
IPA: Invariant-Preserving Applications for Weakly
Consistent Replicated Databases

Valter Balegas
NOVA LINCS, FCT,

Universidade NOVA de Lisboa
v.sousa@campus.fct.unl.pt

Sérgio Duarte
NOVA LINCS, FCT,

Universidade NOVA de Lisboa
smd@fct.unl.pt

Carla Ferreira
NOVA LINCS, FCT,

Universidade NOVA de Lisboa
carla.ferreira@fct.unl.pt

Rodrigo Rodrigues
INESC-ID, Instituto Superior

Técnico, U. Lisboa
rodrigo.rodrigues@inesc-

id.pt

Nuno Preguiça
NOVA LINCS, FCT,

Universidade NOVA de Lisboa
nuno.preguica@fct.unl.pt

ABSTRACT
It is common to use weakly consistent replication to achieve high
availability and low latency at a global scale. In this setting, con-
current updates may lead to states where application invariants do
not hold. Some systems coordinate the execution of (conflicting)
operations to avoid invariant violations, leading to high latency and
reduced availability for those operations. This problem is worsened
by the difficulty in identifying precisely which operations conflict.

In this paper we propose a novel approach to preserve application
invariants without coordinating the execution of operations. The
approach consists of modifying operations in a way that applica-
tion invariants are maintained in the presence of concurrent updates.
When no conflicting updates occur, the modified operations present
their original semantics. Otherwise, we use sensible and determin-
istic conflict resolution policies that preserve the invariants of the
application. To implement this approach, we developed a static
analysis, IPA, that identifies conflicting operations and proposes the
necessary modifications to operations.

Our analysis shows that IPA can avoid invariant violations in many
applications, including typical database applications. Our evaluation
reveals that the offline static analysis runs fast enough for being used
with large applications. The overhead introduced in the modified
operations is low and it leads to lower latency and higher throughput
when compared with other approaches that enforce invariants.

PVLDB Reference Format:
Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça. IPA: Invariant-Preserving Applications for Weakly Consistent
Replicated Databases. PVLDB, 12(4): 404-418, 2018.
DOI: https://doi.org/10.14778/3297753.3297760

1. INTRODUCTION
Databases are commonly replicated in different geographical re-

gions to ensure low latency and high availability across the globe [22,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3297753.3297760

49, 20]. To provide these guarantees, systems often adopt weak con-
sistency. This approach can expose temporary state divergence to
clients, making application development more difficult. Many tech-
niques have been proposed to make these systems easier to program:
conflict-free replicated data types [45] (CRDTs) ensure state con-
vergence; causal consistency [39, 12, 57] enforces that operations
are made visible respecting the happens-before relation; and, finally,
highly available transactions [8, 11, 40, 49, 57] can group multiple
operations that must take effect all at once.

Despite these proposals, it remains difficult to develop applica-
tions under weak consistency. Several studies [10, 32, 53] show that,
in many applications, concurrent executions lead to the violation
of application invariants, resulting in inconsistent states. To give
an example, consider an online e-games platform, and assume that
the application is correct when executed under strong consistency.
Consider that a user enrolls in some tournament and concurrently the
organizer decides to cancel the tournament. The first operation cre-
ates a new reference between the user and the tournament, while the
second removes the tournament, and all references to it. Since these
operations are concurrent, the remove operation does not delete the
newly created reference, which now points to a tournament that no
longer exists, thus breaking referential integrity.

To prevent invariant violations efficiently, some systems provide
primitives for executing operations synchronously [49, 37], paying
the cost of coordination only when necessary. However, it is difficult
to identify the problematic executions, especially because inconsis-
tencies may occur only for some combinations of operations and in
some specific states. The result is that programmers often end up
constraining concurrency too much to preserve correctness, with an
impact on the availability and latency of systems [14, 19].

This paper proposes a novel approach for preserving application
invariants under weak consistency that does not impact the availabil-
ity and latency of applications. The key idea is to extend operations
with updates that preventively guarantee the preservation of invari-
ants in the presence of concurrent updates. The additional updates
should have no visible effect if no concurrent operation is executed,
keeping the semantics of the operation in the sequential case. These
updates come into effect when needed to correct the undesirable
semantics of concurrent operations. In our previous example, it is
possible to maintain referential integrity by restoring the removed
tournament. To this end, the enroll operation is extended with an
update that prevents the concurrent deletion of the tournament.

404

To help programmers adopt our approach, we propose a method-
ology for modifying applications. The key element of the methodol-
ogy is our invariant-preservation analysis (IPA) and static analysis
tool that relies on information about the application, including in-
variants and operations, to identify which operations might lead to
invariant violations and to suggest modifications to the operations to
prevent those violations from occurring. Previous work employed
static analysis to optimize the use of coordination in applications
running under weak consistency [36, 14, 44]. In contrast, instead of
resorting to coordination for avoiding the concurrent execution of
conflicting operations, we allow operations to execute concurrently
and leverage conflict resolution policies to ensure a result that is
deterministic (given the operations that execute concurrently) and
preserves invariants. To our knowledge, our work is the first to adopt
such an approach to enforce invariants that span multiple database
objects (that can be stored on different machines).

Our evaluation is threefold. First, we analyzed a number of ap-
plications/benchmarks that are representative of common OLTP
applications, concluding that our approach can identify the most
common relational database invariant violations, and that the sug-
gested modifications lead to sensible and deterministic semantics
in the concurrent case. Furthermore, the semantics of the mod-
ified operations is equivalent to the original operations when no
conflicting operation executes concurrently. Second, we analyze
the scalability of the static analysis process, showing that it is fast
enough to be used with large applications. Third, the results of our
experiments show that the performance of the modified applications
has only a small overhead compared to the unmodified versions
and is faster than a state-of-the-art solution that maintains invariants
using coordination to prevent invariant violations.

In this paper we make the following contributions: (i) a novel
approach to preserve invariants under weak consistency without
resorting to coordination, which combines the extension of opera-
tions with new updates and the use of appropriate conflict resolution
policies; (ii) an algorithm that takes information about operations
and application invariants and proposes modifications to operations
and conflict resolution policies to preserve invariants while keeping
the original semantics of the operations in the absence of conflicts;
(iii) the design of new CRDTs that support the conflict resolution
policies necessary for adopting our approach; (iv) an implementation
and evaluation of the proposed approach.

The paper discusses the difficulties in designing applications
on top of weak consistency (§2); presents an overview of the IPA
approach (§3); presents the system model and defines the key prin-
ciples for IPA (§4); details the IPA analysis (§5); discusses imple-
mentation details (§6); evaluates the approach and prototype (§7);
discusses related work (§8); and presents some final remarks (§9).

2. BACKGROUND
In this section we discuss the problem of application correctness

when executing applications under weak consistency.

2.1 Eventual consistency and CRDTs
Storage systems that adopt weak consistency models, such as

eventual consistency [50, 52, 22, 34] or causal+ consistency [39,
40, 57], need to include a mechanism to merge concurrent updates,
guaranteeing that all replicas converge to the same state after apply-
ing the same set of updates. In last-writer-wins, the latest update,
according to some total order defined among updates, prevails. This
strategy may lead to lost updates, as the effects of an update may be
overwritten by a concurrent update. To address this problem, some
systems, such as Cassandra, support type-specific merge for some
data types – e.g., for counters, the final value reflects all updates.

Sfrem_tourn(t)

enroll(p1,t)

Si

enrolled(p1,t) = T

player {p1,p2}
tournament {t}

enrolled {}

R1

R2
player {p1,p2}
tournament {}

enrolled {(p1,t)}

tournament(t) = F

Figure 1: Concurrent execution of enroll(p, t) and rem tourn(t)
leads to an invariant violation.

