Utility-Driven Graph Summarization

K. Ashwin Kumar
Symantec Research Labs

ashwin_kayyoor@symantec.com

ABSTRACT

A lot of the large datasets analyzed today represent graphs. In many
real-world applications, summarizing large graphs is beneficial (or
necessary) so as to reduce a graph’s size and, thus, achieve a number
of benefits, including but not limited to 1) significant speed-up for
graph algorithms, 2) graph storage space reduction, 3) faster network
transmission, 4) improved data privacy, 5) more effective graph
visualization, etc. During the summarization process, potentially
useful information is removed from the graph (nodes and edges are
removed or transformed). Consequently, one important problem
with graph summarization is that, although it reduces the size of
the input graph, it also adversely affects and reduces its utility. The
key question that we pose in this paper is, can we summarize and
compress a graph while ensuring that its utility or usefulness does
not drop below a certain user-specified utility threshold?

We explore this question and propose a novel iterative utility-
driven graph summarization approach. During iterative summariza-
tion, we incrementally keep track of the utility of the graph summary.
This enables a user to query a graph summary that is conditioned
on a user-specified utility value. We present both exhaustive and
scalable approaches for implementing our proposed solution. Our
experimental results on real-world graph datasets show the effective-
ness of our proposed approach. Finally, through multiple real-world
applications we demonstrate the practicality of our notion of utility
of the computed graph summary.

PVLDB Reference Format:

K. Ashwin Kumar, Petros Efstathopoulos. Utility-Driven Graph Summariza-
tion. PVLDB, 12(4): 335-347, 2018.

DOI: https://doi.org/10.14778/3297753.3297755

1. INTRODUCTION

A lot of the vast amounts of information we are producing and
analyzing today can be represented as graphs. This fact becomes
clear if one consider all the real-life data networks that can be
abstractly perceived as nodes connected by edges: social networks,
financial transaction networks, communication networks, citation
networks, parcel shipment data, protein-protein interaction networks,
gene regulatory networks, disease transmission networks, ecological
food networks, sensor networks, just to name a few. The size of
such graphs is growing at an unprecedented rate, spanning millions

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 4

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3297753.3297755

335

Petros Efstathopoulos
Symantec Research Labs

petros_efstathopoulos@symantec.com

and billions of nodes and edges. For instance, Google stores more
than 1 trillion indexed pages that contain billions of incoming and
outgoing links. Similarly, Facebook has 800 million active users and
related network data. At the current rate of data volume increase,
it is becoming highly impractical to store, process, analyze, and
visualize these big graphs. Therefore, in order to make graph data
management, processing and visualization tractable, summarization
techniques are becoming increasingly important.

There is a plethora of benefits to employing graph summarization
methods. First, given planetary scales of real-world graphs [18],
graph summarization helps in reducing the size of the graph thereby
reducing the on-disk storage footprint. The reduced graph can
also be loaded directly into memory to improve the performance
of analytics algorithms [25]]. Second, many graph algorithms that
are otherwise too complex or costly to run on larger graphs can
be efficiently executed on summary graphs, with adequately ac-
curate results [[16]. Third, most of the real-world graphs suffer
from a “small world” effect which makes them look too tangled
to be effectively visualized and interpreted, resulting in the “hair-
ball” graph phenomenon. Graph summarization essentially makes
them simpler to visualize on a small screen in-turn helping with
better analysis of these graphs [33}|5} 20} 14} 3]]. Finally, when the
original data is privacy sensitive, graph summarization may help
conceal private information [[12]], thus enabling privacy-preserving
analytics—especially among multiple mutually-distrustful parties.

A key challenge with graph summarization is that it can have a
severe impact on the amount of “useful information” represented
by the graph for the task at hand—i.e., the utility of the graph.
Furthermore, it is difficult to predict the reduction in utility a graph
will suffer when summarized. Ideally, we should be able to estimate
the utility at each summarization step so that the obtained graph
summary meets a user-specified utility threshold. To the best of our
knowledge, state-of-the-art graph summarization approaches [23}
25|] focus primarily on minimizing graph reconstruction error, and
largely ignore the utility aspect—where the relative importance of
nodes and edges should be considered during the summarization
process. To address this gap, we pose the following key question:

Can we summarize a graph and compress it as much as
possible, while ensuring that its utility does not drop below a
user-defined utility threshold?

In other words, we desire a graph summarization system that permits
a user to query a graph summary with given utility. To achieve
this, our summarization algorithm must be able to keep track of
the utility of the graph at each step of the summarization process.
Moreover, we need utility estimation to be inexpensive and yet
faithfully represent certain important properties of the underlying
graph which we want to retain in the computed graph summary.

In our effort to achieve these goals, we evaluated various graph
summarization techniques that have been proposed. In the sparsifica-
tion approach edges are filtered based on certain criteria to simplify

the underlying graph. On the other hand, the sampling approach per-
forms sampling of a subset of nodes or edges so as to form a simpler
representation of the original graph. The most popular approaches,
however, are different variants of the grouping approach, that em-
ploy meaningful grouping of nodes into supernodes and edges into
superedges to compute a graph summary. Grouping approaches owe
their popularity to the fact that they are expressive enough to allow

a user to logically explain the computed graph summary with re-

spect to the original underlying graph. Moreover, iterative grouping

approaches allow us to record the list of corrections made across
the iterations, which can help us to reconstruct the exact original
graph, or an approximate version of it, from the summary if needed.

Subsequently, helps with provenance and explainability, where one

can explain the steps taken to reach a particular summary for a

given graph (useful for forensics, anomaly detection etc). Also, the

iterative nature of the algorithm (grouping of nodes into supernodes
and edges into superedges and vice versa) enables meaningful visu-
alization and complex analysis during the summarization process.

Therefore, for all the benefits it provides, we specifically focus on

iterative grouping-based graph summarization approaches. How-

ever, since grouping-based graph summarization with minimum
reconstruction error is shown to be NP-Hard [35]], it is common to
use heuristics and approximations to implement such algorithms.
In this paper, we propose a novel utility-driven graph summariza-
tion (UDS) technique, where graph utility is incrementally computed
while iteratively performing the summarization. This allows us to
obtain a summary with a user-specified utility threshold, thus offer-
ing the benefits of summarization while providing utility guarantees.

Our contributions in this work are as follows:

1. We introduce a new framework to measure the utility of a graph
while it is being perturbed by the deletion of existing edges or the
addition of spurious edges. Furthermore, we judiciously extend
it to compute utility for graph summaries.

. We present theoretical result showing computational intractabil-
ity of UDS problem for obtaining a near optimal solution.

. We introduce a novel UDS algorithm that iteratively summarizes
a given graph by employing an objective function that maximizes
the utility at each step of the transformation. Also, during itera-
tive summarization of the graph, UDS incrementally computes
and keeps track of the running utility value.

. We improve scalability by orders of magnitude by proposing a
memoization-based approach for UDS.

. We conduct a comprehensive experimental study using several
real datasets and applications, and the results demonstrate that
UDS is capable of generating high-utility graph summaries.

The rest of the paper is organized as follows: In Section 2] we

present the relevant background and the different concepts discussed

in this paper. In Section [3] we present the formal definition of
utility, describe the set of properties and conditions that a desirable
utility metric should satisfy and introduce a generic framework
to estimate utility of a perturbed graph given its base graph. We
present our UDS approach in Section[d.1} We describe how we use
memoization to improve the scalability of our technique for UDS in

Section[d.2] In Section[5] we present experimental results evaluating

the efficiency and effectiveness of UDS. Finally, we present related

work in Section [6]and conclude in Section[7]

2. PRELIMINARIES

In this section, we present the background for graph summariza-
tion and the different concepts discussed in this paper.
Graph Summary. Given a graph G = (V, E), its graph summary
Gs = (¥5,65) where ¥5 = {S',82,...,5%} is a set of supernodes
such that k < |V|. If u € V,v € V, then S, represents the supernode
containing node u and S,,, represents the supernode containing both

336

the nodes « and v. Essentially, ¥s consists of disjoint sets (supern-
odes) of nodes in V such that V = U¥_, 5" and §'N S/ = 0 (Vi # j).
In ¥, the edges Eyg; C E connecting the set of nodes Ny belonging
to a particular supernode S are not maintained. Whereas, only edges
connecting individual supernodes are maintained. Also, if supern-
odes §' and S/ are connected with a superedge, then A; ; represents
the actual cross edges connecting the nodes in S* and $/. On the
other hand, []; ; denotes the bipartite graph connecting the nodes

in supernodes S and S/ where (87,57) € #5. Alternative notations
for A; j and []; ; that we use in this paper are Ag, s, and [, s,
where u € V,v € V. Also, in this work, we assume un-directed,
un-weighted and edge un-labeled graphs.

Reduction in Nodes (RN). We understand the effectiveness of

our proposed techniques on varying RN. Formally, RN = W

where a value of 0.2 means 20% of original nodes are collapsed into
supernodes and summary retains 80% of the graph unmodified.
Zero Loss Encoding Transformations. We define certain encod-
ing transformations (as shown in Figure[T) used to represent a group
of nodes and edges in graph G with supernodes and superedges
in a summarized graph ¥ without loss of information. Rule 1: a
group of nodes that are not connected to each other in the graph G
is simply represented by a supernode without a self-loop. Rule 2:
a group of nodes that form a clique in graph G is represented by a
supernode (with a self-loop). Rule 3: if there is an all-to-all connec-
tion between two sets of nodes, then they are represented by two
supernodes connected with a single superedge. ‘“Zero loss” in this
context means that if we apply these transformations in reverse order
on a graph summary, then we should be able to obtain the original
graph without needing any additional information or corrections.
Note that in this context, zero loss also implies 100% utility because
the transformations are able to preserve all the salient regions of G.
We make use of these transformations during summarization and
calculation of utility (Sections[3]and {i.T).

1i2§%:
5 & &'

Figure 1: Examples of three encoding rules for zero-loss summarization

Gs

Utility (EU). The utility 0 < EU < 1 of any graph ¥s that is ob-
tained by transforming an graph G indicates the usefulness of ¥
with respect to G. The higher the extent to which important regions
in G are preserved in the transformed graph, the greater the utility.

Example of Utility-Driven Graph Summarization (UDS). Let
us consider an example. Figure 2] presents iterations of a desirable
UDS system. We envision a summarization system that reports at
each iteration the current EU and RN values of graph summary
%s. Figure 2| offers the values for EU and RN, whose calcualtion
is discussed in-detail in the coming sections. The input graph is
shown in Figure (2a). The user provides a utility threshold I'y; as
a predicate to the UDS system, indicating that the summary %
should have utility no less than I'y. In this example, let’s say I'y
equals 0.9. Figures - show the first eight iterations of
graph summarization with varying EU and RN values along the
way. At every iteration, a pair of nodes is selected and collapsed to
form supernodes, and neighboring edges are adjusted accordingly.
The summarization system analyzes the important parts and regions
of the input graph (i.e., the output of the previous iteration) and
prioritizes the order in which nodes are collapsed accordingly. In
every iteration, the objective is to preserve important regions of
the G as much as possible in ¥s. In the first iteration, two nodes
are collapsed into a supernode, and edges are adjusted accordingly.

