
Utility-Driven Graph Summarization

K. Ashwin Kumar
Symantec Research Labs

ashwin kayyoor@symantec.com

Petros Efstathopoulos
Symantec Research Labs

petros efstathopoulos@symantec.com

ABSTRACT
A lot of the large datasets analyzed today represent graphs. In many
real-world applications, summarizing large graphs is beneficial (or
necessary) so as to reduce a graph’s size and, thus, achieve a number
of benefits, including but not limited to 1) significant speed-up for
graph algorithms, 2) graph storage space reduction, 3) faster network
transmission, 4) improved data privacy, 5) more effective graph
visualization, etc. During the summarization process, potentially
useful information is removed from the graph (nodes and edges are
removed or transformed). Consequently, one important problem
with graph summarization is that, although it reduces the size of
the input graph, it also adversely affects and reduces its utility. The
key question that we pose in this paper is, can we summarize and
compress a graph while ensuring that its utility or usefulness does
not drop below a certain user-specified utility threshold?

We explore this question and propose a novel iterative utility-
driven graph summarization approach. During iterative summariza-
tion, we incrementally keep track of the utility of the graph summary.
This enables a user to query a graph summary that is conditioned
on a user-specified utility value. We present both exhaustive and
scalable approaches for implementing our proposed solution. Our
experimental results on real-world graph datasets show the effective-
ness of our proposed approach. Finally, through multiple real-world
applications we demonstrate the practicality of our notion of utility
of the computed graph summary.

PVLDB Reference Format:
K. Ashwin Kumar, Petros Efstathopoulos. Utility-Driven Graph Summariza-
tion. PVLDB, 12(4): 335-347, 2018.
DOI: https://doi.org/10.14778/3297753.3297755

1. INTRODUCTION
A lot of the vast amounts of information we are producing and

analyzing today can be represented as graphs. This fact becomes
clear if one consider all the real-life data networks that can be
abstractly perceived as nodes connected by edges: social networks,
financial transaction networks, communication networks, citation
networks, parcel shipment data, protein-protein interaction networks,
gene regulatory networks, disease transmission networks, ecological
food networks, sensor networks, just to name a few. The size of
such graphs is growing at an unprecedented rate, spanning millions

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3297753.3297755

and billions of nodes and edges. For instance, Google stores more
than 1 trillion indexed pages that contain billions of incoming and
outgoing links. Similarly, Facebook has 800 million active users and
related network data. At the current rate of data volume increase,
it is becoming highly impractical to store, process, analyze, and
visualize these big graphs. Therefore, in order to make graph data
management, processing and visualization tractable, summarization
techniques are becoming increasingly important.

There is a plethora of benefits to employing graph summarization
methods. First, given planetary scales of real-world graphs [18],
graph summarization helps in reducing the size of the graph thereby
reducing the on-disk storage footprint. The reduced graph can
also be loaded directly into memory to improve the performance
of analytics algorithms [25]. Second, many graph algorithms that
are otherwise too complex or costly to run on larger graphs can
be efficiently executed on summary graphs, with adequately ac-
curate results [16]. Third, most of the real-world graphs suffer
from a “small world” effect which makes them look too tangled
to be effectively visualized and interpreted, resulting in the “hair-
ball” graph phenomenon. Graph summarization essentially makes
them simpler to visualize on a small screen in-turn helping with
better analysis of these graphs [33, 5, 20, 14, 3]. Finally, when the
original data is privacy sensitive, graph summarization may help
conceal private information [12], thus enabling privacy-preserving
analytics—especially among multiple mutually-distrustful parties.

A key challenge with graph summarization is that it can have a
severe impact on the amount of “useful information” represented
by the graph for the task at hand—i.e., the utility of the graph.
Furthermore, it is difficult to predict the reduction in utility a graph
will suffer when summarized. Ideally, we should be able to estimate
the utility at each summarization step so that the obtained graph
summary meets a user-specified utility threshold. To the best of our
knowledge, state-of-the-art graph summarization approaches [23,
25] focus primarily on minimizing graph reconstruction error, and
largely ignore the utility aspect—where the relative importance of
nodes and edges should be considered during the summarization
process. To address this gap, we pose the following key question:

Can we summarize a graph and compress it as much as
possible, while ensuring that its utility does not drop below a

user-defined utility threshold?

In other words, we desire a graph summarization system that permits
a user to query a graph summary with given utility. To achieve
this, our summarization algorithm must be able to keep track of
the utility of the graph at each step of the summarization process.
Moreover, we need utility estimation to be inexpensive and yet
faithfully represent certain important properties of the underlying
graph which we want to retain in the computed graph summary.

In our effort to achieve these goals, we evaluated various graph
summarization techniques that have been proposed. In the sparsifica-
tion approach edges are filtered based on certain criteria to simplify

335

the underlying graph. On the other hand, the sampling approach per-
forms sampling of a subset of nodes or edges so as to form a simpler
representation of the original graph. The most popular approaches,
however, are different variants of the grouping approach, that em-
ploy meaningful grouping of nodes into supernodes and edges into
superedges to compute a graph summary. Grouping approaches owe
their popularity to the fact that they are expressive enough to allow
a user to logically explain the computed graph summary with re-
spect to the original underlying graph. Moreover, iterative grouping
approaches allow us to record the list of corrections made across
the iterations, which can help us to reconstruct the exact original
graph, or an approximate version of it, from the summary if needed.
Subsequently, helps with provenance and explainability, where one
can explain the steps taken to reach a particular summary for a
given graph (useful for forensics, anomaly detection etc). Also, the
iterative nature of the algorithm (grouping of nodes into supernodes
and edges into superedges and vice versa) enables meaningful visu-
alization and complex analysis during the summarization process.
Therefore, for all the benefits it provides, we specifically focus on
iterative grouping-based graph summarization approaches. How-
ever, since grouping-based graph summarization with minimum
reconstruction error is shown to be NP-Hard [35], it is common to
use heuristics and approximations to implement such algorithms.

In this paper, we propose a novel utility-driven graph summariza-
tion (UDS) technique, where graph utility is incrementally computed
while iteratively performing the summarization. This allows us to
obtain a summary with a user-specified utility threshold, thus offer-
ing the benefits of summarization while providing utility guarantees.
Our contributions in this work are as follows:
1. We introduce a new framework to measure the utility of a graph

while it is being perturbed by the deletion of existing edges or the
addition of spurious edges. Furthermore, we judiciously extend
it to compute utility for graph summaries.

2. We present theoretical result showing computational intractabil-
ity of UDS problem for obtaining a near optimal solution.

3. We introduce a novel UDS algorithm that iteratively summarizes
a given graph by employing an objective function that maximizes
the utility at each step of the transformation. Also, during itera-
tive summarization of the graph, UDS incrementally computes
and keeps track of the running utility value.

4. We improve scalability by orders of magnitude by proposing a
memoization-based approach for UDS.

5. We conduct a comprehensive experimental study using several
real datasets and applications, and the results demonstrate that
UDS is capable of generating high-utility graph summaries.
The rest of the paper is organized as follows: In Section 2, we

present the relevant background and the different concepts discussed
in this paper. In Section 3, we present the formal definition of
utility, describe the set of properties and conditions that a desirable
utility metric should satisfy and introduce a generic framework
to estimate utility of a perturbed graph given its base graph. We
present our UDS approach in Section 4.1. We describe how we use
memoization to improve the scalability of our technique for UDS in
Section 4.2. In Section 5 we present experimental results evaluating
the efficiency and effectiveness of UDS. Finally, we present related
work in Section 6 and conclude in Section 7.

2. PRELIMINARIES
In this section, we present the background for graph summariza-

tion and the different concepts discussed in this paper.
Graph Summary. Given a graph G = (V,E), its graph summary
GS = (VS,ES) where VS = {S1,S2, . . . ,Sk} is a set of supernodes
such that k < |V |. If u ∈V,v ∈V , then Su represents the supernode
containing node u and Suv represents the supernode containing both

the nodes u and v. Essentially, VS consists of disjoint sets (supern-
odes) of nodes in V such that V = ∪k

i=1Si and Si∩S j = 0 (∀i 6= j).
In GS, the edges ENSi ⊂ E connecting the set of nodes NSi belonging
to a particular supernode Si are not maintained. Whereas, only edges
connecting individual supernodes are maintained. Also, if supern-
odes Si and S j are connected with a superedge, then Ai, j represents
the actual cross edges connecting the nodes in Si and S j. On the
other hand, ∏i, j denotes the bipartite graph connecting the nodes
in supernodes Si and S j where (Si,S j) ∈ VS. Alternative notations
for Ai, j and ∏i, j that we use in this paper are ASu,Sv and ∏Su,Sv
where u ∈ V,v ∈ V . Also, in this work, we assume un-directed,
un-weighted and edge un-labeled graphs.
Reduction in Nodes (RN). We understand the effectiveness of
our proposed techniques on varying RN. Formally, RN =

|V |−|VS|
|V | ,

where a value of 0.2 means 20% of original nodes are collapsed into
supernodes and summary retains 80% of the graph unmodified.
Zero Loss Encoding Transformations. We define certain encod-
ing transformations (as shown in Figure 1) used to represent a group
of nodes and edges in graph G with supernodes and superedges
in a summarized graph GS without loss of information. Rule 1: a
group of nodes that are not connected to each other in the graph G
is simply represented by a supernode without a self-loop. Rule 2:
a group of nodes that form a clique in graph G is represented by a
supernode (with a self-loop). Rule 3: if there is an all-to-all connec-
tion between two sets of nodes, then they are represented by two
supernodes connected with a single superedge. “Zero loss” in this
context means that if we apply these transformations in reverse order
on a graph summary, then we should be able to obtain the original
graph without needing any additional information or corrections.
Note that in this context, zero loss also implies 100% utility because
the transformations are able to preserve all the salient regions of G.
We make use of these transformations during summarization and
calculation of utility (Sections 3 and 4.1).

G

Gs

Figure 1: Examples of three encoding rules for zero-loss summarization

Utility (EU). The utility 0 ≤ EU ≤ 1 of any graph GS that is ob-
tained by transforming an graph G indicates the usefulness of GS
with respect to G. The higher the extent to which important regions
in G are preserved in the transformed graph, the greater the utility.
Example of Utility-Driven Graph Summarization (UDS). Let
us consider an example. Figure 2 presents iterations of a desirable
UDS system. We envision a summarization system that reports at
each iteration the current EU and RN values of graph summary
GS. Figure 2 offers the values for EU and RN, whose calcualtion
is discussed in-detail in the coming sections. The input graph is
shown in Figure (2a). The user provides a utility threshold ΓU as
a predicate to the UDS system, indicating that the summary GS
should have utility no less than ΓU . In this example, let’s say ΓU
equals 0.9. Figures (2b) – (2h) show the first eight iterations of
graph summarization with varying EU and RN values along the
way. At every iteration, a pair of nodes is selected and collapsed to
form supernodes, and neighboring edges are adjusted accordingly.
The summarization system analyzes the important parts and regions
of the input graph (i.e., the output of the previous iteration) and
prioritizes the order in which nodes are collapsed accordingly. In
every iteration, the objective is to preserve important regions of
the G as much as possible in GS. In the first iteration, two nodes
are collapsed into a supernode, and edges are adjusted accordingly.

336

(a) Input graph (b) EU:1.0, RN:0.06 (c) EU:1.0, RN:0.13 (d) EU:0.99, RN:0.19 (e) EU:0.98, RN:0.25 (f) EU:0.98, RN:0.3 (g) EU:0.95, RN:0.38 (h) EU:0.92, RN:0.44

Figure 2: Example output of utility-driven graph summarization

Note that, in this iteration, the EU value remains 1.0 because we can
still reconstruct G from GS by simply applying the decoding rules of
Figure 1. Also, RN = 0.06 as the number of nodes in GS is reduced
by 1. By the end of the second iteration, EU remains 1. In the third
iteration, however, EU is reduced to 0.99, since reconstructing G
from GS produced in this step will introduce spurious edges. The
reduction in EU is 0.01, based on the extent to which important
regions are affected in G. Similarly, all iterations from 4 to 7 cause
a drop in EU . Note that the quantum of reduction in EU from (2d)
to (2e) is less than (2f) to (2g). This is because the merge step at
(2e) preserves important regions better than the merge step at (2g).
This will be explained in detail in coming Sections. Overall, the
algorithm terminates at the seventh iteration (2h) as any attempt to
further summarize the graph would cause the EU to drop below
the user-specified threshold ΓU = 0.9. Finally, the computed graph
summary GS (in Figure (2h)) is presented to the user as the output.

3. UTILITY OF A GRAPH SUMMARY
The fulcrum of this work is our proposed method for calculating

the utility of a graph summary with respect to an underlying graph.
We approach this problem by attempting to reconstruct the original
graph G from a summary GS with no extra information. For re-
construction, we apply the reverse of the transformations discussed
in Section 2. This can result in the loss of original edges as well
as introduction of spurious edges. Supernodes with self-loops are
expanded into a clique of their contained nodes, otherwise they are
expanded into disconnected nodes. A pair of sets of base nodes form
a bipartite graph if the corresponding supernodes are connected by
a superedge, otherwise they are completely disconnected. More for-
mally, given GS of graph G, we reconstruct the graph G′ = (V ′,E ′)
from GS such that V = V ′. The number of nodes and the node
set in the G′ are equivalent to that of G, although the number of
edges might vary—primarily due to the error introduced by graph
summarization. Figure 3 presents an example of a graph G, its
summarization GS, and graph G′ which is reconstructed from GS by
applying the rules shown in Figure 1 in the reverse order.

a

b

c

d
e

f l

mn
o

p q

1

4

2

3

a, b
c, d

l, m, n

e, f

o, p, q

a
b

c

d
e

fo

p q

l
m

n

G GS G0

Figure 3: Example of a graph G, its summary GS, and reconstruction G′

Once GS is transformed into a reconstructed graph G′, the problem
of calculating the utility of a graph summary is reduced to the
problem of calculating the utility of G′ with respect to G, using a
utility function denoted by as EU(G′)G. In essence, when there
is greater structural similarity between G and the reconstructed
graph G′ (i.e., the extent to which important edges and regions in

G are preserved in G′) then the utility of the GS is higher. The
reconstructed graph G′ obtained from GS is equivalent to a graph
G′ obtained by perturbing G (by adding certain spurious edges, or
removing original edges, or both). Therefore, from now on we will
call the reconstructed graph as the perturbed graph. Next, we present
a generic framework to calculate the utility of G′ with respect to G.
Generic Framework for a Graph Utility Function. Our key in-
tuition is to penalize the utility of graph G′ in accordance with the
introduced perturbations. The amount of cost or penalty should be
based on the importance of edges that are missing, or the number of
spurious edges introduced, or both. An intuitive way to assess the
relative importance of edges in the orginal graph G is by computing
normalized edge centrality scores edgeIS. If {E−E ′} is the set of
edges missing from G′ compared to G’s original edges, then the
utility of G′ is penalized by the sum of relative importance scores of
missing edges. Next, we should penalize G′’s utility according to
any spurious edges it contains, that did not exist in G. We do this by
calculating the proportion of spurious edges introduced in G′ to the
total number of spurious edges possible in the base graph G. More
formally, the maximum number of spurious edges that can be intro-
duced in G is

(|V |
2

)
−|E|. If {E ′−E} is the set of spurious edges

introduced in G′, and assuming homogeneity, then for each spurious
edge the utility EU(G′)G is penalized by the amount 1

(|V |2)−|E|
.

Algorithm 1 Generic Graph Utility Function (GGUF)

1: procedure GGUF(G = (V,E),G′ = (V,E ′))
2: utility = 1.0
3: edgeIS = normalize(edge centrality scores(G))
4: if G 6= /0 and G′ 6= /0 then
5: for e ∈ {E−E ′} do
6: utility = utility− edgeIS[e]
7: end for
8: for e ∈ {E ′−E} do
9: penalty = 1

(|V |2)−|E|
10: if penalty < utility then
11: utility = utility− penalty
12: else
13: utility = 0
14: end if
15: end for
16: end if
17: return utility
18: end procedure

The value of utility is in the range [0,1]. Given a non-empty and
non-clique graph G, there are four notable conditions under which
the utility of G′ is zero: 1) if G′ is an empty graph, 2) if G′ is a clique,
3) if G′ is missing all the original edges, and 4) if G′ contains all the
possible spurious edges. Pseudocode for the generic graph utility
function GGUF is shown in Algorithm 1. Without loss of generality,
it can be easily extended to weighted graphs where penalties will
be weight adjusted. Moreover, the generic nature of GGUF allows
us to plug-in a variety of centrality metrics to form different types
of utility functions each exhibiting different properties. Next, we

337

identify certain intuitive properties a utility function should exhibit
and discuss how to assess its desirability.
Assessing the Desirability of a Utility Function To make a utility
function aware of the important regions of G that are preserved in
G′, we use a set of fairly intuitive properties described in Table 1 that
a desirable graph utility metric should exhibit. The key motivation
in defining these properties and imposing necessary conditions for
a desirable utility metric is that the maximization of such a utility
metric during summarization should help maintain the results of
important graph algorithms, such as ranking and community detec-
tion. To further explain these properties and test the desirability of a

Table 1: Properties of a desirable Graph Utility Function

Criteria Properties Description

C1 Edge Importance

Changes that create disconnected
components or weaken the
connectivity should be penalized
more than the changes that
maintain the connectivity
properties of the graphs.

C2 Spurious Edge
Awareness

More spurious edges must lead to
lower utility.

C3 Weight Awareness

In weighted graphs, higher the
weight of the removed edge or
added spurious edge is, the greater
the impact on the similarity
measure should be.

