Therefore, P1 would now be selected, which
indeed matches our target problem.
MDL-based Representative Pattern (MRP) Semantics. We now
define our proposed semantics to capture the set of patterns that
most succinctly summarizes the input sequence.

DEFINITION 3.1. MDL-based Representative Patterns
(MRP). Given one window sequence S = h(ei�w+1 , ti�w+1 )
(ei�w+2 , ti�w+2 ) . . . (ei , ti)i, the MDL-based representative pat-
tern set or in short MRP is a set of patterns P = {P1 , P2 , ...,Pk}
that together minimize the description length of S: L(S |P)+ |P|,
where

(1) 8 OS
Pi

of Pi 2 P and 8 OS
Pj

of Pj 2 P (j 6= i), if event e 2
OS

Pi
, then e 62 OS

Pj
;

(2) 8Pi 2 P, num(Pi ,S) > 1 ;
(3) Given a pattern Pi 2 P, 8 events (ex, tx) and (ey, ty)

2 OS
Pi

, where ex and ey are adjacent to one another,
| ty � tx | �1  eventGap.

In Def. 3.1, Condition (1) requires that the occurrences of the
patterns in P do not overlap with each other, following the seman-
tics adopted in [15, 22]. Condition (2) requires that each pattern
Pi in P has at least two occurrences (num(Pi ,S) > 1 ) in S. This
excludes trivial patterns from P such as a pattern that corresponds
to the whole sequence S itself. Condition (3) corresponds to the
widely adopted event gap constraint [4], where eventGap is a con-
stant specified by the query specification. Then, the gap (either a
time interval or the number of events) between any two adjacent
events in a pattern occurrence cannot be larger than the eventGap
threshold.

Using the above MRP semantics, the stream representative pat-
tern mining problem is defined next.

DEFINITION 3.2. Stream MRP Mining Semantics. Given an
event stream S produced by one device, a window size W , and a
slide size B, the MRP mining problem is to continuously produce
the MRP (Def. 3.1) from the sequence falling into the current win-
dow of S whenever the current window slides.

Problem Complexity. The problem of mining MRP from a given
input sequence is shown to be NP-hard [15]. Hence, an exhaus-
tive search for the optimal result is practically infeasible. We thus
instead must design an efficient heuristic strategy to meet the re-
sponse time requirements of online applications.

To address this, we developed our SWIFT and B-SWIFT single-
pass MRP mining algorithms presented next.

4. SWIFT: MINING MDL-BASED REPRE-
SENTATIVE PATTERN SET

SWIFT is a one-pass strategy that processes each incoming event
only once upon its arrival. We prove in Lemma 4.2 that SWIFT,
while lightweight, always chooses the best pattern update operation
for each incoming event that most reduces the description length
of the sequence in the current window. Our complexity analysis
in Sec. 4.1.4 also demonstrates the efficiency of our incremental
update strategy.

Table 1: Meta Data Structures
Meta data Description

Encoded Sequence Sequence encoded using the patterns

Reference table
Patterns and their identifiers h(key:

pattern), (value: unique identifier of the
pattern)i

Merge Candidate
(MG)

Singletons or patterns that could be
merged to form new patterns

Match Candidate
(MC) Potential matches of current patterns

Occurrence
Pointers (ocrPt)

Pointers to the occurrences of elements;
key: element; value: list of pointers to

element occurrences

Overall Process of SWIFT. SWIFT consists of two major opera-
tions, namely insert and expire. Each time when a new event ar-
rives, the oldest event in the current window will be removed from
the current window if the current window is full. This triggers the
expire operation that is responsible for determining the expiration
of potential pattern occurrences. The insert operation is triggered
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by a new arrival event. It updates the current pattern set by either
producing new pattern or new occurrence of existing pattern.

Table 1 summarizes the meta-data structures maintained by
SWIFT for the window of the event stream. The “encoded se-
quence” maintains the compressed sequence with the raw events
covered by the pattern occurrences replaced by the symbols repre-
senting the patterns. The “reference table” maintains the patterns
and their identifiers. In addition, the “merge candidates”, “match
candidates”, and “occurrence pointers” are maintained to acceler-
ate both insert and expire operations. Details of these meta data
structures are described in Sec. 4.1.

4.1 Insert Operation
We use the example sequence S = h(a, 1 )(b, 2 )(c, 3 )(a, 4 )

(b, 5 )(c, 6 )(a, 7 )(b, 8 )(c, 9 )(d , 10 )(a, 11 )i with events arriv-
ing one at a time. The window size is 10.
Overview of Insert Process. Given an incoming event, the Insert
operation updates the pattern set P. Insert classifies the update into
two categories, namely “merge” and “match” based on whether a
new pattern will be produced. The benefit of this separation is two-
fold. First, it allows us to design distinct search strategies that ef-
ficiently support the merge and match updates. Further, it ensures
that each new pattern occurrence generated by a merge or match
update will not trigger recursive update operations, saving signifi-
cant CPU time as shown later in Lemma 4.1.

Given a new event ei of type Ei, in the first merge case, ei is
merged with one existing singleton event or pattern occurrence of
type Ej to form a new pattern hEj ,Eii that is not in the current
pattern set P. hEj ,Eii is called a merge pair. In the second match
case, ei would match one of the current patterns after merging with
some previous singleton events or pattern occurrences of type Ek.
In this case no new pattern is produced. We call hEk ,Eii a match
pattern. For each incoming event, multiple alternative merge pairs
or match patterns might be available. From these, the best one
is selected based on the MDL principle. That is, we choose the
option that achieves the largest MDL benefit at this current state,
i.e., the one that most reduces the minimum description length of
the current window sequence.

As shown in Alg. 1, first the incoming event ei of type Ei is ap-
pended to the encoded sequence at the tail (Line 2). At the same
time ei is inserted into the occurrence pointer list (Line 3) corre-
sponding to Ei. Then FindMerge finds a singleton event type or a
pattern denoted as Ej from the merge candidates (MG), which af-
ter merged with Ei, achieves the largest MDL benefit compared to
other merge candidates. The selected merge pair hEj ,Eii is main-
tained in mergePair (Line 4). Similarly, the best match candidate is
found from the match candidates (MC) and maintained in match-
Pattern (Line 6). If both the selected merge pair and the match can-
didate cannot reduce the description length of the current sequence
– in this case both mergeBenefit and matchBenefit are less than 0,
no update on the existing patterns occurs (Lines 8-9). Otherwise,
the one with the largest MDL benefit is applied (Lines 11-17).

By Alg. 1, the performance of the insert operation relies on the
efficiency of procedure FindMerge for merge pair identification
and procedure FindMatch for match pattern identification. Next,
we introduce two efficient strategies separately for these proce-
dures.