Conflict-free replicated data types (CRDTs) [45, 46] are a princi-
pled approach for defining replicated objects. A CRDT is an abstract
data type designed to be replicated. Any replica of a CRDT can be
modified without coordination and any two replicas that receive the
same set of updates converge to the same state, deterministically.

A CRDT implements type-specific concurrency semantics, namely
defining how to merge concurrent updates. For example, a set ex-
ports two operations for adding and removing an element: add(e)
and remove(e). As these operations do not commute when refer-
ring to the same element, the concurrency semantics must arbitrate
the state of the object when an add(e) and a remove(e) execute
concurrently. Several concurrency semantics are possible. In the
Add-wins semantics, an add wins (takes priority) over a concurrent
remove, leading to a state where e belongs to the set after applying
both updates. In the Rem-wins semantics, the remove wins over a
concurrent add, leading to a state where e does not belong to the set.

CRDTs were first used in research systems, such as Walter [49]
and SwiftCloud [57]. More recently, they were adopted in produc-
tion systems, such as Redis [18], Akka [4] and Riak [17].

2.2 Convergence is not enough
State convergence is not sufficient to guarantee application cor-

rectness, as the final state might be invalid. This can occur when
the rules for maintaining convergence are defined per data-type, not
considering the relations among the multiple objects of the state.

We illustrate this problem with the application that stores informa-
tion for an e-games platform introduced before. In this application,
the database stores information about players , tournaments and
which players are enrolled in which tournaments. Players can enroll
or disenroll from tournaments, and a tournament can be removed
by the administrator if there are no players enrolled. There is an
implicit referential integrity invariant that states that a player may
only enroll in an existing tournament.

Now consider the concurrent execution of two operations to re-
move a tournament and enroll a player in that tournament, as shown
in Figure 1. In state Si, the remove verifies that there is no entry
in the enrolled table referring to tournament t and removes it. In
the same state, the enroll operation creates a new reference between
player p1 and t. Since the effects of each operation are generated in
different replicas, the remove operation does not see p1 enrolled in t,
whereas enroll still sees t. When the state of both replicas converges
(Sf), the state will have player p1 enrolled in tournament t, which
no longer exists, thus breaking referential integrity.

We note that this problem still occurs in weakly consistent systems
that provide additional guarantees, such as causal+ consistency
and highly available transactions. Causal+ consistency [39, 40, 6]
guarantees that the effects of an operation are only visible after the
effects of all operations that happened-before [35] it. However, this
does not impact the execution of concurrent operations.

Some systems [8, 11, 57, 40] provide highly available transac-
tions, in which a set of updates is applied atomically in a replica:
concurrent transactions either see the effects of all updates or none.
This type of transactions differs from ACID transactions by allowing
concurrent updates to the same object, and the final value of the
object is defined by the conflict resolution policy of the object.

405

3. OVERVIEW
In this section we explain our proposal to modify applications to

ensure invariant preservation without coordination.
The invariant violation of Figure 1 can be repaired, after it is

detected, by either: (i) removing the new player enrollment from the
enrolled table; or (ii) restoring the tournament to its previous state.
In this type of approach, known as compensations [50, 27], when
the system detects that the database is inconsistent, it applies some
compensation effects to restore the database integrity.

Our insight is that in many situations the effects to restore the
database integrity can be applied preventively alongside the original
operations, repairing the invariant violation automatically in a con-
flicting execution. Going back to our previous example, restoring a
tournament to its previous state can be achieved by executing a touch
operation in the tournament when executing the enroll, and adopting
a conflict resolution policy where the touch wins over a concurrent
delete. The touch operation has no observable effect, only updating
the metadata to guarantee that the concurrent execution is detected
and solved according to the defined conflict resolution policy. This
approach has several interesting properties. First, it does not require
any form of coordination during the execution of operations, or any
mechanism for detecting invariant violations at runtime (which can
be expensive, particularly when the invariant relates data stored in
different servers). Second, the additional operations have no observ-
able effect if no conflicting concurrent operations are executed.

This approach requires combining appropriate conflict resolution
policies with a careful selection of which updates to add to each
operation. The goal is to guarantee that the extra updates have no
observable effect unless a conflicting operation is executed, and that,
in such cases, the additional updates guarantee that the invariant is
preserved. Additionally, it is necessary to guarantee that the extra
updates do not lead to the violation of any other invariant and that
modified operations do not interfere among themselves.

To help in this process, we devised algorithms that use static anal-
ysis to detect executions that might violate an application invariant,
and search for modifications that prevent those violations. Typi-
cally, there will be several alternative modifications for preserving
invariants – the programmer must select the most appropriate for her
application. In most cases, the additional updates have no observable
effect and can be applied preventively with the operations.

For some cases, the additional updates might have an observable
effect on the database state. To address these cases, we also support
a compensation mechanism that applies these updates if a conflict
violation is detected. For instance, it is not possible to prevent flight
overbooking, but it is possible to compensate the event by reimburs-
ing users or finding alternative flights. Unlike other solutions, our
approach does not require coordination to execute compensations,
which can execute at any replica. However, the detection of invariant
violation is limited to conditions over the state of a single object.

Example: We now detail how our approach works, using the
example of Figure 1. Consider that the database tables, player and
tournament, and relationship, enrolled, are stored in separate sets.

As mentioned before, for preventing the invariant violation by
recreating the deleted tournament, it suffices to extend the effects of
the enroll operation to touch tournament t. By adopting the Add-wins
policy for the tournament, with the touch tournament winning over
a concurrent remove tournament, this guarantees that tournament t
survives the concurrent execution of a remove t operation.

For preventing the invariant violation by deleting enrollments in
removed tournaments, it suffices to extend the effects of the remove
tournament t to preventively remove any concurrently enrolled pair
associated with t. This does not produce any observable effect be-
cause there should be no element enrolled in t after the execution of

the remove operation. Adopting a Rem-wins policy for the enrolled
set guarantees that a concurrent enroll will have no effect.

We can view the modifications to the operations as a way of giving
priority to one conflicting operation over the other, the same way
that a Add-wins (resp. Rem-wins) set CRDT gives priority to an add
over a remove (resp. a remove over an add). The additional updates
guarantee that the preconditions for executing the operation that is
given priority remain valid despite the execution of any concurrent
operation. For example, recreating the tournament is to give priority
to the enroll over the remove tournament. The enroll precondition
that would be violated is that the tournament exists. Touching the
tournament and selecting the Add-wins policy guarantees that the
precondition remains valid despite concurrent remove tournaments.

4. IPA APPROACH
This section introduces the main principles underlying IPA.

4.1 System model
We consider a database composed of a set of objects fully repli-

cated in multiple data centers. Operations over those objects can
execute a sequence of reads and updates enclosed in a transaction.
As the transaction executes in an initial replica, the effects of updates
are recorded and queued for replication upon transaction commit.
Propagation of updates can be asynchronous and must respect causal
order. Hereafter, we use the term operation to refer updates produced
by the execution of the transaction code in the initial replica.

We denote by o(S) the state after applying the updates of op-
eration o to state S. A database snapshot, Sn, is the state of the
database after executing a sequence of operations o1, . . . , on in the
initial database state, Sinit, i.e., Sn = on(. . . (o1(Sinit))). The
set of operations reflected in snapshot S is denoted by Ops(S),
e.g., Ops(Sn) = {o1, . . . , on}. The state of a replica results from
applying both local and remote operations, in the order received.

We say that an operation oa happened-before [35] operation ob,
executed initially in database snapshot Sb, oa≺ob, iff oa∈Ops(Sb).
Operations oa and ob are concurrent, oa ‖ob iff oa 6≺ ob∧ob 6≺oa.