6
A\

O)
/

(€) EU:1.0,RN:0.13

(a) Input graph (b) eu:1.0,rx:006

(d) Ev099, RN:0.19

(€) Bu0.98, RN:0.25

(f) evoos, rN03 () EU09s, RN038 (h) BU0.92, RN0.44

Figure 2: Example output of utility-driven graph summarization

Note that, in this iteration, the EU value remains 1.0 because we can
still reconstruct G from ¥5 by simply applying the decoding rules of
Figure[l] Also, RN = 0.06 as the number of nodes in ¥s is reduced
by 1. By the end of the second iteration, EU remains 1. In the third
iteration, however, EU is reduced to 0.99, since reconstructing G
from ¥ produced in this step will introduce spurious edges. The
reduction in EU is 0.01, based on the extent to which important
regions are affected in G. Similarly, all iterations from 4 to 7 cause
adrop in EU. Note that the quantum of reduction in EU from (2d)
is less than () to (2g). This is because the merge step at
(Ze) preserves important regions better than the merge step at (2g).
This will be explained in detail in coming Sections. Overall, the
algorithm terminates at the seventh iteration (Zh) as any attempt to
further summarize the graph would cause the EU to drop below
the user-specified threshold I'y = 0.9. Finally, the computed graph
summary % (in Figure (2h)) is presented to the user as the output.

3. UTILITY OF A GRAPH SUMMARY

The fulcrum of this work is our proposed method for calculating
the utility of a graph summary with respect to an underlying graph.
We approach this problem by attempting to reconstruct the original
graph G from a summary ¥ with no extra information. For re-
construction, we apply the reverse of the transformations discussed
in Section |Zl This can result in the loss of original edges as well
as introduction of spurious edges. Supernodes with self-loops are
expanded into a clique of their contained nodes, otherwise they are
expanded into disconnected nodes. A pair of sets of base nodes form
a bipartite graph if the corresponding supernodes are connected by
a superedge, otherwise they are completely disconnected. More for-
mally, given %5 of graph G, we reconstruct the graph G' = (V' E’)
from % such that V = V’. The number of nodes and the node
set in the G’ are equivalent to that of G, although the number of
edges might vary—primarily due to the error introduced by graph
summarization. Figure [3] presents an example of a graph G, its
summarization %s, and graph G’ which is reconstructed from % by
applying the rules shown in Figuremin the reverse order.

ITEZ,

K

Gs

Figure 3: Example of a graph G, its summary %s, and reconstruction G’

Once Y is transformed into a reconstructed graph G’, the problem
of calculating the utility of a graph summary is reduced to the
problem of calculating the utility of G’ with respect to G, using a
utility function denoted by as EU(G')¢. In essence, when there
is greater structural similarity between G and the reconstructed
graph G (i.e., the extent to which important edges and regions in

337

G are preserved in G') then the utility of the 9s is higher. The
reconstructed graph G’ obtained from % is equivalent to a graph
G’ obtained by perturbing G (by adding certain spurious edges, or
removing original edges, or both). Therefore, from now on we will
call the reconstructed graph as the perturbed graph. Next, we present
a generic framework to calculate the utility of G’ with respect to G.
Generic Framework for a Graph Utility Function. Our key in-
tuition is to penalize the utility of graph G’ in accordance with the
introduced perturbations. The amount of cost or penalty should be
based on the importance of edges that are missing, or the number of
spurious edges introduced, or both. An intuitive way to assess the
relative importance of edges in the orginal graph G is by computing
normalized edge centrality scores edgelS. If {E — E'} is the set of
edges missing from G’ compared to G’s original edges, then the
utility of G’ is penalized by the sum of relative importance scores of
missing edges. Next, we should penalize G”’s utility according to
any spurious edges it contains, that did not exist in G. We do this by
calculating the proportion of spurious edges introduced in G’ to the
total number of spurious edges possible in the base graph G. More
formally, the maximum number of spurious edges that can be intro-
duced in G is (“2/‘) — |E|. If {E’ — E} is the set of spurious edges
introduced in G/, and assuming homogeneity, then for each spurious

edge the utility EU (G')¢ is penalized by the amount (\V\)I,‘E‘ .

Algorithm 1 Generic Graph Utility Function (GGUF)
1: procedure GGUF(G = (V,E),G' = (V,E'))

2: utility = 1.0
3: edgel S = normalize(edge_centrality _scores(G))
4: if G # 0 and G’ # 0 then
5: forec {E—E'} do
6: utility = utility — edgelS|e]
7: end for
8: forec {E'—E} do
. 1
9: penalty R
10: if penalty < utility then
11: utility = utility — penalty
12: else
13: utility =0
14: end if
15: end for
16: end if
17: return utility

18: end procedure

The value of utility is in the range [0,1]. Given a non-empty and
non-clique graph G, there are four notable conditions under which
the utility of G’ is zero: 1) if G’ is an empty graph, 2) if G’ is a clique,
3) if G’ is missing all the original edges, and 4) if G’ contains all the
possible spurious edges. Pseudocode for the generic graph utility
function GGUF is shown in Algorithmm Without loss of generality,
it can be easily extended to weighted graphs where penalties will
be weight adjusted. Moreover, the generic nature of GGUF allows
us to plug-in a variety of centrality metrics to form different types
of utility functions each exhibiting different properties. Next, we

identify certain intuitive properties a utility function should exhibit
and discuss how to assess its desirability.

Assessing the Desirability of a Utility Function To make a utility
function aware of the important regions of G that are preserved in
G', we use a set of fairly intuitive properties described in Tablethat
a desirable graph utility metric should exhibit. The key motivation
in defining these properties and imposing necessary conditions for
a desirable utility metric is that the maximization of such a utility
metric during summarization should help maintain the results of
important graph algorithms, such as ranking and community detec-
tion. To further explain these properties and test the desirability of a

Table 1: Properties of a desirable Graph Utility Function

[Criteria [Properties

Description |

Changes that create disconnected
components or weaken the
connectivity should be penalized
more than the changes that
maintain the connectivity
properties of the graphs.

More spurious edges must lead to
lower utility.

In weighted graphs, higher the
weight of the removed edge or
added spurious edge is, the greater
the impact on the similarity
measure should be.

A specific change is more
important in a graph with fewer
edges than in a much denser graph.

C1 Edge Importance

Spurious Edge
Awareness

C2

C3

Weight Awareness

C4 Edge Submodularity

utility function, we use example model graphs shown in Figure 4]
with various shapes and varying number of missing edges, such
as: clique, path, cycle, barbell, wheel barbell, etc. Note that these
examples are not exhaustive and are only meant to explain the key
concepts. Also, it is not necessary that a desirable utility function
exhibits all the listed properties in conjunction; it is only required
to exhibit each property independently. We present an example test
criterion [3.1] that uses the shown model graphs to test if a utility
function exhibits the desired property—in this case criterion C1.
Example Test Criteria 3.1 Consider barbell graphs B,,,mB,, and
mmB,, to explain C1: edge importance criterion. Graph B,, has two
cliques of size n| and ny, such that n = ny| +ny. Graph mB), has an
edge removed from one of the cliques in B,, where graph mmB,,
has a missing bridge edge from B,,. In this case, according to edge
importance criterion C1, following should satisfy:

(EU(mBy)B,

B,) >0
a i
@CW@%

‘ 4» 4;
' Hi@ @z b

mmK5 mZWhBlZ

— EU(mmB,) M

ef g h i |
dmmuo
a

sttt R
W h ¥y 9 ¥h
W5B10 W2B10 mmwhmz mm2WhE12
a k i a k.
SRS, IS N 4
B! et BN 87X LN 87 i 4 —1h
AN g N gENh Mg gV
BC11 mBC11 mmBC11 G9

Figure 4: Model synthetic graphs used to validate utility function —
K, clique of size n, B,: path of size n, C,: cycle of size n, Ly: lollipop
of size n, By,: barbell of size n, WhB,,: wheel barbell of size n, mx: missing X
edges, and mmy: missing X “bridge” edges.

Similarly, additional example test criteria are presented in Sec-
tion [5.1] to test if a utility function exhibits the remaining desired

338

properties. Also, in Section [5.2] we present experimental results
where we try various centrality metrics in GGUF and provide guide-
lines for the right set of centrality metrics to be plugged-in, so as to
create a utility function that exhibits the properties of Table[T]
Discussion. Calculation of utility EU(G')g and structural similar-
ity through simple graph edit distance (GED) between G’ and G
although seem similar, they differ in significant ways. GED essen-
tially counts the number of different edges between the original
graph and the restructured graph based on the graph summary. It
can be noted that GED does not differentiate between non-important
regions from important regions in the graph as GGUF does. More-
over, in simple GED, cost of edit operations is fixed, whereas in our
case cost of edits is dynamic and depends on the structure of the
original graph. Also, simple GED violates certain key properties
that our utility function satisfies. For example, consider a graph
G = (V,E) with |[E| = (‘g‘) — 1 edges and lets say G’ = (V,E’) be
its perturbed graph that is a clique with |E/| = (l‘z/‘) edges. Then
utility of G’ with respect to G is zero (lowest) according to GGUF
(Algorithm 1), but a simple GED would calculate the utility value
> 0, where utility is calculated as 1 — TE] EI where d is the number of
edits or distance. Intuitively, a utility value of zero is desirable in
this case, because if G is a non-clique and non-empty, then no matter
how dense G is, if G’ is a clique, then essentially G’ does not reveal
any information with respect to G, thus rendering its utility equal to
zero. We note that simple GED violates all the desired properties of
an ideal utility function (Table[I)) except C2 whereas GGUF when
plugged with appropriate centrality metric satisfies all the properties.
We have included an experiment in Table 5 to demonstrate this. We
also note that, the simplicity of GGUF permits us to easily extend
it so as to incrementally calculate the utility of G’ while it is being
perturbed. In this case, we start with a utility of 1.0 that represents
G' = G. As we perturb G’ by deleting (or adding spurious) edges,
or both, we penalize the utility accordingly by subtracting the ap-
propriate cost. Similarly, we incrementally calculate the utility of
s at each iteration, by analyzing the possible perturbations without
actually generating the reconstructed graph at each summary step.