4.1.1 Merge Pair Identification
Given an incoming event ei of type Ei, our merge pair identifi-

cation strategy efficiently finds the element Ej (either a pattern or a
singleton event type) that can be merged with Ei with the assistance

Algorithm 1 Insert a new incoming event
1: function INSERTEVENT(EVENT ei , METADATA meta)
2: meta.encoded.add(ei) . add to encoded sequence tail
3: meta.ocrPt.get(ei).add(ei)
4: mergePair = FINDMERGE(ei, meta)
5: mergeBenefit = mergePair.benefit
6: matchPattern = FINDMATCH(ei, meta)
7: matchBenefit = matchPattern.benefit
8: if mergeBenefit < 0 && matchBenefit < 0 then
9: return meta

10: else
11: if mergeBenefit � matchBenefit then
12: newEle = MERGE(mergePair,meta)
13: else
14: newEle = MATCH(matchPattern,meta)
15: mergePair = FINDMERGE(newEle, meta)
16: if mergePair.benefit > 0 then
17: newEle = MERGE(mergePair,meta)

Sequence:
New Event

OcrPointer (OcrPt):
A: (a,1) (a,4)
B: (b,2) (b,5)
C: (c,3)

Merge Candidate (!"):
A,B

A,B in !"?
NO

END YES

AB occurrences:
(a,1)(b,2) & (a,4)(b,5)

≥ 2
< 2

END

Return AB

(a,1) (b,2) (c,3) (a,4) (b,5)

MDL Benefit = 1
> 0≤ 0

END

Figure 2: Merge Pair Identification

of the merge candidate (MG) and occurrence pointer (ocrPt) meta
data structures.

The MG structure maintains all elements with at least two oc-
currences. Specifically, an element will be excluded from MG if it
has only one occurrence in the current window, because it has no
chance to merge with any other element to form a new pattern. Fur-
ther, we maintain a list of occurrences for each element in a hash
table ocrPt with the element as key and the list of pointers to the
occurrences of the corresponding element as value. ocrPt allows
us to locate the occurrences of any element in constant time.

Algorithm 2 Merge Pair Identification
1: function FINDMERGE(ELEMENT ei , METADATA meta)
2: mergePair.benefit = �1
3: if ocrPt.get(ei).size > 1 then
4: for ej 2 MG do
5: if ej .t - ei.t - 1 > eventGap then
6: return
7: benefit = COMPUTEMDL(ei, ej , meta)
8: if benefit > 0 & benefit > mergePair.benefit then
9: mergePair.pair = (ei,ej)

10: mergePair.benefit = benefit
11: MG.add(ei)
12: return mergePair

Alg. 2 shows the merge pair identification process. First, given
an incoming event ei (type Ei), if an event of type Ei only appears
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once in the sequence, then event ei cannot be involved in any new
pattern. The algorithm then terminates (Lines 2-3). Otherwise, it
will check whether the item ej (of type Ej) which precedes in-
coming event ei (type Ei) can form a merge pair hEj ,Eii. Note
ej is an item of the encoded sequence. Therefore, Ej corresponds
to either a singleton event type or a pattern. A valid merge pair
can be formed between Ei and Ej only if the following condi-
tions are satisfied: (1) the gap between ei and ej is no larger than
eventGap; (2) Ej is in the merge candidate MG structure; (3) the
occurrences of Ej and Ei can form at least 2 occurrences of a new
pattern P = hEjEii.

Evaluating the first two conditions is straightforward. To evalu-
ate Condition (3), we first have to obtain all occurrences of Ei and
Ej . This can be done in constant time using ocrPt . Then we find
all valid occurrences of P = hEjEii by joining the Ei list with
the Ej list. Any join pair that satisfies the eventGap constraint is
a valid occurrence of P . Since occurrences are organized by the
arrival time of their last event, a sort-merge join algorithm can be
applied here. The complexity is linear in the number of the occur-
rences of Ei and Ej .

EXAMPLE 4.1. Fig. 2 demonstrates the merge process using
the example sequence. Here eventGap is set as 0. Assume event
(b, 5 ) arrives. Since (b, 5 ) can merge with the event (a, 4 ) to form
a valid occurrence of pattern hABi (satisfying Condition (1)), we
evaluate whether hABi is a valid merge pair. Event type A has
two occurrences (a, 1 ) and (a, 4 ). Event type B has two occur-
rences (b, 2 ) and (b, 5 ). Therefore, A and B are both in merge
candidates and Condition (2) is satisfied. Second, we get the oc-
currences of A and B using ocrPt and evaluate Condition (3).

Two occurrences of hABi can be constructed including
(a, 1 )(b, 2 ) and (a, 4 )(b, 5 ). We then compute the MDL bene-
fit gained by merging A and B. In this case, the MDL benefit is 1.
More specifically, 4 singletons are replaced by 2 pattern identifiers
of hABi in the encoded sequence with the cost of producing one
extra pattern in the reference table. Since eventGap is 0, only the
event or pattern directly adjacent to (b, 5 ) has the opportunity to
form a valid occurrence of any pattern with (b, 5 ). Therefore no
more merge pair can be produced. hA,Bi is selected as the best
merge pair.

4.1.2 Match Pattern Identification
Given a new event ei, ei can form matches with some existing

patterns by merging with one existing pattern occurrence or single-
ton event. Intuitively, this can be done using a method similar to the
merge process described above. That is, given a new event ei, we
first augment ei with the item directly in front of ei in the encoded
sequence to form an occurrence OPt of a temporary pattern Pt.
Then we examine whether Pt matches with any existing pattern.
If it does, OPt has to be recursively augmented and examined, be-
cause matching a longer pattern will reduce the description length
more. In each iteration one more item in front of the previous one
is attached to the head of OPt . This process stops if OPt does not
match any pattern. Clearly, this process is expensive because of the
potentially large number of pattern match operations.

To reduce the costs, we propose a match strategy that efficiently
identifies the best match for the new event. Given a new event ei,
we no longer recursively look backward for possible item combina-
tions in front of ei that could potentially form matches with existing
patterns on the fly. Instead our strategy continuously predetermines
future events that could form valid matches with the current pat-
terns so far in the window. Then, when an expected event ei arrives,
the matches can be constructed immediately.

Our match strategy relies on the match candidates structure
(MC) that we dynamically construct and maintain. It contains all
possible match candidates. Each candidate is in the following for-
mat [expected-event, match-pattern, currentPos, timestamp]. For
example, [B ,P2 (ABC ), 1 , [7 ]] indicates that a type B event is
expected to form a match with pattern P2 = hABC i. “1” repre-
sents the position of A in P2. This indicates that an A event has
already been received. “[7 ]” represents the position of the A event
in sequence S, which we use to evaluate the event gap constraint
in Def. 3.1. We index match candidates according to the expected
events, with candidates sharing the same “expected-event” being
grouped together. Therefore, given a new event ei, all match can-
didates that are expecting event type Ei can be accessed efficiently.

Next, we show how the MC structure is constructed. The
matches are also derived with the update process of MC.
Create New Match Candidates. A new event ei (type Ei) will
generate a set of match candidates. Each candidate corresponds
to one pattern Pi that has Ei as prefix. The expected-event Ej

corresponds to the event type next to Ei in Pi. The currentPos is
set as 1, because Ei is the first event type in Pi received so far.

