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ABSTRACT
Distributed-memory clusters are used for in-memory processing
of very large graphs with billions of nodes and edges. This re-
quires partitioning the graph among the machines in the cluster.
When a graph is partitioned, a node in the graph may be repli-
cated on several machines, and communication is required to keep
these replicas synchronized. Good partitioning policies attempt to
reduce this synchronization overhead while keeping the computa-
tional load balanced across machines. A number of recent studies
have looked at ways to control replication of nodes, but these stud-
ies are not conclusive because they were performed on small clus-
ters with eight to sixteen machines, did not consider work-efficient
data-driven algorithms, or did not optimize communication for the
partitioning strategies they studied.

This paper presents an experimental study of partitioning strate-
gies for work-efficient graph analytics applications on large KNL
and Skylake clusters with up to 256 machines using the Gluon com-
munication runtime which implements partitioning-specific com-
munication optimizations. Evaluation results show that although
simple partitioning strategies like Edge-Cuts perform well on a
small number of machines, an alternative partitioning strategy called
Cartesian Vertex-Cut (CVC) performs better at scale even though
paradoxically it has a higher replication factor and performs more
communication than Edge-Cut partitioning does. Results from com-
munication micro-benchmarks resolve this paradox by showing that
communication overhead depends not only on communication vol-
ume but also on the communication pattern among the partitions.

These experiments suggest that high-performance graph analyt-
ics systems should support multiple partitioning strategies, like Glu-
on does, as no single graph partitioning strategy is best for all clus-
ter sizes. For such systems, a decision tree for selecting a good par-
titioning strategy based on characteristics of the computation and
the cluster is presented.

PVLDB Reference Format:
Gurbinder Gill, Roshan Dathathri, Loc Hoang, and Keshav Pingali. A Study
of Partitioning Policies for Graph Analytics on Large-scale Distributed Plat-
forms. PVLDB, 12(4): 321-334, 2018.
DOI: https://doi.org/10.14778/3297753.3297754

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3297753.3297754

1. INTRODUCTION
Graph analytics systems must handle extremely large graphs with

billions of nodes and trillions of edges [30]. Graphs of this size do
not fit in the main memory of a single machine, so systems like
Pregel [32], PowerGraph [18], PowerLyra [12], Gemini [51], and
D-Galois [15] use distributed-memory clusters. Since each host in
the cluster can address only its own memory, it is necessary to par-
tition the graph among hosts and use a communication layer like
MPI to perform data transfers between hosts [7,8,11,12,18,23,41,
42, 44].

Graph partitioning must balance two concerns.
The first concern is computational load balance. For the graph

algorithms considered in this paper, computation is performed in
rounds: in each round, active nodes in the graph are visited, and
a computation is performed by reading and writing the immedi-
ate neighbors of the active node [30]. For simple topology-driven
graph algorithms in which all nodes are active at the beginning of a
round, the computational load of a host is proportional to the num-
bers of nodes and edges assigned to that host, so by dividing nodes
and edges evenly among hosts, it is possible to achieve load bal-
ance [12]. However, work-efficient graph algorithms like the ones
considered in this paper are data-driven: nodes become active in
data-dependent, statically unpredictable ways, so a statically bal-
anced partition of the graph does not necessarily result in compu-
tational load balance.

The second concern is communication overhead. We consider
graph partitioning with replication: when a graph is partitioned, its
edges are divided up among the hosts, and if edge (n1→n2) is as-
signed to a host h, proxy nodes are created for n1 and n2 on host h
and connected by an edge. A given node in the original graph may
have proxies on several hosts in the partitioned graph, so updates
to proxies must be synchronized during execution using inter-host
communication. This communication entirely dominates the exe-
cution time of graph analytics applications on large scale clusters
as shown by the results in Section 4, so optimizing communication
is the key to high performance.

Substantial effort has gone into designing graph partitioning strate-
gies that reduce communication overhead. Overlapping communi-
cation with computation (as done in HPC applications) would re-
duce its relative overhead, but there is relatively little computation
in graph analytics applications. Therefore, reducing the volume of
communication has been the focus of much effort in this area. Since
communication is needed to synchronize proxies, reducing the av-
erage number of proxies per node (known in the literature as the
average replication factor) while also ensuring computational load
balance can reduce communication [8, 23, 41, 42, 44]. This is one
of the driving principles behind the Vertex-Cut partitioning strat-
egy (Vertex-Cuts and other partitioning strategies are described in
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detail in Section 2) used in PowerGraph [18] and PowerLyra [12].
Partitioning policies developed for efficient distribution of sparse
matrix computation such as 2D block partitioning [7, 11] can also
be used since sparse graphs are isomorphic to sparse matrices.

Several papers [3,7,12,45,51] have studied how the performance
of graph analytics applications changes when different partitioning
policies are used, and they have advocated particular partitioning
policies based on their results. We believe these studies are not
conclusive for the following reasons.

• Most of the evaluations were done for small graphs on small
clusters, so it is not clear whether their conclusions extend to
large graphs and large clusters.

• In some cases, only topology-driven algorithms were eval-
uated, so it is not clear whether their conclusions extend to
work-efficient data-driven algorithms.

• The distributed graph analytics systems used in the studies
optimize communication only for particular partitioning strate-
gies, putting other partitioning strategies at a disadvantage.

This paper makes the following contributions:

1. We present the first detailed performance analysis of state-
of-the-art, work-efficient graph analytics applications using
different graph partitioning strategies including Edge-Cuts,
2D block partitioning strategies, and general Vertex-Cuts on
large-scale clusters, including one with 256 machines and
roughly 69K threads. These experiments use a system called
D-Galois, a distributed-memory version of the Galois sys-
tem [36] based on the Gluon communication runtime [15].
Gluon performs communication optimizations that are spe-
cific to each partitioning strategy. Our results show that al-
though Edge-Cuts perform well on small-scale clusters, a 2D
partitioning policy called Cartesian Vertex-Cut (CVC) [7]
performs the best at scale even though it results in higher
replication factors and higher communication volumes than
the other partitioning strategies.

2. We present an analytical model for estimating communica-
tion volumes for different partitioning strategies, and an em-
pirical study using micro-benchmarks to estimate communi-
cation times. These help estimate and understand the perfor-
mance differences in communication required by the parti-
tioning strategies. In particular, these models explain why at
scale, CVC has lower communication overhead even though
it performs more communication.

3. We give a simple decision tree that can be used by the user to
select a partitioning strategy at runtime given an application
and the number of distributed hosts. Although the chosen
policy might not be the best in some cases, we show that the
application’s performance using the chosen policy is almost
as good as using the best policy.

This paper’s contributions include some important lessons for
designers of high-performance graph analytics systems.

1. It is desirable to support optimized implementations of mul-
tiple partitioning policies including Edge-Cuts and Cartesian
Vertex-Cuts, like D-Galois does. Existing systems either sup-
port general partitioning, using approaches like gather-apply-
scatter (PowerGraph, PowerLyra), without optimizing com-
munication for particular partitioning policies like Edge-Cuts,
or support only Edge-Cuts (Gemini). Neither approach is
flexible enough.