4. UTILITY-DRIVEN SUMMARIZATION

We begin our discussion by presenting the mathematical formula-
tion of our problem. Given a graph G = (V, E) and utility threshold
I'y, we want to summarize the graph G as much as possible by
grouping nodes into minimum number of supernodes ¥5 and form
superedges &5 between supernodes such that the difference between
total utility of retained actual edges and total penalty of introduced
spurious edges is very close to the given I'y. Initially, each node in
the original graph is its own supernode in the summary graph.

minimize (|¥s]) @
Subject to
‘ Hl j i]|
Yy Y, edgelse] Vi >Ty 3
NARY) e€A; j (2) |E|
(s'.8))eds

Since problem of graph summarization is shown to be NP-Hard [35]],
one may be interested in obtaining a partition that is a p-approximation
for some p > 1. However, a computational intractability result for
obtaining a near optimal partition can be established as follows.
Theorem 4.1 [No Efficient Approximation Theorem] For any
€ > 0, there is no O(n'~¢)-approximation for the problem of ob-
taining a feasible graph summarization with a minimum number of
supernodes for a given utility threshold, unless NP = ZPP

I'This intractability result is based on the widely believed assumption
that complexity classes NP and ZPP are different [29].

PROOF. Davidson et al., [4] have proved that for the problem of
obtaining a feasible clustering with a minimum number of clusters
under cannot-link (CL) constraints if, for some € > 0, there exists
O(n'~#)-approximation for the feasibility problem then that would
imply NP = ZPP. Here, CL constraints involve data points (that
are required to be) in different clusters. Following this result, we
directly reduce the problem of obtaining a feasible clustering with a
minimum number of clusters to the our problem to prove the result.

Given a set of data points D = {d,d,...,|V|} . Let E; ; be the
measure of distance between data points where 0 < E; ; < 1 repre-
sents the points that are relatively closer to each other and E; j = 0
otherwise. Let ¥ be the set of clusters of data points. Initially each
data point d; is its own cluster S*. It is straightforward to see that
data points D with prior distance values represent a graph G = (V,E)
where values 0 < E; j < 1 represent edge weighted graphs and they
represent edge unweighted graphs if these E; ; takes value of 0 or
1. Values of A; j, [1; ; and edgel$ can be calculated based on E; j
values. Since these values are defined over the data points that are in
different clusters, constraint (Equation[3) using these values is essen-
tially formed by set of CL constraints. Objective of minimizing the
number of clusters | ¥5| for a given set of CL constraints on pair of
data points can be directly mapped to the objective of grouping the
nodes from the original graph into minimum number of supernodes
subject to the set of constraints involving pairs of nodes in different
supernodes as shown in Equations[2]and 3} Proof completes. W

Because it is not possible to devise a feasible or efficient approx-
imation algorithm for the problem at hand. Instead, we rely on
greedy heuristics that does best effort at each step taken.

4.1 Iterative Greedy UDS

We present a novel iterative greedy UDS algorithm with an incre-
mental utility update. Our primary goal is to summarize the given
graph G so as to compress it to an extent such that the utility of the
summary graph ¢ does not drop below a user-specified threshold
I'y. To compose our algorithm we need to determine the following
steps, based on principles presented in the previous Section: 1) intro-
duce a strategy for grouping nodes, 2) find an iterative, utility-driven
summarization recipe, 3) come up with appropriate superedge con-
nectivity criteria, 4) present techniques to incrementally keep track
of utility, 5) optimize the algorithm’s performance and scalability.
Prioritizing Candidates to Merge. One way to prioritize the merg-
ing of nodes is by considering edge importance. The goal is to pick
an edge e with the lowest importance and merge the nodes « and v at
e’s end-points so as to form a supernode w. However, this approach
completely forgoes the benefit of merging nodes that are indirectly
connected to each other. Many a times, collapsing nodes that are
not directly connected and forming appropriate superedges might
result in higher utility. For example, it is often beneficial to collapse
nodes that have many common neighbors [25]—even not directly
connected. Therefore, at each step, we consider pairs of nodes that
are both 1) directly connected by an edge, or 2) indirectly (2-hop)
connected via common neighbors, as candidates to form supern-
odes. Given a list of both 1-hop and 2-hop connected node pairs,
we seek to prioritize or sort this list in ascending order of impor-
tance (denoted by 1). We calculate the normalized node centrality
scores nodelS for the nodes in the base graph and then calculate
the combined importance score for a node pair p =< u,v > as the
sum of function of normalized centrality scores of the nodes—given
by (f(nodelS[u]) + f(nodelS[v])). In our implementation we use a
square function as f() as it helps in further delaying the merging of
important nodes with relatively lesser ones. Let H be the list of node
pairs sorted by their combined importance scores. Also, let edgelS
be the map that maps each edge to its importance score. An edge
importance score is calculated as the normalized edge centrality.
Iterative Greedy Summarization. As shown in Algorithm 2} we
initially map each node in the base graph G to a unique supernode

339

in the summarized graph %s. All edge connections between nodes
in G are maintained between corresponding supernodes in %s. At
each algorithm step, we pick from H the node pair (u,v) with the
lowest importance score. Unless nodes u and v belong to the same
supernode S, = Sy, their corresponding supernodes S, and S, are
collapsed into supernode S,,,. Let Vg, indicate the set of nodes in
G belonging to a particular supernode S,,,. We calculate the set of
potential neighbors ng, of S, in ¥ by finding the set of 1-hop
neighbors of all nodes belonging to Vg, in G and by calculating their
corresponding supernodes in ¥s. For every unique potential neigh-
bor S, € 1s,,, where n € G, we need to decide whether connecting
S and S, with a superedge is beneficial for utility. We commit
the decisions for all the potential neighbors in ascending order of
the calculated penalties. Procedure connectSuperEdge(...) (pseu-
docode in Algorithm [3} discussed later) returns true if the given
pair of supernodes should be connected by a superedge, or false oth-
erwise. For a pair of supernodes this procedure calculates 1) seCost:

Algorithm 2 Utility-Driven Graph Summarization

1: procedure UDSUMMARIZER(G = (V,E),Ty)
2: Initialize: wrility = 1;%5 = {u: {u} |u € V};& = {({u},{v}) |
(u,v) €EY;S={u:uluev}

3: nodelS, edgelS = normalize(centrality_scores(G))

4: Popop =A{(a,c) | (a,b) €E,(b,c) €E}

5: H = sort(Pyop | T (f(nodelS|a]) + f(nodelS[cl)),¥(a,c) € Poyop)
6: while wtility > Ty and H # 0 do

T () =H pop()

8: if S, # S, then

9: Suv = {S,US,}

10: %‘:{%Usuv}f{smsv}

11: NS = {Sp € ¥5 | b € Ny, Va € Sy} — {S, US,}

12: for S, € ng,, do

13: bool, penalty = connectSuperEdge(Syy, Sy, G, edgelS)
14: 15, [Sn]-connect = bool

15: 15, |Sn)-penalty = penalty

16: end for

17: ns,, = sort(ns,, | 1 (penalty))

18: for S, € ns,, do

19: if M5, [Su].connect is true then

20: éDS = {éasu(suv-,sn)}7{(Sn7Su)-,(Sn-,Sv)}

21: end if

22: utility = utility — 1s,, [Sn]. penalty

23: return ¥ if utility <I'y

24: end for

25: connect, penalty = connectSuperEdge(Suy,Suy, G, edgelS)
26: if connect is true then

27: g’S = 5’5) (SuwSuv)

28: end if

29: utility = utility — penalty

30: end if

31: end while

32: return %5 = (75, &%)

33: end procedure

the penalty to connect them with a superedge, and 2) nseCost: the
penalty to not connect them. If connectivity is deemed beneficial—
i.e., seCost < nseCost—then S, and S, are connected through a
superedge. Subsequently, the utility is updated by subtracting the
corresponding penalty values and all the previous connections be-
tween (S,,Sy) and (S,,Sy) are removed from . This particular
way of connectivity decision making guides the summarization al-
gorithm so as to maximize the utility of ¥ at each summarization
step. Similarly, the decision to self-connect a supernode S, or not
is made based on utility maximization: if a self-loop is deemed
beneficial, then a self-connection (Syy,S,y) is added to the set of
superedges &s. In the next iteration, the node pair from H with the
next lowest importance score is evaluated. The algorithm terminates
and returns the final %5 when the current utility of &g satisfies the
utility threshold I'yy or when all node pairs have been evaluated.

Superedge Connectivity Decision Making. Let us discuss the
details of the procedure connectSuperEdge(...), as shown in Al-
gorithm [3] As mentioned before, this procedure returns true if
connecting two given supernodes by a superedge is beneficial in
terms of utility, or false otherwise. The benefit is defined as the
minimum penalty that paid (lost utility) when a particular action is
performed. In our case, there are two possible cases to evaluate, 1)
connecting two supernodes S, and S, by a superedge (Sy,Sy) € &5,
and 2) not connecting the supernodes (S,,S,) ¢ &s. Note that, the
two supernodes in question can be the same (see line 26, Algo-
rithm[2), in this case, we evaluate an action of self-connecting the
given supernode with a superedge (self-loop). Let’s understand the
implications of each of the actions below:
e Case 1: (S,,,5,) € & When two given supernodes S, and S, are
connected by a superedge, it induces all-to-all connection []g, ¢ be-
tween the set of base nodes contained in S, and S, (per the encoding
rules of Figure[T). Consequently, apart from original cross edges
A,y C E in the G, we are introducing an additional set of spurious
edges {I1s, s, —As,.s, } between the set of nodes contained in Sy, and
S,. Essentially, at this step, reconstruction of G from the current %
(as discussed in Section 3) would introduce |[Tg, s, —As,.s,| number
of spurious edges as a result of the current action. Additionally, we
know that for each introduced spurious edge the utility is penalized
by an amount m Let seCost be the total penalty or cost
associated with thze action of connecting supernodes S, and S,,.
e Case 2: (S,,S,) ¢ & We know that if supernodes S, and S, are
not connected, then we are missing the set of Ag, s, original edges.
In other words, reconstruction of G from the current ¥ would
have deleted |Ag, 5, | number of edges that existed in G. Since the
importance score of each edge e in G is given by edgelS[e], for
each missing edge e the utility has to be penalized by an amount
of edgelSle]. Let nseCost be the total penalty associated when an
action of not connecting supernodes S, and S, is performed.
Finally, if seCost > nseCost, then the benefit of not connecting
the given supernodes S, and S, is higher and vice vers4’]
Incremental Utility Calculation. To accurately calculate the util-
ity at each iteration in an incremental fashion, we need to keep
track of all actions and related penalties that have been imposed in
previous iterations. This bookkeeping is explicit, to avoid redundant
penalization of the utility at each iteration. For example, let’s say
we are evaluating the action of connecting two supernodes S, and S,
by a superedge. Performing this action equates to the introduction
of one or more spurious edges in the underlying graph between the
sets of base nodes contained in S, and S,. In principle, we must
penalize the utility for the introduced spurious edges. However, it
may be the case that in previous summarization steps, the utility has
already been penalized for spurious edges that we are considering in
the current step. Thus, we need to keep track of spurious edges that
we have penalized the utility for at each iteration. On the other hand,
when we are evaluating (S, Sy) € &5, we need not penalize for the
original cross edges Ag, s, between S, and S,. However, in previous
iterations, some finalized action might have penalized the utility for
some or all of these original edges C E. Thus, we need to rollback
the penalty of these edges in the current action. This indicates that
we need to keep track of original edges as well as spurious edges
that we might have penalized the utility for in previous iterations.
Accordingly, the amount of bookkeeping needed is in the order of

o((“2/‘)). This large space requirement makes it impractical to use
any kind of deterministic data structure (list, hash table, hash set,

ZNote that our algorithm can be modified slightly to provide k-
anonymity guarantees [[12] under favorable conditions. A supernode
comprising of k nodes will be k-anonymous—and the supernode
comprising of the minimum number original nodes can be consid-
ered an anonymity lower bound.