Note given an event type Ei, to quickly locate the patterns with
Ei as prefix, existing patterns are indexed based on the prefixes
using a hash map. Using this map, given an event ei, the existing
patterns with Ei as prefix can be obtained in constant time. Specifi-
cally, in this hash map the prefix Ei is used as the key. Accordingly,
the patterns with Ei as prefix correspond to the value of the hash
map.
Update Match Candidate. Given an incoming event ei, the match
candidates expecting event type Ei will transit to a new state.
Specifically, we update the expected -event to the next event type
expected by match-pattern . We then insert the position of ei into
the timestamp field. For example, given a match candidate MCi

{B ,P2 (ABC ), 1 , [7 ]}, after event (b, 8) arrives, MCi transits to
{C ,P2 (ABC ), 2 , [7 , 8 ]}. In this process, if ei is the last event
expected by pattern Pi in MCi, then a match of pattern Pi will be
generated. If MCi is finally selected by some insert, no new match
candidate will be produced, because ei has been used by an occur-
rence of Pi and because we enforce the non-overlapping constraint.

Alg. 3 shows the process of match pattern identification. For
each incoming event ei, we transit the match candidates expecting
type Ei event and produce the full matches (Line 5). Then the
MDL principle is applied to select the best match mechanism (Line
6) among all full matches, which is the one with the largest MDL
benefit (Lines 7-9). The final decision on whether the merge or
match operation should be conducted for ei is made afterwards in
the InsertEvent function (Alg. 1). In addition, if insert operation
does not form any new pattern occurrence involving ei by either
match or merge, a set of new match candidates corresponding to
patterns starting with event type Ei is initialized and inserted into
MC (Lines 10-12).

EXAMPLE 4.2. Fig. 3 shows the match process of pattern
P2 : hABC i. First, event (a, 7) arrives. Since there is no can-
didate in MC so far, no transition action is triggered. Moreover,
since a new pattern hABC i has been formed which starts with
event A, a new match candidate {B ,P2 , 1 , [7 ]} is initialized and
inserted into MC. This indicates that one event has arrived at time
7 that matches the first event type of pattern P2. A type B event is
expected now.

As shown in Fig. 3, the match candidate can be considered a
finite state automaton. With the arrival of event (a, 7), the automa-
ton transits from state S to state S1. Then event (b, 8) comes next.
It transits the match candidate from state S1 to state S2, which is
{C ,P2 , 2 , [7 , 8 ]}. No new match candidate is generated in this
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Match Candidate:
Sequence:

Full Match!

Figure 3: Example of Matching Pattern {P1 : ABC}

Algorithm 3 Match Pattern Identification.
1: function FINDMATCH(EVENT ei , METADATA meta)
2: matchPattern.benefit = �1
3: if MC.get(Ei).size > 0 then
4: for ai 2 MC.get(Ei) do
5: transit to next state
6: benefit = COMPUTEMDLBENEFIT(ai, meta)
7: if benefit > 0 & benefit > matchPattern.benefit

then
8: matchPattern = ai

9: matchPattern.benefit = benefit
10: if matchPattern.benefit < 0 & mergePair.benefit < 0 then
11: for Pi 2 P & Pi.startWith(Ei) do . traverse patterns
12: MC.add(INIT(Pi))
13: return matchPattern

step, because no pattern starts with B. Finally, after the event
(c, 9) arrives, a match of pattern P2 is formed. The MDL benefit is
then computed as MDL = (len(P2 )� 1 ) = 2.

Avoiding Recursive Updates. Intuitively, to further reduce the de-
scription length, the new pattern occurrence e generated by this just
described merge or match update process should be considered as
a new incoming event that may trigger recursive update operations.
However, this will introduce large processing costs. SWIFT suc-
cessfully avoids this recursive update process because of our cus-
tomized merge pair and match pattern identification mechanisms.

LEMMA 4.1. Given a new pattern occurrence e produced by
the insert operation presented in Sec. 4.1, at most one update oper-
ation can be triggered by e.

Proof. We prove Lemma 4.1 by showing: (1) if e is produced by
merge, no further update is required; (2) if e is produced by match,
e can trigger at most one additional merge update, or none.

Proof of (1): by proving that (a) e cannot produce any new
match; and (b) e cannot produce any new merge.

Proof of Condition (a): (by contradiction). Suppose there ex-
ists a match MCi for e which can further reduce the description
length, this MCi is guaranteed to be a better option than the match
or merge operation that produced e itself when handling the incom-
ing event ei. In that case, this new match MCi would have already
been selected by Algorithm 1. In other words, e would not be pro-
duced at all. Therefore, there does not exist such a match for e.

Proof of Condition (b): (by contradiction). Let P = hEjEii be
the new pattern generated by merging Ej and Ei. Suppose there
exists another event Ex in front of P that can merge with P . This
indicates that Ej and Ex were not merged to hExEji previously.
The only reason why this may not have happened would have been
that Ej had an option that gained larger MDL benefit than merging
with Ex. However, in that case, Ej would not exist as singleton,
because Ej would already have been merged to produce either a
new pattern or a match with an existing pattern. This contradicts

the fact that Ej does exist and is being merged with Ei. Therefore,
the new pattern P cannot merge with any other event type Ex again.

Proof of (2): by proof of Condition (a), e cannot produce any
new match. Suppose e produces a new merge, then by Condition
(1), this new merge cannot produce any further update. Therefore,
e can only trigger at most one additional merge. ⌅

4.1.3 The Optimality of Insert

LEMMA 4.2. Given an incoming event ei, insert always
chooses the update operation for ei that most reduces the MDL
score of the current sequence.

Proof. We prove Lemma 4.2 by proving: (1) SWIFT always gets
the best merge pair and (2) SWIFT always gets the best match.

We first prove Condition (1) by contradiction. Let (ei, ej) denote
the merge pair found by SWIFT. Suppose there exists a singleton
or a pattern e

0
j that can form a merge pair (ei, e

0
j) with a larger

MDL benefit, then e
0
j must have at least two occurrences. Thus

it should be included in MG. In this case, (ei, e0j) in fact should
have been returned as the best merge pair. This contradicts the fact
that SWIFT returned (ei, ej) as the merge pair. Therefore, (ei, e0j)
cannot get a larger MDL benefit compared to (ei, ej). Condition
(1) holds.

Next, we prove Condition (2). Let MCi denote the best match
found by SWIFT for event ei. Suppose there exists a match
MCj = hE1E2 . . . Eii that achieves a larger MDL benefit than
MCi. Since a match candidate is guaranteed to be initialized and
then updated as e1, e2, . . . , ei�1 arrives sequentially, therefore
MCj must exist in MC when event ei comes. Since MCj has a
larger MDL benefit than MCi, SWIFT should have returned MCj

instead of MCi. This contradicts the fact that MCi was returned.
Therefore, there is no MCj that has larger MDL benefit than MCi.
Thus Condition (2) also holds. This proves Lemma 4.2. ⌅

4.1.4 Time Complexity Analysis of Insert
We analyze the amortized time complexity of the insert opera-

tion per event. Its complexity is determined by the two processes,
namely merge pair identification and match pattern identification.
Let N denote the number of events received in the current win-
dow. Let |E| denote the number of event types. Let |P | denote the
number of patterns found in the current window.
Merge Pair Identification. Given one incoming type Ei event ei,
assume its frequency in the window is x. To find the best merge
pair, in the worst case we have to examine at most x ⇥ ⌧ elements
in front of the type Ei events, where ⌧ = eventGap + 1. Therefore,
the processing time of the type Ei event is determined by the fre-
quency of Ei and ⌧ . Then the amortized time complexity of merge
pair identification per event is O(E(f (x ))⇥ ⌧), where E(f (x ))
indicates the expectation of the frequency of each event type.
Match Pattern Identification. The match pattern identification is
composed of two processes, namely the match candidate update
and match candidate creation described in Sec. 4.1.2. Given an in-
coming event ei, the match candidate update process updates match
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candidates that are expecting event type Ei. At the same time,
the match candidate creation process creates a new match candi-
date for each pattern that starts with Ei. Assume in the current
window there are y patterns that contain Ei, then the number of
updates and creations is no more than y. The amortized time com-
plexity of match pattern identification per event is O(E(f (y))),
where E(f (y)) indicates the expectation of the number of patterns
in which each event type is involved in.