C4 Edge Submodularity
A specific change is more
important in a graph with fewer
edges than in a much denser graph.

utility function, we use example model graphs shown in Figure 4
with various shapes and varying number of missing edges, such
as: clique, path, cycle, barbell, wheel barbell, etc. Note that these
examples are not exhaustive and are only meant to explain the key
concepts. Also, it is not necessary that a desirable utility function
exhibits all the listed properties in conjunction; it is only required
to exhibit each property independently. We present an example test
criterion 3.1 that uses the shown model graphs to test if a utility
function exhibits the desired property—in this case criterion C1.
Example Test Criteria 3.1 Consider barbell graphs Bn,mBn and
mmBn to explain C1: edge importance criterion. Graph Bn has two
cliques of size n1 and n2, such that n = n1 +n2. Graph mBn has an
edge removed from one of the cliques in Bn, where graph mmBn
has a missing bridge edge from Bn. In this case, according to edge
importance criterion C1, following should satisfy:

(EU(mBn)Bn −EU(mmBn)Bn)> 0 (1)

K5

mK5

mmK5

C5

mC5

m2C5

B10

mB10

mmB10

L10

mL10

mmL10

WhB12

mWhB12

m2WhB12

mmWhB12 mm2WhB12w5B10 w2B10

5 2

aa aa

a

a

a

a

aa a a

aa a

a

a

a

b

a

b

b

b

b

b

b

b

bb

b

b

b

bbb

b b

b
c

c

c

c

c

c

c

c c c

c

c

cc

c

c c

c

c

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

f

f

f

f

f

f

f

f

f

f

f

f

g

g

g

g

g

g

g

g

g

g

g

g

h

h

h

h

h

h

h

h

h

h

h

h

i

i

i

i

i

i

i

i

i

i

i

iif
g h

j j j

j

j

j

j

j

j

j

j

j

j

BC11

a

b
c d

e if
g h

j

mBC11 mmBC11

a

b

c
d e

f

g

h

i

a

b
c d

e if
g h

j a

b
c d

e if
g h

j

G9

k k k

Figure 4: Model synthetic graphs used to validate utility function –
Kn: clique of size n, Pn: path of size n, Cn: cycle of size n, Ln: lollipop
of size n, Bn: barbell of size n, WhBn: wheel barbell of size n, mX : missing X
edges, and mmX : missing X “bridge” edges.

Similarly, additional example test criteria are presented in Sec-
tion 5.1 to test if a utility function exhibits the remaining desired

properties. Also, in Section 5.2 we present experimental results
where we try various centrality metrics in GGUF and provide guide-
lines for the right set of centrality metrics to be plugged-in, so as to
create a utility function that exhibits the properties of Table 1.
Discussion. Calculation of utility EU(G′)G and structural similar-
ity through simple graph edit distance (GED) between G′ and G
although seem similar, they differ in significant ways. GED essen-
tially counts the number of different edges between the original
graph and the restructured graph based on the graph summary. It
can be noted that GED does not differentiate between non-important
regions from important regions in the graph as GGUF does. More-
over, in simple GED, cost of edit operations is fixed, whereas in our
case cost of edits is dynamic and depends on the structure of the
original graph. Also, simple GED violates certain key properties
that our utility function satisfies. For example, consider a graph
G = (V,E) with |E|=

(|V |
2

)
−1 edges and lets say G′ = (V,E ′) be

its perturbed graph that is a clique with |E ′| =
(|V |

2

)
edges. Then

utility of G′ with respect to G is zero (lowest) according to GGUF
(Algorithm 1), but a simple GED would calculate the utility value
> 0, where utility is calculated as 1− d

|E| , where d is the number of
edits or distance. Intuitively, a utility value of zero is desirable in
this case, because if G is a non-clique and non-empty, then no matter
how dense G is, if G′ is a clique, then essentially G′ does not reveal
any information with respect to G, thus rendering its utility equal to
zero. We note that simple GED violates all the desired properties of
an ideal utility function (Table 1) except C2 whereas GGUF when
plugged with appropriate centrality metric satisfies all the properties.
We have included an experiment in Table 5 to demonstrate this. We
also note that, the simplicity of GGUF permits us to easily extend
it so as to incrementally calculate the utility of G′ while it is being
perturbed. In this case, we start with a utility of 1.0 that represents
G′ = G. As we perturb G′ by deleting (or adding spurious) edges,
or both, we penalize the utility accordingly by subtracting the ap-
propriate cost. Similarly, we incrementally calculate the utility of
GS at each iteration, by analyzing the possible perturbations without
actually generating the reconstructed graph at each summary step.

4. UTILITY-DRIVEN SUMMARIZATION
We begin our discussion by presenting the mathematical formula-

tion of our problem. Given a graph G = (V,E) and utility threshold
ΓU , we want to summarize the graph G as much as possible by
grouping nodes into minimum number of supernodes VS and form
superedges ES between supernodes such that the difference between
total utility of retained actual edges and total penalty of introduced
spurious edges is very close to the given ΓU . Initially, each node in
the original graph is its own supernode in the summary graph.

minimize (|VS|) (2)

Subject to

∑
Si

∑
S j


 ∑

e∈Ai, j
(Si ,S j)∈ES

edgeIS[e]

− |∏i, j−Ai, j|(|V |
2

)
−|E|

≥ ΓU (3)

Since problem of graph summarization is shown to be NP-Hard [35],
one may be interested in obtaining a partition that is a p-approximation
for some p > 1. However, a computational intractability result for
obtaining a near optimal partition can be established as follows.
Theorem 4.1 [No Efficient Approximation Theorem] For any
ε > 0, there is no O(n1−ε)-approximation for the problem of ob-
taining a feasible graph summarization with a minimum number of
supernodes for a given utility threshold, unless NP = ZPP 1.
1This intractability result is based on the widely believed assumption
that complexity classes NP and ZPP are different [29].

338

PROOF. Davidson et al., [4] have proved that for the problem of
obtaining a feasible clustering with a minimum number of clusters
under cannot-link (CL) constraints if, for some ε > 0, there exists
O(n1−ε)-approximation for the feasibility problem then that would
imply NP = ZPP. Here, CL constraints involve data points (that
are required to be) in different clusters. Following this result, we
directly reduce the problem of obtaining a feasible clustering with a
minimum number of clusters to the our problem to prove the result.

Given a set of data points D = {d1,d2, ..., |V |} . Let Ei, j be the
measure of distance between data points where 0 < Ei, j ≤ 1 repre-
sents the points that are relatively closer to each other and Ei, j = 0
otherwise. Let VS be the set of clusters of data points. Initially each
data point di is its own cluster Si. It is straightforward to see that
data points D with prior distance values represent a graph G= (V,E)
where values 0 < Ei, j ≤ 1 represent edge weighted graphs and they
represent edge unweighted graphs if these Ei, j takes value of 0 or
1. Values of Ai, j, ∏i, j and edgeIS can be calculated based on Ei, j
values. Since these values are defined over the data points that are in
different clusters, constraint (Equation 3) using these values is essen-
tially formed by set of CL constraints. Objective of minimizing the
number of clusters |VS| for a given set of CL constraints on pair of
data points can be directly mapped to the objective of grouping the
nodes from the original graph into minimum number of supernodes
subject to the set of constraints involving pairs of nodes in different
supernodes as shown in Equations 2 and 3. Proof completes. �

Because it is not possible to devise a feasible or efficient approx-
imation algorithm for the problem at hand. Instead, we rely on
greedy heuristics that does best effort at each step taken.

4.1 Iterative Greedy UDS
We present a novel iterative greedy UDS algorithm with an incre-

mental utility update. Our primary goal is to summarize the given
graph G so as to compress it to an extent such that the utility of the
summary graph GS does not drop below a user-specified threshold
ΓU . To compose our algorithm we need to determine the following
steps, based on principles presented in the previous Section: 1) intro-
duce a strategy for grouping nodes, 2) find an iterative, utility-driven
summarization recipe, 3) come up with appropriate superedge con-
nectivity criteria, 4) present techniques to incrementally keep track
of utility, 5) optimize the algorithm’s performance and scalability.
Prioritizing Candidates to Merge. One way to prioritize the merg-
ing of nodes is by considering edge importance. The goal is to pick
an edge e with the lowest importance and merge the nodes u and v at
e’s end-points so as to form a supernode w. However, this approach
completely forgoes the benefit of merging nodes that are indirectly
connected to each other. Many a times, collapsing nodes that are
not directly connected and forming appropriate superedges might
result in higher utility. For example, it is often beneficial to collapse
nodes that have many common neighbors [25]—even not directly
connected. Therefore, at each step, we consider pairs of nodes that
are both 1) directly connected by an edge, or 2) indirectly (2-hop)
connected via common neighbors, as candidates to form supern-
odes. Given a list of both 1-hop and 2-hop connected node pairs,
we seek to prioritize or sort this list in ascending order of impor-
tance (denoted by ↑). We calculate the normalized node centrality
scores nodeIS for the nodes in the base graph and then calculate
the combined importance score for a node pair p =< u,v > as the
sum of function of normalized centrality scores of the nodes—given
by (f (nodeIS[u])+ f (nodeIS[v])). In our implementation we use a
square function as f () as it helps in further delaying the merging of
important nodes with relatively lesser ones. Let H be the list of node
pairs sorted by their combined importance scores. Also, let edgeIS
be the map that maps each edge to its importance score. An edge
importance score is calculated as the normalized edge centrality.
Iterative Greedy Summarization. As shown in Algorithm 2, we
initially map each node in the base graph G to a unique supernode

in the summarized graph GS. All edge connections between nodes
in G are maintained between corresponding supernodes in GS. At
each algorithm step, we pick from H the node pair (u,v) with the
lowest importance score. Unless nodes u and v belong to the same
supernode Su = Sv, their corresponding supernodes Su and Sv are
collapsed into supernode Suv. Let VSuv indicate the set of nodes in
G belonging to a particular supernode Suv. We calculate the set of
potential neighbors ηSuv of Suv in GS by finding the set of 1-hop
neighbors of all nodes belonging to VSuv in G and by calculating their
corresponding supernodes in GS. For every unique potential neigh-
bor Sn ∈ ηSuv , where n ∈ G, we need to decide whether connecting
Suv and Sn with a superedge is beneficial for utility. We commit
the decisions for all the potential neighbors in ascending order of
the calculated penalties. Procedure connectSuperEdge(. . .) (pseu-
docode in Algorithm 3, discussed later) returns true if the given
pair of supernodes should be connected by a superedge, or false oth-
erwise. For a pair of supernodes this procedure calculates 1) seCost:

Algorithm 2 Utility-Driven Graph Summarization

1: procedure UDSUMMARIZER(G = (V,E),ΓU)
2: Initialize: utility = 1;VS = {u : {u} | u ∈ V};ES = {({u},{v}) |

(u,v) ∈ E};S = {u : u | u ∈V}
3: nodeIS,edgeIS = normalize(centrality scores(G))
4: P2hop = {(a,c) | (a,b) ∈ E,(b,c) ∈ E}
5: H = sort(P2hop | ↑ (f (nodeIS[a])+ f (nodeIS[c])),∀(a,c) ∈ P2hop)
6: while utility≥ ΓU and H 6= /0 do
7: (u,v) = H.pop()
8: if Su 6= Sv then
9: Suv = {Su ∪Sv}

10: VS = {VS ∪Suv}−{Su,Sv}
11: ηSuv = {Sb ∈ VS | b ∈ ηa,∀a ∈ Suv}−{Su ∪Sv}
12: for Sn ∈ ηSuv do
13: bool, penalty = connectSuperEdge(Suv,Sn,G,edgeIS)
14: ηSuv [Sn].connect = bool
15: ηSuv [Sn].penalty = penalty
16: end for
17: ηSuv = sort(ηSuv | ↑ (penalty))
18: for Sn ∈ ηSuv do
19: if ηSuv [Sn].connect is true then
20: ES = {ES ∪ (Suv,Sn)}−{(Sn,Su),(Sn,Sv)}
21: end if
22: utility = utility−ηSuv [Sn].penalty
23: return GS if utility < ΓU
24: end for
25: connect, penalty = connectSuperEdge(Suv,Suv,G,edgeIS)
26: if connect is true then
27: ES = ES ∪ (Suv,Suv)
28: end if
29: utility = utility− penalty
30: end if
31: end while
32: return GS = (VS,ES)
33: end procedure

the penalty to connect them with a superedge, and 2) nseCost: the
penalty to not connect them. If connectivity is deemed beneficial—
i.e., seCost < nseCost—then Suv and Sn are connected through a
superedge. Subsequently, the utility is updated by subtracting the
corresponding penalty values and all the previous connections be-
tween (Sn,Su) and (Sn,Sv) are removed from GS. This particular
way of connectivity decision making guides the summarization al-
gorithm so as to maximize the utility of GS at each summarization
step. Similarly, the decision to self-connect a supernode Suv or not
is made based on utility maximization: if a self-loop is deemed
beneficial, then a self-connection (Suv,Suv) is added to the set of
superedges ES. In the next iteration, the node pair from H with the
next lowest importance score is evaluated. The algorithm terminates
and returns the final GS when the current utility of GS satisfies the
utility threshold ΓU or when all node pairs have been evaluated.

339

Superedge Connectivity Decision Making. Let us discuss the
details of the procedure connectSuperEdge(. . .), as shown in Al-
gorithm 3. As mentioned before, this procedure returns true if
connecting two given supernodes by a superedge is beneficial in
terms of utility, or false otherwise. The benefit is defined as the
minimum penalty that paid (lost utility) when a particular action is
performed. In our case, there are two possible cases to evaluate, 1)
connecting two supernodes Su and Sv by a superedge (Su,Sv) ∈ ES,
and 2) not connecting the supernodes (Su,Sv) /∈ ES. Note that, the
two supernodes in question can be the same (see line 26, Algo-
rithm 2), in this case, we evaluate an action of self-connecting the
given supernode with a superedge (self-loop). Let’s understand the
implications of each of the actions below:
• Case 1: (Su,Sv) ∈ ES When two given supernodes Su and Sv are
connected by a superedge, it induces all-to-all connection ∏Su,Sv

be-
tween the set of base nodes contained in Su and Sv (per the encoding
rules of Figure 1). Consequently, apart from original cross edges
Au,v ⊂ E in the G, we are introducing an additional set of spurious
edges {∏Su,Sv

−ASu,Sv} between the set of nodes contained in Su and
Sv. Essentially, at this step, reconstruction of G from the current GS
(as discussed in Section 3) would introduce |∏Su,Sv

−ASu,Sv | number
of spurious edges as a result of the current action. Additionally, we
know that for each introduced spurious edge the utility is penalized
by an amount 1

((|V |2)−|E|)
. Let seCost be the total penalty or cost

associated with the action of connecting supernodes Su and Sv.
• Case 2: (Su,Sv) /∈ ES We know that if supernodes Su and Sv are
not connected, then we are missing the set of ASu,Sv original edges.
In other words, reconstruction of G from the current GS would
have deleted |ASu,Sv | number of edges that existed in G. Since the
importance score of each edge e in G is given by edgeIS[e], for
each missing edge e the utility has to be penalized by an amount
of edgeIS[e]. Let nseCost be the total penalty associated when an
action of not connecting supernodes Su and Sv is performed.

Finally, if seCost > nseCost, then the benefit of not connecting
the given supernodes Su and Sv is higher and vice versa2.
Incremental Utility Calculation. To accurately calculate the util-
ity at each iteration in an incremental fashion, we need to keep
track of all actions and related penalties that have been imposed in
previous iterations. This bookkeeping is explicit, to avoid redundant
penalization of the utility at each iteration. For example, let’s say
we are evaluating the action of connecting two supernodes Su and Sv
by a superedge. Performing this action equates to the introduction
of one or more spurious edges in the underlying graph between the
sets of base nodes contained in Su and Sv. In principle, we must
penalize the utility for the introduced spurious edges. However, it
may be the case that in previous summarization steps, the utility has
already been penalized for spurious edges that we are considering in
the current step. Thus, we need to keep track of spurious edges that
we have penalized the utility for at each iteration. On the other hand,
when we are evaluating (Su,Sv) ∈ ES, we need not penalize for the
original cross edges ASu,Sv between Su and Sv. However, in previous
iterations, some finalized action might have penalized the utility for
some or all of these original edges ⊂ E. Thus, we need to rollback
the penalty of these edges in the current action. This indicates that
we need to keep track of original edges as well as spurious edges
that we might have penalized the utility for in previous iterations.
Accordingly, the amount of bookkeeping needed is in the order of
O(
(|V |

2

)
). This large space requirement makes it impractical to use

any kind of deterministic data structure (list, hash table, hash set,

2Note that our algorithm can be modified slightly to provide k-
anonymity guarantees [12] under favorable conditions. A supernode
comprising of k nodes will be k-anonymous—and the supernode
comprising of the minimum number original nodes can be consid-
ered an anonymity lower bound.

Algorithm 3 Utility-Driven Superedge Connectivity Decision
Maker and Incremental Utility Calculator

1: procedure CONNECTSUPEREDGE(VSw ,VSn ,G,edgeIS)
2: Initialize: penalty = 0;seCost = 0;nseCost = 0;decision =

f alse;CF = (cap,bSize, f Size);c f+se = /0;c f−se = /0;c f+nse = /0;c f−nse = /0
3: totalSE =

(|V |
2

)
−|E|

4: for u ∈VSw do
5: for v ∈VSn do
6: if u 6= v and (u,v) not seen before then
7: e = (u,v)
8: if e ∈ E and e ∈CF then
9: seCost = seCost− edgeIS[e]

10: c f−se = c f−se ∪ e
11: else if e /∈ E and e ∈CF then
12: nseCost = nseCost− 1

totalSE
13: c f−nse = c f−nse ∪ e
14: else if e ∈ E and e /∈CF then
15: nseCost = nseCost + edgeIS[e]
16: c f+nse = c f+nse ∪ e
17: else if e /∈ E and e /∈CF then
18: seCost = seCost + 1

totalSE
19: c f+se = c f+se ∪ e
20: end if
21: end if
22: end for
23: end for
24: if seCost < nseCost then
25: penalty = seCost
26: CF.insert((u,v)), for all (u,v) ∈ c f se

+
27: CF.delete((u,v)), for all (u,v) ∈ c f se

−
28: decision = true
29: else
30: penalty = nseCost
31: CF.insert((u,v)), for all (u,v) ∈ c f nse

+
32: CF.delete((u,v)), for all (u,v) ∈ c f nse

−
33: decision = false
34: end if
35: return (decision, penalty)
36: end procedure

etc.) for the purposes of bookkeeping. Instead, we need a more
space-efficient data structure to keep track of processed edges.
Probabilistic Data Structures to the Rescue. A Bloom filter is a
potential option as it is a space-efficient data structure that can be
used to keep track of already processed edges. Processed edges
marked in the Bloom filter indicate that the utility has been (poten-
tially) penalized for these edges. As discussed before, often certain
penalties for already processed edges need to be rolled back. This
implies that these edges should be deleted from the Bloom filter in
such situations. Unfortunately, the standard Bloom filters do not
support deletion of items. However, certain variants of Bloom filter
such as counting Bloom filter allow both addition and deletion of
items, but with significant space overhead. In fact, counting Bloom
filters [9, 8] are known to use 3–4× space to retain the same false
positive rate as a space-optimized Bloom filter. Fan et al., [8] intro-
duced Cuckoo filters (CF). CF possess the dual advantage of space
efficiency as well as the ability to handle deletion of items. Given
their advantages, we make use of CF to manage the bookkeeping of
processed edges and corresponding rollbacks.
Over-Optimism in Utility. We know that probabilistic data struc-
tures suffer from the problem of false positives—i.e., they may
identify an item as a set member even though it is not. Cuckoo
filters allow the false positive rate to be controlled by varying the
capacity and fingerprint size [8]. Because of false positives intro-
duced by CF , there is a possibility of unwarranted optimism in the
calculation of utility. From Algorithm 3, we know that c f−se is the set
of original edges already processed in previous steps as confirmed
by CF , and c f+nse is the set of original edges that are yet to be evalu-

340

ated. Whereas, c f−nse is the set of spurious edges already evaluated
in previous steps as confirmed by CF , and c f+se is the set of spurious
edges yet to be processed. We analyze two specific cases.