340

Algorithm 3 Utility-Driven Superedge Connectivity Decision
Maker and Incremental Utility Calculator

1: procedure CONNECTSUPEREDGE(Vs,,, Vs, , G, edgelS)
2: Initialize: penalty = 0;seCost = O;nseCost = 0;decision =
false;CF = (cap,bSize, fSize);cfy = 0;cfs, = 0;¢fy, = 0;¢fry, =0
totalSE = (V) - |E|
for u € Vs, do
for v € Vs, do
if u # v and (u,v) not seen before then
e=(u,v)
if e € E and e € CF then
seCost = seCost — edgelS[e]
cfye = cfic Ue
else if e ¢ E and ¢ € CF then
nseCost = nseCost —
elseif e € E and e ¢ CF then
nseCost = nseCost + edgelS|e]
Cfse = Chake Ve
elseif ¢ ¢ E and e ¢ CF then
seCost = seCost + m
cfi=cfiUe
end if
end if
end for
end for
if seCost < nseCost then
penalty = seCost
CF.insert((u,v)), for all (u,v) € cf*
CF.delete((u,v)), for all (u,v) € cf*
decision = true
else
penalty = nseCost
CF.insert((u,v)), for all (u,v) € cf"*
CF.delete((u,v)), for all (u,v) € cf™°
decision = false
: end if
35: return (decision, penalty)
36: end procedure

totalSE

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20:
21:
22:
23
24
25
26
27
28
29
30
31
32
33
34

etc.) for the purposes of bookkeeping. Instead, we need a more
space-efficient data structure to keep track of processed edges.
Probabilistic Data Structures to the Rescue. A Bloom filter is a
potential option as it is a space-efficient data structure that can be
used to keep track of already processed edges. Processed edges
marked in the Bloom filter indicate that the utility has been (poten-
tially) penalized for these edges. As discussed before, often certain
penalties for already processed edges need to be rolled back. This
implies that these edges should be deleted from the Bloom filter in
such situations. Unfortunately, the standard Bloom filters do not
support deletion of items. However, certain variants of Bloom filter
such as counting Bloom filter allow both addition and deletion of
items, but with significant space overhead. In fact, counting Bloom
filters 9, 8] are known to use 3—4 x space to retain the same false
positive rate as a space-optimized Bloom filter. Fan et al., [[8] intro-
duced Cuckoo filters (CF). CF possess the dual advantage of space
efficiency as well as the ability to handle deletion of items. Given
their advantages, we make use of CF to manage the bookkeeping of
processed edges and corresponding rollbacks.

Over-Optimism in Utility. We know that probabilistic data struc-
tures suffer from the problem of false positives—i.e., they may
identify an item as a set member even though it is not. Cuckoo
filters allow the false positive rate to be controlled by varying the
capacity and fingerprint size [8]]. Because of false positives intro-
duced by CF, there is a possibility of unwarranted optimism in the
calculation of utility. From Algorithm we know that cfj, is the set
of original edges already processed in previous steps as confirmed
by CF, and cf,, is the set of original edges that are yet to be evalu-

ated. Whereas, cf,,, is the set of spurious edges already evaluated
in previous steps as confirmed by CF, and cf;} is the set of spurious
edges yet to be processed. We analyze two specific cases.

In the case where (S, Sy) € &5, we connect the given supernodes
S, and S, with a superedge. This action introduces spurious edges
between the nodes in the given supernodes. We denote this set of
spurious edges as {[Ts, s, —As,s, }- The set of spurious edges ¢ ik
that are yet to be evaluated is calculated as {[Ts, s, —As,.s, — Cfnse -

We want to penalize the utility for extra spurious edges that have
been unprocessed in previous iterations. In addition, we need to
rollback penalties for the original cross edges that were processed in
previous iterations for which the utility has already been penalized.
The total penalty seCost is calculated by subtracting the total cost
of edges in ¢ f;, from the total cost of edges cf;h:

Lt
seCost = (VLf“') - Z edgelSle] “)
(2) - IEI eccfse

The current utility at this step is calculated as utility = utility —
seCost.

Theorem 4.2 If fpr is the false positive rate of CF and if (Sy,Sy) €
&s, then we have upper bound on utility over estimation s, Where

5,5, —AS..5 — Cosel o P
(\‘2’\) —|E| 1—fpr

PROOF. By the definition of the false positive rate, we know that

O < (&)

| false positives|

frr= | false positives| + |true negatives|

From this we can derive an expression for false positives in-terms
of fpr and true negatives. Also, let |det;| be the set of spurious
edges that are yet to be evaluated, and |det,, | be the set of original
edges already processed in previous steps as confirmed by a deter-
ministic data structure (e.g., Hash Table). We know that cf;5 and
cf,. are calculated based on a probabilistic data structure, in our
case, a Cuckoo Filter. Therefore, the utility over-estimation is the
difference between seCost calculated based on the deterministic and
probabilistic data structures.

Ose = seCost™

det, —cfb
— (W) — (Z edgelS[e])
(3) —|E] ee{der, —cf;}

To find the upper bound, we need to find the maximum value of
seCost® or minimize (Zee {detz—cf2} edgelS[e}). We know that

we need at least one edge between the nodes in S, and S, to connect
these supernodes with a superedge. Let’s consider a single edge
connecting S, and S, and let € be the importance score of this edge.
For a given original graph of large size, the value of € can be close
to zero and we can safely ignore it. So we have:

‘dEt;; _Cf;l P |d€l; _CfsJH
= v
(%)~ 1E (3) - IE]
| false positives| |true negatives| " fpr
1% - \4 _
G- G- e

Here true negatives is nothing but the set of spurious edges yet to
be evaluated (i.e., cf;;) and we know that cf;; = {ITs, s, —As,.5, —
¢frse - Thus, we have an upper bound for the utility overestimation.
u

Similarly, in the case of (S, Sy) ¢ &, we can calculate the utility
over estimation by analyzing the cost of not connecting any S, Sy.

In summary, use of CF for the purpose of incremental utility
calculation can result in over-optimism because of false positives.
However, with the careful selection of capacity and fingerprint size
of the CF, fp can be made sufficiently small. Subsequently, utility
over-estimation becomes almost negligible. Essentially, increasing
capacity improves the occupancy of a cuckoo hash table whereas in-
creasing fingerprint (hashes) size rejects more false queries, thereby
reducing fp but with the caveat of increased space overhead.

Time Complexity Analysis. Since the calculation of importance
scores (Algorithm 2] line 3) depends on the choice of underlying
centrality algorithm, we will focus on the time complexity of the it-
erative node merging algorithm (lines 6-32). In each merge step, for
each potential neighbor of merged supernode &'(d,y), we evaluate
connectivity between merged supernode and its potential neighbor
O(|V|?). Therefore, the overall complexity of each merge step
comes out to & (\V\z day), where dy, is the average degree.
Limitations. The key limitation of Algorithm [2]is that it does not
scale well for large graphs. This is because node merging and su-
peredge decision making (lines 6-32) are exhaustive in nature and
perform redundant computations. For example, consider Figure[5[a)
that shows a portion of the base graph where nodes a,b, and ¢ are
more densely connected to nodes 1,2,3, and 4 in comparison to
node set e, f,g. Figure[5[b) shows an iteration of graph summa-
rization where three supernodes S| = {a,b,c},S» = {e, f,g} and
S3 = {1,2,3,4} are formed. In this iteration, supernodes S| and
S, are evaluated against S3 for connectivity. Total 12 comparisons
(denoted by com(S1,S3)) are made to decide connectivity between
S and S5 and 12 comparisons are performed for S, and S3. Also, 3
comparisons each are made to decide self-connectivity for supern-
odes S| and S;. So in total 30 comparisons are made for the case
shown in Figure[5(b). However, in the next iteration (Figure [5{c)),
we are merging S| and S, to form supernode w. In order to evaluate
connectivity between w and S3 we perform 24 redundant compar-
isons between the nodes contained in supernode w and nodes in S3,
that have already been performed in the previous iteration. Even to
decide the self-connectivity of w, many (9) redundant computations
are performed. In total, we count 33 redundant comparisons that
could have been avoided if we were to reuse previous computations.
This insight leads us to a more efficient approach, discussed next.

St : w=(S1U S2)
10%22 L
20
=
4

other \/O

nodes |

Total = =
com(81, 83) + com(S2, S3) com(w, S3) + com(w, S3)
+com(S1, S1) + com(S2,82) + com(w, w) = 24 + 15
=12+12+3+3 =30 =36

Total

(@) (b) (©

Figure 5: Example illustrating redundant computations (a) Portion of origi-
nal graph, (b) Portion of graph summary showing superedge decision making
between supernodes (S1,53), (S2,53) and self-connections, (c) Portion of
graph summary showing superedge decision making between supernodes
(w,S3), (w,S3) and self-connections

4.2 Memoization based Approach

To overcome scalability challenges, we introduce a memoiza-
tion technique as a scalable approach to UDS. The key goal is to
compute graph summaries and perform incremental utility calcu-
lation by reusing previous computations. Initially, each node and
edge in the base graph G is its own supernode and superedge in the
summary graph &s. We start by defining three variables for each
superedge (S4,Sp) € & in Ys: seCost(Sa,Sp), nseCost(S,,S,) and
(Sa,Sp)exist- Because S, and S, are already connected, the value of
seCost(Sg,Sp) is initialed to O (for all superedges). Also, initially

when S, = {a} and S, = {b}, not deciding to connect a superedge
between supernodes S, and S, incurs a cost of edgelS[(Sq,Sp)].
Therefore, nseCost for all superedges is initialized to the corre-
sponding edgelS[e] values. Whereas, (Sg,Sp)exise indicates if a
given superedge is permanent (with value of 1) or ephemeral (value
of 0). An ephemeral superedge indicates that we have not decided to
connect the two given supernodes based on the result of a superedge
decision-making process, while a permanent superedge indicates
the opposite. The key advantage of an ephemeral superedge is that
it provides a low-cost way to store calculated penalty costs for both
connecting and not connecting a particular superedge. Although
an ephemeral superedge is not considered a real edge, it helps us
judiciously re-use the pre-computed penalty costs stored in it for
upcoming cost computations. Initially, all the superedges are perma-
nent, therefore, the value of (S, S)eris for all edges (S4,Sp) € &5
is set to 1. Initialization of all the superedge variables with required
conditions is shown in Equation 6]

seCost(Sy,Sp) = 0 (a,b) €E,
nseCost(Sq,Sp) = edgelS[(Sq,Sp)] pif< S, = {a},S, = {b}, ©6)
(Sax,Sb)exist = 1 (Sa’Sh) € éﬂS