Overall the time complexity of insert is determined by E(f (x ))
and E(f (y)). In general, E(f (x )) and E(f (y)) tend to increase
when the number of events N or the number of patterns L in-
creases, while E(f (x )) and E(f (y)) tend to decrease when the
number of event types |E| increases. Since typically N , |P |,
and |E| all increase together when the data volume increases, our
SWIFT is scalable to high volume stream data as also confirmed by
our empirical study (Sec. 6.4).

4.2 Expire Operation
Once an obsolete event is discarded from the current window,

the expire operation is triggered to update the existing patterns. The
expire operation can be classified into two categories: (1) expiring a
singleton event; and (2) expiring an event involved in an occurrence
of one pattern.

Expiring a singleton event is straightforward. Since it is not in-
volved in any pattern, it can be simply removed from all meta data
structures including the “encoded sequence”, “merge candidate”
MG, “match pattern” MC, and “occurrence pointers” ocrPt .

Expiring an event used by an occurrence O of one pattern is more
complicated. After an event is discarded, the remaining events in O

become singleton events. They can potentially merge with existing
singletons or patterns to form new patterns or to match some exist-
ing patterns. Furthermore, expiring one occurrence of a pattern Pi

might make Pi no longer frequent if Pi only had two occurrences.
In such a case, the events in the other occurrence of Pi also would
have to be handled.

The idea of the expire operation is to treat singleton events pro-
duced due to event expiration as new events. In other words, such
expiration triggered events are processed one by one, leveraging
the insert operation (Sec. 4.1).

However, unlike for true incoming events which always corre-
spond to the latest arrival in the sequence, these events ei already
arrived earlier than other events. Therefore, ei has to form merge
or match pairs with events that arrived later than ei. Accordingly,
the merge and match processes in the insert operation have to be
slightly modified.

First, the modification of the merge process is minor. Given one
such new expire event ei, now the merge pair has to be discovered
in the events that arrived later than ei. The search is conducted in
the arrival order of the events.

Second, the modification of the match process mainly concerns
the match candidates MC meta data. Originally MC maintains the
“to be completed” patterns and their expected events precomputed
beforehand. In the expire operation, the event ei arrived earlier than
any other events. Therefore, it is impossible to prepare the match
candidates beforehand. Alternatively, we build a temporary match
candidate set for these events on the fly. These events are processed
in their arrival order. As shown in Fig. 4, initially the match can-
didate is empty. After the earliest event ei 2 Ei is processed, the
patterns with Ei as prefix are inserted into the candidate set. Then
when processing the next “expire” event ei+1, the candidates which
are expecting Ei+1 are updated to expect the next event type. New
match candidates are also constructed corresponding to the patterns
with Ei+1 as prefix. After all these singleton “expire” events have

been processed, this temporary match candidate set is discarded.

!, 1 	 %, 2 	((, 3)	+,	 4,5,6 	+,	 7,8,9 	(3, 10)

+,	 1,2,3 	+,	 4,5,6 	+,	 7,8,9 	(3, 10)
+!55678:	 {+,:;<=}

%, 2 	 (, 3 	+,	 4,5,6 	+,	 7,8,9 	(3, 10)
Check Merge

Match Candidates: {}

%, 2 	((, 3)	+,	 4,5,6 	+,	 7,8,9 	(3, 10)
Check Merge

Match Candidates: {}

Merge & Match

Split & Discard

Figure 4: Process of pattern expiration for running example
EXAMPLE 4.3. In our running example as shown in Fig. 4,

the input sequence is encoded into S’ = hP2 [1 ,2 ,3 ],P2 [4 ,5 ,6 ]

P2 [7 ,8 ,9 ](d , 10 )i with {P2 : ABC} after 10 events have arrived.
Since the window is full now, the earliest event (a, 1) has to be ex-
pired before accepting the new coming event (a, 11). Fig. 4 shows
the expiration process. By checking the encoded sequence S’, we
find that the expiring event (a, 1) is involved in one occurrence
of pattern P2. This occurrence is then split into singleton events
(b, 2 ) and (c, 3 ), with each subsequently treated as a new event.
In this case, no match or merge can be formed on the two single-
tons, since no existing pattern has B or C as prefix. Therefore, they
are simply inserted back into the sequence at their original posi-
tions. After the first event has been expired, now the sequence is
encoded as h(b, 2 )(c, 3 )P2 [4 ,5 ,6 ] P2 [7 ,8 ,9 ](d , 10 )i.

5. SWIFT WITH BATCH UPDATES
In addition to the event-at-a-time update, batch updates are of-

ten preferable in streaming data analytics to support high velocity
streams. In such cases, it is not necessary to update results every
time a new event arrives. Instead, results are updated only after a
batch of new events has arrived. Intuitively, batch updates can be
supported by directly applying our SWIFT method to process each
new event in the batch one at a time. However, this solution will
waste significant computational resources on unnecessary update
operations triggered by each event as described below.

First, expiring an event involved in an occurrence OP of some
pattern P will generate a set of singleton events. In the batch up-
date, applying the expire operation to process each of these events
one at a time tends to trigger many unnecessary merge and match
operations, because the new pattern occurrences produced by the
previous expire operation might expire again and be discarded
when handling the next expiring event. Second, expiring one oc-
currence of a pattern P that only has two occurrences would result
in the split of the other occurrence of P , because P is no longer fre-
quent. Instead, when dealing with batch updates, a new occurrence
of P might be produced in the new incoming batch. In this case,
P is ultimately frequent again � having been only temporarily in-
frequent. Therefore, it had not been necessary to split the other
occurrence of P to begin with in hindsight.

To address these drawbacks, we enhance SWIFT to directly
support batch updates, now called B-SWIFT. B-SWIFT em-
ploys a lazy update strategy. This ensures that only the up-
date operations that could cause a change in the final set of
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patterns are applied. Next, we introduce our batch expire
(Sec. 5.1) and batch insert (Sec. 5.2) operations, using the following
example: S = h(a, 1 )(b, 2 )(a, 3 )(c, 4 )(d , 5 )(a, 6 )(c, 7 )(d , 8 )
(a, 9 )(b, 10 )(a, 11 )(c, 12 )(d , 13 )(a, 14 )(b, 15 )i, batch size =
5 and window size = 10. B-SWIFT outperforms SWIFT in both
computational costs and description length as confirmed in our ex-
periments (Sec. 6).