In the case where (Su,Sv) ∈ ES, we connect the given supernodes
Su and Sv with a superedge. This action introduces spurious edges
between the nodes in the given supernodes. We denote this set of
spurious edges as {∏Su,Sv

−ASu,Sv}. The set of spurious edges c f+se
that are yet to be evaluated is calculated as {∏Su,Sv

−ASu,Sv −c f−nse}.
We want to penalize the utility for extra spurious edges that have

been unprocessed in previous iterations. In addition, we need to
rollback penalties for the original cross edges that were processed in
previous iterations for which the utility has already been penalized.
The total penalty seCost is calculated by subtracting the total cost
of edges in c f−se from the total cost of edges c f+se :

seCost =

(
|c f+se |(|V |

2

)
−|E|

)
−

 ∑
e∈c f−se

edgeIS[e]

 (4)

The current utility at this step is calculated as utility = utility−
seCost.
Theorem 4.2 If f pr is the false positive rate of CF and if (Su,Sv) ∈
ES, then we have upper bound on utility over estimation δse where

δse ≤
|∏Su ,Sv −ASu ,Sv − c f−nse|(|V |

2

)
−|E|

× f pr
1− f pr

(5)

PROOF. By the definition of the false positive rate, we know that

f pr =
| f alse positives|

| f alse positives|+ |true negatives|
From this we can derive an expression for f alse positives in-terms
of f pr and true negatives. Also, let |det+se| be the set of spurious
edges that are yet to be evaluated, and |det−se| be the set of original
edges already processed in previous steps as confirmed by a deter-
ministic data structure (e.g., Hash Table). We know that c f+se and
c f−se are calculated based on a probabilistic data structure, in our
case, a Cuckoo Filter. Therefore, the utility over-estimation is the
difference between seCost calculated based on the deterministic and
probabilistic data structures.

δse = seCost4

=

(
|det+se− c f+se |(|V |

2

)
−|E|

)
−
(

∑
e∈{det−se−c f−se }

edgeIS[e]

)
To find the upper bound, we need to find the maximum value of
seCost4 or minimize

(
∑e∈{det−se−c f−se } edgeIS[e]

)
. We know that

we need at least one edge between the nodes in Su and Sv to connect
these supernodes with a superedge. Let’s consider a single edge
connecting Su and Sv and let ε be the importance score of this edge.
For a given original graph of large size, the value of ε can be close
to zero and we can safely ignore it. So we have:

δse ≤
|det+se− c f+se |(|V |

2

)
−|E|

− ε =
|det+se− c f+se |(|V |

2

)
−|E|

≤ | f alse positives|(|V |
2

)
−|E|

=
|true negatives|(|V |

2

)
−|E|

× f pr
1− f pr

Here true negatives is nothing but the set of spurious edges yet to
be evaluated (i.e., c f+se) and we know that c f+se = {∏Su,Sv

−ASu,Sv −
c f−nse}. Thus, we have an upper bound for the utility overestimation.
�

Similarly, in the case of (Su,Sv) /∈ ES, we can calculate the utility
over estimation by analyzing the cost of not connecting any Su, Sv.

In summary, use of CF for the purpose of incremental utility
calculation can result in over-optimism because of false positives.
However, with the careful selection of capacity and fingerprint size
of the CF , f p can be made sufficiently small. Subsequently, utility
over-estimation becomes almost negligible. Essentially, increasing
capacity improves the occupancy of a cuckoo hash table whereas in-
creasing fingerprint (hashes) size rejects more false queries, thereby
reducing f p but with the caveat of increased space overhead.
Time Complexity Analysis. Since the calculation of importance
scores (Algorithm 2, line 3) depends on the choice of underlying
centrality algorithm, we will focus on the time complexity of the it-
erative node merging algorithm (lines 6–32). In each merge step, for
each potential neighbor of merged supernode O(dav), we evaluate
connectivity between merged supernode and its potential neighbor
O(|V |2). Therefore, the overall complexity of each merge step
comes out to O(|V |2 dav), where dav is the average degree.
Limitations. The key limitation of Algorithm 2 is that it does not
scale well for large graphs. This is because node merging and su-
peredge decision making (lines 6–32) are exhaustive in nature and
perform redundant computations. For example, consider Figure 5(a)
that shows a portion of the base graph where nodes a,b, and c are
more densely connected to nodes 1,2,3, and 4 in comparison to
node set e, f ,g. Figure 5(b) shows an iteration of graph summa-
rization where three supernodes S1 = {a,b,c},S2 = {e, f ,g} and
S3 = {1,2,3,4} are formed. In this iteration, supernodes S1 and
S2 are evaluated against S3 for connectivity. Total 12 comparisons
(denoted by com(S1,S3)) are made to decide connectivity between
S1 and S3 and 12 comparisons are performed for S2 and S3. Also, 3
comparisons each are made to decide self-connectivity for supern-
odes S1 and S2. So in total 30 comparisons are made for the case
shown in Figure 5(b). However, in the next iteration (Figure 5(c)),
we are merging S1 and S2 to form supernode w. In order to evaluate
connectivity between w and S3 we perform 24 redundant compar-
isons between the nodes contained in supernode w and nodes in S3,
that have already been performed in the previous iteration. Even to
decide the self-connectivity of w, many (9) redundant computations
are performed. In total, we count 33 redundant comparisons that
could have been avoided if we were to reuse previous computations.
This insight leads us to a more efficient approach, discussed next.

other
nodes

a
b
c

d
e
f

1
2
3
4

other
nodes

a
b
c

d
e
f

1
2
3
4

other
nodes

a
b
c
d

e
f

1
2
3
4

S1

S2

S3

w=(S1 U S2)

S3

Total comparisons =
com(S1, S3) + com(S2, S3)

+ com(S1, S1) + com(S2, S2)
= 12+12+3+3 = 30

Total comparisons =
com(w, S3) + com(w, S3)

+ com(w, w) = 24 + 15
= 36

(a) (b) (c)

Figure 5: Example illustrating redundant computations (a) Portion of origi-
nal graph, (b) Portion of graph summary showing superedge decision making
between supernodes (S1,S3), (S2,S3) and self-connections, (c) Portion of
graph summary showing superedge decision making between supernodes
(w,S3), (w,S3) and self-connections

4.2 Memoization based Approach
To overcome scalability challenges, we introduce a memoiza-

tion technique as a scalable approach to UDS. The key goal is to
compute graph summaries and perform incremental utility calcu-
lation by reusing previous computations. Initially, each node and
edge in the base graph G is its own supernode and superedge in the
summary graph GS. We start by defining three variables for each
superedge (Sa,Sb) ∈ ES in GS: seCost(Sa,Sb), nseCost(Sa,Sb) and
(Sa,Sb)exist . Because Sa and Sb are already connected, the value of
seCost(Sa,Sb) is initialed to 0 (for all superedges). Also, initially

341

when Sa = {a} and Sb = {b}, not deciding to connect a superedge
between supernodes Sa and Sb incurs a cost of edgeIS[(Sa,Sb)].
Therefore, nseCost for all superedges is initialized to the corre-
sponding edgeIS[e] values. Whereas, (Sa,Sb)exist indicates if a
given superedge is permanent (with value of 1) or ephemeral (value
of 0). An ephemeral superedge indicates that we have not decided to
connect the two given supernodes based on the result of a superedge
decision-making process, while a permanent superedge indicates
the opposite. The key advantage of an ephemeral superedge is that
it provides a low-cost way to store calculated penalty costs for both
connecting and not connecting a particular superedge. Although
an ephemeral superedge is not considered a real edge, it helps us
judiciously re-use the pre-computed penalty costs stored in it for
upcoming cost computations. Initially, all the superedges are perma-
nent, therefore, the value of (Sa,Sb)exist for all edges (Sa,Sb) ∈ ES
is set to 1. Initialization of all the superedge variables with required
conditions is shown in Equation 6.

seCost(Sa,Sb) = 0
nseCost(Sa,Sb) = edgeIS[(Sa,Sb)]

(Sa,Sb)exist = 1

 if


(a,b) ∈ E,
Sa = {a},Sb = {b},
(Sa,Sb) ∈ ES

(6)

After initialization, in the upcoming iterations, connectivity costs
seCost and nseCost can be calculated by reusing costs calculated
from previous iterations as shown in Equations 7 and 8. For instance,
let’s say at iteration t we are evaluating connectivity between supern-
odes Su and Sw and calculate utility penalty costs seCost(Su,Sw)
and nseCost(Su,Sw). Let’s say we decided not to connect Su and
Sw because nseCost is less than seCost. At this point, the cur-
rent utility is calculated as utility = utility− nseCost(Su,Sw). So
in the summary graph we connect an ephemeral edge between
the given supernodes and set (Su,Sw)exist = 0. In a particular
future iteration t + k where k ≥ 1, if we want to calculate the
cost to connect supernodes Su and Sw, then we need to nullify
the previously subtracted penalty for disconnecting the given su-
pernodes in the iteration t. More formally, seCost(Su,Sw) at it-
eration t + k is calculated by reusing previous computations as
seCost(Su,Sw)

t+k = seCost(Su,Sw)
t −nseCost(Su,Sw)

t . However,
if supernodes Su and Sw were never evaluated before for connectivity,
then seCost is calculated by estimating the penalty for introducing
spurious edges across the nodes contained in the given supernodes.
In similar essence, nseCost is calculated by reusing previously com-
puted values as shown in Equation 8.

seCost(Su,Sw) =


seCost(Su,Sw)−nseCost(Su,Sw)} if

{
(Su,Sw) ∈ ES,

(Su,Sw)exist = 0
|Su|× |Sw|(|V |

2

)
−|E|

}
if(Su,Sw) /∈ ES

(7)

nseCost(Su,Sw) = nseCost(Su,Sw)− seCost(Su,Sw)} if
{
(Su,Sw) ∈ ES,

(Su,Sw)exist = 1
(8)

Given the values of penalties calculated in the previous iterations
for supernode pairs (Su,Sw) and (Sv,Sw), we calculate utility penal-
ties for supernode pair (Suv,Sw) using Equations 9 and 10. Here,
Suv is the supernode obtained by merging supernodes Su and Sv. For
example, the seCost of connecting a merged supernode Suv with an
existing supernode Sw is calculated by adding the individual costs of
(Su,Sw) and (Sv,Sw). Similarly, we compute nseCost of (Suv,Sw)
by easily reusing individual costs of (Su,Sw) and (Sv,Sw)

seCost(Suv,Sw) = seCost(Su,Sw)+ seCost(Sv,Sw) (9)

nseCost(Suv,Sw) = nseCost(Su,Sw)+nseCost(Sv,Sw) (10)

Once we have the individual penalty costs of evaluating connec-
tivity between merged supernode Suv and its potential neighbors,

then the total penalty cost of merging any two supernodes Su and Sv
is calculated by summing the corresponding individual costs of eval-
uating connectivity of Suv with its potential neighbors. Equations 11
and 12 show the calculations.

seCost(Suv) = ∑
w∈ηm

∀m∈{Su∪Sv}

seCost(Suv,Sw) (11)

nseCost(Suv) = ∑
w∈ηm

∀m∈{Su∪Sv}

nseCost(Suv,Sw) (12)

Finally, the utility penalty or costs associated with merged supern-
ode Suv’s self-connectivity decision making can also be calculated
by adding pre-computed costs of Su’s self-connectivity (Su,Su), Sv’s
self-connectivity, and the cost associated in evaluating supernode
pair (Su,Sv). Calculations are shown in Equations 13 and 14.

seCost(Suv,Suv) = seCost(Su,Sv)+ seCost(Su,Su)+ seCost(Sv,Sv) (13)

nseCost(Suv,Suv) = nseCost(Su,Sv)+nseCost(Su,Su)+nseCost(Sv,Sv)
(14)

In summary, given a newly merged supernode Suv and its poten-
tial neighbor Sw, to evaluate connectivity between them, we reuse
previous computations between Su,Sw and Sv,Sw as opposed to re-
dundantly performing comparisons between base nodes contained
in Suv and Sw, as done in the previous approach (Section 4.1). As
shown in Algorithm 2 (lines 12–16), we do this for all potential
neighbors. As a result, by avoiding redundant computations, we
have effectively reduced the complexity of each merge step from
O(|V |2dav) in the previous approach, to O(dav) in the current ap-
proach. Also, by storing penalty costs (seCost and nseCost) for
each superedge and using the concept of ephemeral edges we have
introduced an extremely low-overhead way to keep track of the
penalty costs for all the pairs of supernodes—whether decided to
connect them or not. These stored penalty costs are used to effi-
ciently calculate costs for upcoming computations.
Discussion: While memoization reduces the time complexity of
each merging step, the time complexity of computing the importance
scores can be still high. We improve the performance of this step
by making use of the fast approximation algorithms for centrality
calculation. For example, considering betweenness centrality based
utility function, we make use of an approach that uses random
sampling of shortest paths to estimate centrality values for all the
nodes/edges [32]. Algorithm runs in the order of O(|E|) per sample
and interestingly, the number of samples needed to compute a good
approximation to all vertices is a constant and independent from G.

Finally, we note that the techniques proposed in this paper are
not just limited to un-directed, and un-weighted graphs. For in-
stance, calculation of importance scores can be easily adapted to
directed/weighted graphs as centrality computing algorithms exist
for directed, weighted graphs as well. On the other hand, in the
grouping step, node pair candidates to merge at each step can also
be picked based on directions. For instance, if in a directed graph
we have directed edges (a −→ b) and (a −→ c) then b and c can be
one such candidate pair to merge. Also, since our utility function
depends on calculation of importance scores for nodes and edges, it
naturally adapts to weighted graphs.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Settings
Setup. We perform all our experiments on single Amazon EC2
m4.4xlarge instance with 16 vCPU, 64 GB memory, and 300 GB
SSD storage. We use Python and create graphs using the Net-
workx [26] library. For certain scalable centrality implementations
we rely on the networkit [34] library. To scale for the large datasets
that barely fit in the memory, we made several programatic improve-
ments to our code. For example, we carefully parallelized the loop

342

(lines 12–16, Algorithm 2). Also, we modified Networkx library to
support external memory graph access (read and write). Specifically,
we extend Networkx by subclassing the Graph class and providing
user-defined factory functions. These functions query a database
and cache the results in the dictionaries used by Networkx.
Datasets. In our experiments we make use of seven real-world
undirected and un-labeled graph datasets. Among them, ca-GrQc,
ca-AstroPh, ca-HepTh, and ca-HepPh are author collaboration net-
works from the e-print arXiv for Astrophysics, High Energy Physics,
High Energy Physics Theory, and General Relativity categories. The
dataset com-Amazon has connection between any two products if
they co-purchased. Whereas LiveJournal and Friendster are online
blogging and gaming networks. All the datasets can be downloaded
from [19]. Table 2 presents the datasets and their properties such
as size, average degree (Avg. Deg.), density, average clustering
coefficient (Cl. Co.), number of connected components (CCs), and
size of largest component (LC).