2. An important lesson for designers of efficient graph partition-
ing policies is that the communication overhead in graph an-
alytics applications depends on not only the communication
volume but also the communication pattern among the parti-
tions as explained in Section 2. The replication factor and the
number of edges/vertices split between partitions [12,18,41,
44] are not adequate proxies for communication overhead.

The rest of this paper is organized as follows. Section 2 describes
the graph partitioning strategies used in this study, including Edge-
Cuts, 2D block partitioning strategies, and general Vertex-Cuts.
Section 3 presents an analytical model for estimating the communi-
cation volumes required by different partitioning strategies and an
empirical study using micro-benchmarks to model communication
time. Section 4 presents detailed experimental results using state-
of-the-art graph analytics benchmarks including data-driven algo-
rithms for betweenness centrality, breadth-first search, connected
components, page-rank, and single-source shortest-path. Section 5
presents a decision tree for choosing a partitioning strategy. Sec-
tion 6 puts the contributions of this paper in the perspective of re-
lated work. Section 7 concludes the paper.

2. PARTITIONING POLICIES
The graph partitioning policies considered in this work divide a

graph’s edges among hosts and creating proxy nodes on each host
for the endpoints of the edges assigned to that host. If edge e :
(n1→n2) is assigned to a host h, h creates proxy nodes on itself for
nodes n1 and n2, and adds an edge between them. For each node in
the graph, one proxy is made the master, and the other proxies are
made mirrors. Intuitively, the master holds the canonical value of
the node during the computation, and it communicates that value to
the mirrors as needed. Each partitioning strategy represents choices
made along two dimensions: (i) how edges are partitioned among
hosts and (ii) how the master is chosen from the proxies of a given
node. To understand these choices, it is useful to consider both the
graph-theoretic (i.e., nodes and edges) and the adjacency matrix
representation of a graph.

2.1 1D Partitions
In 1D partitioning, nodes are partitioned among hosts. If a host

owns node n, all outgoing (or incoming) edges connected to n are
assigned to that host, and the corresponding proxy for node n is
made the master. In the graph analytical literature, this partitioning
strategy is called outgoing (or incoming) Edge-Cut [23, 41, 42, 51].
In matrix-theoretic terms, this corresponds to assigning rows (or
columns) to hosts. 1D partitioning is commonly used in stencil
codes in computational science applications; the mirror nodes are
often referred to as halo nodes in that context. Stencil codes use
topology-driven algorithms on meshes, which are uniform-degree
graphs, and computational load balance can be accomplished by
assigning roughly equal numbers of nodes to all hosts. For power-
law graphs, the adjacency matrix is irregular, and ensuring load
balance for data-driven graph algorithms through static partitioning
is difficult.

A number of policies are used in practice.

1. Balanced nodes: Assign roughly equal numbers of nodes to
all hosts.

2. Balanced edges: Assign nodes such that all hosts have roughly
the same number of edges.

3. Balanced nodes and edges [51]: Assign nodes such that a
given linear combination of the number of nodes and edges
on a host has roughly the same value on all hosts.
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(a) CheckerBoard Vertex-Cut (BVC) (b) Cartesian Vertex-Cut (CVC) (c) Jagged Vertex-Cut (JVC)
Figure 1: 2D partitioning policies.

Figure 2: Communication patterns in BVC and CVC policies: red
arrows are reductions and blue arrows are broadcasts for host 4.

The first policy is the simplest and does not require any analysis
of the graph. However, it may result in substantial load imbalance
for power-law graphs since there is usually a large variation in node
degrees. The other two policies require computing the degree of
each vertex and the prefix-sums of these degrees to determine how
to partition the set of nodes.

2.2 2D Block Partitions
In 2D block partitioning, the adjacency matrix is blocked along

both dimensions, and each host is assigned some of the blocks.
Unlike in 1D partitioning, both outgoing and incoming edges of a
given node may be distributed among different hosts. In the graph
analytical literature, such partitioning strategies are called Vertex-
Cuts. 2D block partitioning can be viewed as a restricted form of
Vertex-Cuts in which the adjacency matrix is blocked.

This paper explores three alternative implementations of 2D block
partitioning, illustrated in Figure 1 using a cluster of eight hosts in a
4×2 grid. The descriptions below assume that hosts are organized
in a grid of size pr×pc.

1. CheckerBoard Vertex-Cuts (BVC) [11, 27]: The nodes of the
graph are partitioned into equal size blocks and assigned to
the hosts. Masters are created on each host for its block
of nodes. The matrix is partitioned into contiguous blocks
of size N/pr×N/pc, and each host is assigned one block
of edges as shown in Figure 1(a). This approach is used
by CombBLAS [9] for sparse matrix-vector multiplication
(SpMV) on graphs. There are several variations to this ap-
proach; the one used in this study is shown in Figure 1(a).

2. Cartesian Vertex-Cuts (CVC) [7]: Nodes are partitioned amo-
ng hosts using any 1D block partitioning policy, and masters
are created on hosts for the nodes assigned to it. Unlike BVC,
these node partitions need not be of the same size, as shown
in Figure 1(b). This can happen, for example, if the 1D block
partitioning assigns nodes to hosts such that the number of
edges is balanced among hosts.

The columns are then partitioned into same sized blocks as
the rows. Therefore, blocks along the diagonal will be square,
but other blocks may be rectangular unlike in BVC. These
blocks of edges can be distributed among hosts in different
ways. This study uses a block distribution along rows and a
cyclic distribution along columns, as shown in Figure 1(b).

3. Jagged Vertex-Cuts (JVC) [11]: The first stage of JVC is sim-
ilar to CVC. However, instead of partitioning columns into
same sized blocks as the rows, each block of rows can be par-
titioned independently into blocks for a more balanced num-
ber of edges (non-zeros) in edge blocks. Therefore, blocks
will not be aligned among the column dimension. These
edge blocks can be assigned to hosts in any fashion, but in
this study, the host assignment is kept the same as CVC as
shown in Figure 1(c).

Although these 2D block partitioning strategies seem similar,
they have different communication requirements.

Consider a push-style graph algorithm in which active nodes per-
form computation on their own labels and push values to their im-
mediate outgoing neighbors, where they are reduced to compute
labels for the next round. In a distributed-memory setting, a proxy
with outgoing edges of a node n on host h push values to its proxy
neighbors also present on h. These proxies may be masters or mir-
rors, and it is useful to distinguish two classes of mirrors for a node
n: in-mirrors, mirrors that have incoming edges, and out-mirrors,
mirrors that have outgoing edges. For a push-style algorithm in the
distributed setting, the computation at an active node in the origi-
nal graph is performed partially at each in-mirror, the intermediate
values are reduced to the master, and the final value is broadcast
to the out-mirrors. Therefore, the communication pattern can be
described as broadcast along the row dimension and reduce along
the column dimension of the adjacency matrix. The hosts that par-
ticipate in broadcast and/or reduce depends on the 2D partitioning
policy and the assignment of edge blocks to the hosts.