For an execution of a given set of operations O, the happens-
before relation defines a partial order among operations,O = (O,≺).
We say O′ = (O,<) is a valid serialization of O = (O,≺) if O′

is a linear extension of O, i.e., < is a total order compatible with ≺.
Operations can execute concurrently, with each replica executing

operations according to a different valid serialization. To guarantee
state convergence, we assume the system gives the programmer the
choice of various deterministic conflict resolution policies on a per-
object basis, i.e., the result of applying updates that were executed
concurrently is deterministic independently of the execution order.
In our prototype, we rely on CRDTs [45, 49] to achieve this goal.

We consider that application correctness can be expressed in
terms of invariants [9, 14, 29]. An invariant is a logical condition
expressed over the database state. A given state S preserves an
invariant I iff I(S) = true, where I(S) is a function that checks
the validity of the invariant in state S. A state Si is I-valid (or simply
valid) iff I(Si) = true; otherwise the state is I-invalid (or simply
invalid). We require the initial state, Sinit, to be valid.

We say thatO′ = (O,<) is an I-valid serialization ofO = (O,≺)
if O′ is a valid serialization of O, and I holds in every state that
results from executing any possible prefix of O′. If I is the con-
junction of all application invariants, then we say that an application
is correct if, in any possible execution of that application, every
replica evolves through a sequence of I-valid states. We say that
an operation o1 conflicts with o2 if the execution of o1 makes the
preconditions of o2 false in some database state.

406

4.2 Principles for IPA
We now present the key principles for guaranteeing the correct

execution of an application under weak consistency. We follow the
notions introduced by Bailis et al. [9], adapting them to our model.

DEFINITION 1. Given a set of commutative operations O and
the happens-before relation, ≺, we say O is I-Confluent [9] iff any
state S, obtained by executing a prefix of any valid serialization of
(O,≺), starting from an I-valid state, is I-valid.

This means that for a set of I-Confluent operations, despite ex-
ecuting operations in a different serialization order, every replica
will evolve only through I-valid states. Along with the commutativ-
ity of the operations, this guarantees the correctness of application
execution both in terms of convergence and invariant-preservation.

To preserve invariants, an operation should only produce side
effects in states that satisfy the operation preconditions. For example,
for adding a player to a tournament, the player and tournament must
exist. When an operation executes in the initial replica, the code of
the operation verifies that the local state satisfies the preconditions.

The challenge arises when operation side-effects propagate asyn-
chronously to remote replicas. At the remote replica, concurrent
operations may have already executed, leading to a state where the
operation preconditions do not hold anymore. Applying the side-
effects as-is may result in an invariant violation – e.g., applying
the effects of adding a player to a tournament in a state where the
tournament has been removed leads to an invariant violation.

DEFINITION 2. Given a set of operations O and the happens-
before order, ≺, we say that S is an admissible state for o ∈ O
iff there is a valid serialization of (O,≺) in which S results from
applying all operations that precede o to the initial state.

With this definition in place, we can state a sufficient condition for
having I-Confluent operations, thus enabling the system to execute
operations in remote replicas without violating the invariants.

THEOREM 1. Given a set of commutative operations O and the
happens-before order among them, ≺, if for any operation o and
admissible state S of o, o(S) is also an I-valid state, then O is an
I-Confluent set.

The key insight of IPA is that, in many cases, it is possible to guar-
antee both commutativity and the sufficient property of Theorem 1
by leveraging CRDTs and extending operations with updates that
restore the operation preconditions. In the example of the previous
section, an operation to enroll a player in a tournament can execute
safely if it restores the player and tournament. This can be achieved
by touching both the player and tournament and using an Add-wins
conflict resolution policy for players and tournaments, thus protect-
ing the enroll operation against concurrent removal of the player or
tournament. The deterministic nature of Add-wins and Rem-wins,
with conflicts solved based only on the type of concurrent operations,
is key for achieving the intended result.

We note that it is only necessary to restore the preconditions in
admissible states, as the serialization of operations must be consis-
tent with the happens-before relation. In practice, it is necessary to
execute operations in causal order and revert the effects of concur-
rent updates that may affect the preconditions of the operation. The
additional updates in an operation should be executed atomically
with the updates of the operation to guarantee that no inconsistency
is observed. In our prototype, we achieve this by relying on highly
available transactions [8, 57]. In the next sections we show how to
put these principles into practice.

1 // Application invariants
2 @Inv(”forall(Player:p, Tournament:t) :−

enrolled(p, t) ==> player(p) and tournament(t)”)
3 @Inv(”forall(Player:p,q, Tournament:t) :− inMatch(p, q, t) ==>

enrolled(p,t) and enrolled(q, t) and (active (t) or finished (t))”)
4 @Inv(”forall(Tournament:t) :− #enrolled(*, t) <= Capacity”)
5 @Inv(”forall(Tournament:t) :− active(t) or finished (t) ==> tournament(t)”)
6 @Inv(”forall(Tournament:t) :− not(active (t) and finished (t))”)
7

8 public interface TournamentApp { // Operations effects and signatures
9 @True(”player(p)”)

10 RESULT add player(Player p);
11

12 @False(”player(p)”)
13 RESULT rem player(Player p);
14

15 @True(”tournament(t)”)
16 RESULT add tourn(Tournament t);
17

18 @False(”tournament(t)”)
19 RESULT rem tourn(Tournament t);
20

21 @True(”enrolled(p, t)”)
22 @Inc(”#enrolled(*, t)”)
23 RESULT enroll(Player p, Tournament t) ;
24

25 @False(”enrolled(p, t)”)
26 @Dec(”#enrolled(*, t)”)
27 RESULT disenroll(Player p, Tournament t) ;
28

29 @True(”active(t)”)
30 RESULT begin tourn(Tournament t);
31

32 @True(”finished(t)”)
33 @False(”active(t)”)
34 RESULT finish tourn(Tournament t) ;
35

36 @True(”inMatch(p, q, t)”)
37 RESULT do match(Player p, Player q, Tournament t) ;
38 }

Figure 2: Tournament application specification.

5. IPA DESIGN
We now present our methodology for developing I-Confluent

applications, comprising the following three steps.
Step 1: Specification: The first step consists of building a speci-

fication of the application by identifying application invariants and
operation effects. We use the same specification language used in
Indigo [14], requiring programmers to specify the invariants and the
effects of each operation using first-order logic.

Step 2: IPA analysis: The IPA analysis, performed by our tool,
is an iterative process where, in each iteration: (i) the tool identifies a
pair of conflicting operations, i.e., operations that might break some
invariant when executed concurrently, and proposes modifications
that guarantee that invariants are preserved; (ii) the programmer
chooses which conflict resolution he or she prefers. This process
executes multiple times until no more conflicts exist.

Step 3: Code modification: The analysis returns a new specifi-
cation of the application, which contains the selected modifications,
comprising both the use of appropriate conflict resolution policies
for each object and the modification to operations to avoid invariant
violations. When the modifications produce no observable effect,
they are appended to the corresponding operations. Otherwise, they
must execute as compensations when a conflict occurs.

Fully patched applications can then execute in any replicated
system that provides causal consistency, highly available transac-
tions and the necessary type-specific conflict resolution policies. A
number of systems support these features [49, 57, 5].

5.1 Specification
The specification of an application conveys information about

invariants and operation effects. This is done using first-order logic,
which is sufficiently expressive to cover most common relational
databases constraints and operation effects [14, 29, 10].

407

In Figure 2, we present the specification of the tournament appli-
cation. Predicates are used to represent the database state. Invariants
are represented by quantified boolean statements, and operation
effects are modeled with predicate assignments. For example, the
logical implication in line 2 specifies an invariant that says that a
player p may only be enrolled in a tournament t if player p and
tournament t exist in the database. Predicate assignments can either
set the value of a boolean predicate to true or false, or apply an
arithmetic operator to the predicate, in the case of numerical predi-
cates. As an example, the effects of operation enroll(p, t) set the
predicate enrolled(p, t) to true (line 21) and increment the number
of elements in the enrolled set for tournament t (line 22).