Table 2: Real world graph datasets
Dataset Nodes Edges Avg. Deg. Density Cl. Co. CCs LC
ca-GrQc 5242 14496 5.526 0.1054% 0.5296 355 79.32%
ca-HepTh 9877 25998 5.259 0.0533% 0.4714 429 87.46%
ca-HepPh 12008 118521 19.73 0.1644% 0.6114 278 93.30%
ca-AstroPh 18,772 198110 21.10 0.1124% 0.6306 290 95.37%
com-amazon 334863 925872 5.529 0.0017% 0.3967 1 100.00%
com-LiveJournal 4036538 34681189 17.18 0.0004% 0.2815 38577 99.04%
com-Friendster 65608366 1806067135 55 8.4e-05% 0.1623 1 100%

Baselines. We closely study two key works in literature that provide
iterative solutions for grouping-based greedy graph summarization.
First is the work by Navlakha et al. [25] and second is by Tian et
al. [23]. Because [23] builds on [25] and provides the distributed
solution for it, we implement algorithm discussed in [25] as a base-
line. We have added experimental results in Section 5.2 (Figure
7) comparing our results with state-of-the-art grouping-based sum-
marization technique by Navlakha et al. [25]. According to this
technique, the best pair of nodes is selected at each step on the basis
of maximum gain. Gain is defined as the extent of compression
achieved when the selected pair of nodes are merged. To scale
this technique, authors select a node u at random and a neighbor v
within 2-hops is selected that achieves maximum gain when merged
with u. This is repeated until the required compression is achieved.
Since this technique is based on the theory of Minimum Descriptive
Length, we refer to this technique as MDL in our experiments. Next,
we highlight the key design decisions that we made in our technique
and replace each design decision with its random counterpart to
create our other set of baselines. We make two key design decisions
in our technique; first, we compute relative importance scores for
nodes and edges using the shortest path betweenness centrality met-
ric. Second, we select a pair of 2-hop neighbors in the ascending
order of the sum of their importance scores. We randomize these
key steps by 1) randomly assigning importance scores to nodes and
edges (RNEI), 2) selecting the pair of 2-hop nodes in random order
(RNPO) while assigning importance scores using betweenness cen-
trality, and 3) performing both steps randomly (RNEI-RNPO). For
random baselines we report the average of ten runs.
Evaluation Metrics. We evaluate our techniques using two popular
real-world applications, measure the application-specific utility, and
compare with our baselines. For each application, we define a utility
metric that will indicate the usefulness of a graph summary with
respect to the corresponding application.
• Application 1: Top-k Query. One of the widely used real-world
applications is the selection of top-k or top t% of nodes, where the
goal is to rank nodes using the Pagerank algorithm and select the
top k nodes according to their ranks, in descending order. Given
the value of t, k is derived as k = |V | ∗ t% for G. Whereas, for GS,
k = |VS| ∗ t%. If we run Pagerank on both graph G and its summary
GS and Vt% be the set of top-k nodes in G based on Pagerank values,

Table 3: Example test criteria

Desirable Property Example Test Criteria

C2: Let’s consider graphs mXCn,mYCn, and mZCn (X < Y < Z) from
Figure 4. Let mZCn be the base graph and mXCn and mYCn be perturbed
graphs obtained by introducing X and Y number of spurious edges to
mZCn. Then according to C2: spurious edge awareness criterion, the
following condition should satisfy:(

EU(mXCn)mZCn −EU(mYCn)mZCn

)
> 0 (15)

C3: Consider weighted barbell graphs wsBn, wt Bn and mBn. Here wsBn
is a barbell graph of size n with a weight of exactly one of the edges
being s, and the weights on the rest of the edges being r, where s > r.
In this case, let mBn be a barbell graph with a removed heavy-weighted
edge. If s > t, then according to C3: weight awareness criteria, the
following should satisfy:

(EU(wt Bn)mBn −EU(wsBn)mBn)> 0 (16)

C4: Consider graphs Kn,mKn and Cn,mCn from Figure 4. These four
graphs are equally sized in terms of number of nodes, where Cn has
relatively fewer edges when compared to Kn. Graph mKn is obtained by
removing a single edge from Kn, similarly mCn is obtained by removing
a single edge from Cn. Then, according to C4: edge submodularity
criteria:

(EU(mKn)Kn −EU(mCn)Cn)> 0 (17)

then the utility of GS is defined as:

Top-k Query App Utility =
∑v∈Vk

1
|Sv |

k
(18)

In other words, if all the top k or t% nodes from G match exactly
with top-k nodes in GS then the utility score in this case equals 1
where each node contributes 1 to the summation in the numerator for
Equation 18 as for that node |Sv|= 1. On the other hand, in the case
where some of the top-k nodes are contained within a supernode
containing more than one nodes, then each such node u contributes
a value of 1

|Su| . This fraction (that is < 1) represents the information
loss caused by the summarization process.
• Application 2: Link Prediction. Another real-world application
is knowing if a given pair of nodes belongs to the same community,
or not. In other words, based on the current community structure,
predicting if there will be a link between the given pair of nodes, or
not. To measure the utility of GS, we consider a list of all pairs of
2-hop nodes in graph G. For each pair, we predict a link if the pair
belongs to the same community in GS, and we compare the result
with the link prediction on G. More formally, if LS is the binary link
prediction result vector for GS, where each element corresponds to a
link prediction result for a pair belonging to all 2-hop pairs, and if L
be the result vector, then utility of GS is defined as:

Link Prediction App Utility =
|LS ∩L|
|L| (19)

Example Criteria for a Desirable Utility Function to Satisfy. In
addition to the example test criteria described in Section 3, here we
provide a list of more example criteria shown in Table 3. These ex-
ample criteria based on model graphs in Figure 4 help us understand
the properties defined in Table 1, and evaluate the desirability of
a utility function. Note that these criteria are not exhaustive and
other criteria can be devised using the model graphs in Figure 4.

5.2 Experimental Results
Current-flow and Shortest Path Betweenness Centrality-based
Utility Function Satisfies All Desired Properties. We start by eval-
uating the suitability of various centrality metrics that can be used
during the calculation of edge importance scores, and form a utility
function that exhibits the desired properties described in Section 3.
Generally, the relative importance of each edge in the graph G is

343

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-GrQc
Top 10% nodes selected

(a)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepTh
Top 10% nodes selected

(b)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepPh
Top 10% nodes selected

(c)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-AstroPh,
Top 10% nodes selected

(d)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Amazon
Top 10% nodes selected

(e)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-LiveJournal
Top 10% nodes selected

(f)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Friendster
Top 10% nodes selected

(g)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-GrQc
Top 30% nodes selected

(h)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepTh
Top 30% nodes selected

(i)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepPh
Top 30% nodes selected

(j)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-AstroPh
Top 30% nodes selected

(k)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Amazon
Top 30% nodes selected

(l)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-LiveJournal
Top 30% nodes selected

(m)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Friendster
Top 30% nodes selected

(n)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-GrQc
Top 50% nodes selected

(o)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepTh
Top 50% nodes selected

(p)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepPh
Top 50% nodes selected

(q)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-AstroPh
Top 50% nodes selected

(r)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Amazon
Top 50% nodes selected

(s)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-LiveJournal
Top 50% nodes selected

(t)

UDS
RNEI
RNPO
RNEI-RNPO
MDL

To
p-

k
Q

ue
ry

 A
pp

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Friendster
Top 50% nodes selected

(u)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.5

0.6

0.7

0.8

0.9

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: ca-GrQc

(v)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.5

0.6

0.7

0.8

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: ca-HepTh

(w)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: ca-HepPh

(x)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.4

0.6

0.8

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: ca-AstroPh

(y)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: com-Amazon

(z)

UDS
RNEI
RNPO

RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.2

0.4

0.6

0.8

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: com-LiveJournal

()

UDS
RNEI
RNPO
RNEI-RNPO
MDL

Li
nk

 P
re

di
ct

io
n

Ap
p

U
til

ity

0.5

0.6

0.7

0.8

0.9

Reduction in Nodes (RN)
0.1 0.2 0.3 0.4 0.5

Dataset: com-Friendster

()
Figure 6: Experimental results demonstrating effectiveness of UDS design decisions

assessed by measuring the degree of participation of edges in com-
munication between distinct parts of the network. This leads us to
the notion of betweenness centrality. The most common between-
ness centrality metric is based on shortest paths, where the centrality
of an edge e is essentially an average number of shortest paths con-
necting all pairs of nodes in the graph that pass through edge e.
There are some drawbacks with this approach. First, it takes into
account only the shortest paths and ignores the slightly longer paths.
Edges of such relatively longer paths are critical for communication
in the network. Second, the actual number of shortest paths that lie
between the source and destination is irrelevant. In our case, it is
reasonable to consider the abundance and the length of all paths.
Knowledge about the importance of each edge to the graph structure
is enhanced when more routes are possible.

In order to take such paths into account, Current-Flow Between-
ness centrality can be considered [2]. Here, the graph is imagined
as a resistor network in which the edges are resistors and the nodes
are junctions between resistors. Accordingly, the current-flow be-
tweenness of an edge is the amount of current that flows through it,
averaged over all source-destination pairs, when one unit of current
is induced at the source and the destination (sink) is connected to the
ground. Let’s denote shortest-path and current-flow betweenness
centrality-based graph utility functions as SP-BCU and CF-BCU .

Moreover, certain centrality metrics calculate centrality scores
for nodes and cannot be directly used to calculate edge centrality—
e.g., centrality metrics that are based on Pagerank, Eigenvector [27],
Communicability [6], Communicability Betweenness [7], etc. Here,
we treat the node centrality scores as node importance. Also, by
intuition, we assign importance scores to edges based on the impor-
tance of the nodes they are connecting to—i.e., we assign an edge
a high importance if it connects any two highly important nodes.
Using these node-based centrality measures, we estimate an edge
importance by summing up the normalized centrality scores of the
pair of nodes it connects, and normalizing it. Let’s denote utility
functions based on these centrality metrics as PRU , EVU , COU ,
and CO-BCU . We compare these utility functions and evaluate their
effectiveness using the model graphs (shown in Figure 4) and our
ideal utility function properties. Table 6 demonstrates our evaluation
results. Red cells or non-positive values indicate a violation of a
corresponding property or criterion. Results show that CF-BCU
and BCU obey all the formal required properties (C1-C4). Bold
values represent max values that are highly discriminatory for each
test criterion. We find CF-BCU to be most effective and highly
discriminatory. Each row of the tables corresponds to a comparison
between the similarities (or distances) of two pairs of graphs; pairs
(A,B) and (A,C) for property (C1-C3); and pairs (A,B) and (C,D)

Table 4: Practicality of utility EU with respect to an application of top-k query

Application 1 Datasets
ca-GrQc ca-HepTh ca-HepPh ca-AstroPh com-Amazon com-LiveJournal com-Friendster

Top % Nodes Pearson’s r Cos. Sim. Pearson’s r Cos. Sim. Pearson’s r Cos. Sim. Pearson’s r Cos. Sim. Pearson’s r Cos. Sim. Pearson’s r Cos. Sim. Pearson’s r Cos. Sim.
10 0.9475 0.9822 0.9569 0.9939 0.9453 0.9943 0.9835 0.9976 0.9329 0.9969 0.9289 0.9743 0.9448 0.9738
20 0.9232 0.9828 0.9709 0.9947 0.9438 0.9330 0.9398 0.9965 0.9628 0.9964 0.9519 0.9127 0.9474 0.9528
30 0.9403 0.9855 0.9561 0.9936 0.9488 0.9249 0.9654 0.9930 0.9794 0.9864 0.9832 0.9287 0.9527 0.9803
40 0.9505 0.9942 0.9565 0.9969 0.9428 0.9308 0.9925 0.9921 0.9877 0.9970 0.9328 0.9267 0.9378 0.9747
50 0.9280 0.9912 0.9864 0.9925 0.9426 0.9322 0.9987 0.9869 0.9893 0.9734 0.9737 0.9725 0.9735 0.9826

344

Table 5: Practicality of EU with respect to a link prediction application
Application 2 Datasets

ca-GrQc ca-HepTh ca-HepPh ca-AstroPh com-Amazon com-LiveJournal com-Friendster
Pearson’s r 0.9424 0.9306 0.9950 0.9910 0.9259 0.9264 0.9371
Cos. Sim. 0.9657 0.9940 0.9999 0.9927 0.9863 0.9957 0.9873

for (C4). However, the calculation of current-flow betweenness
centrality CF-BC is computationally intensive and does not scale
even for graphs of a few thousand nodes. Hence in our experiments
we use of shortest path betweenness centrality SP-BC that scales
well for larger graphs. Also, from our results we note that, similar to
CF-BCU , the utility function SP-BCU also exhibits all the desired
properties. Moreover, it has been shown in [28] that compared to
other centrality metrics, SP-BC is strongly correlated with CF-BC.
Hence, it is beneficial to trade slight loss in quality to significant
improvement in performance. Finally, we compare simple graph
edit distance (GED) with our utility functions. Result shown in last
column of Table 6 show that GED violates all the desired properties
except C2. Hence GED is not fit as an utility function.
UDS Judiciously Exploits High Compressibility of the Graphs.
In the first experiment, for each dataset we vary RN from 0.1 to 1
and apply UDS to analyze the incrementally calculated utility EU .
Figure 7 shows the result. We compare the UDS approach with the
random 2-hop pair selection for merging at each iteration (RNPO).
There are three key takeaways from this experiment. First, the non-
linear relationship between EU and RN (shown in red) for all the
graphs indicates relatively high compressibility of corresponding
graphs. Second, we observe that denser graphs have higher com-
pressibility when compared to sparse graphs. Third, UDS smartly
exploits compressibility of graphs by preserving important regions
of the graphs at relatively higher RN when compared to the UDS
approach with random 2-hop pair selection. We omit results for
LiveJournal and Friendster datasets as we do not see different result.
UDS Design Decisions are Effective. Next, we evaluate the effec-

UDS
RNPO

Es
tim

at
ed

 U
til

ity

0.2

0.4

0.6

0.8

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-GrQc

(a)

UDS
RNPO

Es
tim

at
ed

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepTh

(b)

UDS
RNPO

Es
tim

at
ed

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepPh

(c)

UDS
RNPO

Es
tim

at
ed

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-AstroPh

(d)

UDS
RNPO

Es
tim

at
ed

 U
til

ity

0

0.5

1.0

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Amazon

(e)
Figure 7: UDS judiciously exploits high compressibility of Graphs

tiveness of the two key design decisions that we make: 1) calculating
relative importance score for nodes and edges, and 2) the order in
which a pair of nodes is selected to merge in each summarization
step. We compare UDS with the baselines using two real-world
applications discussed in Section 5.1. In this experiment, we vary
RN and calculate the application-based utility metric with UDS and
related baselines where we randomize selected key design decisions.
For the top-k or t% query application, we vary top % of nodes
selected and measure application based utility for each dataset’s
summary. Figures (6a)–(6q) show that across various datasets, pa-
rameter values, and applications, UDS consistently results in graph

Table 6: Evaluating various centrality metric-based utility functions and
comparison with simple graph edit distance based utility (GED) metric

Test Graphs PRU SP-BCU EVU COU CO-BCU CF-BCU GED
Criteria A B C EU(B)A−EU(C)A
C1 B10 mB10 mmB10 0.005 0.019 0.005 0.004 0.03 0.13 0
C1 L10 mL10 mmL10 -0.009 0.04 -0.03 -0.03 0.03 0.3 0
C1 BC11 mBC11 mmBC11 -0.009 0.00002 -0.007 -0.013 -0.005 0.032 0
C1, C4 WhB12 mWhB12 mmWhB12 -0.0002 0.04 0.001 -0.006 0.02 0.063 0
C1 WhB12 m2WhB12 mm2WhB12 -0.0003 0.08 0.003 -0.013 0.041 0.127 0
C2 m2C5 mC5 C5 0.023 0.023 0.023 0.023 0.023 0.023 0.33
C2 mmK5 mK5 K5 0.5 0.5 0.5 0.5 0.5 0.5 0.125
C2, C3 mB10 w2B10 w5B10 0.095 0.095 0.095 0.095 0.095 0.095 0
C2, C3 mB10 B10 w5B10 0.132 0.132 0.132 0.132 0.132 0.132 0

Test Graphs PRU BCU EVU COU CO-BCU CF-BCU GED
Criteria A B C D δ = EU(B)A−EU(D)C
C4 K5 mK5 C5 mC5 0.1 0.099 0.1 0.1 0.1 0.2 0.1
C4 C5 mC5 mC5 m2C5 0.08 0.095 0.088 0.07 0.03 0.142 0.05

summaries with significantly higher utility compared to baseline
techniques—thus demonstrating the effectiveness of our design deci-
sions. Figures (6a)–(6s) show results for the top-k query application.
Figures (6v)–(6z) show results for the application of link prediction.
UDS Performs Well Compared to State-of-the-Art. Figure 6
shows the result of our experiments where we compare MDL ap-
proach with UDS with respect to top-k query and link prediction
applications. Our approach consistently performs well when com-
pared to MDL. We attribute this result to the fact that MDL approach
does not optimize for the preservation the important regions of the
graph as UDS does, hence tends to lose on summary quality.
UDS Provides Attractive Trade-Off Compared to LOPT. Theo-
rem 1 implies that it is hard to find approximation factor or compare
our solution empirically to global optimum. Nonetheless, we com-
pare UDS where we pick best node pair to merge in each iteration in
O(1) time with local optimum LOPT where O(N2) comparisons are
performed to pick best node pair to merge at each step. We present
results in Tables 7 and 8. We perform two experiments. First, we
compare UDS to LOPT with respect to the reduction in summary
size relative to original size returned for a particular utility threshold.
For this experiment, we generate Barabasi-Albert random graphs
with parameters n (graph nodes) and p (preferential attachment). As
we increase p from 1 to 5, density of graph increases. Table 7 shows
that UDS performs very close to LOPT for sparser graphs and for
denser graphs quality of solutions reduce by atmost 25% compared
to LOPT. But for the given performance (O(1) compared to O(N2)
per iteration) UDS provides attractive trade-off compared to LOPT.
Second, for a particular iteration, we compare UDS’s choice of best
pair to merge compared to LOPT’s O(N2) choices (sorted in ascend-
ing order of cost). For example, Table 8 reports 0.1 if UDS’s choice
is within top 10% of LOPT’s choices. Table 8 shows that across the
iterations and for the random graphs (p=5, utility=0.5) of various
sizes UDS’s choice is within 10% of the LOPT’s top choices.
UDS’s Estimated Utility (EU) is Practical. We compare EU with
various application-specific utility values for varying RN to assess
the practicality of EU to be used as an approximation for various
application-specific utility metrics. For each real-world application,
we calculate the Pearson’s correlation coefficient r in order to mea-
sure the strength and direction of a linear relationship between EU
and the application-specific utility, for varying RN from 0.1 to 1.
Since EU values are in the range [0,1], we use Cosine similarity
between EU and the application-specific utility in order to measure
how closely related they are in magnitude. Table 4 shows the re-
sults for the application of top-k query where we can observe that
correlation between Pearson’s correlation coefficient r and EU is
significant, with the value of r very close to 1 in almost all cases, and
p-value < 10−4. We observe similar result also for an application
of link prediction as shown in Table 5. Hence, EU is practical.
UDS Scales Near Linearly with Varying RN. Figures (8a)–(8e)
demonstrate that UDS performs well across all datasets, for uni-
formly increasing RN. Specifically, UDS exhibits near perfect linear
scalability in the case of datasets with relatively higher density and
average clustering coefficient (ca-HepPh and ca-AstroPh). On the
other hand, in the case of relatively sparser datasets, RN values in
the range 0.1 to 0.6 the cost of iteratively merging nodes remains
relatively negligible when compared to the fixed cost of calculating
node and edge importance. Overall, high correlation with linear best
fit and R2 values confirm our scalability conclusion.
UDS Visually Simplifies Complex Graphs with Guided EU . We
also conduct visual validation of our UDS approach. For this ex-
periment, we query graph summaries with a specified EU , rather
than RN. Here, we visualize the ca-HepTh graph and its summaries
for varying EU values. Figure (9a) shows the input graph. We
can observe that the input is a disconnected graph with many small
components and one large connected component. Figures (9b)–(9d)

345

Table 7: Comparing UDS to LOPT based on summary sizes for a given utility threshold.
Pref Attachment→ 1 3 5
Utility Threshold→ 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5
Number of Nodes ↓ UDS LOPT UDS LOPT UDS LOPT UDS LOPT UDS LOPT UDS LOPT UDS LOPT UDS LOPT UDS LOPT