To illustrate this, consider Figure 2 which shows the 4×2 grid
of hosts and the reduce and broadcast partners for host 4 in BVC
and CVC. For BVC, by walking down the fourth block column
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of the matrix in Figure 1(a), we see that incoming edges to the
nodes owned by host 4 may be mapped to hosts {1,3,5,7}, so labels
of mirrors on these hosts must be communicated to host 4 during
the reduce phase. Similarly, the labels of mirrors on host 4 must
be communicated to masters on hosts {5,6,7,8}. Once the values
have been reduced at masters on host 4, they must be sent to hosts
that own out-mirrors for nodes owned by host 4. Walking over the
fourth block row of the matrix, we see that only host 3 is involved
in this communication. Similarly, the labels of masters on the host
{3} must be sent to host 4.

The same analysis can be done on CVC and JVC partitionings.
For JVC, a given host may need to involve all other hosts in re-
ductions and broadcasts, leading to larger communication require-
ments than CVC.

2.3 Unrestricted Vertex-Cut Partitions
Unrestricted or general Vertex-Cuts are partitioning strategies

that assign edges to hosts without restriction, and they do not cor-
respond to 1D or 2D blocked partitions. The partitioning strate-
gies used in the PowerGraph [18] and PowerLyra systems [12] are
examples of this strategy. For example, in PowerLyra’s Hybrid
Vertex-Cut (HVC), nodes are assigned to hosts in a manner similar
to an Edge-Cut. However, high-degree nodes are treated differently
from low-degree nodes to avoid assigning all edges connected to a
high-degree node to the same host, which creates load imbalance.
If (n1→n2) is an edge and n2 has low in-degree (based on some
threshold), the edge is assigned to the host that owns n2; otherwise,
it is assigned to the node that owns n1.

2.4 Discussion
A small detail in 2D block partitioning is that when the number

of processors is not a perfect square, we factorize the number into
a product px×py and assign the larger factor to the row dimension
rather than the column dimension. This heuristic reduces the num-
ber of broadcast partners because the reduce phase communicates
only updated values from proxies to the master and the number of
these updates decrease over iterations, whereas the broadcast phase
in each round sends the updated canonical value from the master to
all its proxies.

In our studies, we observed that for Edge-Cuts and HVC, al-
most all pairs of hosts have proxies in common for some number
of nodes. Therefore, for these partitioning policies, Edge-Cut par-
titioning performs all-to-all communication while HVC performs
two rounds of all-to-all communication (from mirrors to masters
followed by masters to mirrors). On the other hand, CVC has pc
number of parallel all-to-all communications among pr ≈

√
P

hosts followed by pr number of parallel all-to-all communications
among pc ≈

√
P hosts. Therefore, each host in CVC sends fewer

messages and has fewer communication partners than EC and HVC,
which can help both at the application level (a host need not wait
for another host in another row) and at the hardware level (less
contention for network resources). The next section explores these
differences among partitioning policies quantitatively.

3. PERFORMANCE MODEL FOR COMMU-
NICATION

This section presents performance models to estimate communi-
cation volume and communication time for three partitioning poli-
cies: Edge-Cut, Hybrid Vertex-Cut, and Cartesian Vertex-Cut. We
formally define replication factor (Section 3.1), describe a simple
analytical model for estimating the communication volume using
the replication factor (Section 3.2), and use micro-benchmarks to

estimate the communication time from the communication volume
(Section 3.3).

3.1 Replication Factor
Given a graph G=(V,E), and a strategy S for partitioning the

graph between P hosts, let v be a node in V and let rP,S(v) denote
the number of proxies of v created when the graph is partitioned.
rP,S(v) is referred to as the replication factor, and it is an integer
between 1 and P . The average replication factor across all nodes
is a number between 1 (no node is replicated) and P (all nodes
are replicated between all hosts), and it is given by the following
equation:

rP,S =

∑
v∈V rP,S(v)

|V | (1)

3.2 Estimating Communication Volume
For simplicity in the communication volume model, assume that

the data flow in the algorithm is from the source to the destination
of an edge. A similar analysis can be performed for other cases.
Assume that u nodes (0≤u≤|V |) are updated in a given round and
that the size of the node data (update) is b bytes.

3.2.1 Edge-Cut (EC)
Consider an incoming Edge-Cut (IEC) strategy (1D column par-

titioning), and let rP,E(v) be the replication factor for a node v.
In IEC, the destination of an edge is always a master, so only the
master node is updated during computation. At the end of a round,
the master node updates its mirrors on other hosts. Since an up-
date requires b bytes, the master node for v in the graph must send
(rP,E(v) − 1) ∗ b bytes. If u nodes are updated in the round, the
volume of communication is the following:

CIEC(G,P ) ≈ (rP,E−1)∗u∗b (2)

For an outgoing Edge-Cut (OEC) strategy (1D row partitioning),
the source of an edge is always a master, so the mirrors must send
the updates to their master, and only the master needs the updated
value. The communication volume remains the same as IEC’s only
if all the mirrors of u nodes are updated in the round. In practice,
only some mirrors of the nodes in u are updated. Let fE denote
the average fraction of mirrors of nodes in u that are updated. The
communication volume in the round is the following:

COEC(G,P ) ≈ (fE ∗ rP,E−1) ∗ u ∗ b (3)

3.2.2 Hybrid Vertex-Cut (HVC)
In a general Vertex-Cut strategy like Hybrid Vertex-Cut, the mir-

rors must communicate with their master, and the masters must
communicate with their mirrors. If rP,H is the average replication
factor, the volume of communication in a round in which an aver-
age fraction fH of mirrors are updated is

CHV C(G,P ) ≈ ((fH ∗ rP,H−1)+(rP,H − 1))∗u∗b (4)

Comparing this with (2) and (3), we see that the volume of com-
munication for OEC and IEC can be much lower than HVC if they
have the same replication factor, and it will be greater than HVC
only if their replication factor is almost twice that of HVC.

3.2.3 Cartesian Vertex-Cut (CVC)
Consider a Cartesian Vertex-Cut with P = pr∗pc. Unlike HVC,

at most pr mirrors must communicate with their master, and the
masters must communicate with at most pc of their mirrors. Let
rP,C be the average replication factor, and let fC and f ′

C be the
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Figure 3: Performance of different communication patterns on different number of hosts on Stampede for different CPU architectures.
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fractions of mirrors that are active along rows and columns respec-
tively. Then, the volume of communication in a round is

CCV C(G,P ) ≈ ((fC ∗ rP,C − 1)+ (f ′
C ∗ rP,C − 1)) ∗u ∗ b (5)

Comparing this with (4), we see that the communication volume
for CVC can be less than the volume for HVC even with the same
replication factor. This illustrates that the replication factor is not
the sole determinant for communication volume.

3.3 Micro-benchmarking to Estimate Commu-
nication Time

To relate communication volumes under different communica-
tion patterns to communication time, we adapted the MVAPICH2
all-to-allv micro-benchmark. For a given total communication vol-
ume across all hosts, we simulate the communication patterns of
the three strategies (the message sizes differ for different strate-
gies): (1) IEC/OEC: one round of all-to-all communication among
all hosts, (2) HVC: two rounds of all-to-all communication among
all hosts, (3) CVC: a round of all-to-all communication among all
row hosts followed by a round of all-to-all communication among
all column hosts. In a given strategy, the same message size is used
between every pair of hosts. In practice, the message sizes usually
differ and point-to-point communication (instead of a collective) is
typically used to dynamically manage buffers and parallelize seri-
alization and deserialization of data.