5.2 IPA analysis
The IPA analysis is an iterative process to modify the operations

of an application in order to guarantee that application invariants are
preserved when operations execute concurrently.

Algorithm 1 presents the algorithm for executing the IPA analysis.
The analysis builds on two main components: (i) conflict detection,
for identifying pairs of operations that may cause an invariant viola-
tion; and (ii) conflict repair, for finding a modification to a pair of
conflicting operations that makes them invariant-preserving.

The main function (line 1) has three parameters: (1) the invariant,
I , which is a single expression that connects all invariants with a
conjunction operator; (2) the set of operations, Ops , with all opera-
tions defined in the application; and (3) the initial conflict-resolution
policies for the predicates, CR, as defined by the programmer. The
function consists of a loop that finds pairs of conflicting operations
and a repair for each conflict. The repair consists of an extended
version of the operations, which replaces the original ones, and
appropriate conflict resolution policies for predicates. The loop
continues until no more conflicting operations exist.

Next, we detail the main components of the analysis. For sim-
plicity, our presentation omits some details. First, it ignores the
situation when no repair can be found, which is discussed in Sec-
tion 5.5. Second, the algorithm only handles boolean predicates. We
discuss numerical invariants and compensations in Section 5.3.

5.2.1 Conflict detection
The conflict detection algorithm finds a pair of operations that,

when executed concurrently, may break the application invariants.
To this end, it considers all pairs of operations in the specification
(checking conflicts pairwise is sound, as shown independently by
Gotsman [29] and Balegas [48]).

For each pair, the algorithm first checks if the operations have
opposing effects (line 8), i.e., if one sets a predicate to true while
the other sets the same predicate to false, as when add tourn(t)
and rem tourn(t) execute concurrently. For each opposing effect,
the algorithm uses the rule specified in CR to set the value of the
predicate in the operations (line 9). If no rule exists for the predicate,
the programmer is asked which rule should be used (Add-wins or
Rem-wins), and the updated CR rules are returned by the function.

For checking if the concurrent execution of both operations may
break an invariant, it is necessary to consider their concurrent ex-
ecution in all valid states. If any resulting state does not respect
I , then the operations conflict. To search for an invalid execution
efficiently, we rely on an SMT solver (line 10), which uses several
optimizations and heuristics to avoid testing all cases exhaustively.

Figure 3a exemplifies the conflict detection procedure for two
operations, rem tourn(t) and enroll(p, t). To select the states to
be checked, the SMT solver determines, from the invariants, the
weakest precondition for executing both operations. In this case,
it is necessary that tournament(t) and player(p) are set to true.

Algorithm 1 IPA algorithm and main functions.
. IPA main loop.

1: function IPA(I , Ops , CR)
2: while existsConflictingPair(I , Ops , CR) do
3: opPair ← findConflictingPair(I , Ops , CR)
4: (newPair ,CR)← repairConflicts(I , opPair , CR)
5: Ops .replace(opPair , newPair)
6: return (Ops ,CR)

. Checks if a pair is conflicting. [invoked in line 17]
7: function ISCONFLICTING(I , OpPair , CR)
8: if opposingEffects(OpPair) then
9: (OpPair , CR)← apply(OpPair , CR)

10: return (SMTCheckConflicting(I , OpPair), CR)

. IPA algorithm for repairing conflicts. [invoked in line 4]
11: function REPAIRCONFLICTS(I , OpPair , CR)
12: sols ← ∅
13: invPreds ← {getPreds(i) | i ∈ invClauses(I , opPair)}
14: newOpPairsList ← generate(invPreds, I ,OpPair)
15: for newOpPair ∈ newOpPairsList do
16: if not isPairSubset(newOpPair , sols) then
17: (result,newCR)← isConflicting(I ,newOpPair ,CR)
18: if result == FALSE then
19: sols← sols ∪ {(newOpPair , newCR)}
20: return USERPickResolution(sols)

. New operation generation. [invoked in line 14]
21: function GENERATE(invPreds , I , (op1 , op2))
22: seed ← {p(true), p(false) | p ∈ invPreds}
23: effectSets← powerSetFiltered(seed)
24: pairs ← ∅
25: for p ∈ effectSets do
26: pairs ← pairs ∪ {(newOp(op1 , p),op2)}
27: pairs ← pairs ∪ {(op1 ,newOp(op2 , p)}
28: return order(pairs) . by increasing no. of predicates.

The SMT solver then checks if, for every state in which the weakest
preconditions hold, the concurrent execution of both operations
produces a valid state. In our example, executing rem tourn(t) and
enroll(p, t) individually at some Sinit in which tournament(t)
and player(p) are set to true, generates S1 and S2 respectively,
which are valid states. However, when we combine the effects of
both operations, the resulting state violates the invariant that a player
must be enrolled in an existing tournament (line 2, Figure 2).

5.2.2 Conflict repair
The conflict repair algorithm (function repairConflicts, line 11)

takes two conflicting operations and tries to find modifications to the
operations and conflict resolution rules that guarantee the invariants
are preserved when these operations execute concurrently.

The algorithm starts by creating a pool of predicates to add to the
operations to avoid the conflict. To this end, the invariant clauses
that might be involved in the conflict are identified, based on the
effects of the conflicting operations. The predicates involved in
these clauses are the predicates that will be used to try to avoid the
conflict (line 13).

The next step is to generate the modified versions of the con-
flicting operations by using the identified predicates (line 14). The
generate function (line 21) computes all possible combinations of
new effects to add to the operations, by using the powerset of the pre-
viously identified predicates (in invPreds), filtered so that in each set
a predicate has only the value true or false (line 23). The function
returns all pairs of operations extending the original operations with
the new effects, ignoring, in each new operation, any predicate that
is already present in the operation. The modified pairs are ordered
by the number of predicates in each operation (line 28) to ensure
that the algorithm analyses operations with fewer predicates first.

408

Sinit

player {p}
tournament {t}

enrolled {}

player {p}
tournament {}

enrolled {}
player {p}
tournament {t}

enrolled {(p,t)}

S1 S2

player {p}
tournament {}

enrolled {(p,t)}

Sfinal

merge(S1,S2)

Op: rem_tourn(t)
Effects:
tournament(t) = F

Op: enroll(p,t)

enrolled(p, t) = T
Effects:

(a) Referential integrity broken.

Sinit

player {p}
tournament {t}

enrolled {}

player {p}
tournament {}

enrolled {}
player {p}
tournament {t}

enrolled {(p,t)}

S1 S2

player {p}
tournament {t}

enrolled {(p,t)}

Sfinal

merge(S1,S2)

Op: enroll_t(p,t)

enrolled(p, t) = T
tournaments(t) = T

Effects:Op: rem_tourn(p)
Effects:
tournaments(t) = F

CR:
tournament(t) = T

(add-wins)

(b) Recreates tournament t.

Sinit

player {p}
tournament {t}

enrolled {}

player {p}
tournament {}

enrolled {}
player {p}
tournament {t}

enrolled {(p,t)}

S1 S2

player {p}
tournament {}

enrolled {}

Sfinal

merge(S1,S2)

Op: rem_tourn(t)
Effects:
tournament(t) = F
enrolled(*,t) = F

Op: enroll(p,t)

enrolled(p, t) = T
Effects:

CR:
enrolled(p,t) = F

(rem-wins)

(c) Disenrolls all players from tournament t.

Figure 3: Analysis of conflicts and resolutions of a pair of operations.

For each generated pair of operations, the algorithm checks if the
effects of the modified operations are not a subset of any previously
found solution, i.e., if there is a solution with fewer additional
effects that solves the conflict (line 16). If that is the case, the pair
is ignored. Otherwise, the algorithm checks if the new pair is non-
conflicting (line 17) – this might require automatically assigning a
new conflict resolution policy to a predicate that has no assigned
policy yet (if a policy already exists, it is not modified). If the new
pair is non-conflicting, it is added to the set of solutions (line 19).