After initialization, in the upcoming iterations, connectivity costs
seCost and nseCost can be calculated by reusing costs calculated
from previous iterations as shown in Equations[7]and[8] For instance,
let’s say at iteration ¢ we are evaluating connectivity between supern-
odes S, and S,, and calculate utility penalty costs seCost(Sy, Sy)
and nseCost(S,,Sy). Let’s say we decided not to connect S, and
S,y because nseCost is less than seCost. At this point, the cur-
rent utility is calculated as utility = utility — nseCost(Sy,Sy). So
in the summary graph we connect an ephemeral edge between
the given supernodes and set (Sy,Sy)exis = 0. In a particular
future iteration ¢ + k where k > 1, if we want to calculate the
cost to connect supernodes S, and S,,, then we need to nullify
the previously subtracted penalty for disconnecting the given su-
pernodes in the iteration 7. More formally, seCost(Sy,S,) at it-
eration f + k is calculated by reusing previous computations as
5eCost(Sy, S,) T* = seCost (S, Sy)! — nseCost (S, Sy). However,
if supernodes S, and S,, were never evaluated before for connectivity,
then seCost is calculated by estimating the penalty for introducing
spurious edges across the nodes contained in the given supernodes.
In similar essence, nseCost is calculated by reusing previously com-
puted values as shown in Equation|[g]

seCost(Sy,Sy) — nseC()st(Su,SW)}if{ (Su,Sw) € &,

seCost(Su,Sw) =9 5, x5
vy ¢ if(Sy,Sy) & &s
(5) &l f
@)
nseCost(Sy,Sy) = nseCost (Sy,Sy) —SECUXI‘(SM,SW)}if{(Su’Sw) € &5,
(Suysw)exixt =1

(®)

Given the values of penalties calculated in the previous iterations
for supernode pairs (Sy,Sy) and (Sy,S,,), we calculate utility penal-
ties for supernode pair (Syy,Sy) using Equations E] and Here,
Suv 1s the supernode obtained by merging supernodes S, and S,,. For
example, the seCost of connecting a merged supernode Sy, with an
existing supernode Sy, is calculated by adding the individual costs of
(SusSw) and (Sy,S)). Similarly, we compute nseCost of (Syy,Sy)
by easily reusing individual costs of (S, S,,) and (S, Sy)
5€Cost(Syy, Sy) = seCost(Sy,S,y) + seCost(Sy,Syw) 9)

(10)

Once we have the individual penalty costs of evaluating connec-
tivity between merged supernode S, and its potential neighbors,

nseCost(Syy,Sy) = nseCost(Sy,Sy) + nseCost(Sy,Sy)

(SlHSW)cXiSI =0

342

then the total penalty cost of merging any two supernodes S, and S,
is calculated by summing the corresponding individual costs of eval-
uating connectivity of S, with its potential neighbors. Equations
and[12] show the calculations.

)»

seCost(Syy) =
WENm

Vme{S,US, }

)}

WENm
Vme{S,USy }

5eCost(Suv. S) (1)

nseCost(Sy,) = nseCost(Syy, Sw) (12)

Finally, the utility penalty or costs associated with merged supern-
ode S,,’s self-connectivity decision making can also be calculated
by adding pre-computed costs of S,’s self-connectivity (Sy,Sy), Sy’s
self-connectivity, and the cost associated in evaluating supernode
pair (Sy,Sy). Calculations are shown in Equationsand

5€Cost(Syy, Suy) = seCost (Sy,Sy) + seCost(Sy,Sy) + seCost (S,,Sy) (13)
nseCost(Syy, Suy) = nseCost(Sy,Sy) + nseCost (S,,Sy,) + nseCost (Sy,Sy)
(14)

In summary, given a newly merged supernode S,,, and its poten-
tial neighbor S,,, to evaluate connectivity between them, we reuse
previous computations between Sy, S,, and S,, S, as opposed to re-
dundantly performing comparisons between base nodes contained
in Sy, and S,,, as done in the previous approach (Section . As
shown in Algorithm [2| (lines 12-16), we do this for all potential
neighbors. As a result, by avoiding redundant computations, we
have effectively reduced the complexity of each merge step from
O(|V|?dyy) in the previous approach, to O(d,,) in the current ap-
proach. Also, by storing penalty costs (seCost and nseCost) for
each superedge and using the concept of ephemeral edges we have
introduced an extremely low-overhead way to keep track of the
penalty costs for all the pairs of supernodes—whether decided to
connect them or not. These stored penalty costs are used to effi-
ciently calculate costs for upcoming computations.

Discussion: While memoization reduces the time complexity of
each merging step, the time complexity of computing the importance
scores can be still high. We improve the performance of this step
by making use of the fast approximation algorithms for centrality
calculation. For example, considering betweenness centrality based
utility function, we make use of an approach that uses random
sampling of shortest paths to estimate centrality values for all the
nodes/edges [32]. Algorithm runs in the order of O(|E|) per sample
and interestingly, the number of samples needed to compute a good
approximation to all vertices is a constant and independent from G.

Finally, we note that the techniques proposed in this paper are
not just limited to un-directed, and un-weighted graphs. For in-
stance, calculation of importance scores can be easily adapted to
directed/weighted graphs as centrality computing algorithms exist
for directed, weighted graphs as well. On the other hand, in the
grouping step, node pair candidates to merge at each step can also
be picked based on directions. For instance, if in a directed graph
we have directed edges (a — b) and (a — ¢) then b and ¢ can be
one such candidate pair to merge. Also, since our utility function
depends on calculation of importance scores for nodes and edges, it
naturally adapts to weighted graphs.

5. EXPERIMENTAL EVALUATION
5.1 Experimental Settings

Setup. We perform all our experiments on single Amazon EC2
m4.4xlarge instance with 16 vCPU, 64 GB memory, and 300 GB
SSD storage. We use Python and create graphs using the Net-
workx [26] library. For certain scalable centrality implementations
we rely on the networkit [34] library. To scale for the large datasets
that barely fit in the memory, we made several programatic improve-
ments to our code. For example, we carefully parallelized the loop

(lines 12—-16, Algorithm 2). Also, we modified Networkx library to
support external memory graph access (read and write). Specifically,
we extend Networkx by subclassing the Graph class and providing
user-defined factory functions. These functions query a database
and cache the results in the dictionaries used by Networkx.
Datasets. In our experiments we make use of seven real-world
undirected and un-labeled graph datasets. Among them, ca-GrQc,
ca-AstroPh, ca-HepTh, and ca-HepPh are author collaboration net-
works from the e-print arXiv for Astrophysics, High Energy Physics,
High Energy Physics Theory, and General Relativity categories. The
dataset com-Amazon has connection between any two products if
they co-purchased. Whereas LiveJournal and Friendster are online
blogging and gaming networks. All the datasets can be downloaded
from [19]. Table 2] presents the datasets and their properties such
as size, average degree (Avg. Deg.), density, average clustering
coefficient (Cl. Co.), number of connected components (CCs), and
size of largest component (LC).

Table 2: Real world graph datasets

[Dataset [Nodes [Edges [Avg. Deg. [Density [CL Co. [CCs [LC |
ca-GrQc 5242 14496 5.526 0.1054% 0.5296 355 79.32%
ca-HepTh 9877 25998 5.259 0.0533% 04714 | 429 87.46%
ca-HepPh 12008 118521 19.73 0.1644% 0.6114 | 278 93.30%
ca-AstroPh 18,772 198110 21.10 0.1124% 0.6306 | 290 95.37%
com-amazon 334863 925872 5.529 0.0017% 0.3967 1 100.00%
com-LiveJournal 4036538 34681189 17.18 0.0004% | 0.2815 | 38577 | 99.04%
com-Friendster 65608366 | 1806067135 | 55 8.4e-05% | 0.1623 1 100%

Baselines. We closely study two key works in literature that provide
iterative solutions for grouping-based greedy graph summarization.
First is the work by Navlakha et al. [25] and second is by Tian et
al. [23]]. Because [23]] builds on [25] and provides the distributed
solution for it, we implement algorithm discussed in [25] as a base-
line. We have added experimental results in Section 5.2 (Figure
7) comparing our results with state-of-the-art grouping-based sum-
marization technique by Navlakha et al. [25]]. According to this
technique, the best pair of nodes is selected at each step on the basis
of maximum gain. Gain is defined as the extent of compression
achieved when the selected pair of nodes are merged. To scale
this technique, authors select a node u at random and a neighbor v
within 2-hops is selected that achieves maximum gain when merged
with u. This is repeated until the required compression is achieved.
Since this technique is based on the theory of Minimum Descriptive
Length, we refer to this technique as MDL in our experiments. Next,
we highlight the key design decisions that we made in our technique
and replace each design decision with its random counterpart to
create our other set of baselines. We make two key design decisions
in our technique; first, we compute relative importance scores for
nodes and edges using the shortest path betweenness centrality met-
ric. Second, we select a pair of 2-hop neighbors in the ascending
order of the sum of their importance scores. We randomize these
key steps by 1) randomly assigning importance scores to nodes and
edges (RNEI), 2) selecting the pair of 2-hop nodes in random order
(RNPO) while assigning importance scores using betweenness cen-
trality, and 3) performing both steps randomly (RNEI-RNPO). For
random baselines we report the average of ten runs.