Figures 3a and 3b show the communication time of the differ-
ent strategies on different number of KNL hosts and Skylake hosts,
respectively, on the Stampede cluster [43] (described in Section 4)
as the total communication volume increases. As expected, the
communication time is dependent not only on the communication
volume but also on the communication pattern. The performance
difference in the communication patterns grows as the number of
hosts increases. While EC, HVC, and CVC perform similarly on 32
KNL hosts, CVC gives a geomean speedup of 4.6× and 5.6× over
EC and HVC respectively to communicate the same volume on 256
KNL hosts; the speedup is higher for low volume (≤ 100MB) than
for medium volume (> 100MB and≤ 1000MB). The communica-
tion volume in work-efficient graph analytical applications changes
over rounds and several rounds have low communication volume in
practice. For example, Figure 4 shows the percentage of computa-
tion rounds of pagerank and sssp with communication volume in
the low, medium, and high ranges for different partitioning policies
on 32 and 256 KNL hosts of Stampede. In Figure 3, CVC commu-
nicates more data in the same amount of time on 256 KNL hosts;
e.g., CVC can synchronize 128 to 256 MB of data in the same time
that EC and HVC can synchronize 1 MB of data. Similar behavior
is also observed on Skylake hosts. Thus, CVC can reduce com-
munication time over EC and HVC for the same communication
volume or can increase the volume without an increase in time.

3.4 Discussion
The analytical model and micro-benchmark results described in

this section show that although communication time depends on
the communication volume (which in turn depends on the aver-
age replication factor), it is incorrect to conclude from this alone
that partitioning strategies with larger average replication factors or
communication volume will perform worse than those with smaller
replication factors or communication volumes. In particular, CVC
might be expected to perform better at scale because it requires
fewer messages and fewer pairs of processors to communicate than
other partitioning strategies like EC and HVC do. While the micro-
benchmarks used MPI collectives with the same message sizes,
most distributed graph analytics systems use MPI or similar inter-
faces to perform point-to-point communication with variable mes-
sage sizes. For example, the D-Galois [15] system uses LCI [14]1

instead of MPI for sending and receiving point-to-point messages
between hosts. Even in such systems, CVC can be expected to
perform better at scale than EC and HVC because it needs fewer
messages and fewer pairs of processors to communicate. We study
this using the D-Galois system quantitatively in the next section.

1LCI [14] is an alternative to MPI that has been shown to perform
better than MPI for graph analytical applications.
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Table 1: Inputs and their properties.
kron30 clueweb12 wdc12

|V | 1073M 978M 3,563M
|E| 10,791M 42,574M 128,736M
|E|/|V | 16 44 36
Max Dout 3.2M 7,447 55,931
Max Din 3.2M 75M 95M
Size on disk 136GB 325GB 986GB

Table 2: Execution time of Gemini and D-Galois with EC.
32 hosts Gemini (sec) D-Galois (sec)

kron30
bfs 7.8 3.0
cc 16.0 4.8
pr 213.2 211.6
sssp 17.5 6.1

clueweb12
bfs 72.9 8.9
cc 38.0 16.9
pr 231.9 219.6
sssp 115.8 13.1

4. EXPERIMENTAL RESULTS
All experiments were conducted on the Texas Advanced Com-

puting Center’s Stampede Cluster (Stampede2) [2, 43]. Stampede2
has 2 distributed clusters: one with Intel Knights Landing (KNL)
nodes and another with Intel Skylake nodes. Each KNL cluster
host has 68 1.4 GHz cores with 4 hardware threads per core, 96 GB
RAM, and 16 GB MC-DRAM, which serves as a direct-mapped
L3 cache. Each Skylake cluster host has 48 2.1 GHz cores on 2
sockets (24 cores per socket) with 2 hardware threads per core and
192 GB RAM. Both clusters use 100Gb/sec Intel Omni-Path (OPA)
network. We limit our experiments to 256 hosts on both the clus-
ters and we use 272 threads per host (69632 threads in total) on the
KNL cluster and 48 threads per host (12288 threads in total) on the
Skylake cluster. All code was compiled using g++ 7.1.0. Unless
otherwise stated, all results are presented using the KNL cluster.

We used three graphs in our evaluation: synthetically generated
randomized power-law graph kron30 (using kron [31] genera-
tor with weights of 0.57, 0.19, 0.19, and 0.05, as suggested by
graph500 [1]) and the largest publicly available web-crawl graphs,
clueweb12 [5, 6, 38] and wdc12 (Web Data Commons) [33, 34];

we present results for wdc12 only at scale (256 hosts). Properties
of these graphs are listed in Table 1.

To study the impact of graph partitioning on application execu-
tion time, we use five graph analytics applications: betweenness
centrality ( bc ), breadth-first search ( bfs ), connected components
( cc ), pagerank ( pr ), and single-source shortest path ( sssp ). We
implement topology-driven algorithm for pagerank and data-driven
algorithms for the rest. We run bc with only one source. The
source nodes for bc, bfs, and sssp are the maximum out-degree
node. The directed graph is given as input to bc, bfs, pagerank, and
sssp (bc and sssp use a weighted graph), while an undirected graph
(we make the directed graph symmetric by adding reverse edges)
is given as input to cc. We present the mean execution time of 3
runs (each being maximum across all hosts) excluding graph par-
titioning time. All algorithms are run until convergence except for
pagerank, which is run for up to 100 rounds or iterations.

4.1 Implementation
Existing graph analytics systems implement a single partitioning

strategy, so they are not suitable for comparative studies of graph
partitioning. Moreover, these frameworks do not optimize com-
munication patterns to exploit structure in the partitioning policy.

Table 3: Different initial Edge-Cut policies used for different
benchmarks, inputs, and partitioning policies: IE: Incoming Edge-
Cut, OE: Outgoing Edge-Cut, UE: Undirected Edge-Cut.

bc/bfs/sssp cc pr

kron30

XEC OE UE IE
EC IE UE IE
HVC IE UE IE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

clueweb12

XEC OE UE IE
EC OE UE OE
HVC OE UE OE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

wdc12

XEC OE UE IE
EC OE UE OE
HVC OE UE OE
BVC OE UE IE
JVC OE UE IE
CVC OE UE IE

Therefore, we used a system called D-Galois: it uses the shared-
memory Galois system [30, 36] for computing on each host and
the Gluon communication runtime [15] for inter-host communica-
tion and synchronization. Gluon is an efficient bulk-synchronous
communication substrate, which enables existing shared-memory
CPU and GPU graph analytics frameworks to run on distributed
heterogeneous clusters. Gluon is partition-aware and optimizes
communication for particular partitioning strategies by exploiting
their structural invariants. Instead of naively reducing from mir-
rors to masters and broadcasting from masters to mirrors during
synchronization (as done in gather-apply-scatter model), it avoids
redundant reductions or broadcasts by exploiting structural invari-
ants in the partitioning strategy, as described in Section 3. Gluon
also exploits the fact that the partitioning of the graph does not
change during computation and it uses this temporal invariance to
reduce the overhead and volume of communication by optimizing
metadata like node IDs that needs to be communicated along with
the node values or updates.