Finally, the set of solutions is presented to the programmer, who
must select the most appropriate one for the application (line 20).

5.2.3 Running the IPA analysis: an example
To exemplify how the IPA analysis works, we consider three

operations: enroll(p, t), rem tourn(t), and rem player(p).
In the first iteration, the conflict detection procedure finds a

pair of operations that conflict. Consider that this returns the
pair 〈enroll(p, t),rem tourn(t)〉. In this case, the invariant vi-
olated by these operations is I = enrolled(p, t)⇒ player(p) ∧
tournament(t). The pool of predicates for generating new oper-
ations is {enrolled(p, t), player(p), tournament(t)}. The anal-
ysis creates new operations by considering the powerset of those
effects. While computing the powerset has exponential complexity,
the degree is usually small as the predicate pool is restricted to the
predicates of the invariant clause impacted by the conflict.

With an initially empty value for the CR set, the following
repair actions are possible. The first repair (Figure 3b) consists
of extending the enroll(p, t) operation by setting the predicate
tournament(t) to true and using the conflict resolution policy
(tournament,Add-wins). When the two operations execute con-
currently, an opposing effect occurs for predicate tournament(t).
With Add-wins for tournament, the resulting value for the predi-
cate is true, leading to a state that contains tournament t, which
is compliant with invariant I . Setting tournament(t) to true in
operation enroll(p, t) produces no observable effect because one of
the preconditions of the operation is that the value of that predicate
is true, therefore the effect can be executed preventively. We note
that choosing this repair will influence also the result of a concurrent
add tourn(t) and rem tourn(t) – the Add-wins policy will guar-
antee that the tournament exists in that case. Also, this repair would
not be possible if the initial conflict resolution policies included
(tournament,Rem-wins).

The second repair (Figure 3c) consists of extending rem tourn(t)
to force the disenrollment of every player from tournament t and
using the conflict resolution policy (enrolled,Rem-wins). Since it is
impossible to infer the identifier of the player that might enroll in t,
we use a wildcard for the parameter p, enrolled(∗, t) = false, as
shown in Figure 3c. (We show in Section 6.2 how to implement this
predicate efficiently.) This additional effect is also not observable in
a sequential execution, and therefore can be applied preventively.

After both solutions are presented to the programmer, he or she
selects one of them, and the loop proceeds to find another conflicting
pair. The conflict detection step now returns the pair (enroll(p, t),
rem player(p)). The same invariant as before is violated, leading
to the same pool of predicates for generating new operations.

Again, independently of the resolution selected for the first con-
flicting pair, two repairs are possible (as the conflict resolution
policies do not restrict them). The first repair consists of extend-
ing the enroll(p, t) operation by setting the predicate player(p)
to true and using the conflict resolution policy (player,Add-wins).
The second repair consists of extending the rem player(p) to force
the disenrollment of the player p in every tournament and using the
conflict resolution policy (enrolled,Rem-wins).

Although the most logical solution would appear to be selecting
the first or second repair in both cases, it is important to note that
any other combination also preserves the invariants. E.g., the pro-
grammer might decide that in case of a conflict between enroll(p, t)
and rem tourn(t), the enroll will win, thus restoring the tourna-
ment (first repair), whereas in a conflict between enroll(p, t) and
rem player(p), the removal of the player will win, leading to the
disenrollment of the player in all tournaments (second repair).

A complete analysis is provided in a technical report [15].

5.2.4 Correctness of referential integrity maintenance
We now show that the IPA approach preserves the referential

integrity invariant on a generic relational database.
Consider the following definition of referential integrity: I =
∀xi ∈ X, ∃yi ∈ Y : xi.r = v ⇒ yi.s = v, which says that for
every row of table X that has value v for column r, there must be a
row in table Y with value v for column s.

Without loss of generality, we consider the case where table Y
has a single column and table X has two columns, where the second
one refers to a row in table Y . Operation Cx creates a new row
(x, y) in a table X , if and only if there is a row in table Y with value
y. Operation Dy deletes row (y) in table Y , if and only if there is
no row in table X , where the second column has the value y.

Let SCD be the set of admissible states where the preconditions
of both Cx and Dy hold. Consider the state s where table X is
empty and table Y contains a single row with value (y). State s
is an admissible state for both Cx and Dy and thus it is possible
to concurrently execute Cx and Dy . However, as I(Cx(Dy(s))) =
false , the set of operations {Cx, Dy} is not I-Confluent.

Now consider the modified operation C′
x with the same effects

as the original operation, plus an additional effect to touch every
row (y) of table Y . Further consider the use of Add-wins for table
Y , where deletion of a row loses when executed concurrently with
an insert or touch. With these modifications in place, the set of
operations O = {C′

x, Dy} is now I-Confluent. To prove that, we are
going to show that I holds for every possible execution of operations
in O, even if we extend O with other operations that might affect I .

409

We note that C′
x can only execute initially in states where a row

(y) exists in table Y . In these states, the concurrent execution of C′
x

and any number of Dy operations always leads to a state where row
(y) is present in table Y , since the use of Add-wins semantics for
table Y guarantees that the touch of (y) in C′

x masks the deletion
of (y) in Dy . This guarantees that the invariant I holds for O.

The invariant I continues to hold for the row added by C′
x even if

more operations are added to O. Since Add-wins semantics are used
for table Y , row (y) remains in table Y when C′

x is executed con-
currently with any other operation, thus guaranteeing that referential
integrity is maintained.

5.3 Numerical invariants
Numerical invariants are more difficult to maintain by modifying

operations. For example, consider the invariant in line 4 of Figure 2,
which defines a maximum capacity for a tournament. When the
current number of enrolled players is Capacity − 1, two concurrent
enrolls with different players lead to an invariant violation. To avoid
this problem, a possible preventive modification is to disenroll some
enrolled player when executing an enroll(p, t). (To be correct,
different enrolls additionally need to disenroll different players.)
Obviously, this is not reasonable in this application.

To circumvent this issue, we provide support for compensa-
tions [27, 42, 50]. With compensations, the idea is to check that
the precondition holds when executing the operation in the initial
replica, and to check that the invariants hold when operations are
integrated remotely or when the state is read. Implementations of
compensation mechanisms typically require re-executing operations
multiple times, or using a leader to order operations [50], to ensure
that replicas converge after applying a compensation. We implement
compensations without any of these limitations by relying on CRDT
convergence rules.

5.3.1 Extending the analysis
To generate a compensation, instead of modifying the existing

operations, the algorithm flags those operations as conflicting and
generates a new operation with the additional effects to be exe-
cuted when a conflict is detected. Since the new operation may
conflict with other pre-existing operations, the analysis must check
the execution of this operation against other operations.

The analysis can detect numerical invariant violations that involve
comparison operations and arithmetic operators between multiple
predicates. For example, an invariant Stock(x) ≥ 0 can be used
to state that the stock of a product must be non-negative and the
invariant CheckAccount(x) + Savings(x) ≥ 0 to specify that
the overall balance of a client in a bank must be non-negative.

After detecting a conflict, the analysis suggests effects to repair
the conflict. For instance, after identifying a conflict that violates
the invariant of line 4, the compensation simply says that the value
of that predicate must be decreased, i.e., that the number of play-
ers enrolled must decrease. It is up to the programmer to decide
how to implement such compensation. In our example, a possible
compensation is to disenroll the player and send him a notification.

The logic of compensations is application-dependent. Our tool
identifies invariant violations to be fixed using compensations and
lets the programmer decide how to fix the violation.

5.3.2 Extending applications
Replicas might detect the invariant violation at any time by in-

specting the local state and applying a compensation without coordi-
nating with other replicas. The compensation operation is replicated,
as any other operation, thus guaranteeing that all replicas converge
to the same state. We explain how this works with an example.