1000 0.805 0.975 0.90 0.97 0.95 0.97 0.30 0.40 0.50 0.75 0.72 0.92 0.12 0.27 0.36 0.55 0.67 0.80
5000 0.78 0.97 0.96 0.97 0.98 0.98 0.43 0.52 0.58 0.78 0.79 0.93 0.22 0.38 0.47 0.69 0.68 0.86
10000 0.91 0.99 0.94 0.99 0.98 0.99 0.48 0.57 0.66 0.80 0.77 0.92 0.31 0.40 0.51 0.67 0.66 0.84

2.4189 + 11.809*x
Correlation: 0.92874
R2: 0.86256

R
un

ni
ng

 T
im

e
(s

ec
s)

5

10

15

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-GrQc

(a)

(-2.2194) + 53.761*x
Correlation: 0.93476
R2: 0.87377

R
un

ni
ng

 T
im

e
(s

ec
s)

10

20

30

40

50

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepTh

(b)

58.544 + 57.86*x
Correlation: 0.99
R2: 0.98

R
un

ni
ng

 T
im

e
(s

ec
s)

70

80

90

100

110

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-HepPh

(c)

67.143 + 168.48*x
Correlation: 0.98712
R2: 0.97447

R
un

ni
ng

 T
im

e
(s

ec
s)

100

150

200

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: ca-AstroPh

(d)

(-1858.4) + 7709.2*x
Correlation: 0.92073
R2: 0.84775

R
un

ni
ng

 T
im

e
(s

ec
s)

0

2000

4000

6000

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Amazon

(e)

(-7546.7) + 40943*x
Correlation: 0.94697
R2: 0.89676

R
un

ni
ng

 T
im

e
(s

ec
s)

0

10,000

20,000

30,000

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-LiveJournal

(f)

(-374778) + 2.4227e6*x
Correlation: 0.95262
R2: 0.90748

R
un

ni
ng

 T
im

e
(s

ec
s)

0

1×106

2×106

Reduction in Nodes (RN)
0 0.5 1.0

Dataset: com-Friendster

(g)
Figure 8: Scalability of UDS

Table 8: For a particular kth iteration, comparing UDS choice of best node
pair to merge compared to LOPT top choices.

k-th Iteration
1 10 20 30 40 50

Number of Nodes UDS choice w.r.t LOPT Top % Choices
1000 0.56 0.54 0.11 0.10 0.01 0.26
5000 0.84 0.71 0.54 1.31 0.86 0.36
10000 0.95 0.93 0.84 0.81 0.67 0.61

(a) Input

2704

36255

43144

123576392

32548

26176

50814

49166

4005334141

65045

68537

3000

YZ3ZBF4ZXO

57050

48198

1767

47217

26196

21312

56855

56623

36619

31178

60056

22716462621667158709

17961

37876

37191

4446

2061

40691

11977

14831

22948

31145

KL8VMMSK6765168
47712

50673
30829

3217152009
9935

2012568265

13462

22280

12117

399591749544803

WS1WW1SWNI

8484

3142

30077

12497

7367

9821
2074

24990

31059

GCW1MEE7CP

18910 52121

653684456755180255904660

38145

529019804151002172

4EOZ0PMHIF23514

21418

56679

25799 V0A1RRJ0BV

25992

17081

1K7UGWEEC6

46405

8I1HEISKWM

52749

40595

56089

4979 33430
4303

39929

32448

49018

7BGEQB0HGO

14653

52766

45169

40423

2557020167UTQEKZITQL66083PPCXPVZI2

29237

59621 32928 Y8D371EG6F

59939

ODILF6P7H7151351442545562504HTU75V8

4ARELUBX5V

16821

25524

56249

52373 62771117425169059925

66585

2975645924

3520

22126

68477

CJ9IULH27K63586

289865SVZHUUTJ3

773

36890

44359
39076

60948
1127

60030

28086

2872

45605

60311

4776

41203

G2NBNJGCP226629

45015

30808 62313

29380

3X46PHXJ0F23030

30956
6RK3EKZWUD

41901

27355

NI6Z5GV1AE

58147

6787060221

52160

42499

48QUKV80DW

62972

42691

22006

7EMGOB2LZ1

15701691

1937

14929

59238

7574

44104

66561

1338

24304

950216831

55964

TZ6KPSMM8U

8703

19091

11663

2DYIBEK3DG

30911

9887

K2M7V8LQUG

Z7IJ0DSN79

67507

41948

15391

60191

29312

32162

50616

28723

52364

46517

448424202936398

29808QYGKVLYQ7165516

57145

37077

26756

27352 2859435863

53132

25633
2BW0QU6VL8

31023
64183

9TA6PMV4MG

55126

61222

49105

3412167311

57758

1679650445

6531

51425

66513

19159

25902

15874

3233

3342617431 4728365687

35439

260282301362725

11969

10882

53498
23018

40041

159

20041

5346

9969
GTTIFW32LU

52681

23ED51EZ9K

43290

02MLLDAF44

RUX3PIDLSS

S2FM35P9J054807 1251137174

QU6UBRORVV

VXAEF3U9W1

N0XFMMROAJ

65384

37364

5999

32597

40580

P7YE9NTIBU

34628

43579

9319

3782

36593

46745

55814

13941

8611

31420

5024360575

21251

7SNCAZ31XP2111

6046 5583

21255

20218

19720

56886

3093

4377939320

40989

M8BN5RW52IT2I01V1H6G

46511

3RJK4WLOH1

62HJ8SYF00

40905

57295

53510

7393

53752

6078

47339

53439

29965

7LVY50I73D

44990

3926464167 M6GBWJWODA

10523 13700

3015
5830

23316

7741

6693664702

53282 19282

28376

52506

16349

IVZFROKCQD

MNKL6HH546

16696 56177

FJXQGFI6BR

729655655

2177619469

53733

17034
41392

51036

43905
55277

56274

PVT2A6LCWI3765

50434

20549

13451

6321665359

28194

54164

739

62636

51070
16206

47458

7696

55707OGTJHADS2C

17801

59283

39606

14046

14225

6541

32248

3750

31969

44550
40434

13840

9V14MFTHFM

28152

2079

31328

D3960FYFPZ

63618

9775

19669

7871

41958

50748

39144

58851

3055315778

68432
38016

61448392842019

64210

TZKR8JGQ0V

QY0R8776DC

10960

40947

2044

J1QVEW2575

54079

38341

36913

7353

8216

PTSIP5D11Q 55574

8XQT5IYRSV

59922

344644892

66441

49022

22110

50655

49449

6168

46975

62660 JLJLWFFGZ7 56518

39239

QFEG7R8UTA

5361632235

351326DAYTMQKSY

60421

38074

50324

63875

4655155133

51844

54042 7988

8558

3413129862

31583

34288 4515747409

47574
40104 13884

QYK0NKBSYB

53426

18882

50702

40592

20494

387428854

NFDQW49Q3W

66951

57259

1374237219

55740

49667

28759

20457

44267
26541

63195

5392

PKD19L2VPE

23643

8887

53241

62435

43731

65692

4FH3NTLRMX
48830

14125

44332 29763

3266
4XU84ZG0UU

41419

A4P1PJ9ZD8

3581

44983

58969

41853

17887
22498

67933

40584

52012

36235
50323

21813

3832

7820

32660

13425

63791

RDZSUE78EZ7701 63543

3U45H23AEA

39588

33969

58486

62785

24824

VXGVA732V7

20799

34033

3989

SBV6K2GWCT

B6QDJ68YIU

43171

51376

EKOSS29DME

GCISYFVLEZ

CGB6ARYYB8

14657

5LR6QHUGNI

42632 893

37050

17304 23617

55657

46541
60301

36237

48605

43993

27RIOP9AG7

1141

61582

54988

11141

38327

43018

47358

49300

DBTN9X26O2

8QD7Q2VT24

46903

YHMONR8SOF

LDI0BEG0JO

23980

51108

16064

HTEOWL4GN5

23704

W6877F6PU1

18680

38089

10947

4912

10640

44683

58738

15023

U289Q9W0S4 WM4RWHZTVZ 9C5TPAR2T805U1UF1ZX8

27048 247885951465597 6649650753 4001913416 6777862081

16SGXYT2GQ ZJ1B03MD0U HZV3NHQ4PV I60XZKZA2O 0WWVB7QPMA E3RWZT8WOH IKV09X4LB1 EKAOO6J0IH WE6AJ4UDF6 5EI8VDTZBU S6NZCA0FN0 L5J9H7M7RJ D0VX9C1X31 VHD1V6YCJW EBXHT1BO1L FYOO0I6ULW

4808234310 23062659543895 2716 5570426652380733204 4066526552 2360552435 37999 62452