To ensure that D-Galois is a suitable platform for this study, we
compared it with Gemini [51], a state-of-the-art system that uses
only Edge-Cuts. Table 2 shows the execution times for Gemini
versions of our benchmarks on 32 KNL hosts; wdc12 is omitted
because Gemini runs out of memory while partitioning it (even on
256 hosts). Since Gemini supports only Edge-Cuts, we compare it
with D-Galois using Edge-Cut (EC). We see that D-Galois outper-
forms Gemini. Gemini also does not scale beyond 32 hosts [15].
These results support the claim that D-Galois is a reasonable state-
of-the-art platform for performing studies of graph partitioning.

For our study, graphs are stored on disk in CSR and CSC for-
mats (size for directed, weighted graphs in Table 1). The synthetic
graphs (kron30) are stored after randomizing the vertices (random-
ized order) while the web-crawl graphs (clueweb12 and wdc12)
are stored in their natural (crawled) vertex order. D-Galois’s dis-
tributed graph partitioner reads the input graph such that each host
only reads a distinct portion of the file on disk once.

D-Galois also supports loading partitions directly from disk, and
we use this to evaluate XtraPulp [41], the state-of-the-art graph
partitioner for large scale-free graphs. XtraPulp generates (using
command line parameters “-e 1.1 -v 10.0 -c -d -s 0”
and 272 OpenMP threads) partitions for kron30 and clueweb12,
and it runs out of memory for wdc12 (the authors have been in-
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Table 4: Graph partitioning time (includes time to load and con-
struct graph) and static load balance of edges assigned to hosts on
256 KNL hosts.

Partitioning Max-by-mean
time (sec) edges

bc bc
bfs cc pr bfs cc pr

sssp sssp

kron30

XEC 304 448 312 1.05 1.08 1.06
EC 51 76 51 1.01 1.01 1.01
HVC 102 130 101 1.02 1.02 1.02
BVC 345 379 365 1.02 1.02 1.02
JVC 1006 1006 1016 1.00 1.00 1.00
CVC 261 288 241 1.00 1.00 1.00

clueweb12

XEC 381 647 373 3.18 8.93 14.69
EC 27 152 38 1.00 1.11 1.00
HVC 308 374 308 3.39 1.64 3.39
BVC 1179 12907 12843 20.24 20.24 20.24
JVC 1904 1924 1960 1.82 1.53 1.01
CVC 573 1239 1119 9.16 2.03 3.26

wdc12

XEC OOM OOM OOM OOM OOM OOM
EC 109 251 236 1.00 1.03 1.00
HVC 3080 2952 3068 1.18 1.13 1.18
BVC 8039 OOM OOM 15.44 OOM OOM
JVC 5263 6570 8890 1.09 1.05 1.01
CVC 2487 4276 3221 1.79 1.17 1.27

formed about this). We write these partitions to disk and load it in
D-Galois. We term this the XtraPulp Edge-Cut (XEC) policy.

We implement five partitioning policies in D-Galois: (1) Edge-
Cut (EC), (2) Hybrid Vertex-Cut (HVC), (3) CheckerBoard Vertex-
Cut (BVC), (4) Jagged Vertex-Cut (JVC), and (5) Cartesian Vertex-
Cut (CVC). Direction of edges traversed during computation is ap-
plication dependent. bc, bfs, and sssp traverse outgoing edges of a
directed graph, pr traverses incoming edges of a directed graph, and
cc traverses outgoing edges of a symmetric, directed graph (Gluon
handles undirected graphs in this way). Due to this, each applica-
tion might prefer a different EC policy:

• Outgoing Edge-Cut (OE): Nodes of a directed graph are par-
titioned into contiguous blocks while trying to balance out-
going edges and all outgoing edges of a node are assigned to
the same block as the node, like in Gemini [51].

• Incoming Edge-Cut (IE): Nodes of a directed graph are parti-
tioned into contiguous blocks while balancing incoming edges
and all incoming edges are assigned to the same block.

• Undirected Edge-Cut (UE): Nodes of a symmetric, directed
graph are partitioned into contiguous blocks while trying to
balance outgoing edges and all outgoing edges are assigned
to the same block.

EC does not communicate during graph partitioning as each pro-
cess reads its portion of the graph directly from the file. All Vertex-
Cut policies use some EC2 to further partition the edges of some
vertices, which are sent to the respective hosts. Table 3 shows the
initial Edge-Cut used by the partitioning policies for each bench-
mark and input. HVC as described in Section 2.3 is used for graphs
with skewed in-degree (e.g., wdc12 and clueweb12). For graphs
with skewed out-degree (e.g., kron30), if (n1→n2) is an edge and
n1 has low out-degree (based on some threshold), the edge is as-
signed to the host that owns n1; otherwise, it is assigned to the node
that owns n2. BVC, JVC, and CVC are as described in Section 2.2.
2The Vertex-Cut policies could also have used XEC instead of EC
to further partition the edges of some vertices, but we chose EC to
show that CVC can do well at scale even with a simple Edge-Cut.

Table 5: Dynamic load balance: maximum-by-mean computation
time on 256 KNL hosts.

bc bfs cc pr sssp

kron30

XEC 3.4 1.47 3.49 1.75 1.66
EC 1.06 1.64 3.60 1.71 1.63
HVC 1.09 1.70 1.37 1.61 1.57
BVC 1.16 1.54 1.55 1.19 1.48
JVC 1.17 1.50 1.55 1.17 1.43
CVC 1.19 1.45 1.50 1.16 1.36

clueweb12

XEC 2.96 2.09 11.81 27.80 2.14
EC 33.19 2.17 28.76 4.12 2.08
HVC 8.86 2.12 3.03 7.93 2.26
BVC 5.04 2.39 19.50 32.46 4.09
JVC 21.17 2.13 5.69 3.23 2.08
CVC 7.71 2.20 5.42 6.73 2.65

wdc12

XEC OOM OOM OOM OOM OOM
EC — 2.20 6.31 13.30 2.19
HVC — 2.06 2.31 6.32 2.05
BVC OOM 1.94 OOM OOM OOM
JVC — 1.59 1.78 1.81 1.59
CVC — 1.67 2.74 6.53 1.75

4.2 Partitioning Time
Although the time to partition graphs is an overhead in distributed-

memory graph analytics systems, shared-memory systems must also
take time to load the graph from disk and construct it in memory.
For example, Galois [36] and other shared-memory systems like
Ligra [40] take roughly 2 minutes to load and construct rmat28
(35GB), which is relatively small compared to the graphs used in
this study. This time should be used as a point of reference when
considering the graph partitioning times shown in Table 4 for dif-
ferent partitioning policies and inputs on 256 KNL hosts. XEC
excludes time to write partitions from XtraPulp to disk, load it in
D-Galois, and construct the graph. All other policies include graph
loading and construction time. Note that some partitioning policies
run out-of-memory (OOM). EC is a lower bound for partitioning as
each host loads its partition of the graph directly from disk in paral-
lel. Vertex-Cut policies are slower than Edge-Cut policies because
they involve communication and more analysis on top of EC.

Comparing partitioning time for different partitioning strategies
is not the focus of this work. In particular, graphs can be partitioned
once, and different applications can run using these partitions. The
main takeaway for partitioning time is that it can finish within a few
minutes. CVC partitioning time is better than or similar to that of
XEC. CVC takes around 5 minutes, 10 minutes, and 40 minutes for
directed kron30, clueweb12, and wdc12, respectively.