1 void ensureEnroll (String p, String t) {
2 AddWinsSet tournamentIndex = getCRDT(TOUR IDX, ADD WINS);
3 AddWinsSet playerIndex = getCRDT(PLR IDX, ADD WINS);
4 tournamentIndex.touch(t);
5 playerIndex . touch(p);
6 }
7 void compensateEnrolled(String p, String t) {
8 AddWinsSet enrolled = getCRDT(ENROLLED PFX + t, ADD WINS);
9 RemWinsSet matches = getCRDT(MATCHES PFX + t, REM WINS);

10 enrolled . remove(p);
11 matches.rem(new Match(p, ”*”, t));
12 matches.touch rem(new Match(p, ”*”, t));
13 }

Figure 4: Auxiliary functions for implementing the modified version
of the Tournament application.

Consider the invariant violation of exceeding the maximum num-
ber of allowed players in a tournament. When a violation is detected,
some player will have to be disenrolled from the tournament. To fix
this violation, the analysis suggests that the programmer decreases
the number of players enrolled in the tournament.

Reanalyzing the new specification with this compensation raises
new conflicts in the application. The compensation operation con-
flicts with operation do match(), as the players in a match must
be part of the tournament. Therefore, the compensation must also
cancel any match of the player that will be disenrolled. It is up to the
programmer to decide which additional effects have to be applied
as a consequence of the compensation (e.g., notify the player).

If multiple replicas concurrently detect the invariant violation,
they might independently apply the compensation code. As a conse-
quence, different players might be disenrolled in different replicas.
In any case, as the effects of the compensation operations are propa-
gated to all replicas, the system converges to a state where invariants
are valid. The downside is that we might remove more players
from the tournament than necessary. In our application, we use a
deterministic rule to decide which player to disenroll to increase the
likelihood of disenrolling the same player in all replicas.

5.4 Code modification
After the IPA analysis returns the new specification of the applica-

tion, the programmer must apply the proposed changes to the code
of the application. In our prototype, the programmer is responsible
for ensuring that the modified code follows the new specification,
although code checking techniques could be used to ensure that the
code matches the specification [26].

Figure 4 shows an excerpt of the code necessary to modify the
tournament application in our prototype.

The first aspect to consider is how to store information and how
to implement the conflict resolution policies. In our prototype, each
predicate is represented with one or more set CRDTs: predicates
player(p) and tournament(t) are represented by a set, where
each element is a member of that set; predicate enrolled(p, t) is
represented by a set for each tournament t and each element p is
a member of that set. Setting a predicate to true corresponds to
adding that element to the set and setting it to false removes it. The
set CRDT used for each predicate depends on the conflict resolution
policy in the new specification of the application.

In our prototype, using a given conflict resolution policy for a
predicate is achieved by using the appropriate CRDT – in function
ensureEnroll (line 1), the Add-wins set CRDT is used for both
predicates player(p) and tournament(t).

The second aspect to consider is how to modify the original oper-
ations for implementing the new specification, with the additional
effects. Instead of adding the code to the original functions, we
used auxiliary functions that execute the additional effects and are
called by the original operation. For example, function ensureEnroll
is used to extend the enroll operation to guarantee that player p

410

and tournament t are not concurrently removed (this corresponds
to the first repair for both conflicts in the example of Section 5.2).
The code simply uses the touch operation in the CRDTs for both
players and tournaments, in combination with the Add-wins policy,
to guarantee that player p and tournament t are not removed.

When using compensations, it is necessary to write a compen-
sation function that runs if the invariant violation is detected at
runtime. Function compensateEnrolled (line 7) shows the code for
compensating an enroll when it is found that the capacity of the
tournament has been exceeded. Besides canceling the enrollment
(line 10), it is necessary to cancel any match that involves the player,
both the matches that are already known at the replica (line 11) and
those that might have been created concurrently (line 12).

5.5 Limitations
No repair found. A limitation of our approach is that the algorithm
might not find any valid solution for a conflict between two opera-
tions, due to some previous decision by the programmer. Consider,
e.g., an application with four predicates, A, B , C and D , connected
by the following invariant A⇒ B ⇒ C ⇒ D . For each predicate
there are two operations defined, one that makes the predicate true
(e.g., At) and another that makes it false (e.g., Af) .

When running the IPA analysis for solving the conflict between
operations Ct and Df , the programmer may decide to repair the
conflict by setting both predicates to false. To this end, operation
Df is extended to make C = false, and the conflict resolution
policy for C is Rem-wins.

Next, the conflict detection may identify the conflict between
operations At and Bf . If the programmer decides to solve the
conflict by making both predicates true, operation At is extended
with B = true and the conflict resolution policy for B is Add-wins.

The extended operation At now conflicts with operation Cf .
However, there is no solution for solving this conflict. First, it is
impossible to make predicates A, B and C true, as the conflict
resolution for C is Rem-wins. Second, it is impossible to extend
operation Cf to make the predicate B false, as the conflict resolution
for B is Add-wins.

In such cases, our tool checks if it would have been possible to
solve the conflict by considering only the conflict resolution policies
initially established by the programmer. If such a solution exists, it is
presented to the programmer. If the programmer wants to use such a
solution, because it makes sense for the semantics of the application
being developed, he or she must run the analysis again, and use
its output to make different decisions on the alternative repairs that
are proposed. Otherwise, the pair is flagged as unsolvable and the
algorithm continues, ignoring that pair in subsequent iterations. In
that case, the execution of those operations must be controlled using
an alternative mechanism [14, 37].
Supporting multiple applications and application evolution. Our
approach can support multiple applications accessing the same
database if the programmer provides a complete specification for all
applications that use the database.

For a running system, one can consider several scenarios of evo-
lution: add new operations to an application; add new invariants to
the database; add a new application that accesses the same database.
In all cases, it is necessary to execute the IPA analysis again. If the
operations and conflict resolution rules used in the original system
remain unchanged, it is possible to evolve the system without having
to stop it. Otherwise, it is necessary to stop the system.

A possible approach to tackle the system evolution more easily
is to consider that, for every predicate defined in the system, there
exists an operation to make the predicate true and an operation to
make it false, even if those operations do not exist in the current

application. Considering these operations, the IPA analysis will
identify conflicts between the operations that exist in the application
and these additional operations, and proposes alternative repairs to
the programmer. With this approach, when evolving the system, if
the database does not change and no additional invariant is added, as
it is often the case when supporting a new application that uses the
same database, the original operations will remain unchanged (as
they already prevent any conflict that may occur). This approach has
two main disadvantages. First, the operation may include additional
effects that are of no use in the current application (as the conflicts
they are solving do not occur). Second, the programmer may decide
to use a repair approach that is not appropriate for the new operations,
making this effort useless.
Specification effort. The effort of writing specifications is arguably
comparable to the effort of writing the code itself [43]. We do not
address this problem in this work. Previous research attempted to
address this problem, proposing automatic feature extraction and
code synthesis to aid the programmer in writing correct applica-
tions [44, 36, 24, 25, 7]. Our approach could benefit from these
complementary research efforts, not only for extracting the speci-
fication of the application from the code but also for making sure
that the code of the modified version of the application matches the
specification output by the IPA analysis.

6. IMPLEMENTATION
This section briefly describes the IPA prototype.

6.1 IPA tool and database support
The IPA tool assists programmers to write invariant preserving

applications. The tool receives as input an annotated Java interface
with the operations and the invariants, as in the example of Figure 2,
and an initial set of convergence rules. The tool runs the static anal-
ysis algorithm and outputs the modified specification of operations
and auxiliary compensations, the conflict resolution rules for each
predicate, and the set of unresolved conflicting pairs.

The tool uses the Z3 SMT solver [21] to identify conflicting opera-
tions and propose modifications to operations. Boolean satisfiability
is an NP-Complete problem, but modern SMT solvers can handle
many instances of this problem efficiently, as shown by our perfor-
mance evaluation. The algorithms and the tool are implemented
using standard Java and the Java bindings for Z3.