Evaluation Metrics. We evaluate our techniques using two popular
real-world applications, measure the application-specific utility, and
compare with our baselines. For each application, we define a utility
metric that will indicate the usefulness of a graph summary with
respect to the corresponding application.

e Application 1: Top-k Query. One of the widely used real-world
applications is the selection of top-k or top 1% of nodes, where the
goal is to rank nodes using the Pagerank algorithm and select the
top k nodes according to their ranks, in descending order. Given
the value of 7, k is derived as k = |V|*1% for G. Whereas, for ¥,
k = |¥5| *t%. If we run Pagerank on both graph G and its summary
s and V,q, be the set of top-k nodes in G based on Pagerank values,

343

Table 3: Example test criteria

Desirable Property Example Test Criteria

C2: Let’s consider graphs myxC,,myC,, and mzC, (X <Y < Z) from
FigureE] Let mzC, be the base graph and myC,, and myC, be perturbed
graphs obtained by introducing X and Y number of spurious edges to
mzC,. Then according to C2: spurious edge awareness criterion, the
following condition should satisfy:

(EU(mxCa)myc, — EU(myCa)myc,) >0 (15)

C3: Consider weighted barbell graphs w;B,,, w,B,, and mB,,. Here wB,,
is a barbell graph of size n with a weight of exactly one of the edges
being s, and the weights on the rest of the edges being r, where s > r.
In this case, let mB,, be a barbell graph with a removed heavy-weighted
edge. If s > ¢, then according to C3: weight awareness criteria, the
following should satisfy:

(EU(Wan)mB,, - EU(Wan)mB,,) >0 (16)

C4: Consider graphs K,,,mK,, and C,,mC, from Figure These four
graphs are equally sized in terms of number of nodes, where C, has
relatively fewer edges when compared to K,,. Graph mK, is obtained by
removing a single edge from Kj,, similarly mC,, is obtained by removing
a single edge from C,. Then, according to C4: edge submodularity
criteria:

(EU(mK,)k, — EU(mCy)c,) >0 17)
then the utility of ¥ is defined as:
. ZVGV](ﬁ
Top-k Query App Utility = — (18)

In other words, if all the top k or 1% nodes from G match exactly
with top-k nodes in & then the utility score in this case equals 1
where each node contributes 1 to the summation in the numerator for
Equation 18]as for that node |S),| = 1. On the other hand, in the case
where some of the top-k nodes are contained within a supernode
containing more than one nodes, then each such node u contributes

a value of |T1| This fraction (that is < 1) represents the information

loss caused by the summarization process.

o Application 2: Link Prediction. Another real-world application
is knowing if a given pair of nodes belongs to the same community,
or not. In other words, based on the current community structure,
predicting if there will be a link between the given pair of nodes, or
not. To measure the utility of &5, we consider a list of all pairs of
2-hop nodes in graph G. For each pair, we predict a link if the pair
belongs to the same community in %, and we compare the result
with the link prediction on G. More formally, if Lg is the binary link
prediction result vector for &5, where each element corresponds to a
link prediction result for a pair belonging to all 2-hop pairs, and if L
be the result vector, then utility of ¥ is defined as:

‘Ls QL‘

Link Prediction App Utility =]

(19)

Example Criteria for a Desirable Utility Function to Satisfy. In
addition to the example test criteria described in Section[3] here we
provide a list of more example criteria shown in Table[3] These ex-
ample criteria based on model graphs in Figure[d|help us understand
the properties defined in Table[I] and evaluate the desirability of
a utility function. Note that these criteria are not exhaustive and
other criteria can be devised using the model graphs in Figure

5.2 Experimental Results

Current-flow and Shortest Path Betweenness Centrality-based
Utility Function Satisfies All Desired Properties. We start by eval-
vating the suitability of various centrality metrics that can be used
during the calculation of edge importance scores, and form a utility
function that exhibits the desired properties described in Section 3}
Generally, the relative importance of each edge in the graph G is

Dataset: ca-GrQe
Top 10% nodes selected

Dataset: ca-HepTh
Top 10% nodes selected

Dataset: ca-HepPh
Top 10% nodes selected

Dataset: ca-AstroPh,
Top 10% nodes selected

Dataset: com-Amazon
Top 10% nodes selected

Dataset: com-LiveJournal
Top 10% nodes selected

Dataset: com-Friendster
Top 10% nodes selected

= 21 2 1. 2z 21 = 2 1.
z . TewE z z & uos Y Tews z 5 7S z, Z oo & oS
El 5 ey | B o H E . o] Do e e iz 5 e & o H 5 - & o
2 By B heee| g S . Mo & éa&wwu 2 . o] & E * | Erweol
go o 2 2 —o Bt 2 R b 2 o [Bhr 2 2 o
§ 04 \ i i +] §o § 59 ¢ o i w
S, 1Y <] <] e}]] <] \.
S oy < < L 4 L < s
& & & & L 8 : 8 & 8 o
0.5 1.0 05 1.0 05 1.0 0.5 1.0 0.5 1.0 05 1.0
Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN)
Dataset: ca-GrQc Dataset: ca-HepTh Dataset: ca-HepPh Dataset: ca-AsiroPh Dataset: com-Amazon Dataset: com-LiveJournal Dataset: com-Friendster
. “Top 30% nodes selected N Top 30% nodes selected N Top 30% nodes selected N Top 30% nodes selected . Top 30% nodes selected N Top 30% nodes selected o Top 30% nodes selected
R 5 w5 5 o 5 U5 2 S ubs Zz1 - s z1 s £ .0T. 7o Ubs z1 . o0
E] e] e E e 5 ~o—) E] -] e E e
3 & o 5 S & o S 084 & o 3 R S 3 5 o & o 3 o &
S Aneeo| & ® o o |Pricwd g e Aveeo| & 2 Bpenes g .- RNELANPO|
2, o L 2, o £ o g, iy 2, 2 Lt £
g W] Eoad g ey N go * g %7
<} <} \ S, %\Kk <] % <} [} ‘\o S
& i 8 i 8 Ty | § 8 ; 8 8 |
05 1.0 05 1.0 05 1.0 0.5 1.0 05 1.0 05 1.0 05 1.0
Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN)
Dataset: ca-GrQc Dataset: ca-HepTh Dataset: ca-HepPh Dataset: ca-AstroPh Dataset: com-Amazon Dataset: com-LiveJournal Dataset: com-Friendster
o Top 50% nodes selected > Top 50% nodes selected o Top 50% nodes selected N Top 50% nodes selected N Top 50% nodes selected > Top 50% nodes selected N Top 50% nodes selected
21 s £1 3 Z Y S s Z1 —y £1 s z1 Z1
E} & o 3 3 o & 5 e ¢ H *e. oo, 5 5
g e 2 e N g - P 2
8 o B g 2 06 N L g ot 2 .. 2 £
2 o 2 05 z < 2o z0 . 20 2 0.
5 TG e] o NS] RN] .]]
<} o <} S, S <] 2\ <} - <} I}
< £ i " S s | 2 3
e e T 2 S S S e
05 1.0 05 1.0 05 1.0 0.5 1.0 05 1.0
Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN)
>0 Dataset: ca-GrQc 5 Dataset: ca-HepTh N Dataset: ca-HepPh > Dataset: ca-AstroPh > Dataset: com-Amazon 5 Dataset: com-LiveJournal >0 Dataset: com-Friendster
g) 2 2 Z g — g — £ oS
g — £o H £o - EIN £ - ERE [
el B, 8 8 . | B R < 8 e 8007 RN R
21 R H H 2o 2] feel BNg 2 o7 <
] I g g g° Gl &° g e
2o N 3 2,] H H k| go
g o g g D g o g B 0 g
< 0s —0 | < TR OEETR—y | 2 <) g | ¢ g O g o
5 T T T 5 U T 5 02 .TNPO T T 5 5 0.2 - T T 5 02 .TNPG T T T T 5 T
01 02 03 04 05 01 02 03 04 05 o1 02 03 04 05 02 03 04 05 01 02 03 04 05 01 02 03 04 05 o1 02 03 04 05
Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN)
v) (w) (x) ¥ (2) 0 0

Figure 6: Experimental results demonstrating effectiveness of UDS design decisions

assessed by measuring the degree of participation of edges in com-
munication between distinct parts of the network. This leads us to
the notion of betweenness centrality. The most common between-
ness centrality metric is based on shortest paths, where the centrality
of an edge e is essentially an average number of shortest paths con-
necting all pairs of nodes in the graph that pass through edge e.
There are some drawbacks with this approach. First, it takes into
account only the shortest paths and ignores the slightly longer paths.
Edges of such relatively longer paths are critical for communication
in the network. Second, the actual number of shortest paths that lie
between the source and destination is irrelevant. In our case, it is
reasonable to consider the abundance and the length of all paths.
Knowledge about the importance of each edge to the graph structure
is enhanced when more routes are possible.

In order to take such paths into account, Current-Flow Between-
ness centrality can be considered [2]. Here, the graph is imagined
as a resistor network in which the edges are resistors and the nodes
are junctions between resistors. Accordingly, the current-flow be-
tweenness of an edge is the amount of current that flows through it,
averaged over all source-destination pairs, when one unit of current
is induced at the source and the destination (sink) is connected to the
ground. Let’s denote shortest-path and current-flow betweenness
centrality-based graph utility functions as SP-BCU and CF-BCU.

Moreover, certain centrality metrics calculate centrality scores
for nodes and cannot be directly used to calculate edge centrality—
e.g., centrality metrics that are based on Pagerank, Eigenvector [27],
Communicability 6], Communicability Betweenness [7], etc. Here,
we treat the node centrality scores as node importance. Also, by
intuition, we assign importance scores to edges based on the impor-
tance of the nodes they are connecting to—i.e., we assign an edge
a high importance if it connects any two highly important nodes.
Using these node-based centrality measures, we estimate an edge
importance by summing up the normalized centrality scores of the
pair of nodes it connects, and normalizing it. Let’s denote utility
functions based on these centrality metrics as PRU, EVU, COU,
and CO-BCU. We compare these utility functions and evaluate their
effectiveness using the model graphs (shown in Figure) and our
ideal utility function properties. Table[f]|demonstrates our evaluation
results. Red cells or non-positive values indicate a violation of a
corresponding property or criterion. Results show that CF-BCU
and BCU obey all the formal required properties (C1-C4). Bold
values represent max values that are highly discriminatory for each
test criterion. We find CF-BCU to be most effective and highly
discriminatory. Each row of the tables corresponds to a comparison
between the similarities (or distances) of two pairs of graphs; pairs
(A,B) and (A,C) for property (C1-C3); and pairs (A,B) and (C,D)

Table 4: Practicality of utility EU with respect to an application of top-k query

Appli 1 Datasets
¥ ca-GrQc ca-HepTh ca-HepPh ca-AstroPh com-Amazon com-LiveJournal com-Friendster

Top % Nodes | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim. | Pearson’s r | Cos. Sim.
10 0.9475 0.9822 0.9569 0.9939 0.9453 0.9943 0.9835 0.9976 0.9329 0.9969 0.9289 0.9743 0.9448 0.9738
20 0.9232 0.9828 0.9709 0.9947 0.9438 0.9330 0.9398 0.9965 0.9628 0.9964 0.9519 0.9127 0.9474 0.9528
30 0.9403 0.9855 0.9561 0.9936 0.9488 0.9249 0.9654 0.9930 0.9794 0.9864 0.9832 0.9287 0.9527 0.9803
40 0.9505 0.9942 0.9565 0.9969 0.9428 0.9308 0.9925 0.9921 0.9877 0.9970 0.9328 0.9267 0.9378 0.9747
50 0.9280 0.9912 0.9864 0.9925 0.9426 0.9322 0.9987 0.9869 0.9893 0.9734 0.9737 0.9725 0.9735 0.9826

344

Table 5: Practicality of EU with respect to a link prediction application

Application 2 Datasets

ca-GrQc | ca-HepTh | ca-HepPh | ca-AstroPh | com-Amazon | com-LiveJournal | com-Friendster
[Pearson’st | 09424 | 09306 | 09950 | 09910 | 09259 | 09264 09371
[Cos.Sim. | 09657 | 09940 | 09999 | 09927 | 09863 | __ 0.9957 09873

for (C4). However, the calculation of current-flow betweenness
centrality CF-BC is computationally intensive and does not scale
even for graphs of a few thousand nodes. Hence in our experiments
we use of shortest path betweenness centrality SP-BC that scales
well for larger graphs. Also, from our results we note that, similar to
CF-BCU, the utility function SP-BCU also exhibits all the desired
properties. Moreover, it has been shown in [28]] that compared to
other centrality metrics, SP-BC is strongly correlated with CF-BC.
Hence, it is beneficial to trade slight loss in quality to significant
improvement in performance. Finally, we compare simple graph
edit distance (GED) with our utility functions. Result shown in last
column of Table[6]show that GED violates all the desired properties
except C2. Hence GED is not fit as an utility function.