4.3 Load Balance
We first compare the quality of the resulting partitions. The num-

ber of edges assigned to a host represents the static load of that
host. Table 4 shows the maximum to mean ratio of edges assigned
to hosts. We see that static load balance not only varies with differ-
ent policies but also with the input graphs. For both directed and
undirected graphs, kron30 is very well balanced for all policies. For
clueweb12 and wdc12, EC is well balanced while the rest are not.

Dynamic load may be quite different from static load, especially
for data-driven algorithms in which computation changes over rou-
nds. To measure the dynamic load balance, we measure the compu-
tation time of each round on each host and calculate the maximum
and mean across hosts. Summing up over rounds, we get the max-
imum and mean computation time respectively. Table 5 shows the
maximum-by-mean computation time for all policies, benchmarks,
and inputs on 256 hosts. Note that bc, bfs, and sssp use the same
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Table 6: Execution time (sec) for different partitioning policies, benchmarks, and inputs on KNL hosts.
32 hosts 256 hosts

XEC EC HVC BVC JVC CVC XEC EC HVC BVC JVC CVC

kron30

bc 32.7 40.9 51.7 75.5 26.0 22.6 23.6 39.1 51.2 20.4 13.6 10.0
bfs 4.6 3.0 4.4 5.1 2.6 2.9 3.8 2.4 4.0 1.3 1.3 1.0
cc 10.1 4.8 10.7 13.9 5.6 4.2 4.3 4.2 3.9 2.4 2.2 1.9
pr 230.1 211.6 293.0 287.8 191.9 339.9 57.6 64.2 84.1 65.7 78.7 72.9
sssp 9.7 6.1 8.3 10.4 5.6 4.8 5.4 3.8 5.9 2.0 2.0 1.8

clueweb12

bc 136.2 439.1 627.9 961.9 660.6 539.1 413.7 420.0 1012.1 404.6 627.6 266.9
bfs 10.4 8.9 17.4 41.1 38.7 19.2 36.4 27.1 46.5 25.1 36.1 14.6
cc OOM 16.9 7.5 OOM 25.9 19.6 43.0 84.7 8.4 21.2 12.5 7.3
pr 272.6 219.6 193.5 OOM 354.6 217.9 286.7 82.3 97.5 267.4 58.6 60.8
sssp 16.5 13.1 26.6 63.7 63.2 31.7 43.0 32.5 54.7 44.5 44.7 21.8

Table 7: Execution statistics of wdc12 on 256 KNL hosts.
EC HVC JVC CVC

bfs 422.8 832.9 974.6 373.4
Execution cc 118.8 135.8 178.4 74.2
Time (sec) pr 230.9 193.1 173.3 138.3

sssp 633.1 1238.3 1395.6 567.9
bfs 1.4 2 4.6 3.4

Replication cc 4.4 2.3 7.2 5.3
Factor pr 1.4 2.0 5 3.1

sssp 1.4 2 4.6 3.4
Total bfs 15 27 101 54
Communication cc 100 36 278 147
Volume (GB) pr 604 628 3019 1394

sssp 66 159 697 352

Table 8: Execution time (sec) on Skylake hosts for EC and CVC.
8 hosts 256 hosts

EC CVC EC CVC

bc 45.9 35.9 21.1 5.5
bfs 3.3 3.4 4.0 0.7

kron30 cc 8.2 9.4 7.1 1.0
pr 230.3 259.2 38.1 28.4
sssp 6.3 7.1 6.0 1.2

bc 339.1 669.2 197.7 152.4
bfs 6.0 16.1 6.1 6.0

clueweb12 cc 10.9 9.5 64.9 3.6
pr 121.5 130.1 20.6 17.9
sssp 16.9 33.2 8.6 9.7

partitions. Firstly, it is clear that although kron30 is statically well
balanced for all policies, it is not dynamically load balanced. More-
over, the load balance depends on the dynamic nature of the algo-
rithm. Even though bc and bfs use the same graph, their dynamic
load balance is different. CVC on clueweb12 is well-balanced for
bfs, but highly imbalanced for bc. The policy significantly impacts
dynamic load balance, but this need not directly correlate with their
static load balance. For example, for bfs and sssp, although CVC on
clueweb12 is statically severely imbalanced while EC is not, both
EC and CVC are fairly well balanced at runtime. This demonstrates
that dynamic load balance is difficult to achieve since it depends on
the interplay between policy, algorithm, and graph.

4.4 Execution Time
Table 6 shows the execution time of D-Galois with all policies on

32 and 256 KNL hosts for kron30 and clueweb12. Table 7 shows
the execution time for wdc12 on 256 KNL hosts (all policies run
out of memory on 32 hosts; XEC and BVC run out of memory on
256 hosts too). These tables also highlight which policy performs
best for a given application, input, and number of hosts (scale). It
is clear that the best performing policy is dependent on the applica-
tion, the input, and the number of hosts (scale). Although there is
no clear winner for all cases, CVC performs the best on 256 hosts
for almost all applications and inputs.

Table 8 shows the execution time of D-Galois with EC and CVC
on 8 and 256 Skylake hosts for kron30 and clueweb12. Even on
these Skylake hosts, the best performing policy depends on the ap-
plication, the input, and the number of hosts (scale), without any
clear winner. Nonetheless, similar to KNL hosts, CVC performs
the best on 256 hosts for almost all applications and inputs, whereas
EC performs the best on 8 hosts for almost all applications and in-
puts. This suggests that the relative merits of the partitioning poli-
cies are not specific to the CPU architecture.

4.5 Strong Scaling
We measure the time for computation of each round or iteration

on each host and take the maximum across hosts. Summing up
over iterations, we get the computation time. Figure 5 shows the
strong scaling of execution time (left) and computation time (right)
for kron30 and clueweb12 (most partitioning policies run out of
memory for wdc12 on less than 256 hosts). Some general trends
are apparent. At small scale on 32 hosts, EC performs fairly well
for almost all the benchmarks and is comparable to the best, but as
we go to higher number of hosts, EC, XEC, and HVC do not scale.
On the other hand, all 2D partitioning policies scale relatively better
for almost all benchmarks and inputs. Among them, JVC scales
better than BVC, and CVC scales better than JVC. In most cases,
CVC has the best performance at scale and scales best.

CVC does not scale well for bfs and sssp on clueweb12 due to
computation time not scaling well. In all other cases, both compu-
tation time and execution time scale. For bfs and sssp, CVC is still
better than the others in execution time since computation times of
all policies do not scale. This is likely due to the computation being
too small for it to scale (both execute more than 180 iterations, so
each iteration has little to compute on each host at scale).

Computation time of all policies scales similarly in most cases.
However, their execution time scaling differs. This is most evident
in EC and CVC. This indicates that the difference in the policies
arises due to the communication. We analyze this next.
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Figure 7: Breakdown of execution time on 256 hosts: kron30 (left) and clueweb12 (right).
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Figure 8: Breakdown of execution time on 256 hosts: wdc12 (XEC
and BVC run out-of-memory).