Our prototype was implemented in Java, using Switfcloud [57,
3] as the underlying storage system. SwiftCloud provides highly
available transactions, causal consistency and per-object conflict
resolution based on CRDTs, allowing to easily add new data types.

We implemented several applications for the evaluation, derived
from the specifications generated by our analysis. We use set CRDTs
for storing the data represented by the predicates.

6.2 New CRDT designs
We now discuss the CRDTs used for supporting the resolutions

proposed by IPA. A detailed specification of the data types is avail-
able in a separate document [48].

6.2.1 CRDTs with touch operations
When a modification requires that some predicate value is set to

true, we need to ensure that the element that we are restoring is
equal to the one that was observed.

To this end, we extended the Add-wins set CRDT with a touch
operation. This operation simply updates the meta-data for the
element in the set, with a new timestamp as if the object was created
at that moment. If a concurrent remove of the same element is
executed, the Add-wins policy ensures that the element will survive.

411

Table 1: Common classes of invariants in applications.

Inv. Type I-Conf. IPA TPC Tour Ticket Twitter
Sequential id. No No Yes — — —

Unique id. Yes Yes Yes Yes Yes Yes
Numerical inv. No Comp. Yes — — —
Aggreg. const. No Comp. — — — —
Aggreg. incl. Yes Yes — Yes — —
Ref. integrity No Yes Yes Yes — Yes
Disjunctions No Yes — Yes — —

Furthermore, all information associated with the element is pre-
served – for example, for a tournament, the element includes not
only a simple identifier but a record with multiple fields.

6.2.2 Remove with Wildcards
Some repairs require preventing the addition of any element that

matches some condition – e.g., in the example of Section 5.2, there
is a repair requiring to make enrolled(∗, t) = false , for any player
and a given tournament. To implement this effect using a standard
Rem-wins set CRDT, it would be necessary to execute a remove for
all elements that could be concurrently added.

Doing this would be impractical because the set of possible ele-
ments is large. Instead, we created CRDTs that support wildcard
values for the remove operation. For instance, the wildcard “*”
represents all possible elements in the domain.

6.2.3 Compensation CRDTs
For some invariants, it is possible to encapsulate the logic for

detecting conflicts and applying the compensations automatically.
Consider the invariant #enrolled(p, t) ≤ Capacity . We use a
set to store the information about players enrolled in a tournament.
To ensure that the application is always consistent, whenever the
application accesses the set, the object automatically verifies if its
state is consistent, and applies the compensation if necessary.

We implemented Limited Size Set CRDTs that allow the pro-
grammer to define the constraint that must be maintained, and the
compensation to execute when the constraint is violated. Whenever
the object is read, the code is executed automatically, ensuring that
any observed state is consistent. The effects of the compensation, in
case it is executed, are committed in the enclosing transaction.

To select the elements to be removed in the compensation it is
possible to leverage the history information of the set to remove the
last elements added to the set. This does not prevent more elements
than necessary from being removed, because the state of replicas
might diverge, but it reduces the chance of that happening.

7. EVALUATION
Our evaluation intends to answer the following questions:
(i) What classes of invariants and applications can be handled by

our approach?
(ii) What is the scalability of the static analysis process?
(iii) How does the performance of modified applications compare

to other solutions?

7.1 Invariants covered by IPA
This section surveys the invariants covered by our approach.

7.1.1 Classes of invariants
Prior work has analyzed invariants used in real applications [10, 9,

37]. Table 1 summarizes whether these invariants are I-Confluent [9]
or can be made I-Confluent by using IPA.

Sequential identifiers: Sequential identifiers are useful to en-
force a total order of elements. In general, generating these identi-
fiers requires coordination to avoid collisions. No solution based on

weak consistency can maintain this invariant. However, it has been
shown that, in most cases, applications could easily replace the use
of sequential identifiers by unique identifiers [8, 51].

Unique identifiers: Unique identifiers can be preserved without
coordination, and as such are I-Confluent. Unique identifiers do
not provide a sequential order, but can still provide a total order of
identifiers compatible with the happens-before relation.

Numerical invariants: Numerical invariants assert conditions
involving numerical predicates (e.g., p(x) < k). In general, pre-
serving these invariants requires coordination. However, as it has
been shown, it is possible to enforce some constraints on top of
weak consistency by relying on escrow techniques [16, 32, 41]. IPA
allows to maintain these invariants using compensations as long as
the application is compatible with using this approach. In TPC-C/W
we can use compensations to replenish the stock, for instance.

Aggregation constraint: Imposing a bound on the size of a
collection, e.g., limiting the players enrolled in a tournament, can be
addressed using a numerical invariant over a predicate that represents
the size of the collection, thus sharing its properties.

Aggregation inclusion: Ensuring that an element is eventually
added or removed from a collection is I-Confluent, provided no
dependencies to other objects exist. If that is not the case, referential
integrity might be required.

Referential integrity: Preserving relations and dependencies
among objects, such as foreign keys in relational databases and
references to keys in key-value stores, is not I-Confluent. IPA fully
supports this invariant, as exemplified throughout the paper.

Disjunctions: Applications often specify that one of several con-
ditions must be met by using a disjunction. IPA can address this type
of invariant by extending an operation to ensure that the disjunction
is always true. This is an extension of the mechanism for supporting
referential integrity, as in this case there might be several alternative
conditions that restore the validity of the invariant.

7.1.2 Invariants in applications
We now analyze how IPA can address the invariants of some

selected applications (summarized in Table 1). These application
are representative of general OLTP workloads.

Tournament: This application manages the information for an
on-line game and showcases most of the invariants that our solution
can address. It is based on an application used in prior work [29,
14] with a few new constraints. For this application, IPA is capable
of proposing multiple alternative resolutions that either reconstruct
broken dependencies, or clear them, to avoid inconsistencies due to
concurrent executions, as discussed throughout this paper.

Twitter: We implemented a simple Twitter clone that relies heav-
ily on referential integrity to implement user timelines and maintain
subscription information. When some user tweets, we write those
tweets to the timelines of the followers. This leads to consistency is-
sues when tweets and users are removed concurrently with tweeting.
We implemented two versions, using the Add-wins and the Rem-wins
policy to solve conflicts, respectively. For example, if a user tweets
and his or her account is concurrently removed, for the Add-wins
version the user and tweets are restored, whereas for Rem-wins the
user and tweets are removed. Other conflicts are solved similarly.

Ticket: This application, based on FusionTicket [1, 32, 56], man-
ages ticket reservations. The main invariant is that tickets for events
cannot be oversold. We use the Limited Size Set CRDT to cancel
a ticket sale and reimburse the customer when tickets are oversold.
The transfer of money to the account of the customer crosses the
boundaries of the system and therefore must use a different mecha-
nism (e.g., a message queue).

412

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

[s
]

Num. Ops

Chain 1
Chain 2
Chain 3
Chain 5
Chain 7

Figure 5: Execution time of
analysis with no conflict.

 0

 100

 200

 300

 400

 500

 600

 700

 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
T

im
e

[m
s]

Num. Ops

Chain 1
Chain 2
Chain 3
Chain 5
Chain 7

Figure 6: Time to generate re-
pairs.

TPC-W and TPC-C: These standard database benchmarks over-
look some aspects of real-world applications, such as having opera-
tions to manage product listings. In our specification, we extended
these applications to include such operations, which introduced
referential integrity constraints. To implement the inventory size
threshold we used compensations to increase the stock (in accor-
dance with the specification). An alternative would be to cancel the
oversold purchases, as in the previous example.

7.1.3 Summary
The types of invariants we support (Table 1) are common in many

applications, as previously shown [10]. The examples we discussed
show that our language is expressive enough to address complex
applications, including typical relational database applications.