16226268498Q9XEJ5WP1 886RRVTMCX 51300 22356

4918

4083

34801

33253

52193

PCL5Q224N6

22933

51176

59141

36143

42529 47430

5968

58162 31422

ZOGHHOT28M

43908

U2OVFOJZG4 62466

38829

25273

09YJG58K12

45323

12900

34871

7360

61201

52925

YQ9X1R5ATX

1932V5YQ9CAO9P

3469

17581

3889165727

11505
25027

48098

19512
5597

59260

32595

61918

23049181

62644

27891 53031379829874

2729
2217219324

5083530392

651760184

41074 33894
5823

126544526
61333

35455

31944

59136

18279

60123

42913

48212

359104695016907

6445226919

16278

499293734352477566856254IMOCMTVP8O

60999
50002

16975

743954321

57365
32905

13314

50830

10437 AISL3CTIS7

4331835651

20152 11660

56663

46973

63613

1724

12067

60775

46443

69757250

5702

61381

36456
44977 21587

2423163572

34305

15957

42995

61757

485702347760403

292914387
37947

1096952116

26712

67802

2509166932
18109

4406546139

29181

23054
8495

471948327

57392

37482

24894

31612

39534

57673

7127 6284

111191292

9323

31729

68423

60171
38011

4711666399

2099435725

394371080341534 60282

67605

2698

46186

56440

648595338

21963

50192

32544

68302

65891

1021

1094315993

9994

40803

52429

14903

3125407044515

63938
664757605 3982

1281854424273
57492

103532461

65086 53316

42391

13388 6700

6142

323684584462541

3057910849

19436

15078

13659

33512

58188

3306

47869

2177

62824
2344829342

61742

867159343

27698
46850297153371542067

5660221380

24875

6550553481 2954619615 460643119521895

61509
27967915429437
545565138

24959453199037

16411

4621

3965939723

248563778027926

42341

10170

11557

65486

5102811040

448208329 49418

2630461826442

41608

25144

44886

UP4CX1BUHQ

65120

12211

55281

2514 30800

24088

44442

MFA93CL40S

26632

13318

54919

55487

51186 96QVRNFEEJ

2667368500

41928

29941
60010

31890407302525

25064

6562217481

60177YB74PLZDBD

34505

22270

24780

56821

68147 38825

48104

41940

UZOHL42HS3
374QFB0ZR7

39935

36154

56430 Z69S0KZ0FW

582

14280

44947

31984

22990

16424

45556

51053

41484

3327328473

6068144029

28900

67263

434459205

724
25773

28421

23794

27363

4N4UZ9TUL2

31514

52271

56059

677319169

63380

26766 42378 928548577 56982

ER0XNI0VGB24127

53638
34665

6161

VDSDRZRVNN
26422

17506

61336

26784

55636

17876

65729 41912

28098

44534
17436

62668

22441

2536

4007728278

41831

51761

XGTOA3NIR4

QTI71ERVQM
62234

24002P1NMJ2U0IG

25264 24313

2U1FXOTW70

66593

49216

38203

440

62708

53268

28282

UEPOK8EE9A

3217839916

64658

44100

30037
6251

37716

25820

53974

14456

2869

50029

27822

17817
28847

1431241792

60216

32288

3249

25948

1310556677

25481

51763

32017

20045 25919

13278

19045

27723
13333

68251

2598235707

23778

5484352458

43541

57678

4246041238

1675317940

683164988438226025131296

57281

67362

3224

59986

44674

28268

5241958348712022107

3077046377

66843

27434
5581

30073960542595

38369

24544
3099732205

4552127312345963086368041

5615037233

41302
7859

231725569

493694541788063171

60720
283205712559519

23307859

5888748993338471241158507

514648411

65857

49600

2658

272464903

1853348192
199176476

42207

22961

66882

24394

35280

3715239548

19660

6004113239

254287237

27888

53302

30367

5677561580509353230267080
7703

720

27090

56014

39037

9513

286714241

942 11957

1322143356

54369

52184

57947

67790

11458

62302

25729

2365932481

23970

34441

33231

68312

37Y0269DID

56120

3737

19734

11069

55259

20130

502056474068288
6665235363

23860

9321

11953

65379 45749
22014

36383

28534

12981435467617

25442

8527

7660

66288

23297

59651

3429823169

1025

59870

22735
56559

34364

46695
14324

3465

1600955570

30012 4965833200

45739228956711848022

28209

34417

20519
21858

104831820

2672462976

976

19102

20138
503867GKRA3KRXC

51299

57558

57466

GG312PW4UB
65259

2976937500

63463
37488

12472

3878547249

62558

19518

8121S06IDMYTS9

15406

21189

50481

23145

59553

66518

12230

41398

47064 KM03XO8PIX 570389701 26427 91845247016933

27034
19388

5994651751

21937

54619

SZNEEM3I84

2327

29061

33262

3780 20104

52240

53642

47233

31517

50943

46624

46569

K1EN9BHVZ8

2536847175

62DRRIBPGR

23942

5919

Q4IDO4KTKS

12190

27094

52725

41610

JZVFLK4G5Y

26460

16641

46804 24970
1337058458

3WUO7FIZCO

H382BUQWH6

59697
13016 27602 58192

1D2V8GD3L7

27932

27447
50417 3466

7139

23525

KG7GFNWGNE

47344

68417

LD2Q02QY4Y

1ESI6YSUY7

GNGD6M2ISH

62261

47946

23066

8794

45848

49435

QCM7524944

15DYDHP415

4318

33072

39127

JBHYWMK6RG

68298

2HMDG70AXH

44316

24805

11452

836560929 4281416225

26574

26563

5064266247
58222

20773

818

54310

36805
53627

24558

46865 25343

45226

300172701

61407

25628

65213RXCDOLDIQ7

27073

39202

12641

8339

64631

39176

16586

21489

30869

4130547525

49473

Q5V5X483XA

56299

4V6RAMC5O7

61635

17555

242

K9A5OUITPN

5975
IFBYVM5JC952933

51099

GIXGMDGZYG

31312

63142

28579

58069

31668
42610

44275 3521520874

2891
7295

50572
56298

2849716233 25493

3315

30022

35338

DT14JLBH54

10661

65805 BDSSCU4IDK

56834
10579

4132

JQZRGXDNKC49382

5972261889 47877

8727

56800

51215

40390 34005

F3UDT408F9

1737

40130 2432

14783

16558

8722

907834820 3923139182
12890

49865

6873

621849544 50996

30465Q14SK0JO6H

42880

47747
66144

Q47EVKUNSR

26793

12175

36039

56725

63240

26969

53874

1306

11633150

45339
56475

17075
3890

5826722605

215
334

2205751615
XVAVFNFVF2

54086

RXN39WWEDC 65422

42326

Z7WRMRTW0I
7491

1910510535
10180

OWAGYTNPYN

QGRHBA7851

27046

251151183

FOAROYRSHI

4782754717 51147

42318CWU5B5XDMP

54268

10829359412893

13395

168832623482426793524783
19447 618511517559197 45920

18247

46557M9FJJEDLXA

8GWV4HQ3YZ

2939

3RN79EHR2G

ANHCQZD1AR

9X7ZXBZR9Q

40348

12867

64225

6801

NZF7ZUK0TN6394

46360

C8HWCKXJQ7
2790

29184

50306

11237

DEKNXFWPP0

36600

30778

59400

51831

39125

FWSJ7AFQYV

8978

5384

53323

ZOP1C4QXGN 31164

41362

61561

19666

57165

8257

16679

5461

4920

10732

40396

7815
8985

42497

13158

47770

39044
16291

3195948733
3622339190

18656

52516

5914

15662

KUV0KGH8TS

66154

53797

16810

42698

17408

4793

38734

11231

51207

4922527174

14103

50575

5889818147
8193

30407

42528

68457
6561

7454

65394

43687

15612
31076

63904

12462

54112

58599

G6OR2U1RX0

38150

5AKD2P8AF3

35119 42889

65252

86UH7STWQ8

U0EK3TR9KT

56872

30451

2931913140
27468

63991

25385

40750

T8G6BPD9W1

23594

300

9305

50922

E9PUECN1NX

42365

60863

12590

Q7V8Y98QEE

14116

6U20OM07JG

51827

38434

22002

11286

55610
32715

12334

9156

14381

62905

20921

5649

10011
54615

25188

26997

67415

48868

5538746077
56343

15355

707361391

4322667701
12457

589142021136540

51388 4882334236

38142

412709356

396534926

44831

49254

8070

1003

516595531962044

7233

24178

54696246976095637286

57584

5782063462
467183006839434

4659845712489731077221978

34787

59372

67619
62604

47911

62803

61232

54987

62074
18634

63815
11616

41115 53844

23901

1481
21209

52149

47541

41896

48795
320545091343826 11203

8391

5776

47967

45446

62936

66638

41432208831838467905

65922
31502

35113

59316

9 7

2394

45008

36472

21286

17554

22589 19491

56227

44883398615154860569

4533

31462 10532 16427

7974
16211

43974

8134

61556

61323

8012

5178358019

50878

48829

5227440719 49948

21326

30254 31807

3831528753
43037

42186
48073

62255

6390143136

12697

66495 19684

61950

5750449340
37867 351787048

28159

5156

136

57433

9443

35021

47226

58365

7268
2555

7172619991255764068

4863436949 42886

39647

5170650300 59089365052342047580215181484754465

9494

28879

11850

9064

14394

4731728042

48387
8025

32655

27122

10500

47390
2442

10402

18665

46338

50330
57323

6616524117

50295

357240221

10683

4767752986

1833942770
58529

8125

18297

1477417066

14975

641001396021549

679833972847610

25702

2040936071

1677526122

49466

46343476315503
398071228339523

1283

646242787644262

10045

608859246836710136

564244127764862370 4437038964

53707

43517
583763542
2168

40272
481251382454375

14642

9297

3031351989

6710829214

67925

34546

42323

82755988241221976830493

10717582107255

17634 17289

68204

26440
39366
1695830744

12855

50118

59789

24165

1680514919
4085221762

6796
41188

58769

34513

4749044022
11720

12235

35154

33090

6757218778

2408652820

57648

43076

48744

38656
5592419313925318601

5357

63786
3764722664

172353263586987463

3145234519
5021348724

6579724872 14726

64107 32803

5555555119

2659661879

28697

62682

7108

11442

13872

1037536998

9983
51876 3329337737

18119

38767

290

4334528779

5310249069

610699746

64971

30160

15304250851604

63303
27337

64787

9207 33782
60268

56704

3992039095

4394

1168320338

4336

43864

23543

54691

34241
5799

5964
1765

47200 8031

17793

51739

3676743393

3579440559

1673

26437
14742

268475544264493

51477

90103283234222

1268

4108432081

6489115896

16619

64020

19268

6435

19893

19028

471465129327973

49172

5595124418

20417
23961

22198 EFDDX3M7J1

23037

40655

63412

64426

10509

52913

24443

22932

61262

37799

49566

50627

64594

4640216921

49299

56608U3X84MYPOA

20864

63355

15388

24596622

40536

34173

12689

57920

55471

10474

PARWB19YWV

33384

43169 249

13408

33856

41696

4919020529

4690

599418404

40524

931

18242

5709

28284

45460

5888

56798

4390763272

26641 589947590

15729

32800

406253545

68597

50231

5392522189

5480267652

513743011

17162

2320357084
49165

39469

10278

54012

25709

48624

1653
48604

44762

P0IKK6QUIE

753

41317

65711

6769

47244

14017

52956

49016

12984

21807

6181138052
L1ST531YB3

31098

198354691964391

36679

57878

15460

17217

3601051233

3200

496515295

18165

4510755210

6948

26021

6194221482
60481

67887

46237

67464
54915 52237

U8FKGZA8461616434071
21130

64813

42687

60982
36578

10597
28019

12639

14546

60926

47212

36019

3342

17370

63792726013745

64477
29595

11403

891130478

139376041

53540

56948

58588

22838
135771174965786

453852600

52204

8188

48851

20692
60645

3046

14023

28175

31156

18424
25397

29935
51482

58987

40061

888

38924

43371 1843268329

34566

58466
10553472356712

50270

57473

59908

25682

57794

5390

68057

17393

67406

4104330193

60830

16711

4284

4141

17300

43481

3188Z3E3ET6BNY49509

38059

241813467731240

36637
518082410
50182 60084

65621

32408

30359 3583517983
665985179129928

66621 284511759615910
1927528837

1407566466

17198 2414462437 51074

2546527855
43776

52761

6266

4160147074

47642

5374641588

5225965570

7736

21178

823

11281
57173 52747

15439
1789424725

28356

4666046857 34189

9167

17543

2933460338

34264

6463

37571

28253

5471024645

7060

26929

19712

52622

11951358659512 27799

2334533135

3293530377

1922449978
6350412400

59169

65013
2179062404

46464 44427
10840

17755

3958266664

44350

2934
2829

464196584266603

38818

46909 48076

969

4387930APC7CT3752883
38038 50109

2124758965
64356995

6100533342

29717
520122035

25789

52700

55811
6756950736

7924

18498

3725937295

34810
26220

643833983560324

188651567866505JKGP96TCD8

43686

241648089
2592961364

4700

42725
53349580066366
42198

49118

56305
62418

53942

1653533151
24986

362417575

36209

45632

31702

624935457332109

60374 68631
33179

44305

2331331550
62015

297252213339378

3735953777

605191652126127

49842 42431

3466968111 62790

5189051824 3446320655

17838 299596812824333

5263 40444
32697 6699564720

30461

29373

13717 49001

626911626668385

57635

17682 47509189 6351135639

13527

2134215168
42782

6717

46894
602465294654076

10653

7322
6533825655

42897

383004223

18844

25856

54519

35606

61777

48886

64612

60368

4439241167 20253
12433

39688

44736
68024

32326 11059

16687

50747
2784

14476

4137853676

8109

29635

35630459639557

13550 5494836340
60618 3029

56473

17470

51512

53601

13198

43016

484274303415826
60546

563826466

23236

418631083

3050

38127 11513

1159939069

3283814239

17030

35336

2345118699

49086

49143

3682

21075

42274

36322

31851

19420 23752

22247

50699

29017
34813

25056

33726

54178

38161

27737

63279

4357619142

45648

1511

61839

16448

33866
6859 50403

123104D9XP5X0RF

33919

13107

5632010108

6210

59682
1344

11105

36800

43156

56482

27154
116
3873

428046448
1602936884

2619

42935

52320

32638
48729

20279

42304
44782

60453

26478

19818

32773

33892

659304251663805

302

65341

47551

52889

4436

49804

40419

52992

V364AL4NEE

25388

4278866382

51901

23282

1090616689

18581

3505487915205314509

53086

1257664917

20859 478223744218413

50966

59130

CSF7FU0QIU 56644

962

51382 64553RSXYN0UOON

4153756295

MTA3PEKY7Z

51839

68323 41192

NPR07ZLCAT

49601

6515KK38SC5VZ4

751

2117066152

50884

56267

6620010568 40578

8765

45736

41973

32924

7315

P8T0UAYB3C23465

1289956172 52027

VBHVNEAVJZ
3313

ND002Q1BG9

36525

ZD8PLGYJ8F

64430

44066

7594

BDJAXEBNIF

33543
12993

2424 65946

19921

38614

10901

67247

211063850
8077

48138

11212

4983

50149

45863

37108
10756

10863

65586

26415
3086858231

19528

64865

6183016816

23818

64507

33949

56311

9483 4907421093

36267

5862220434

4216261648

34001

1627

7648570

3423

54218

27064

40631

4997

56264 18908

40345
5745

52919

54536

2250264352

15604

38865375383299236103

60332

60931

58685

702

34989

5842321952
4486038730

14083

30205

32749

58301

15032

63697
674934825

15312

37887

11530

4751854918465

2964

15343
10787457

58546 63322

66440

59600
19073

54785 58736 42581
60516 66410

9470 733548773

28138 63252

12799

62871

11264

26042

36860
122745079

33650

24067

49743
59077

21044

20532

5323830291
928161796

39773

45039390

18977

22386

12718

62646

37372
102423637

18459

56867

25035

58316

61896

49993

5981522632 64031

58633 9317
42358

6741

XVIVUITCUL5013054241
3520456581

CDX06BWFIM
3933161023

1710845756

10337

39299

26530

66017

30876

2749925603

15402

20005

734643182

46616

28083

3846535424

492952777426913

10425539943090

41687
8851

30545
866040147

3761649908369

GCSC8PW8Y3

382531099
16853320671666356167 25844

1500525137

14176
40924

61977

15089

3021746311

34633

68727

5196230643

57942
67757

394021441

1191353825
35096

4342533786

6469724408

12258

47374

27652
14888

1209636494

9815483433765317667

7566
44753

29256

52690

163203397358086

42230

45983

67377

3573656083

13496410428633

5062029106

37025 175

3375547861

66349 1594647566

68161

34735

5545578735427

28966

2147758449

687116396635480

42653

51204 63173

28240
33617 20599

405171364814823

50568

61475

18956

524913345462227

56008

3088

1590

133737008

6668938492

21669

40262

41759

66135
44934

17141

63113

349312255227587 24295

51327

20394

39340288213234
447211738423743

85218397 8878
24765

3648120810 2168810790

65099 3868222408
4386720030

58395
58410

167281294948262

63009 18191 38107 39020

64908

55479 19299

10486

56765

611299030

37332

4885 8502

17601

13093

380259638
26363

39803

12487

12961

16823

20544

64826

22609

44555

A39YVHNAU1

7470

45898

65208

49727

2320839053

42399

2254

2871263396

58462

3925

37390

47884

41127

42521

4959

46297

39004

28950
57626

12109

8509

200929521

46630

2713961032

65248
30412

38705

K6U8DOWMDZ

34397

43768

26503

43919

10677

66575

31219

20793

4866

4653417405

58257
19133

10054

12841

45869

58386

45121

19782

34849

47415

22327

475466528 52024

53328

15681
52481

19123
23717

388

44697

66262

48984

27007

W5TAO0HUTH

3916

15711

FWLL0PCRZC

F2QYJAKERV 12829

4687238484

38210

5551516031
2735

KNTX7WEKOM

522761795028410 14344

39115 3378

4WOFQB2BQ8

68636

26661

29778

3W59552TCP

60678

40438

21997

13429
60811

49B6B1GYZU

CBJ551AAHG

17885

39957

22234

7901

84DW0CJ3KR

240

23977

5471

67273

2009

1P8LGEI45I

14757
35798

28128

3175

6YIBEUTH30

10211 51984

12530

43913
22152

20732

11580

35665

27849

48758

49642

32245 11180

480

18441

15108

4564311199

56191

54787
27100

3189

30946

WUV23RK4GE

53045

51355

NAJ0ROV3KHC8ZC2CXD19
32722

5141141465

15617

55322

22691 178314461

47263

1552
32814

55667

5778

6312058414

23763

27864

31157
3430

39598

GQI5QWTVUT

63208

5768117398

7930

17174
41541

5390732324

1806360797

53406

31525

11925

61275

62335

4866642856

15751

37268

6114749726

48583

50371

649501107447725

13052

6849860445

39460

36438

48120 1616

51438

6336363721
59366

8803
55625

1040525451

1011514510

55709

45539

27221

26827

39696

37392

26977

2121
52827

3511

3618041028

55158

666

176

824853308 191805761445402 41586121265322
34138

580285813362514

53633

38081 3324655095
6718

6439

6287

31271

53387

3783532570L1UM1UJCGQ42999 22568159727346 34276

100934308065624

1270382533510756237
61745

414584674

419420382789651240

4073745942

1 6

63979

1778 114761591
67149

59998

59095 4301365562

24748

65553
28461

19183

35103

22559

51511986

2995

9790

63134
50597

18219 53748

59694

23918

21073

26609 2721810515

22062
3788

2686026311 9026
30325

1495867166

493326198743889 47293

35067

37983

13664

6250815631

31398 8863

19904

58650

49681
27024

7449
56628 236982101

6315649199

3629028348

367185510

5305456583

41595 153957197

48405

50073

534444803115219

27910
20834

64152
6410350514

6066538949

3719937112
17182

63423
53192

25044

22769

16869

62424 8206

4014

19365

37185

29772

5803534475

32309

31202

40359

65114

59391

4976
3450328857

22298

23580 50090
15334495733285614068

7806

269434450D2ODMWYZP8

32284549548437430558323 14864
50892GXQ38JFDLS

3504

40405

5450

57496

955

32606215751174

4701

04BI5RSXG0

25502

19342
23797

12368

60295

64191

62762

8271

64394 54125

2013

8586

33810

25314
63883

507132737

40594
1185

2070

41172

20449

6AO4WOPINR60839

4651

UUXQP9YIXU9ZLKUXT0XN 6BZ8GEC7287CB67WPNKV 30GMCY93V2

QNT4TKDX60 RZ98OT46ZP CYPEU8IG69 AXY5P966GQ MIY8K68WT5 7MAMJHNW0R

6IYXRLNN7E 8M7U88MKKN GIMDBH9MXL AK1MVAJ4FE FLYTMHDV4A P9B3LVRE58 FQAJKIVJN3 RTC8EJGKSDY0R64EBKKK PI9QHFQITKXMWRP4ZKK2 0HP5DUX7RA

5WOWDV4BUR 5S7CLHGVT0CTBJ38N0O9 CG0QT6FI2S 96WKVYJJ53 8KMYZSJ1MK RUH8IMLQEX 5PRHNDQZ4V 63RNQ2G59T GG151J0BYA YYQ6Y6J6RT 9N6PWFEFV1 LWU1AT0KMY A600CQKV14 LSPSK1VYFY XTUI94BHC0 JG5W0RY2Y3 NNQY8E8KA50Y0279GGYJ2D5779G0P65NYRXXFCQD79HAWXA3AP KMRJANMFYL 32415US0E2F5KY0BIPMLV7DVN9ZIO58N6XC09C5K8GHNI03GXAXA6MS

27677 416999615 11992 53440 43520 61835 49765 10116

AAWNNNT4AQ T61RUG490Q0IJHKWV6ZL CI9O9YFUEP 19KVDR3OUOY15SEHIBPC RTA8WQG9W1 24772 LJEY8R96XL 6A2XRNXP9I

JJWXZN4TLT MLW9V0OZK6JZNQWB8GB9MO13QMOKVS S16ZTXXK4Z F14KQVHQ83XSR5L8MOUZ 4AQ7GVO4UY 2EUV7ULO8P XM9DVO1G6A

5898405392076 42503 1442629118 58788 5947839088

5845464597403479612 5063428200 8146 24239 26379

65194 22844 57002 24125 375 21392 58075 65314

42502 28951 34200 22387 27699 59723 2711 23122

10410 4075153521 1336622257 54263

41839 23346 37503 6043 36606 64427 51708 67927

32303596538379 30915 58508

5328395506170 2255 5424251044 10318

28051478864107 21182 18136 498522111 97711077 MBB67I8KAF

361153692429300 30372 5033345467 42345

4887147051 2005852763 4407229944 2005752967 10830

42773232893607250915 18266 2440048584

13707 27442 13201 30469 50418 68163 5133412910

65230 IFW8PUNG8M 280301434542517 59887 629315068323180 22788 24789

36904 4 5265932552 74236578965238 20552 30318 45905G2OIHUSMJP

6602633791663833197333795 67805 5016066298 4648418243 6832

399766135155579524 1198818434 41697679117766 39149 41844

62546

3483050362 21904

27035 43555 20865 28862 7077 3183728704 30378 38860 38436 3487

20006 15267 15846 66833 57549 43284 25571 39130 52061531602003664354 54595 25277 5526062753 47748

5141 616361770 77137768 11761 399221864 3448442942 8081 7696587 11094 1186 49153 18220

150063094839776371923224661197

13019

31865358

49108

50674

743

B3II3ZTVUR

7992

MREN0ZIR84

26735 620529941 643875890 2257340392

13245 50893

35065

20801

61834

10804

23983

67127

6244519225

2170

26140

22116

33950 21867 5664132473 27653129526087339273 3938247058 18681

1355137395 434866523949693 27128

42891 64621 626924406 39775 36914 6792 11098 3611711662 32466

44793 49878 4461066415 39552 45182

2514354113414697128 13336 474211243454574 1188 49457 22625

LXLZN90P6SDNZMN5GWVR IX2X676BLYMA41ZDEVW7 47ZV5E5ASY 3HF8Z0H89Q E7Y4NWDVNM 3G7KXFNRZ1

67276 160366119427076 4373056092 7356

13367 21590 4029755748 32277 16762 9168

28640 83083088467707 6031239962 31880

3611649967 48393 280451440522284 38861

32757 3955135912 45124 4183760175 39073 1575624825

62879 66822 40334 55935 13265 7074 53689 6776061248

TKZEW2H6DNAMMS8ZW5M9YZWOKF4JCXB63PRLWWX6UT75NG9ZV91Y2TKOSZSIEC72GZVFPXP28NG302LK5344 1241942073 47975

22256 3481 56157 30912 26726 51521 928 32372

S546PBW5GGHCL8FEY08V PWIR8FG326282D40W456 LYZTOOOTTF UNMMZ76FHG IB7924UD4KDQLTN0QKOV 1LZ8Q201C0 K71MA5V4K9QTQF5I2KVY XBGTFEVCT7 B0H4IPT8UH R4T02ZFHTD YLNH8QIJ3D A14LMY88V3 NQTFMU9G75 E8EVZBCJ6KZB1L4V1Z09 KQQ4FK6382 T6D5W3SVH0 BTNUNGGCKO8MJHVLAMTD 6DJRVFQAEF ODX2LP6ZBU4MOGYWFGN8U0TJRPD5XA E680SM0Y0U 7AJKU19BFC SIJUE4TOPK EKODDL5NWS YC32K5XBBC