4.6 Communication Analysis
The total communication volume is the sum of the number of

bytes sent from one host to another during execution. Table 7 shows
the replication factor and total communication volume for wdc12
on 256 hosts (XEC and BVC run out of memory). Figure 6 shows
how the replication factor (left) and the total communication vol-
ume (right) scale as we increase the number of hosts for kron30
and clueweb12. The replication factor increases with the number
of hosts for all partitioning policies as expected. Similarly, the to-
tal communication volume increases with the number of hosts as
more data needs to be exchanged to synchronize those proxy nodes
across hosts. However, the difference in replication factor across
policies can vary from that of communication volume. This is most
evident for kron30: although EC has a much higher replication fac-
tor than the other policies, the communication volume of EC is
close to that of others. This demonstrates that replication factor
need not be the sole determinant for the communication volume.

For kron30, EC corresponds to IEC, so there are no updates
sent from mirrors to masters; only masters send updates to mir-
rors. Vertex-Cut policies like HVC and CVC, however, send from
mirrors to masters and then from masters to mirrors. Thus, if EC
has roughly twice the replication factor of HVC, EC would still
communicate the same volume as HVC. This can analyzed using
our analytical model in Section 3.2. We estimate the communica-
tion volume for EC, HVC, and CVC using Equations 2, 4, and 5,

Table 9: Communication volume estimated by the model vs. ob-
served communication volume on 128 KNL hosts for kron30.

IEC HVC CVC

Replication Factor 5.53 3.58 3.81
bfs Estimated Volume(GB) 15.63 19.73 2.82

Observed Volume(GB) 19.26 20.29 11.69

Replication Factor 7.89 5.07 4.84
cc Estimated Volume(GB) 30.07 71.02 20.44

Observed Volume(GB) 44.51 50.40 26.08

Replication Factor 5.53 3.58 3.81
pr Estimated Volume(GB) 1153.56 1243 932.06

Observed Volume(GB) 1797.30 1867.06 1715.68

Replication Factor 5.53 3.58 3.81
sssp Estimated Volume(GB) 36.97 40.60 6.99

Observed Volume(GB) 44.63 35.55 27.64

respectively. The values to use for the replication factor r and the
size of the data b are straightforward to determine. We assume that
if a node is updated, all its mirrors are updated, so we use a value of
1 for f . These equations estimate the volume for a given round or
iteration. To get the total communication volume, we can sum over
all rounds. We instead replace the number of updates u in a round
with the total number of updates performed on the graph across all
the rounds to estimate the total communication volume.

Table 9 presents the estimated communication volume of differ-
ent applications and policies for kron30 along with the replication
factor and the observed communication volume. The estimated vol-
ume can be more than the observed volume because we assume f
is 1, which is an over-approximation. The observed volume can be
higher than the estimated volume as the estimation does not account
for the metadata like node IDs communicated along with node val-
ues or updates, which is an under-approximation. Such approxima-
tions are fine because the relative ordering of the communication
volume among different partitioning policies is important, not the
absolute values. From the estimated volume for all the benchmarks,
we can see that our analytical model predicts CVC to communicate
the least amount of volume even if CVC has higher replication fac-
tor than HVC. A similar pattern can also be seen in the observed
communication volume for all the benchmarks, where CVC has the
minimum volume but not necessarily the minimum replication fac-
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Figure 9: Decision tree to choose a partitioning policy.

tor. This validates our analytical model, stating that the replication
factor is not the sole determinant for communication volume.

In Figure 6, we see that CVC may have a higher replication factor
and communication volume than the other policies, yet it performs
better than the other policies in most cases. Figures 7 and 8 show
the breakdown of execution time into computation time and non-
overlapped communication time (the rest of the execution time)
on 256 hosts. It is clear that CVC is doing better (except pager-
ank on kron30) because the communication time is lower. We can
see that more communication volume does not always imply more
communication time. For example, in pr and sssp on clueweb12,
CVC has higher replication factor and more communication vol-
ume than EC and HVC but lower communication time. Figure 4
shows the percentage of rounds in those applications and policies
that have low (≤ 100MB), medium (> 100MB and ≤ 1000MB),
and high (> 1000MB) communication volume. CVC increases the
number of high volume rounds of pr and sssp over EC on both 32
and 256 hosts. Our micro-benchmarking in Section 3.3 shows that
CVC yields significant speedups over EC on 256 hosts in both low
and high volumes, which outweighs the increase in high volume
rounds. In contrast, the increase in high volume rounds on 32 hosts
for CVC over EC causes a slowdown in communication time since
there is very little difference between CVC and EC at this scale for
the same communication volume. This validates the claim that the
communication time depends on both the communication volume
and the communication pattern and shows that CVC has much less
communication overhead than other policies at large scale.

5. CHOOSING A PARTITIONING
Based on the results presented in Section 4, we present a decision

tree (Figure 9) to help users choose the most suitable partitioning
strategy based on the following parameters:

1. Whether the input is partitioned offline: The time it takes to
partition and load the graph (online) depends on the com-
plexity of the partitioning strategy. EC takes least amount
of time, whereas strategies like XEC [41] and CVC [7] take
more time as they involve analysis and communication dur-
ing partitioning. It makes sense to use complex partitioning
strategies if the benefits gained from them outweigh the time
spent in partitioning. D-Galois also supports direct loading
of offline partitioned graphs, in which case partitioning time
is not a factor as the partitioned graph is on disk.

2. Whether the execution time is estimated to be long or short:
The amount of time spent in execution of the application
plays a vital role in determining if it makes sense to invest
time in a good partitioning strategy. Spending more time in
partitioning makes more sense for long-running applications
as they involve more rounds of communication which can

Table 10: % difference in execution time (excluding partitioning
time) on KNL hosts between the partitioning strategy chosen by the
decision tree and the optimal one (wdc12 is omitted because chosen
one is always optimal; 0% means that chosen one is optimal).

32 64 128 256

kron30

bc 44.74% 0% 0% 0%
bfs 13.33% 13.68% 0% 0%
cc 12.5% 26.63% 0% 0%
pr 9.31% 36.38% 30.63% 20.99%
sssp 21.31% 23.26% 0% 0%

clueweb12

bc 68.98% 60.59% 21.32% 0%
bfs 0% 37.24% 0% 0%
cc 55.62% 52.16% 51.35% 0%
pr 11.89% 18.69% 26.09% 3.62%
sssp 0% 43.83% 17.33% 0%

Table 11: % difference in execution time (excluding partitioning
time) on Skylake hosts between the partitioning strategy chosen by
the decision tree and the optimal one.

8 256

kron30

bc 21.79% 0%
bfs 0% 0%
cc 0% 0%
pr 0% 0%
sssp 0% 0%

clueweb12

bc 0% 0%
bfs 0% 0%
cc 12.84% 0%
pr 0% 0%
sssp 0% 11.34%

benefit from a well-chosen partitioning strategy. The user
can easily identify whether the application is expected to run
for a long time (e.g., by using algorithm complexity). Appli-
cations such as bc tend to be more complex as they have mul-
tiple phases within each round of computation, and they in-
volve floating-point operations; therefore, they are expected
to have longer execution times. On the other hand, applica-
tions like bfs are relatively less complex and can be classified
as short-running applications.

3. Cluster size: Our results show that the performance of dif-
ferent partitioning strategies also depend on the number of
hosts on which the application is run.