Similar to the original SWIFT approach, B-SWIFT supports two
major operations, namely expire and insert. However, now the ex-
pire and insert operations are conducted on a whole event batch.
Next, we introduce in detail the batch expire and insert operations.

5.1 Batch Expire Operation
Instead of expiring each event independently, the batch expire

operation, called B-Expire, processes the batch of expired events
as a whole. In general the batch expiration process can be divided
into three categories: (1) expire a singleton event; (2) expire all
events of a pattern occurrence; and (3) expire a subset of the events
of a pattern occurrence.

First, to be expired, singleton events will be discarded without
further processing. Second, if all events of a pattern occurrence
expire, all events in this occurrence will be discarded immediately.
Third, the process of expiring a subset of the events of a pattern
occurrence is analogous to the process of expiring one event from a
pattern occurrence as discussed in Sec. 4.2. The expired events are
removed at once, while the remaining events in this occurrence are
inserted back into the encoded sequence as singleton events.

However, the second and third types of expire operations might
make the pattern P no longer valid because of the loss of one oc-
currence. Unlike the event-at-a-time expire operation, the split of
the other occurrence of P is postponed and kept as a to-be-split
pattern Ps in a list. This optimization is based on the observation
that new occurrences of Ps might be formed in the newly incoming
batch such that eventually Ps might still be valid. These to-be-
split patterns will thus not be handled until after processing the
new incoming batch.

!"	 1,2 	!'	 3,4,5 !'	 6,7,8 	!"	 9,10

Start

!0112345:	{!':89:,!":8;}

!"	 1,2 	!'	 3,4,5 	!'	 6,7,8 	!"	 9,10

Expire Batch

!0112345:	{!':89:,!":8;}
To-be-split: 	{=> ,=?}

!'	 6,7,8 	!"	 9,10 (0, 11)(B, 12)(C, 13)(0, 14)(D, 15)

Insert Batch

!'	 6,7,8 	!"	 9,10 	!'	 11,12,13 	!"	 14,15
(1) Match

(2) Split

To-be-merged: [=>	 >>, >?,>F , =?	 >G,>H ]

To-be-split: 	{=> ,=?} →All frequent, no split

(3) Merge

!'	 6,7,8 	!"	 9,10 	!'	 11,12,13 	!"	 14,15

=F	 K, L, M, N, >O 	=F	 >>,>?, >F,>G,>H
=PQQRST:	{=F:UVWUX}

Figure 5: Expire & Insert a Batch

EXAMPLE 5.1. Fig. 5 demonstrates the batch expiration pro-
cess of our running example. As shown at the left of Fig. 5,
after processing the first 10 events the sequence is encoded
as S = hP2 [1 ,2 ] P1 [3 ,4 ,5 ] P1 [6 ,7 ,8 ] P2 [9 ,10 ]i, with two patterns
{P1 : ACD , P2 : AB} formed. Since the batch size is 5, as the
next batch of events arrives, the 5 earliest events are removed from
the current window. In this case, both P1 and P2 have a whole
occurrence expire, namely P1 [3 ,4 ,5 ] and P2 [1 ,2 ]. Thus, they are
discarded immediately. Furthermore, now P1 and P2 only have
one valid occurrence. Thus they are inserted into the to-be-split
pattern list.

5.2 Batch Insert Operation
The batch insert operation B-Insert aims to avoid any unneces-

sary pattern split operations caused by batch expiration by priori-
tizing the order of the operations conducted on the new batch.
Match First. Given a new batch of events, unlike the event-at-
a-time insert operation (E -Insert) which interleaves match and
merge processes when handling each individual event, B -Insert
conducts the match process sequentially on the events in the new
batch, while the merge process is postponed till the end of B -
Insert . It then determines whether a pattern Ps in the to-be-split
pattern list does not need to be split due to a new occurrence of Ps

produced in the match process.
In the example shown in Fig. 5, the new batch

h(a, 11 )(c, 12 )(d , 13 )(a, 14 )(b, 15 )i matches patterns
{P1 : ACD} and {P2 : AB} and therefore can be rewritten
as hP1 [11 ,12 ,13 ]P2 [14 ,15 ]i. Further, since new occurrences of P1

and P2 are generated using this incoming batch, they are removed
from the to-be-split list.
Merge Later. The singleton events either from the new batch or
produced by the split of pattern occurrences due to the event ex-
piration and pattern occurrences produced in match processes are
inserted into to-be-merged list. These elements are then evaluated
one by one using the merge process described in Sec. 4.1. Here in-
stead of directly using the FindMerge algorithm (Alg. 2) introduced
in Sec. 4.1, we design a batch version of the merge pair identifica-
tion process FindBatchMerge. It continuously examines each el-
ement in the to-be-merged list until one merge pair with positive
MDL benefit is formed or the to-be-merged list is empty.

In the running example, since no singleton is gener-
ated due to split, the to-be-merged list only contains the
two match occurrences P1 [11 ,12 ,13 ] and P2 [14 ,15 ] formed
in the new batch. Up to now, the encoded sequence
is hP1 [6 ,7 ,8 ]P2 [9 ,10 ]P1 [11 ,12 ,13 ]P2 [14 ,15 ]i, where {P1 : ACD ,

P2 : AB}. Next, the Merge process is executed. It starts with
the element P1 [11 ,12 ,13 ]. Since this element can be merged with
pattern P2, it constructs a merge pair (P1, P2) and produces a new
pattern {P3 : ACDAB}. The encoded sequence then is updated
to hP3 [6 ,7 ,8 ,9 ,10 ]P3 [11 ,12 ,13 ,14 ,15 ]i. Since the to-be-merged is
empty now, the batch merge process terminates.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup & Methodology
We experiment with both real-world and synthetic datasets. The

results of the synthetic data experiments confirm the scalability of
our SWIFT to large volume and high velocity event streams.
Real Datasets: (1) A log file dataset extracted from a mobile appli-
cation that tracks driver behavior. The application is developed by
a startup company based in Cambridge MA. We obtained log files
from 10,000 devices (|D | = 10 , 000 ) with 1,790 types of events
(|E | = 1790 ). The average length of each sequence is 34,097. In
the experiments, we consider each device as one data stream.

(2) A lighting dataset produced by our industrial lighting col-
laborators. It consists of the control messages exchanged be-
tween commercial lighting devices and cloud servers. The data
is from 283,144 devices (|D | = 283 , 144 ) with 13 types of events
(|E | = 13 ). The average length of each sequence is 456.

This dataset features different characteristics than the log file
dataset. The log file data represents complex interactions and state
transitions, since in the mobile app multiple threads were perform-
ing independent actions, writing to the log at the same time. This
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results in many operations that often but not always occur in a cer-
tain order. The lighting device is instead a single thread. Therefore,
the generated sequences are comparatively regular.
Synthetic Dataset: We generated event stream data to evaluate the
scalability of SWIFT. Since the sequence generators used in the
literature [6, 5] were designed to only generate a large number of
short sequences and do not offer control of the number of patterns
within the synthetic data, we developed a new event stream data
generator. It supports a number of input parameters that allow us
to control the key properties of the generated sequence stream data
as listed in Tab. 2. These include the number of event types, the
number of patterns, the average length of the patterns, the batch size
and the window size of the stream. In particular we inject random
noise, i.e., events that do not form any pattern occurrence, to mimic
real-world data. The noise rate is configurable as shown in Table 2.