305805944 31330 68331 4945229071 23133

28204 13246 47864 360845597420108 5275044263 482

55682 9558558071985576006385610319 ZDGJW4ZLYL

295 3361 319752255416758 14522 11079 23288 10475 32915

39236 5701843548 82185518226314 4539130417 0UY8BQ3PC0

3188264943912827461227846459929929 65798 39266

414246336710660 64615 5656865029 26613YCAM8D6YR9

169363280443755 62250 61350 64698 7240 41198 1769

3810967407 4294313727 992761661 21188 44978 20554 23283 11183

R4NA0LYC72 PPF5PWF88563J6DDCQK3OFRANEIIAT2PWCD02OD39AQQDRNH9J02A53HYA9I JFXQ7GWBIR 06S61YL2KC ERRVIJIP9N

36891 5223913210 991241008 31808 23537 28331 68205 250315982 4358912218AJV1J0D05N

LEUOG7XHN0 DK68LO7S4O 6A0YT2UE7J 8ARKE5S08B

41936 39197 58377 8576 56645 14047 43151 35762 680V8ESS3GN5B319218575 48736 10570

59708231526144927158 740034199 50760 42501 55837

2 754179 11730 11688 38868 277 17045 68000

396138971 44764 6559960627 5069223719 26770

10498 11043932 47231 50663 42945 5748 42600

4022310569 4013479256534 58456 20867 57257

488053591613799105721544250689 51173 32255

25503

47219

15467

52764

52544 23179

28163 2517

66653

5904

25288

10949

5992313775

26469

51513

25822

1293

49109

38931

20625

52712

2885 52185

3195022156 62855426132443 32913 62047 4313

37195

348216658610296

66169

22153

7350

4459

580847454

10490

SHMX1MW78D

BD7RD8LGU0

36999

CQCZ1K705E

43KX3J8IN6
63211

6540

SBKXF1P4NN 55161
47878

10086

8AMNILNGYL

44583

59690

68025

9828

9793

44847

56442

6510

IXN280FW2K

65237

50112P49IOCOKO6

68175

4113

15774

54251

YYQE4V67A7

34421
5976

57371

6RONW7B0V2

CI5BY184NB

LVANBOWY0O

38706

20158

M991KKUA16

O5VSIGYNIA

10295

61415

GJI9VPZKSD

25592

30162

67318

8638

31992

FSZSWQXRCP 31493 64725

55967 40280

67722

50662

55511

22430

20609

19703 464

8980

63359L2XRQPYCYK

XGVAFYXZSL

19191

16827

5278

0Y6RWY21T6

61198

4869

32409

31028

32759

57343

59805

52351

6GBYQGVK9C
59692

49453 18639

20UYHKWDJ3 41812

IW1H37D4JC32761

43744

42077

12081

17499

56687

46247

20199

8359

74210256

20715

199061347 8414

6620710815

51266
10548

QNNM6UO5T7

67289

HHK10KK2SQ

64592

57091

1202

6065

66849 47451

35697

486745601

18980

44321
47939 33925 58653 55545

4193532551

20558 4955349040

7990

33596890
4032755520

49110

UT4ZS6QJUR 57444424732582
FHCXKU589W 32420

58474

19714

29220 5554843095

51719

60148

26947

8085

6184912227638548265

19665

52333

24566

64707

ELVQK0SX38

4566622747

TVTM1VFYTG

52313

9VK9OX6K8W

34206

66474

33265

34194

QJ54HNB7C563519

8575

2665042951

36602

165
P9HHVJY7ET

66251 10072

66616

5866

2 0

7140

50079

10409

23803

32780

41180

55676

20741

65665

1078

183

BFMUBV3NUR

26222

42329

50576

29044

55497

IQA4M3R3QT

T5QZ6QXX3F

66541

36156

YGBT4TQVM1

61649

50435

5255650033

40274

X75EBFQX1H

38264

61020

477

41388

8875

53721

O412G4FYA5

5342

47880

59834
3AW2NDIBX7

10231

E4XG4GYQNX

22202

IOY55IEAUV

51565
38084

12485

35207

37238

PVK5CLN34H

32727

52050

9574

JZUKXZ666E

5R24N3G84B

YMN5QVBTW5

57396

641Y81YCHQ

1878640010

9686

19177

6084

2133943717

1846

10923

45663
5PM8WM1KDC

2754

1258767524

2837153715 PIF70Q12FD
18285

13355

W79N73T2L3

54099

D08YDKHOJY25060

341988970

374

42384

1973

13260

2842

28095

R7ZEULIH14

52498

2114145697

65697 17307

41519 5842613794 40183
37837

6044

42923

AU39ZTUX9Z

29117

61520

DY5T73KHQX

32295

MKKOCRMLDX

49149

65707

6831723176

40698

13347

61622

12277
4M5BS4Z2GN

48677

4074

ZZX0XK2GLL

21563
20877

61180

68045

58858

46585 55263

46924

59295

NN2T39BGDA21385

KI7NXY4FNA

43550 CZAY6C5S19 17886

59809

14495

13443

56126

CCNS3KUD8127941

18548

19997

58119 3904

23674

30886

57445

34797

37806

419194K4OBV2SHK

9OVFUNG77F

38092

6583221907

321356504

7576 36682

49334

25614

11954 38361

TQ5JN30M7T

20420

47713

BW179KHFMD

580662550

17671

47399

V7OT9ADZN1

12295

44430

JTKWP6HLD0

41109

IOV25L0PZX

38493

63407 49471 47002

61289

6614946357

P8XK0RPGHI

47681

27767

5189158856

40384

59150

56244

46H1HO9OV7

Z231ZFMK62

30596

21573

4577830453

31416
10655

5828

66359

23838
12661

31DK1IKV3L3012

62076

31159

20169

I00D0789JB

68015 1TC3IT0D8O

LOS1ITTAQF

981

2ODJ7KBTKS

42818

3C7T70L8FQ

OO6CGQ7LLI

23788

42043YZ5WKL6XXT

3630

26734

KSUCC9A6K419319

39616

55173

SYKJS3LKOW

39586

11755

26394

65651

22238

12214

36213

13651 414235816

44618

4128

64815

D1E5KFGBWJ

21008

CPYOSAEB8E

60284

12444

34598

9WW7OCV7OK

A5L7O891UQ

JHV5BJUOXI

64163SMIRSQNJA3
61608 42486

48409

39235575

34958

JUNOX98K6457272 25639

7133

B2HOMDMS88

6292023132

25448
21735

27728

VISIC5BQPC

44787

21331

11610

57183

6240 6900

1110
52349

13432

13558

P9XO1N3I7P

24888
61985

56639

8G9SZF9IJ1

64298

46963

56437

47597

63182177
U6O4HSQDAB

51857 5892658703

65792
19488

18125911067383 40112

40316

3492
48299
19699

1423526509

S8WZXBKJVT
46993

2454

36899

64332 40528 171007780
47357 27764

4312

12015

39085 54652

30766

21411

64485

5350636626

27480

66761

60604

452306110115212

18720

56504

151979975

16467

18675

47623

52860
57829

40231

18452

51771

46798

6384

29953

35892

8982

3738631065

41967

59190

361922950949817 4954157738

3302934869

15238 63728

497645315975223979124059467403826

17329

35750
66820

45692

5029

6673938419 11024

6075160691

4373344467

451818143

47049

4979419974
34891

1613

13133

4600128292
50052

554410064 5063

494443948 6116935300
4089443588

67157

55819

28426

36163
9757 26654

29976

48891

66612

18031

2363334646

28549

6481

2291623666

4200167BWRKEJHM 31921

47703

49958

34101

6302

53495 64142 46703
674537668

29859

57542

42260

52773137628001

28737
478142130125239

60861

32562

31268

480021827

5421

68651

36965

5078619808

15587

32881
642085764 1243962345

19982

26467

31832

26979

16780

34948
5234425669

27793

550795187

67012

37932

65284

59730

830120901

5573561247

39984

HM47OASPBO

42727

58530

OBNEI7DBZW

2JPJ1DVIWJ

276708599

24300

41932

30796

H52CR5L7TL

6181

14911

14489
43783

2144722016

61295

32291

42925

32439

E3PD254RB1

1WGCLUR6P9

42894

48441
28111 15338

34744

6464
43242

59858

25307

793

10111 17510

56063

IZOJVMPTT255229

1126

68566

30589

22643

4137

16059

640636561754624

10497

58733

4627967706

46759

41007

9105

18015

22482

38847

38122

37953
25335

40322

65193

3373

59276

30971

48248

674

21624

10225

5313713735

51405
41518

414
10659

3627836033

50360

11471

62597

36522

XTW6OZ7J17

80551851

25149 51498

64577

65197
65302

1214330881

20943

2371

58729

3741768278

68400

757316570

23560

3479

49939

10631

65940

60134

2840650972

21714
33986

66662

29750

31907

53037

2476934376

420185477
16026

37520

2156859357 65661

46786

7417

36138

26446

21834

6638

22862

28439 74296578

53064

988424571
2865633315

49563

058TKFAWOJ31760

56970

6738

16654
67052

62245

5113868125 59861

EAX4LFDT9Y

66755

49480 ZV71K1UDU0
11618

16476

57479

29732 21729

8CB2LACG6G 37626

26805

36687

1GH9BZWM2W GG24DSURGP2460341477

23023 40369

307834066365325

24626

57302

15482

66778

1923726958
25197

1054114245

44594

25249

5777268144

2270

62676

24834

55491

59216

34151

718157246

30559

35376

64011

14342

OCFAHVEAN78621

67820

5109023245

67851ZIVWKG2Q9N2310658493 992025019

43361
25849

32581
22342

25750

34742

43811
2450461659B7CTNFIBLG

1645518694

43700

67268

11535

56759

M08FIZ654E

25145

34829

51045

KF0BU86YRX

PAN1ZPBQ1U 54128

7754

44577

22613

26146 36775
2G1MWN358N

25866
40987

WON6FWH0QU10537 60024
45142

60094

34620 31314

9533

5559

24492

28325

20878
WSS8P25SJC

4197725764

59171

23116

25755

35236

21934

24259

14304

27735

41338

9656

13750

12749

17911 5942

5379

452125675

12715

55835 30896
160169451

9675

6671346056502238480

49356
197402670239498

21747

737938256

59471

16610

181

4249123220

64931

19318
28262

34399

3415937063

12264

55867

65017

20471 10112

22996

31620

62775

68221

2194

40634

31838

67282

24478

8416

41176

25721
13110

47132
S9NF9NN64Q

27222 68054

63736

67253

26707
61588

38499
31051

25163

36939

4111

UQIF68I2KK

59710

65346

15843

6424462306

67327

2339

9303

(b) EU: 0.9

22257643879941 5890 5352162052 22573 13366

4518239552 44793 49878 44610 42502 28951 34200 GPEMQ11RFF

6559944764 E811WFMBOP5069223719 26770 20625 52764 4721949109 2816313775 5992362452

10410 5426340751 47051 527632716

27699 59723 271122387 231228308 40019 60312 31880 2170 23807 67127 1324565798 39266 67707 39962 28640 33204 30884 RXDAKL32B1

742336904 39613606274 5 8971

743 4910822116 208011080428045 40392 2673566298VQRY5WQVM1

20057 4590510830 32552 65238 2659 3031865789 205529GK0HHR6VT29944 440724887120058 52967

483930F5BA1JGV2 0DBF5FF1BJ 36116HV27PFBRS09558 2228449967 3886114405 WC2WXRK4EW

5QWXQZACDV3186535850893 66415

6170 9550 2255 53283 51044 54242 10318 43895

375 580752139257002 24125 65314

DXCIPIQSTE 2517 39236 30417 43548NR5OLU4OHJ R03YCVVVWK

36084478645597413246 482

23289 4277350915 36072 18266 48584CM6S3SO58O

18243663833197333795 33791

67778 22153 44263 20108 7992 52750 28204 50753

55182 82184539126314 57018O5R4HXU6O7

24400 77665557 184349524VD88TM0VX4

55748 32277 16762 13367

399766135139149416976791111988 1056941844 12910

21590 40297 9168 23983 26140 4406 42891 39775 1109811662679236914

20036 34310 53160 52061 54595 25277 62753 13416

6285 4313 43755 62250 61350 65597 64698 32804

167582885 145225904 5151352185 3719566169 7350 22554

22156 31950 32443 32913 62047 54261

48082 3VXIVBBRDM32915295 11079 23288 10475 319753361 2360550V20ANOEW

11992276774774855260 9615 5344015846 66833 57549 43284 25571 39130 64354

41198ERAQQJ53VS169364X1K4AOVIG 7240 1769 2665

66026 46484 67805 50160 6832

373955067435065 4969313019JRL1YFWO1B

932 47231 50663 10498

437301603661194 6727656092 27076 7356 19225 62445 61834

4COQ520E4B258225271265954260011043574842945

32255

34821

22844

15267

57257

33950

61248 62879 66822 40334 55935 13265 7074 FUDBYACM4F

4183735912 24825 15756451243275760175 39073 55704

49765 R1GE7LTWBR43520 1544241699 61835 10116 50689

20867

62692

25288

43486

35916

39273

51173

66586

40134

65194

20006

37999

6534 7925

36117

10572

13551

48805

32466

27128

40223

10296

60873

66653

65239

58456

13799

64621

39551

4146971286776053689 J4XT0KPMNS 54113

40625
45736

33543

9675

13794

29595
57365

60604

24086

18786

48073

459TAFNYZT

1227

50149

25655

23282

9 7

51548

16570
58965

28950

4014

18581
19318

41896

56227

17066 3682

14642

21286
21130

20773

WFL7ZKEHDW
25982

51382

20692

29509
6435

924

35336
7023309016026

53132

59834

32992

1268

40852

34958

49254

10677
31944

53601

43318
10653

20152

61556

25481

9768

57920

49509

45402

19615

1035

14456

45385

22552

31145
26122

36010

67851

27967362427822

62541
6811146950

32017

18844

20253

68711

11850

636665013

66288

20394

8660

35606

13824

15826

28083
6516845692

5263

35910

38682

58006 58588

52419

53907

59600

24697
55387

55319643

59077
43974

64950

2934

4387

25729
65486

24295

35835
67569

27910

48570

19974
26847

37152
29715

56120

57878
4941814017
45107

64971

46660

21044

50568
432268329

28633

33755

668203371551028

64813

357226913 3361717030

54465
46064

37259

48387

12799

6357267652

62493

37108

55924

22057

4070
30766

171411191318339

14176

35455

37417 44977

1481
31452

17667
59789

52149

65805

5498712639

23420

68204

16278
43864

32205

7233

49642

39773

8851
6342363009

24986

64142

54915

6788731668
30545

6592230744

33512
57125

62404

40803
33650

37538

23220

36767

52690

16320

5919

21952
26860

30559

5702

64826

45226

50943

43425

1539

26304
13496

15604
29373

32749

48724

6738

55610

9746

62227 61421071754556ZBAZR68U5S 21858

47283

1661936103

4436

30254

54218
60171 11403

5165936860

16164
54519

35725

34364

37616

X9HXG8NUH9

5338
28268

38203
414

56759

21669

54369

36578

6601736383

38253

64891

3306
21380

5138
60926

45844

4223
4451566349

47317

66739
47116

61475
30160

34787

22838

63113

66135

2758735630

24394

47509

10170

4493445319

62370

34288

29256

59651

40221
67493

17838

49299

66598

2270

7172

63504
27260

1757553238

3632219268

37780

19893

12400
56663

25465

63462

66882

9686

57820

66440

21934

6515

64553

12334

24117

46139

38730

44262

7648

29928

63850

2875332081

63697

60720

54042

7974

34546
43686

2410

24059

7048

9281
6975

55787
17370

9390

6831

66689

61323

17793

21518

27698

43076

36180

31583

42725

11599

45643

65553

26629

11660

5656865029 55807198526613 10319 576006385655682 LR7SEUXI01

58633

19488

50481

21141

52313

C7K6DZG8N0

7400 68000 38931 1293 26469 10949 52544 23179

41424ZIV9N8ACLJ6336742501 55837 10660 6461517045

64599299291546725503 22784 27461 39128 649452435 31882

48299

35204

27499

61879

955

36679

5745

2600

3423
34989

14324

55119

8621

41221

67757

12310

31398

1728927652

61147

56948

25239
66778 20599

38614
52622
41588

15587

24478

61977
37932

33426
3088

5029
50786

22716
12143

15946 42162

39723785935794

27122

48973
15295

67701

40517 42581
48192

59471

61742
35424

18956
54785

11683
14823

63786

26596
14726

19365

1441

9443
65086

5196220994

1931
13648

429952636318109

6948
49295

10597

34735

41687

554

53159

64477

34926

8DOEZ4EVYH3C7U3GVWYIUBOT5Q5RFO31PGW10OGU2UWATOQ5SVPBP2NE0WY18BPSHHCPF87O7TDJ65V5 KF7SV67LLN O0EU7BW8ER 2B54NW7LR3 VLVVOLQYJG 4SGK5YI990 IV4JMQDS9L MSM4FXPL5X FXLV8VHYQW059TVJEP1N 5ASBDELPNK8LIQ6GLVJC XXRQQXD9B4

WT7FB3BW8U CRXS9ABTP5 8WT54LI3WD 24772 NRXYJZAVKL

H03JO1VVKTVOBIGKSHU8 JAW56SUEXGKYYI9P70YO TEKUUNSVUZ 7VPLFY5PGZ BWMDJR18PU G11FJ6I1IH ULG48E1667UC3CNGX6CP RFN0HDM1O3

TRKQ1BG3VG MTRJEA2ROZ L5PM0LP0YS J7I3QLMVAR ER2DZ8Y3Y0 T7CGKBS61P 21XR24Y0HW ZS87UA8HQ3

6VB0I7CCXX 0KCE6QGGYIW7DIJ31QGE EE26DURY3B

0RPZQEKEBE RIG8V2IEHP 33IFRJ3M8U BZE0NYLXP6 HOIQK4EZG7 5IXWUEUYK1 VVHGFJD8UTX4VUJV9YZWTGWP0S88N4RUNYOT5TBF32415KDJPKGGNO3

ZJ0XPZQX7E 9BYU6W4LNS QVZHD32WI1 8P753EGW9J IPM4CCXNOJ DH0Y0WAZQN LHJUGAS915

G06M3087ZK LFR0LFJXMR Z6DZE2YQ52 18LSOP7CIE HIKX2TO7J5 791IVGBG6OYFFVTDDE5I 78P2ICZMNG MVWX83GD5W RWYJJIS15B 9EQ1GR7A2J YYM2WCWYGX 6UUKFVBKQS Y5JREJQBGG ERGHT6P548 TWJ6HYTW0M PQ7L7WX5Y1 4F1LFFPI5Z ADJA1KDX70 RALQGC1LR4 L12FKE0EA6DZ2YIPGIAKGSWTA0OWO91HJ5JTO9KV8KJ86AEZYT1HKR05LIFJ NUD11JNHT5 G6ZWDH3YBW EZTB1L5YXX3GL589TKI9 RATW1KJRHO

6A3J3QR83M IA0YDDGG2E EGB0T8RI4W 3J752POLVF ZIK5WP6BEK SN4JWBLZI8 2PPFZIQEPI MVPUU5HC7K

UT5GKXBL6K FHJL19RBXHED8B72GD9C OVDEPC08DU

8ALHCJEF1L YKDUOPLVNI Z5FLADU6PZ EXNJA8Y8BI UHE9NCSHYV164JDMGEZV WJKCYZE55I LO8BL1EKMZ FUGUHM111D VLM3X4E801 617D2EORKJ X3930CHIJJ Y48C5ID7BA 3B87B6BDYYJRX8LHXVEBCZPW2JTU5DYLMN4NQB7G YY7D7QFUWK316BNYZYOK QFTZ2DWQGB