UDS Judiciously Exploits High Compressibility of the Graphs.
In the first experiment, for each dataset we vary RN from 0.1 to 1
and apply UDS to analyze the incrementally calculated utility EU.
Figure[7]shows the result. We compare the UDS approach with the
random 2-hop pair selection for merging at each iteration (RNPO).
There are three key takeaways from this experiment. First, the non-
linear relationship between EU and RN (shown in red) for all the
graphs indicates relatively high compressibility of corresponding
graphs. Second, we observe that denser graphs have higher com-
pressibility when compared to sparse graphs. Third, UDS smartly
exploits compressibility of graphs by preserving important regions
of the graphs at relatively higher RN when compared to the UDS
approach with random 2-hop pair selection. We omit results for
LiveJournal and Friendster datasets as we do not see different result.
UDS Design Decisions are Effective. Next, we evaluate the effec-

Dataset ca Groc HeoTh Datsse

(a) (©) (d (®
Figure 7: UDS judiciously exploits high compressibility of Graphs

catopPh n

Estmated Uty

| A
H

Estimated Uity

Estimated Utity

Estimated Uiy

tiveness of the two key design decisions that we make: 1) calculating
relative importance score for nodes and edges, and 2) the order in
which a pair of nodes is selected to merge in each summarization
step. We compare UDS with the baselines using two real-world
applications discussed in Section[5.1] In this experiment, we vary
RN and calculate the application-based utility metric with UDS and
related baselines where we randomize selected key design decisions.
For the top-k or t% query application, we vary top % of nodes
selected and measure application based utility for each dataset’s
summary. Figures (6a)—(6q) show that across various datasets, pa-
rameter values, and applications, UDS consistently results in graph

Table 6: Evaluating various centrality metric-based utility functions and
comparison with simple graph edit distance based utility (GED) metric

Test Graphs PRU_| SP-BCU | EVU | COU | CO-BCU | CF-BCU | GED

Criteria | A [EU(B)s—EU{C)x

C1 BIO mB10 mmB10 0.005 0.019 0.005 J 0.004 T 0.03 0.13 0

C1 L10 mL10 mmL10 -0.009 0.04 -0.03 -0.03 [0.03 0.3 0

C1 BCIT mBCI1 mmBCI1 -0.009 0.00002 | -0.007 -0.013 -0.005 0.032 0

C1,C4 | WhBI2 | mWhBI2 mmWhBI12 -0.0002 | 0.04 0.001 -0.006 | 0.02 0.063 0

C1 WhBI2 [m2WhBI2 | mm2WhBI12 | -0.0003 | 0.08 0.003 -0.013 | 0.041 0.127 [

C2 m2C5 mC5 [&] 0.023 0.023 0.023 0.023 0.023 0.023 0.33

c2 mmK35 mKS K5 0.5 0.5 0.5 0.5 0.5 0.5 0.125

C2,C3 | mBIO w2B10 w5B10 0.095 0.095 0.095 [0.095 | 0.095 0.095 0

C2,C3 | mBIO BI0 w5B10 0.132 0.132 0.132 | 0.132 | 0.132 0.132 0
Test Graphs PRU | BCU | EVU | COU | CO-BCU | CF-BCU | GED

Criteria | A B C D 8§ =EU(B)s —EU(D)¢

Cc4 K5 | mK5 | C5 mC5 0.1 [0.09 [0.1 [01 T0I [02 [01

ca C5 [mC5 | mC5 | m2C5 | 0.08 | 0.095 | 0.088 | 0.07 | 003 | 0.142 | 005

345

summaries with significantly higher utility compared to baseline
techniques—thus demonstrating the effectiveness of our design deci-
sions. Figures (6a)—(6s) show results for the top-k query application.
Figures (6v)—(6z) show results for the application of link prediction.
UDS Performs Well Compared to State-of-the-Art. Figure [6]
shows the result of our experiments where we compare MDL ap-
proach with UDS with respect to top-k query and link prediction
applications. Our approach consistently performs well when com-
pared to MDL. We attribute this result to the fact that MDL approach
does not optimize for the preservation the important regions of the
graph as UDS does, hence tends to lose on summary quality.

UDS Provides Attractive Trade-Off Compared to LOPT. Theo-
rem 1 implies that it is hard to find approximation factor or compare
our solution empirically to global optimum. Nonetheless, we com-
pare UDS where we pick best node pair to merge in each iteration in
0(1) time with local optimum LOPT where O(N?) comparisons are
performed to pick best node pair to merge at each step. We present
results in Tables and@ ‘We perform two experiments. First, we
compare UDS to LOPT with respect to the reduction in summary
size relative to original size returned for a particular utility threshold.
For this experiment, we generate Barabasi-Albert random graphs
with parameters n (graph nodes) and p (preferential attachment). As
we increase p from 1 to 5, density of graph increases. Table[7]shows
that UDS performs very close to LOPT for sparser graphs and for
denser graphs quality of solutions reduce by atmost 25% compared
to LOPT. But for the given performance (O(1) compared to O(N?)
per iteration) UDS provides attractive trade-off compared to LOPT.
Second, for a particular iteration, we compare UDS’s choice of best
pair to merge compared to LOPT’s O(N?) choices (sorted in ascend-
ing order of cost). For example, Table[§]reports 0.1 if UDS’s choice
is within top 10% of LOPT’s choices. Table[8]shows that across the
iterations and for the random graphs (p=5, utility=0.5) of various
sizes UDS’s choice is within 10% of the LOPT’s top choices.
UDS’s Estimated Utility (EU) is Practical. We compare EU with
various application-specific utility values for varying RN to assess
the practicality of EU to be used as an approximation for various
application-specific utility metrics. For each real-world application,
we calculate the Pearson’s correlation coefficient r in order to mea-
sure the strength and direction of a linear relationship between EU
and the application-specific utility, for varying RN from 0.1 to 1.
Since EU values are in the range [0,1], we use Cosine similarity
between EU and the application-specific utility in order to measure
how closely related they are in magnitude. Table [4] shows the re-
sults for the application of top-k query where we can observe that
correlation between Pearson’s correlation coefficient r and EU is
significant, with the value of r very close to 1 in almost all cases, and
p-value < 10~*. We observe similar result also for an application
of link prediction as shown in Table[5] Hence, EU is practical.
UDS Scales Near Linearly with Varying RN. Figures (8a)—(8¢)
demonstrate that UDS performs well across all datasets, for uni-
formly increasing RN. Specifically, UDS exhibits near perfect linear
scalability in the case of datasets with relatively higher density and
average clustering coefficient (ca-HepPh and ca-AstroPh). On the
other hand, in the case of relatively sparser datasets, RN values in
the range 0.1 to 0.6 the cost of iteratively merging nodes remains
relatively negligible when compared to the fixed cost of calculating
node and edge importance. Overall, high correlation with linear best
fit and R? values confirm our scalability conclusion.

UDS Visually Simplifies Complex Graphs with Guided EU. We
also conduct visual validation of our UDS approach. For this ex-
periment, we query graph summaries with a specified EU, rather
than RN. Here, we visualize the ca-HepTh graph and its summaries
for varying EU values. Figure shows the input graph. We
can observe that the input is a disconnected graph with many small
components and one large connected component. Figures (9b)—(Od)

Table 7: Comparing UDS to LOPT based on summary sizes for a given utility threshold.

Pref Attachment — I 3 5
Utility Threshold — 0.9 0.7 0.5 0.9 0.7 0.5 0.9 0.7 0.5
Number of Nodes | | UDS [LOPT | UDS [LOPT | UDS | LOPT | UDS | LOPT | UDS | LOPT | UDS [LOPT | UDS [LOPT | UDS | LOPT | UDS | LOPT
1000 0.805 0.975 0.90 0.97 0.95 0.97 0.30 0.40 0.50 0.75 0.72 0.92 0.12 0.27 0.36 0.55 0.67 0.80
5000 0.78 0.97 0.96 0.97 0.98 0.98 0.43 0.52 0.58 0.78 0.79 0.93 0.22 0.38 0.47 0.69 0.68 0.86
10000 0.91 0.99 0.94 0.99 0.98 0.99 0.48 0.57 0.66 0.80 0.77 0.92 0.31 0.40 0.51 0.67 0.66 0.84
Dataset: ca-GrQc Dataset: ca-HepTh Dataset: ca-HepPh Dataset: ca-AstroPh Dataset: com-Amazon Dataset: com-LiveJournal Dataset: com-Friendster
= = =1 = P [e] —_ [e] — 5 [e]
¢ o] 3 ¢] § a0 § >
e 2 40 k) o534 55786 k3 kA 1856.4) + 7700.2% 2 @ =
E E E Eotr i E) ° E’ R 084775 E 20, ity E 108
2 2 2 g 2 °© 2 10, g
0‘5 1.0 0‘5 1.0 0‘.5 1.0 0.5 1.0 0‘5 1.0 O.‘S 1.0 0‘5 1.0
Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN) Reduction in Nodes (RN)
(a) (b) (© D (e) ® (8

Figure 8: Scalability of UDS

Table 8: For a particular kth iteration, comparing UDS choice of best node
pair to merge compared to LOPT top choices.

k-th Iteration
I] 10 J 20 [30 [40 [50
Number of Nodes UDS choice w.r.t LOPT Top % Choices
1000 0.56 0.54 0.11 0.10 0.01 0.26
5000 0.84 0.71 0.54 1.31 0.86 0.36
10000 0.95 0.93 0.84 0.81 0.67 0.61

[ISITRsstIn

VOO0 T
LU LT T U
TOLTTOO 0TI
T LI
PO T

T

1
LT
1

i
UL
OITITI0]

(a) Input (b) EU: 0.9 (c) EU: 0.5 (d) EU: 0.1

Figure 9: Visualization of graph ca-HepTh and its summaries for varying
utility EU. For clarity, we ignore smaller CCs for @) .

show summaries with decreasing EU values from 0.9 to 0.1. We
can observe from Figures @—@) that, as the EU decreases the
number of CCs increase. This happens because as RN increases
by virtue of the decreasing EU, relatively lesser important parts of
the graph are collapsed—and at some point they tend to get dis-
connected from the important regions because the UDS algorithm
makes a decision that maintaining connectivity in that particular
step is no more beneficial in terms of the graph’s EU. For the sake
of clarity, we ignore smaller CCs for Figure @) and only show
largest CCs. Overall, we notice that as EU decreases, the largest
component of the graph gets disentangled and becomes simpler.