Table 2: Input Parameters to Sequence Data Generator
Symbol Description
|E| Number of event types
|P | Number of patterns
|L| Average length of the patterns
|B| Batch size
|W | Window size
|N | Number of batches
e noise rate

Experimental Setup. All experiments are conducted on a com-
puter with Intel 2.60GHz processor, 500GB RAM, and 8TB
DISK. It runs Ubuntu operating system (version 16.04.2 LTS).
The code used in the experiments is available via GitHub:
https://github.com/OutlierDetectionSystem/SWIFT.
Approaches. We evaluate six different systems. We adapt four
static methods, namely SeqKrimp, GoKrimp, SQS, and CSC to the
streaming context. All of them use MDL to mine compressive pat-
terns. (1) SeqKrimp: the two-step static pattern mining method of
[15]; (2) GoKrimp: the one-step static pattern mining method of
[15] that directly mines representative patterns; (3) SQS: the static
pattern mining method of [22] that mines the representative pat-
terns by recursively scanning the data. (4) CSC: the one-step static
pattern mining method of [14] (similar to GoKrimp; but allow over-
lapping among occurrences of different patterns); More details of
the above four algorithms are described in the related work (Sec. 7);
(5) SWIFT: our incremental streaming representative pattern min-
ing approach (Sec. 4); (6) B-SWIFT: enhanced SWIFT to support
batch updates (Sec. 5). Each time the window slides, the patterns in
the new window are mined again. As we will illustrate, the SWIFT
and B-SWIFT approaches outperform the state-of-the-art in almost
every case in both efficiency and effectiveness.
Metrics. We evaluate the above approaches using the following
metrics. First, similar to [15, 22, 14] we use the average com-
pression rate (ACR) as metric to evaluate the effectiveness of our
approach at compressing patterns. The lower the rate is, the better
the set of compressed patterns is. Specifically, ACR is defined as
the fraction of the average MDL score (averaged per window) over
the window size, denoted as rate = AvgMDL

WindowSize . The MDL score
represents the description length of a particular window sequence.
We also measure the coverage rate, which is computed as the ra-
tio of the event types covered by the produced patterns to all event
types in each window.

In addition, to qualitatively evaluate how good SWIFT is at cap-
turing typical patterns, we measure the number of captured useful
patterns (NOP for short) and precision – the ratio of useful patterns
over all produced patterns. Recall is not measured here, because it
is impossible for the domain experts to manually find out all typical
patterns from such large sequence data.

Furthermore, we measure the processing time per window for
efficiency evaluation. It measures the overall CPU time consumed
to generate the patterns for each window including the costs of both
insert and expire.

6.2 Evaluation of Effectiveness

6.2.1 Evaluation of Compression Rate (ACR)
To demonstrate the effectiveness of SWIFT (Sec. 4) and B-

SWIFT (Sec. 5) in generating compressing patterns, we evalu-
ate the average compression rate (ACR). Overall, SWIFT and B-
SWIFT outperform the state-of-the-art in terms of the ACR metric
under various data characteristics and parameter settings.
Log File Dataset. Fig. 6 shows the results on the mobile app log
file dataset. The input parameters are set to WindowSize=1000 and
BatchSize=100 by default, except when varying the corresponding
parameter. As shown in Fig. 6, both our two approaches, SWIFT
and B-SWIFT, consistently outperform other methods w.r.t the av-
erage compression rate (ACR) in all cases. The good ACR val-
ues result from the decision we make for each incoming event.
Given an incoming event, we always select the operation out of
all merge and match options that minimizes the MDL score. In
other words, each event makes its own choice based on the con-
text in which it occurs. This results in a good ACR. GoKrimp is
the worst in ACR (about 80%) in all cases, because it greedily
selects the most frequent event types to form patterns. However,
obviously two most frequent event types do not necessarily form
any valid representative pattern. SeqKrimp outperforms GoKrimp,
achieving 40% ACR. This is because of its two-step strategy that
selects the representative patterns from the precomputed frequent
pattern set. Clearly selecting representative patterns from a set of
pattern candidates tends to be more effective than the naive strategy
of forming patterns based on the frequency of each singleton event
type. Although CSC allows overlapping among the occurrences of
different patterns, CSC is only slightly better than GoKrimp due to
the limited types of patterns it can support. Among the state-of-the-
art methods, SQS [22] achieves the best ACR (35%), although still
worse than our SWIFT. Its good ACR is achieved via a complex
search strategy that requires an iterative scan of the data, resulting
in an extremely slow execution time for SQS as shown in Sec. 6.3.

Furthermore, as shown in Fig. 6(a), as the window size goes
larger, the ACR of all methods improves. This is expected. The
larger the window is, the more patterns can be formed. Therefore,
more singleton events will be replaced by patterns. This leads to a
better compression rate.

In addition, as shown in Fig. 6(b), as the batch size goes up, the
ACR of B-SWIFT keeps improving, while the ACRs of other meth-
ods do not. This is because B-SWIFT makes the decision based on
all events in the batch, while other methods process each event in
isolation. When the batch size gets larger, B-SWIFT has more op-
tions to consider.

Note that the ACRs of our SWIFT approach are at least 0.2 on
the two real datasets, which are very impressive. The reason is that
our SWIFT is good at capturing long patterns which are preferred
in modeling complex system behaviors. Our further analysis shows
that in each window, most of the events are encoded by the patterns,
although some of events are not covered by any pattern and remain
as singleton events. If we consider each singleton event type as one
special length-1 pattern, the expected length of all patterns (includ-
ing the length-1 patterns) discovered by SWIFT is larger than 5.
Therefore, replacing the raw events in the input sequence with the
symbols representing the patterns, our SWIFT is able to represent
an input sequence using at most one fifth of the original characters.
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(a) Varying Window Size (b) Varying Batch Size

Figure 6: Average Compression Rate on Log File Data
(smaller is better)

(a) Varying Window Size (b) Varying Batch Size

Figure 7: Average Compression Rate on Lighting Data

(a) Varying Window Size (b) Varying Batch Size
Figure 8: Coverage Rate on Log File Data (larger is better)

Lighting Dataset. Fig. 7 shows the results on the lighting
dataset. The input parameters are set to WindowSize=100 and
BatchSize=10 by default, except varying the corresponding param-
eter. The window size and batch size are relatively small, because
each sequence in this real dataset is short. As shown in Fig. 7, again
our SWIFT and B-SWIFT outperform all other alternatives in terms
of the ACR. However, different from the log file data, SeqKrimp
performs better than SQS. The reason is that this dataset is regu-
lar such that it is relatively easy to capture the frequent patterns.
Therefore, using the discovered patterns as candidates, SeqKrimp
is able to effectively capture the representative patterns. The ACR
of CSC is relatively good in handling this simplistic lighting data
– close to SQS. This indicates that its search strategy benefits from
the small number of event types.