11861109434484769 218646587 49153 1822023062

3230330915 110775965 99124107 36891 31808 4788658508 52239

80814294239382 186815664112952 27653369244705821867620813247340665

IYHG8DH2BB 25143 ECQFHGS3OX 13336 54574 EXNCS1HR1T 12434 47421

6649658788 59514 1442639088

1188 49457 22625 28704 30378 38860 38436 3487

13210589824788 38379 59478 41008

N9845TOAH5288624355527035 20865 7077

11688 38868 27729071 11730 49452 30580 23133 2 7

23537 5982 28331 68205 21182 12218 43589 25031

43151 35762 18575 3192 29300 680 48736 10570

42503405392076 270482911826552

4546734813037222256 36115

124195344 47975 6144934199 42073 23152 59708 7PI2CVZ26X R6SJIM50T7 K28XW2DVZ9GGB72FF3RE50760

31837 61197 32246 37192 39776 30948 15006 KW3UEMHEJV

7713117615141 7768 1770 61636 3992

6459740347961228200 26849

1813628051 2211113727 61661

4985 97767407 13707

8146 16226 58454 51300 24239 22356

50333 56157 42345 65230

8576

50362

5837751708

232832190427442 9927 13201 30469 42943 38109 21188 50418

233463919741936263795063441839 37503 366066043 64427 56645 67927

24789

14047

11183

54179

34830

68331

27158

22788 1434562931 280305944 3133050683928515212672623180598873091242517 32372

51334205546816344978

(c) EU: 0.5

JFAOO9T92Y G7H516BH0VPZK016KUXH 9K8ZPMCSGD NRUBWZK0IUIW2YPEGZ4Q UK08S5I14Q K8ZL1K08YB

M0CKBLQG6O VDWJPSI0OF D8G3GP0IM8 U0OX08C535 B7GVDD23F1 I70U0ZW6S7 NYG951S6Z4 DMEHAHHWA3

RGVYGSSEXS

D3TSVV2K5K1GPC9I6GQ1 VTF0YQSO3CRM8SVPTQPG

ZN9OTVCDCX535WON747W N9DKNZ974D

MZ2VX3FHVC AYCGWCXEJY PTGZQCW739 M4NGGLD3YU 3HNHW7IR58 XF2I5K04G1 X6NJTT98VJ 7VKN0L3PQ4

MQ6Y3VG72DEZKXHISI8L 7630QHNPGUC8GAGYIXQ42VA1JA9KJ4 52N3A3HQNH 3XKZ3ZYTQUCUQRG7PTZ3 PCWD5SI2AR 71210V1DGL

ISAEG1YV4NCWNODR0NNG71HY2U89G1 IXIRKTFZRQZ483PWJNQRO7IWJ9EW396E5S3AJJB5J6DYRZA2BR SLE3ZGPKAW 8UXG082N8L

ASCCOIXPZ31FTD8UFP9QW4B4G62Q23 ETRYAFUU16 R9027GWK1E PRLQFQQNX1

CTI9J8SZ7FZ3VLL7UN443TC30K0O52 MSF29ND2D7 ZIZUNCD71B R2S9U0GVCP

35065 506744207353443419961834

55974 23180 26726 47864 36084 51521 482 928

373951301912419 47975 49693 61449 23152 13551

221531057048736680 44263 20108

38109 82183046945391 5701842943 55182

25822 3192 66653 29300 25288 10296 66586 34821

62931 3237255748 50683 32277 16762

4406 11730 29071 42891 49452 36914 30580 23133

681635609221188 2707650418 44978 7356

3886811098116626792 11688 36117

16226 58454 51300 24239 22356 41839 50634

44764 47886 5069223719 52239 65599 23537

68322GPNQMGURT26379501605YZHVQKG8J

5LFW91NYZV28331267705982 20625

10498 67927 42945 5748 527126595185754260035762431511104314047

RN6SYVAPFH

54179

GUU9FR42GI

11183

68331

27158

WLCKDNF05EURGN9FRO8OSVJX2TDMY84MNPYTEU53 JHDBZAKHJG 7YVAFBLGZM

27442 9927263141370767407 13201

5944 22788 14345 13367

97718136 43548 22111 498561661

30372 22256 3481 45467 52750 36115 50333 42345

X8PA1DCSUA5076059708 65239 U94Y23TQBM43486

21904 6727620554 5036251334 61194 43730160362328334830 19225 62445

598871324656157 65230 42517 30912

261402398391684029731330247892159028030

30915 596513210 606273230341008 58508 2716

8146

24UQA4LW0A56645

31808

26849

1372728051

41936 39197 23346 37503 6043 932 36606 47231

2517 3923643589 25031 304175276449109 599231377568205 21182 28163 47219 12218

396138971 110774107 368919912 28204

7077 31837 61197 32246 37192 39776 30948 15006 557044066528200 9612 40347 64597

583775170864427 50663 1VLUUK5P6O 8576

B5I7JG4O4O7BXEVGFTGH47NUADERW1 1OAWJFKLOJ

2 764621277

JDNQK6D8RQ

62692

24772 R6H500JJYP 0LF3T2M5CX J1PANTGLBF RZHPNXSZ01 8QJLVYV0YF ST7VTM520B AOJZICZE82

RKIYY8N7IB TJR894WSBK 95V9NXSL49 R9JLKZVQJN B4X9EKNHXN WDA3RS2S5T EUHA18JTER GEZPT8R736

KRIX0CICCM 1DR7Y5N0LI EZQGUFMSED 4KTDWYHNPS LFGCOIW8YZ QTATPPLJI4 5E4HJ4LXEV 5D8TR5ACDP

IZ1J2VPE7I31AVWTN8WD16QCASW0EHLYOCE4K41G E16648PJ23 OUQ6UOM731 ZQODYF6AZG PAD3IFJPVL H1G02Q9YK8 MEAFP6UTKT

R0CPCRDXJ2EOI01WERU62HH5HRTUY5 OOJRRC8MM4 QKUH24AIGB H9H2R6LIEJ MLP2XB4ASE

T907FSUS196TZVRDMLD8 Q1GPNB9SDOSH91IBCBIX 72Z9X27EKZS0KHJPJ9TN QLQBZDMPO6

6S9R656LJK8C7TAZLZAA2GPTNBC4WL 3BY0UT5O42 32415TEFXU8ONMV VD3GD6P8W2

2284427128
11913

6519450568 50915 65029 36072 2661365314 41424 56568 55682RST4TWBWF2TDGTITQK0C6336758075 64615

43284 25571 26469 10949 52544 39130 23179 6435419615

643

32466
43226

59600

23420

1441

20006 15267 7400 68000 15846 38931 66833 57549 1293 34310200361546725503 29929 64599

17045 42501 57002 55837 24125 375 10660 21392

53160 52061 3912827461

7432885 37195491085904 6616940392 5151352185 Y417ELGFIG6534 792538861 10569 2804536116 39976 41844 1FOPKHFTR3

4858410319 42773 1826623289 5760063856 AMPUNF3GZO 776618434 9558244001985 55579524 55807F01BQ2VHCR

31882 27677 65798 9615 11992 39266 53440 4169952435 54595 25277 6494 62753 13416 55260 47748

11988 1440541697 KFKJG27F6967911 22284 4839349967 39149 613510MBSBNGUQX

22116 2080120867 4022358456 4013410804 572572RAU05AHG6

332042864067707 39962 3088443520 61835

643873197510475 62052 32915 GZXK7CTZ1E

3186535831950 32443 6204712910 32913 54261

359122225722573 13366 1041053521 3275760175 4075143895

23807 48805 67127 13245 51173 32255 22156 50893

BLR3RP7XDU40539

12434

2076

67805 37999 47421

ASLPV02TC6

39382

7074

36904

MZ6HSWY2BIBXJ5UWL62Z 53689

12952S312J6TGGG

35916

44793

58903361

15756

16936

13799

50753

9941

32804

10572

24825

23288

39552

2170

26552

11079

WEMI4V9ZYG

48871

3992

9550

15442

64698

36924

24788 58985947814426 74234 538379 3H1NBKNBLK 67778

1188 6B0JUJODW2 49457 22625 23605 28704

3448448082 769 4915321864 11094 1186 397758GTWQ4WK7P 65871868156641 4294227653 808162452

595143908842503 29118 27048 58788 66496

27035348738436F9FDCJ66H63886030378 LZBZE8JUU32086543555 28862

2659

7350

18243

45124

8308

22784

6285

40334

18220

59723

16758

49765

13336

4313

54263

21867

5141

2711

14522

47051

43755

22554

62250

4001910116

23122

52763

30318

54574

45905

Z9S7VVUPAO

2055247058

4648433791 66026

23062

616367768 177011761 7713

39073

617013265

66415 65597

41837

61350

55935

20058

26735 295

318805068960312

LQI7AG5NHL

54915

44515

11850

30744

9746

33715

24394

25VVPUTHCB

65922

62227

14017

36383

44262

13648

3395039551 44072 2005729944 39273 60873 529677992

67760 2255 7128 53283 41469

342006124828951 62879 27699KRWQRBLMTC 22387 66822

337951031825143541135424251044XI7H1WF1XE 662982X5RFH4LI9 31973 66383

7240 49878 41198 1769 2665 44610 45182 42502

6523832473 3255210830 62081 65789FTDQ9LWK9J

(d) EU: 0.1
Figure 9: Visualization of graph ca-HepTh and its summaries for varying
utility EU . For clarity, we ignore smaller CCs for (9d) .

show summaries with decreasing EU values from 0.9 to 0.1. We
can observe from Figures (9b)–(9c) that, as the EU decreases the
number of CCs increase. This happens because as RN increases
by virtue of the decreasing EU , relatively lesser important parts of
the graph are collapsed—and at some point they tend to get dis-
connected from the important regions because the UDS algorithm
makes a decision that maintaining connectivity in that particular
step is no more beneficial in terms of the graph’s EU . For the sake
of clarity, we ignore smaller CCs for Figure (9d) and only show
largest CCs. Overall, we notice that as EU decreases, the largest
component of the graph gets disentangled and becomes simpler.

6. RELATED WORK
Sparsification-based methods. Shen et al. [33] developed a tool
called OntoVis that simplifies the underlying graph by relying on
node filtering to understanding large social networks. Lin et al. [21]
propose an unsupervised technique for egocentric information ab-
straction in heterogenous social networks where the key idea is to
filter edges as opposed to nodes. They design criteria to distill impor-
tant information to construct the abstracted graphs for visualization.
Sampling-based methods. Plethora of works [13, 17, 24, 11, 1,
37] focus on simplifying the underlying complex graph through
sampling of nodes or edges from it. In summary, these techniques
estimate the properties of the original graph, estimate relative fre-
quencies of its substructures and then create a small sample subgraph
that resembles the original graph. Also, there are techniques [10,
22] that use linear dimensionality reduction on the complex graph
to generate simplified graph sketches or data synopses.
Grouping-based methods. The approaches [16, 36, 31] focus on
the compression problem as a selection of supernodes, superedges

to minimize the reconstruction error, while completely ignoring the
preservation of important parts and regions of the graph. Purohit et
al. [30] study the diffusion and propagation processes where they
propose to merge two adjacent nodes such that the coarsened graph
retains its diffusive properties. They do not consider the possibility
of merging nodes that are not directly connected but share majority
of the neighbors. Their limitation of not considering indirectly con-
nected nodes prevents them from exploiting various opportunities
to achieve high compression. Navlakha et al. [25] propose a highly
compact two-part representation of a given graph consisting of a
graph summary and a set of corrections. The corrections portion
specifies the list of edge-corrections that helps to recreate the origi-
nal graph. Using the concept of MDL (minimum description length)
they try to create a graph summary with a minimal set of corrections.
In other words, they are trying to minimize the reconstruction error
of some form. Tian et al. [23] provide distributed systems solution
for [25]. The solution that we propose in this paper can be classified
into grouping-based methods.

Most of the techniques discussed above deal with minimizing
reconstruction error without considering utility maximization. Only
a handful of approaches consider preservation of utility that too in
very specific scenarios. For example, Yan et al., [37] specifically
focus on entity graphs with meaningful node, edge labels and sample
important nodes (entities), relations to create a concise preview and
utility is evaluated through human reviewers. We also note that
none of the above discussed techniques deal with generating graph
summaries with a user-specified utility threshold. Moreover, the
majority of prior work evaluate their techniques with respect to a
single application and do not demonstrate the effectiveness of their
summaries to more than one real world application. Finally, we
acknowledge Koutra et al’s work [15] that partly inspired our work.

7. CONCLUSION
We strongly believe that given any complex, large graph, the abil-

ity to query a graph summary with a user-specified utility threshold
has tremendous potential, and can find applications in a variety of
use-cases. In this work, we present a novel approach to summarize
a complex graph driven by the objective of maximizing the utility
of the calculated graph summary. In doing so, we establish the
theoretical foundations of governing the properties of an ideal utility
function. We make theoretical connections to well known problems
to prove inapproximability of the problem at hand. Subsequently, we
propose a utility-driven summarization algorithm, and supplement
it with scalable heuristics. Our iterative summarization technique
allows a user to query a graph summary with a specified utility
value. Finally, our experiments and evaluation results on multiple
real-world datasets demonstrate the effectiveness of UDS both in
terms of quality, performance, and overall practicality.
Acknowledgement. We thank reviewers and our colleagues Sandeep
Bhatkar, and Matteo Dell’Amico for helpful reviews and comments.

346

8. REFERENCES
[1] A. Ahmed, N. Shervashidze, S. Narayanamurthy,

V. Josifovski, and A. J. Smola. Distributed large-scale natural
graph factorization. In International Conference on World Wide
Web, WWW, pages 37–48. ACM, 2013.

[2] U. Brandes and D. Fleischer. Centrality measures based on
current flow. In Conference on Theoretical Aspects of Computer
Science, STACS, pages 533–544. Springer-Verlag, 2005.

[3] D. J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge. J.
Artif. Int. Res., 1(1):231–255, Feb. 1994.

[4] I. Davidson and S. S. Ravi. Intractability and clustering with
constraints. In International Conference on Machine Learning,
ICML, pages 201–208, New York, NY, USA, 2007. ACM.

[5] C. Dunne and B. Shneiderman. Motif simplification:
Improving network visualization readability with fan,
connector, and clique glyphs. In Conference on Human Factors in
Computing Systems, CHI, pages 3247–3256. ACM, 2013.

[6] E. Estrada and N. Hatano. Communicability in complex
networks. Phys. Rev. E, 77:036111, Mar 2008.

[7] E. Estrada, D. J Higham, and N. Hatano. Communicability
betweenness in complex networks. 388, 05 2009.

[8] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than bloom. In
International Conference on Emerging Networking Experiments and
Technologies, CoNEXT, pages 75–88. ACM, 2014.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM
Trans. Netw., 8(3):281–293, June 2000.

[10] M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent
directions algorithm for sparse matrices. In International
Conference on Knowledge Discovery and Data Mining, KDD, pages
845–854. ACM, 2016.

[11] M. A. Hasan. Methods and applications of network sampling.
In Optimization Challenges in Complex, Networked and Risky
Systems, chapter 5, pages 115–139. 2016.

[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and C. Li.
Resisting structural re-identification in anonymized social
networks. The VLDB Journal, 19(6):797–823, Dec. 2010.

[13] C. Hübler, H. P. Kriegel, K. Borgwardt, and Z. Ghahramani.
Metropolis algorithms for representative subgraph sampling.
In International Conference on Data Mining, ICDM, pages
283–292. IEEE, 2008.

[14] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos.
Summarizing and understanding large graphs. Stat. Anal.
Data Min., 8(3):183–202, June 2015.

[15] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and
C. Faloutsos. Deltacon: Principled massive-graph similarity
function with attribution. TKDD, 10(3):28:1–28:43, 2016.

[16] K. LeFevre and E. Terzi. Grass: Graph structure
summarization. In SDM, pages 454–465. SIAM, 2010.

[17] J. Leskovec and C. Faloutsos. Sampling from large graphs. In
International Conference on Knowledge Discovery and Data Mining,
KDD, pages 631–636. ACM, 2006.

[18] J. Leskovec and E. Horvitz. Planetary-scale views on a large
instant-messaging network. In International Conference on World
Wide Web, WWW, pages 915–924. ACM, 2008.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection.

http://snap.stanford.edu/data, June 2014.
[20] C. Li, G. Baciu, and Y. Wang. Modulgraph: Modularity-based

visualization of massive graphs. In SIGGRAPH Asia 2015
Visualization in High Performance Computing, SA, pages
11:1–11:4. ACM, 2015.

[21] C. T. Li and S. D. Lin. Egocentric information abstraction for
heterogeneous social networks. In International Conference on
Advances in Social Network Analysis and Mining, ASONAM, pages
255–260, 2009.

[22] E. Liberty. Simple and deterministic matrix sketching. In
International Conference on Knowledge Discovery and Data Mining,
KDD, pages 581–588. ACM, 2013.

[23] X. Liu, Y. Tian, Q. He, W.-C. Lee, and J. McPherson.
Distributed graph summarization. In International Conference on
Conference on Information and Knowledge Management, CIKM,
pages 799–808. ACM, 2014.

[24] A. S. Maiya and T. Y. Berger-Wolf. Sampling community
structure. In International Conference on World Wide Web, WWW,
pages 701–710. ACM, 2010.

[25] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In International Conference
on Management of Data, SIGMOD, pages 419–432. ACM, 2008.

[26] NetworkX developer team. Networkx.
https://networkx.github.io/, 2014.

[27] M. Newman. Networks: An Introduction. Oxford University
Press, Inc., 2010.

[28] M. J. Newman. A measure of betweenness centrality based on
random walks. Social Networks, 27(1):39 – 54, 2005.

[29] C. M. Papadimitriou. Computational complexity.
Addison-Wesley, Reading, Massachusetts, 1994.

[30] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and
V. Subrahmanian. Fast influence-based coarsening for large
networks. In International Conference on Knowledge Discovery and
Data Mining, KDD, pages 1296–1305. ACM, 2014.

[31] M. Riondato, D. Garcı́a-Soriano, and F. Bonchi. Graph
summarization with quality guarantees. Data Min. Knowl.
Discov., 31(2):314–349, Mar. 2017.

[32] M. Riondato and E. M. Kornaropoulos. Fast approximation of
betweenness centrality through sampling. In International
Conference on Web Search and Data Mining, WSDM, pages
413–422, New York, NY, USA, 2014. ACM.

[33] Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large
heterogeneous social networks by semantic and structural
abstraction. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1427–1439, Nov. 2006.

[34] C. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: An
interactive tool suite for high-performance network analysis.
CoRR, abs/1403.3005, 2014.

[35] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
for graph summarization. In International Conference on
Management of Data, SIGMOD, pages 567–580. ACM, 2008.

[36] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka.
Compression of weighted graphs. In International Conference on
Knowledge Discovery and Data Mining, KDD, pages 965–973.
ACM, 2011.

[37] N. Yan, S. Hasani, A. Asudeh, and C. Li. Generating preview
tables for entity graphs. In International Conference on
Management of Data, SIGMOD, pages 1797–1811. ACM, 2016.

347

http://snap.stanford.edu/data
https://networkx.github.io/

	Introduction
	Preliminaries
	Utility of a Graph Summary
	Utility-Driven Summarization
	Iterative Greedy UDS
	Memoization based Approach

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion
	References