6. RELATED WORK

Sparsification-based methods. Shen et al. [33]] developed a tool
called OntoVis that simplifies the underlying graph by relying on
node filtering to understanding large social networks. Lin et al. [21]
propose an unsupervised technique for egocentric information ab-
straction in heterogenous social networks where the key idea is to
filter edges as opposed to nodes. They design criteria to distill impor-
tant information to construct the abstracted graphs for visualization.
Sampling-based methods. Plethora of works [[13| (17} [24} 11} |1}
37| focus on simplifying the underlying complex graph through
sampling of nodes or edges from it. In summary, these techniques
estimate the properties of the original graph, estimate relative fre-
quencies of its substructures and then create a small sample subgraph
that resembles the original graph. Also, there are techniques [[10}
22| that use linear dimensionality reduction on the complex graph
to generate simplified graph sketches or data synopses.

Grouping-based methods. The approaches [|16,36, 31| focus on
the compression problem as a selection of supernodes, superedges

346

to minimize the reconstruction error, while completely ignoring the
preservation of important parts and regions of the graph. Purohit et
al. [30] study the diffusion and propagation processes where they
propose to merge two adjacent nodes such that the coarsened graph
retains its diffusive properties. They do not consider the possibility
of merging nodes that are not directly connected but share majority
of the neighbors. Their limitation of not considering indirectly con-
nected nodes prevents them from exploiting various opportunities
to achieve high compression. Navlakha et al. [25]] propose a highly
compact two-part representation of a given graph consisting of a
graph summary and a set of corrections. The corrections portion
specifies the list of edge-corrections that helps to recreate the origi-
nal graph. Using the concept of MDL (minimum description length)
they try to create a graph summary with a minimal set of corrections.
In other words, they are trying to minimize the reconstruction error
of some form. Tian et al. [23]] provide distributed systems solution
for [25]). The solution that we propose in this paper can be classified
into grouping-based methods.

Most of the techniques discussed above deal with minimizing
reconstruction error without considering utility maximization. Only
a handful of approaches consider preservation of utility that too in
very specific scenarios. For example, Yan et al., [[37]] specifically
focus on entity graphs with meaningful node, edge labels and sample
important nodes (entities), relations to create a concise preview and
utility is evaluated through human reviewers. We also note that
none of the above discussed techniques deal with generating graph
summaries with a user-specified utility threshold. Moreover, the
majority of prior work evaluate their techniques with respect to a
single application and do not demonstrate the effectiveness of their
summaries to more than one real world application. Finally, we
acknowledge Koutra et al’s work [[15] that partly inspired our work.

7. CONCLUSION

We strongly believe that given any complex, large graph, the abil-
ity to query a graph summary with a user-specified utility threshold
has tremendous potential, and can find applications in a variety of
use-cases. In this work, we present a novel approach to summarize
a complex graph driven by the objective of maximizing the utility
of the calculated graph summary. In doing so, we establish the
theoretical foundations of governing the properties of an ideal utility
function. We make theoretical connections to well known problems
to prove inapproximability of the problem at hand. Subsequently, we
propose a utility-driven summarization algorithm, and supplement
it with scalable heuristics. Our iterative summarization technique
allows a user to query a graph summary with a specified utility
value. Finally, our experiments and evaluation results on multiple
real-world datasets demonstrate the effectiveness of UDS both in
terms of quality, performance, and overall practicality.
Acknowledgement. We thank reviewers and our colleagues Sandeep
Bhatkar, and Matteo Dell’ Amico for helpful reviews and comments.

8. REFERENCES
[1] A. Ahmed, N. Shervashidze, S. Narayanamurthy,

V. Josifovski, and A. J. Smola. Distributed large-scale natural
graph factorization. In International Conference on World Wide
Web, WWW, pages 37-48. ACM, 2013.

[2] U. Brandes and D. Fleischer. Centrality measures based on
current flow. In Conference on Theoretical Aspects of Computer
Science, STACS, pages 533-544. Springer-Verlag, 2005.

[3] D.J. Cook and L. B. Holder. Substructure discovery using
minimum description length and background knowledge. J.
Artif. Int. Res., 1(1):231-255, Feb. 1994.

[4] 1. Davidson and S. S. Ravi. Intractability and clustering with
constraints. In International Conference on Machine Learning,
ICML, pages 201-208, New York, NY, USA, 2007. ACM.

[5] C.Dunne and B. Shneiderman. Motif simplification:
Improving network visualization readability with fan,
connector, and clique glyphs. In Conference on Human Factors in
Computing Systems, CHI, pages 3247-3256. ACM, 2013.

[6] E. Estrada and N. Hatano. Communicability in complex

networks. Phys. Rev. E, 77:036111, Mar 2008.

E. Estrada, D. J Higham, and N. Hatano. Communicability

betweenness in complex networks. 388, 05 2009.

[8] B. Fan, D. G. Andersen, M. Kaminsky, and M. D.
Mitzenmacher. Cuckoo filter: Practically better than bloom. In
International Conference on Emerging Networking Experiments and
Technologies, CONEXT, pages 75-88. ACM, 2014.

[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM
Trans. Netw., 8(3):281-293, June 2000.

[10] M. Ghashami, E. Liberty, and J. M. Phillips. Efficient frequent
directions algorithm for sparse matrices. In International
Conference on Knowledge Discovery and Data Mining, KDD, pages
845-854. ACM, 2016.

[7

—

[11] M. A. Hasan. Methods and applications of network sampling.

In Optimization Challenges in Complex, Networked and Risky
Systems, chapter 5, pages 115-139. 2016.

[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and C. Li.
Resisting structural re-identification in anonymized social
networks. The VLDB Journal, 19(6):797-823, Dec. 2010.

[13] C. Hiibler, H. P. Kriegel, K. Borgwardt, and Z. Ghahramani.
Metropolis algorithms for representative subgraph sampling.
In International Conference on Data Mining, ICDM, pages
283-292. IEEE, 2008.

[14] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos.
Summarizing and understanding large graphs. Stat. Anal.
Data Min., 8(3):183-202, June 2015.

[15] D. Koutra, N. Shah, J. T. Vogelstein, B. Gallagher, and
C. Faloutsos. Deltacon: Principled massive-graph similarity
function with attribution. TKDD, 10(3):28:1-28:43, 2016.

[16] K. LeFevre and E. Terzi. Grass: Graph structure
summarization. In SDM, pages 454-465. SIAM, 2010.

[17] J. Leskovec and C. Faloutsos. Sampling from large graphs. In
International Conference on Knowledge Discovery and Data Mining,
KDD, pages 631-636. ACM, 2006.

[18] J. Leskovec and E. Horvitz. Planetary-scale views on a large
instant-messaging network. In International Conference on World
Wide Web, WWW, pages 915-924. ACM, 2008.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large
network dataset collection.

347

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

http://snap.stanford.edu/datal June 2014.

C. Li, G. Baciu, and Y. Wang. Modulgraph: Modularity-based
visualization of massive graphs. In SIGGRAPH Asia 2015
Visualization in High Performance Computing, SA, pages
11:1-11:4. ACM, 2015.

C.T. Liand S. D. Lin. Egocentric information abstraction for
heterogeneous social networks. In International Conference on
Advances in Social Network Analysis and Mining, ASONAM, pages
255-260, 2009.

E. Liberty. Simple and deterministic matrix sketching. In
International Conference on Knowledge Discovery and Data Mining,
KDD, pages 581-588. ACM, 2013.

X. Liu, Y. Tian, Q. He, W.-C. Lee, and J. McPherson.
Distributed graph summarization. In International Conference on
Conference on Information and Knowledge Management, CIKM,
pages 799-808. ACM, 2014.

A. S. Maiya and T. Y. Berger-Wolf. Sampling community
structure. In International Conference on World Wide Web, WWW,
pages 701-710. ACM, 2010.

S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In International Conference
on Management of Data, SIGMOD, pages 419-432. ACM, 2008.
NetworkX developer team. Networkx.
https://networkx.github.io/, 2014.

M. Newman. Networks: An Introduction. Oxford University
Press, Inc., 2010.

M. J. Newman. A measure of betweenness centrality based on
random walks. Social Networks, 27(1):39 — 54, 2005.

C. M. Papadimitriou. Computational complexity.
Addison-Wesley, Reading, Massachusetts, 1994.

M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and

V. Subrahmanian. Fast influence-based coarsening for large
networks. In International Conference on Knowledge Discovery and
Data Mining, KDD, pages 1296-1305. ACM, 2014.

M. Riondato, D. Garcia-Soriano, and F. Bonchi. Graph
summarization with quality guarantees. Data Min. Knowl.
Discov., 31(2):314-349, Mar. 2017.

M. Riondato and E. M. Kornaropoulos. Fast approximation of
betweenness centrality through sampling. In International
Conference on Web Search and Data Mining, WSDM, pages
413-422, New York, NY, USA, 2014. ACM.

Z. Shen, K.-L. Ma, and T. Eliassi-Rad. Visual analysis of large
heterogeneous social networks by semantic and structural
abstraction. IEEE Transactions on Visualization and Computer
Graphics, 12(6):1427-1439, Nov. 2006.

C. Staudt, A. Sazonovs, and H. Meyerhenke. Networkit: An
interactive tool suite for high-performance network analysis.
CoRR, abs/1403.3005, 2014.

Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation
for graph summarization. In International Conference on
Management of Data, SIGMOD, pages 567-580. ACM, 2008.
H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka.
Compression of weighted graphs. In International Conference on
Knowledge Discovery and Data Mining, KDD, pages 965-973.
ACM, 2011.

N. Yan, S. Hasani, A. Asudeh, and C. Li. Generating preview
tables for entity graphs. In International Conference on
Management of Data, SIGMOD, pages 1797-1811. ACM, 2016.

http://snap.stanford.edu/data
https://networkx.github.io/

	Introduction
	Preliminaries
	Utility of a Graph Summary
	Utility-Driven Summarization
	Iterative Greedy UDS
	Memoization based Approach

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion
	References