6.2.2 Evaluation of Coverage Rate
In this experiment, we report the coverage rate averaged on all

windows (Sec.6.2). Since the lighting data only has 13 event types,
this metric is not particularly helpful in distinguishing the coverage
rates of different methods. Therefore, here we report the results
on the log file dataset while also varying window and batch sizes.
When varying window sizes, we fix batch size as 100. When vary-
ing batch sizes, the window size is fixed as 1000.

As shown in Fig. 8, our SWIFT methods outperform all other
methods in almost all cases. In particular, similar to the compres-
sion rate, GoKrimp and CSC perform poorly, because they greed-
ily select the most frequent event types to form patterns. Only Se-
qKrimp is slightly better than SWIFT when the window size is 500.
SeqKrimp is the method that is the closest to our SWIFT in terms
of the coverage rate, because it uses a two-step solution that selects
patterns from all possible candidate patterns produced at the first
step. This somewhat increases the diversity of the event types cov-
ered by the selected patterns. However, this also makes it 100 times
slower than SWIFT.

6.2.3 Qualitative Evaluation of Discovered Patterns

We also qualitatively evaluate the effectiveness of SWIFT at cap-
turing the useful patterns that indeed represent the typical behaviors
of the system. In this experiment, we use the lighting dataset pro-
duced by the lighting application. The results were manually eval-
uated by the application engineers. As shown in Table 3, SWIFT
outperforms other methods in both the number of detected useful
patterns (NOP) and precision. More specifically, 9 patterns out of
the 12 patterns detected by SWIFT indeed represent typical behav-
ior in the lighting application such as handshake process between
the devices and the server, reporting alarm, registering new devices,
etc. GoKrimp is the worst in terms of the quality of the captured
patterns because of its over-simplified search heuristic that only
constructs patterns from the most frequent event types. Although
CSC finds more useful patterns than GoKrimp, its precision is even
lower than GoKrimp. This is so, because it allows the overlap-
ping among the occurrences of different patterns. This enlarges the
space of possible pattern candidates and makes it find more invalid
patterns. However, the number of useful patterns found by CSC is
lower than our SWIFT due to the constraint on the types of patterns
it can construct as discussed in Sec. 7. As expected, SQS and Se-
qKrimp work better than GoKrimp. However, SQS and SeqKrimp
are worse than SWIFT, although they use much more CPU time
than SWIFT as will be demonstrated in Sec. 6.3.

Table 3: Qualitative Evaluation
Methods Number of meaningful patterns

(NOP) Precision
SWIFT 9 75.0%

SQS 7 58.3%
SeqKrimp 8 53.3%
GOKrimp 5 41.7%

CSC 7 38.9%

6.3 Evaluation of Efficiency
We investigate the processing time of our SWIFT approaches

using the two real datasets by varying the windowSize and
batchSize. Overall, B-SWIFT consistently outperforms SWIFT
and the state-of-the-art approaches by up to 4 orders of magnitude,
while SWIFT that processes the incoming events one by one also
outperforms the state-of-the-art by up to 3 orders of magnitude.
Due to space constraint, we did not show the results on the small
lighting dataset.
Log File Dataset. The parameters are set as WindowSize=1000 and
BatchSize=100, except when they are under variation. As shown
in Fig. 9, B-SWIFT consistently outperforms SWIFT, SeqKrimp,
CSC, and SQS in all cases up to 4 orders of magnitude. GoKrimp
is the second fastest method. However, it is not effective in finding
representative patterns. Its ACR values are very poor (80%) in all
cases as shown in Fig. 6. This is due to its over-simplified greedy
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(a) Varying Window Size (b) Varying Batch Size

Figure 9: Processing Time on Log File Dataset

(a) Varying Window Size (b) Varying Batch Size

Figure 10: Processing Time on Synthetic Datasets

(a) Average Compression Rate (b) Processing Time

Figure 11: Varying Event Gap on Log File Dataset

(a) Average Compression Rate (b) Processing Time

Figure 12: Varying Event Gap on Lighting Dataset

search strategy. On the other hand, SQS is much slower than any
other methods because of its complex iterative search strategy, al-
though it has a relatively good ACR rate compared to SeqKrimp
and GoKrimp. The CPU efficiency of CSC is very close to that of
SeqKrimp in most cases.

Fig. 9(a) demonstrates the processing time results when vary-
ing window size from 100 to 2,000. B-SWIFT outperforms all
other methods up to 3 orders of magnitude. As the window size
increases, the processing time of B-SWIFT and SWIFT only in-
creases gradually, while the processing time of SeqKrimp, CSC and
SQS increases dramatically. Therefore, the larger the window size,
the more SWIFT and B-SWIFT win. This confirms the scalability
of SWIFT w.r.t. stream rates.

Fig. 9(b) shows the results of varying batchSize. Again, B-
SWIFT consistently outperforms all other methods up to four or-
ders of magnitude. The processing time of B-SWIFT is stable
when the batch size increases, because B-SWIFT only performs the
necessary update operations when handling a batch of new events.
GoKrimp, SeqKrimp, CSC, and SQS reconstruct patterns in the
new window from scratch whenever a new batch of events arrives.
Therefore, their processing time does not change along the batch
size. However, as shown in Fig. 9(b), even in the worst case, B-
SWIFT is still 30 times faster than SeqKrimp and CSC and 3 orders
of magnitude faster than SQS.

As for our two SWIFT approaches, the event-at-a-time SWIFT is
more sensitive to the batch size than B-SWIFT, because each new
event will trigger one update operation. When the batch size is set
to 1, the processing time of SWIFT and B-SWIFT is almost identi-
cal. As the batch size increases, B-SWIFT outperforms SWIFT by
up to 5 fold in its average processing time. This confirms the effec-
tiveness of the lazy update strategy of B-SWIFT in eliminating the
unnecessary update operations.

6.4 Efficiency Evaluation on Synthetic Data
We use synthetic datasets to evaluate how SWIFT and B-SWIFT

perform on data streams with large window and batch sizes in order

of 100,000 events. The parameters utilized to generate the synthetic
datasets are set to |E| = 5000, |P | = 1000, |L| = 10, |B| =
2000, |W | = 20000, |N | = 10000 and e = 0.01% by default. We
evaluate the processing time of SWIFT by varying the windowSize
and batchSize.

As shown in Fig. 10, it takes our SWIFT approaches less than
one second to process each window in all cases – hence meeting
the real time response requirement of online applications, while it
takes other approaches minutes or even hours. Fig. 10(a) demon-
strates the processing time when varying window size from 20,000
to 100,000. Our SWIFT approaches, especially the B-SWIFT
method, outperform all other methods up to 3 orders of magni-
tude. Better yet, our SWIFT approaches are scalable to the window
size representing the volume of the event stream. Specifically, even
when the window size increases to 100,000 events, the processing
time is within one second.

Fig. 10(b) shows the processing time when varying the batch size
from 1 to 4,000. Although the processing time for B-SWIFT and
SWIFT both increase as the batch size gets larger, they are still
faster than all other approaches up to 4 orders of magnitude. Even
in the worst case when the batch size is 20% of the window size,
B-SWIFT is still 4x faster than GoKrimp (with the later confirmed
to fail in generating representative patterns), 51x faster than Se-
qKrimp and CSC, and 3 orders of magnitude faster than SQS. This
confirms that our SWIFT approaches are scalable to a batch size
practical in representing the typical velocity of the event stream.