Figure 9 illustrates our decision tree to choose a partitioning
strategy. For short running applications, if the graph is not already
partitioned, we recommend using simple EC. Additionally, if the
graph is already partitioned and the number of hosts is less than
32, simple EC should suffice. For long-running applications, the
decision to use EC or CVC primarily depends on the cluster size.
If the number of machines is more than 32, it makes sense to invest
partitioning time in CVC. Otherwise, EC is recommended.

Choosing the best partitioning strategy is a difficult problem as
it depends on several factors such as properties of input graphs,
applications, number of hosts (scale), etc. Therefore, the decision
tree may not always suggest or choose the best partitioning strat-
egy. Tables 10 and 11 illustrate this point by showing the percent-
age difference in the application execution time between the chosen
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partitioning strategy and the best-performing or optimal strategy at
different number of hosts assuming the input graphs used are al-
ready partitioned (i.e., graph construction time for all strategies are
same). A value of zero means that the chosen partitioning strat-
egy performs the best. In many cases, the chosen strategy performs
best, particularly at 128 and 256 hosts. For kron30, this difference
in most of the cases is under 20%. For clueweb12, the difference
is slightly higher, especially for bc at 32 hosts, for which XEC per-
forms best rather than simple EC (XEC uses a community detec-
tion technique for partitioning which provides compute locality for
the compute-heavy bc algorithm). Nonetheless, the decision tree
chooses a partitioning strategy that performs well in most cases.

6. RELATED WORK
Several distributed-memory graph processing frameworks have

been published in the past few years [9,12,13,17–21,25,28,32,35,
46–49,51]. These systems use graph partitioning to scale out com-
putations on graphs or sparse matrices that do not fit in the mem-
ory of a single node. In the graph analytics literature, partitioning
strategies are classified into Edge-Cuts [4,22–24,41,42,50,51] and
Vertex-Cuts [8,12,18,26,29,37,39,44]. In the matrix literature, they
are classified into 1D and 2D partitionings [7,11]. 1D partitionings
are equivalent to the class of Edge-Cuts, whereas 2D partitionings
are strictly a sub-class of Vertex-Cuts as they are more restricted.

1D partitionings or Edge-Cuts: METIS [4,23] and XtraPulp [41]
partition the graph based on connected components. XtraPulp has
been shown to partition large graphs in a few minutes, but they
do not compare against general Vertex-Cuts. Streaming Edge-Cut
policies [42,51] partition the graph in a pass or two over the edges.
This paper evaluates XtraPulp and edge-balanced Edge-Cuts to rep-
resent non-streaming and streaming Edge-Cuts, respectively.

2D partitionings: 2D partitionings have been studied in both
dense matrix and sparse matrix communities [27]. CheckerBoard
2D partitioning (BVC) [11] is used in CombBLAS, a sparse matrix
library. Jagged-like partitioning (JVC) [11] and Cartesian Vertex-
Cut (CVC) [7] have been evaluated for generalized sparse matrix
vector computation. However, these strategies have never been
evaluated on work-efficient data-driven graph algorithms, and there
are no comparisons with other policies like Hybrid Vertex-Cut [12].

Vertex-Cuts that are neither 1D nor 2D partitionings: Power-
Graph [18] is the first graph analytical system to develop a stream-
ing Vertex-Cut partitioning heuristic targeting power-law graphs.
PowerLyra [12] proposed a streaming Vertex-Cut heuristic called
Hybrid Vertex-Cut (HVC) that handles high-degree nodes differ-
ently from low-degree nodes. Bourse et al. [8] analyze balanced
Vertex-Cut partitions theoretically and propose a least incremen-
tal cost (LIC) heuristic with approximation guarantees. Petroni et
al. [37] proposed High-Degree (are) Replicated First (HDRF), a
novel streaming Vertex-Cut graph partitioning algorithm that ex-
ploits skewed degree distributions by explicitly taking into account
vertex degree in the placement decision. These papers do not com-
pare their approaches to 2D block partitionings.

Studies of partitioning policies: There are several studies [3, 16,
29, 45] that have compared the impact of partitioning strategies on
application execution time. Yun et al [16] compares various dis-
tributed graph analytics systems on different design aspects includ-
ing graph distribution policies and concludes that the Vertex-Cut
partitioning strategy always outperforms the Edge-Cut on vertex
(neighbor-based) programs, which is not the case as shown by this
paper. LeBeane et al. [29] studies the impact of relative compu-
tational throughput of hosts in heterogeneous setting on various
partitioning strategies for graph analytics workloads using Power-
Graph. Verma et al. [45] evaluates different partitioning strategies

provided by distributed graph analytics systems, namely, Power-
Graph, GraphX, and PowerLyra, and it suggests the best partition-
ing strategy for each system among the strategies provided by that
system. These studies were done at a very small scale of 10 to 25
hosts. Verma et al. [45] also compares various partitioning strate-
gies on PowerLyra. However, PowerLyra does not optimize com-
munication for the non-native partitioning strategies adopted from
other systems. In a recent study, Abbas et al. [3] compares various
streaming partitioning policies using a distributed runtime based on
Apache Flink [10] and concludes that low-cut algorithms (with low
replication factor) perform better for communication-intensive ap-
plications. However, the study was done on a small 17 host cluster,
and the largest graph considered was Friendster, which easily fits
in the memory of a single host in the cluster used in our study.

To the best of our knowledge, no previous study performs a
quantitative comparison of partitioning strategies with communi-
cation optimized for each partitioning strategy at scale for work-
efficient graph analytics applications. In this paper, we used D-
Galois, an efficient distributed-memory graph processing system
based on Gluon runtime [15] that optimizes communication specif-
ically for each partitioning strategy, on 256 KNL hosts with a total
of 69K threads. However, our study and observations are not lim-
ited to D-Galois, and they should generalize to other systems that
optimize communication based on the partitioning strategy.

7. CONCLUSIONS
This paper presented a detailed performance study of graph parti-

tioning strategies, including Edge-Cuts, 2D block partitioning strate-
gies, and general Vertex-Cuts, using state-of-the-art, work-efficient
graph analytics algorithms on a large-scale cluster with 256 hosts
and roughly 69K threads. The experiments used the D-Galois sys-
tem, a distributed-memory version of the Galois system [36] based
on the Gluon runtime [15], which implements partitioning-specific
communication optimizations.

A key lesson for designers of high-performance graph analytics
systems from our study is that these systems must support opti-
mized communication for different partitioning strategies like the
Gluon runtime. Our results clearly show that the best-performing or
optimal partitioning strategy depends on the application, the input,
and the number of hosts or scale. We presented a simple decision
tree that helps the user to choose a partitioning strategy for a partic-
ular combination of these. We showed that the partitioning strategy
thus chosen performs well in most cases.

Our results show that although Edge-Cuts perform well on small-
scale clusters, a 2D partitioning strategy called Cartesian Vertex-
Cut [7] performs significantly better on large clusters even though it
has a higher replication factor and a higher communication volume
than other partitioning strategies. The main reason is that CVC re-
quires fewer pairs of processors to communicate, permitting CVC
to communicate larger volumes of data with less overhead. An-
other important lesson for designers of efficient graph partitioning
policies from our study is that replication factor and the number of
edges/vertices split between partitions are not adequate proxies for
communication overhead during application execution.
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