6.5 Evaluation of the eventGap Parameter
We also conducted experiments to evaluate the impact of the

eventGap parameter using the two real datasets we work with. We
measure both the compression rate and the processing time. As
shown in Fig. 11 and 12, our SWIFT consistently outperforms all
other alternatives in both compression rate and processing times.
First, as expected, when the eventGap increases, all methods use
more CPU time because of the enlarged space of possible pattern
candidates that must be examined. However, the processing time
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of our SWIFT and B-SWIFT increases more slowly than that of all
other approaches. This is so, because our merge and match strate-
gies effectively reduce the number of merge pair candidates and
match pattern candidates. Second, it is interesting to see that as
the eventGap rises, all methods do not show a clear improvement
of the compression rate except for GoKrimp. However, although
the compression rate of GoKrimp improves somewhat, it continues
to remain much worse than that of other methods. This demon-
strates that a large eventGap does not help in finding representative
patterns, at least, not in the log file and the lighting datasets.

Although GoKrimp is slightly faster in speed than our SWIFT
approach when handling the simple lighting dataset due to its over-
simplified search strategy, it is ineffective in finding representative
patterns and compressing the sequence as confirmed in Sec. 6.2.

7. RELATED WORK
Frequent Sequential Pattern Mining Semantics. Frequent pat-
tern mining was first proposed in [2] to mine purchase patterns
from a customer transaction dataset. A purchase pattern is called
frequent if it occurs in more than support customer’s transaction
histories. However, this semantics suffers from the pattern explo-
sion problem due to generating too many redundant patterns. To
alleviate this problem, variations of the basic semantics [10, 25, 7,
8] were proposed. The closed frequent pattern semantics [10, 25]
exclude a frequent pattern from the output when its support is iden-
tical to the support of any of its super-patterns. Therefore its prun-
ing ability is weak. The maximal frequent pattern semantics [7, 8]
assumes only the longest frequent patterns are representative and
discards all sub-patterns of P when P is frequent. However, the
longest patterns are not necessarily the only meaningful patterns.
Sometimes P and its sub-patterns might both be representative if
both of them occurs independently and frequently. Thus it tends
to miss some representative patterns. Furthermore, it only han-
dles the redundancy among a pattern and its sub-patterns. Partial
overlapping relationships among the patterns are not considered.
Therefore, maximal frequent pattern is neither effective in finding
representative patterns nor in eliminating redundant patterns.
Frequent Pattern Mining in Data Streams. Techniques have
been proposed to mine frequent patterns in sliding window streams,
such as IncSpan [6] and SeqStream [5]. In particular, IncSpan [6]
maintains the patterns semi-frequent in the previous window (i.e.,
patterns that are “almost frequent” in the data) to make the pat-
tern mining incremental when the window moves. SeqStream [5]
builds an Inverse Closed Sequence Tree (IST) structure to speed up
the update of the frequent patterns. However, these techniques all
focus on the traditional frequent pattern semantics and its variation
(such as closed frequent pattern). Therefore, they cannot be used
to find our MRP patterns.
MDL-based Frequent Pattern Mining in Static Datasets. In [15,
22, 14], the minimum description length (MDL) principle was ap-
plied to mine compressive frequent patterns from static sequence
data. Algorithms that leverage this principle to mine patterns were
also designed in these works.

SeqKrimp [15] is a two-step approach. It first generates a set of
frequent patterns as candidates using the traditional pattern mining
techniques. Then it greedily selects from the candidates a set of
patterns that together minimizes the description length. SeqKrimp
suffers from two problems. First, SeqKrimp selects representative
patterns from the candidates. Therefore the patterns out of the can-
didates have no chance to be selected even if they are able to reduce
the description length. Second, the two-step approach is expensive
– especially the pattern candidate generation step. These two prob-

lems make SeqKrimp much worse than our SWIFT approaches in
both effectiveness and efficiency as shown in our experiments.

Unlike SeqKrimp, GoKrimp [15] directly mines the representa-
tive patterns. However, GoKrimp produces patterns only from the
most frequent event types. Therefore, it tends to miss the patterns
that do not contain super-frequent events. As shown in our exper-
iments, although GoKrimp is much more efficient than SeqKrimp,
it is not effective in compressing the sequence due to its oversimpli-
fied search heuristic. Similar to GoKrimp, SQS [22] also directly
mines the representative patterns from the static sequence dataset.
The patterns are constructed iteratively. In each iteration the pat-
tern P is produced, which achieves the largest MDL gain among
the possible patterns. Each iteration needs at least one scan of the
sequence dataset. Therefore, SQS is extremely slow despite its core
shortcoming of also not being as effective as SWIFT.

In [14] the CSC approach was proposed, CSC adopted a strat-
egy that is very similar to the methods proposed in [15]. CSC has
two versions: CSC-1 similar to SeqKrimp [15] and CSC-2 similar
to GoKrimp [15]. The key difference is that CSC allows overlap
among the occurrences of different patterns, while all other meth-
ods we compared against in this work and our SWIFT do not allow
such overlap. CSC has some strong limitations. First, it does not
support patterns that contain any event type E appearing more than
once. Second, if two occurrences of a pattern P have a different gap
between adjacent events, they consider those two to be different and
hence they cannot be compressed. This restricts compression op-
portunities. As shown in our experiments, CSC is much worse than
our SWIFT approaches in both effectiveness and processing time.

Furthermore, the above approaches all deal with static data. In
the streaming context, these methods have to mine the patterns from
scratch whenever the window moves. Clearly, this is not efficient.
In contrast, our SWIFT naturally fits continuously evolving event
streams as it only processes each incoming event once.
Complex Event Processing. Complex event processing (CEP) [18,
19, 27] matches continuously incoming events against a given
query pattern. Therefore, CEP addresses a ‘query’ problem, that
is, given a query that defines one particular pattern and other con-
straints, find all its matches in a data stream. Our work instead fo-
cuses on a ‘mining’ problem, namely discovering all patterns that
are frequent enough based on user-specified parameters.
Episode Mining in Singular Event Sequence. The episode min-
ing problem [17, 16, 26] defines an episode as a set of events that
frequently occur together in one single sequence. In [17, 16], ef-
ficient approaches were developed to count the number of occur-
rences for a set of candidate episodes given by the user. Therefore,
they solve a counting problem similar to CEP, while our work fo-
cuses on a mining problem without a candidate pattern set given
beforehand. The UP-Span algorithm [26] focuses on finding the
high utility episodes from a sequence. The utility of each episode
is measured based on the external and internal utilities of each event
assigned by the users. Therefore unlike our MRP semantics, the re-
turned episodes do not reflect their ability of succinctly covering a
input sequence. Hence UP-Span is not applicable to our problem.

8. CONCLUSION
In this work we propose the SWIFT approach for the effective

discovery of representative patterns from the event stream data.
SWIFT features MDL-based representative pattern semantics (MRP
for short) and a novel continuous pattern mining strategy that pro-
cesses each new incoming event only once. Our extensive exper-
imental evaluation with real streaming datasets demonstrates the
effectiveness of MRP in succinctly summarizing the event stream,
and the efficiency of SWIFT in supporting MRP.
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