7.2 Off-line analysis performance
We evaluate the scalability of the proposed approach, by analyz-

ing the execution time of the IPA analysis as the size and complexity
of the application increases using a micro-benchmark.

To vary the size of the application, we vary the number of predi-
cates. For each predicate, there are two operations, one that makes
the predicate true and another that makes the predicate false. Thus,
for 10 predicates, we have 20 operations. For all predicates, we use
the Add-wins conflict resolution policy.

All predicates belong to some invariant clause. To vary the com-
plexity, we vary the number of predicates that are connected by
invariants. For a chain size of one, the invariants defined connect
only pairs of predicates: P1⇒P2, P3⇒P4, P5⇒P6, etc. For a
chain size of two, the invariants connect groups of three predicates:
P1 ⇒ P2 and P2 ⇒ P3, P4 ⇒ P5 and P5 ⇒ P6, etc. Increasing
the size of the chain, increases both the number of clauses in the
invariant and the average number of effects in each operation for a
specification without conflicts – e.g., with a chain of size one, the
operation that makes P1 true only needs to make P2 also true, while
with a chain of size two it also needs to make P3 true.

The results were obtained in a laptop, running MacOS 10.13.6,
with an Intel i7 2.8 GHz Quad-Core processor and 16GB of RAM.

7.2.1 Conflict detection
We start by evaluating the time to detect a conflict. The worst

case scenario is when the analysis finds the conflict in the last pair
that is checked. To approximate this, we run our tool with a correct
specification, so that the algorithm analyzes all pairs of operations.
Figure 5 shows the execution time (in seconds) for different con-
figurations of the benchmark, with different lines corresponding to
increasing the number of operations in the chain.

We first observe that, as expected, the execution time of the
algorithm grows quadratically, due to testing all pairs of operations.
Second, we observe that the cost of testing all pairs dominates the
cost of the algorithm, since changing the size of the chain does not
impact the results significantly. The results show that the overall

execution time is reasonable for an offline process, as testing all
combinations of pairs of 100 operations takes less than 100 seconds.

7.2.2 Conflict repair
Our second experiment evaluates the time to repair conflicts. To

this end, from a specification that is invariant-preserving, we have
removed the additional effects that avoid conflicts in a single oper-
ation, selecting one of the operations with more additional effects
(e.g., in the chain of size two, from the operation that makes P1

true, we removed the changes to P2 and P3). Figure 6 presents the
sum of the time spent in proposing repairs until a correct solution is
generated (this excludes the time to detect conflicts). As expected,
when the chain is longer, our tool takes more time to find a cor-
rect solution, as it repairs the conflicts one at a time. Still, in our
configurations, this time is low.

These results show that the running time of our tool is dominated
by the time to detect conflicts and that this time is reasonable for an
offline process, making our approach practical.

7.3 Runtime performance
In this section, we compare the performance of applications mod-

ified using our approach against alternative solutions.

7.3.1 System configurations
Our evaluation was performed in a geo-replicated setting on Ama-

zon EC2. The database deployment consists of three servers running
in three geographical regions (US-WEST, US-EAST and EU-IE).
The table below shows the latency between each region.

RTT (ms) US-East US-West
US-West 81 –
EU-IE 93 161

The application server is co-located with the storage system of
each region. We use SwiftCloud to implement all different ap-
proaches that we evaluate. Clients are installed in other machines in
the same availability zones as the corresponding closest servers.

Performance of applications is compared with the following alter-
native approaches:

Causal Consistency (Causal): This configuration uses the original
applications running with causal consistency, which does not
maintain invariants for conflicting operations.

Strong Consistency (Strong): All updates are forwarded to the
US-EAST replica to enforce serialization. This minimizes the
average latency for updates.

Invariant violation avoidance (Indigo [14]): Applications modi-
fied to use the efficient coordination mechanisms proposed in
Indigo [2] to prevent invariant violations. Conflicting opera-
tions need to acquire reservations to safely execute operations.
Each set of conflicting operations coordinated using different
reservations, and each reservation can be shared by multiple
replicas, allowing a high level of concurrency.

Invariant Preserving Applications (IPA): Applications are mod-
ified using our IPA approach, which maintains invariants
without coordination, on top of Causal.

7.3.2 Throughput and latency
We evaluate the scalability of each configuration by measuring

the latency and throughput with different loads on the system, using
the Tournament application. The workload comprises 35% of write
operations, and the initial database contains 1000 players and 100
tournaments. All operations are conflicting in the original appli-
cation. In the IPA modified version, all operations are I-Confluent

413

using a mix of conflict resolution policies. In Indigo, every pair of
operations is protected by a different reservation.

To test the scalability of the system, we increase the number of
clients contacting each server by running extra client threads until
peak throughput is achieved.

Figure 7 shows that Strong presents the highest average latency,
which is a consequence of having 2

3
of operations being forwarded

to a remote server. Even if it would be possible to improve the
scalability of our implementation, this figure highlights that even
when contention is low, the average latency is already much higher
than with weak consistency approaches. Causal shows the best
scalability with the lowest latency. Our approach, IPA, performs
slightly worse than Causal, as additional updates need to be executed
to preserve application invariants. In the Causal version, concurrent
updates may lead to invariant violation.

When compared to Indigo, our approach performs slightly bet-
ter. The reason for this is that updates in Indigo need to acquire
reservations for coordinating the execution of concurrent updates,
which is more costly than the additional updates in the IPA version.
The advantage is small because reservations are exchanged among
replicas infrequently after they are acquired. Additionally, as many
reservations can be shared, they allow a high degree of concurrency.

Figure 8 presents the latency for the write operations and high-
lights more clearly the differences between the configurations. We
omit the Strong column. The average latency of operations in Indigo
is higher than the latency for IPA or Causal and also exhibits a
higher standard deviation. Both are explained by the occasional
need for Indigo replicas to trade reservations. Compared to Causal,
the latency of write operations is only slightly higher in IPA, which
is due to the extra updates executed. We further study the overhead
associated with executing extra effects in Section 7.3.5.

7.3.3 Comparing different conflict resolution schemes
We implemented Twitter using Add-wins and Rem-wins strategies

to compare the costs of each approach. The initial database contains
1000 users, and 96% of the operations are writes.

Figure 9 shows the latency of each operation for the different
version. The Add-wins version has a higher latency for operations
that create tweets (tweet and retweet). This overhead is due to the
additional effect of touching the user, to ensure that when a user
tweets, or retweets, he or she will not be removed concurrently.

The Rem-wins version has a higher latency for remove operations,
due to the additional effects. The delete tweet operation needs
to remove the tweet from all timelines that have the tweet. The
remove user has a small overhead, as it only has to issue a remove
with a wildcard in the followers and to set a compensation for
removing tweets in the user object – when user u1 reads a timeline,
the application checks, for each tweet, that its author, u2, was
removed, triggering a compensation to remove the tweets from the
timeline of u1 in this case. This also leads to a slight overhead in
the read timeline operation.

7.3.4 Scalability of compensations
We evaluate the scalability of the compensation mechanism im-

plemented in the Limited Size Set CRDT with the Ticket application,
by increasing contention. The initial database has 500 flights and
10000 customers, and all operations in the workload read and update
the database, with reads triggering the execution of compensations
when a flight is overbooked.

Figure 10 presents the performance with an increasing load. The
red dots in the figure indicate the average number of invariant vio-
lations that were observed at that throughput, when using Causal.
This confirms the intuition that as contention rises, the divergence

window grows larger, increasing the chance for invariant violation.
In Causal, this exposes the application to consistency anomalies,
while in IPA executing compensations preserves invariants at all
times. As expected, compensations incur on some overhead, but
still provide latency comparable to Causal.

7.3.5 Microbenchmarks
IPA avoids invariant violations by executing extra updates in

one or more objects. In this section, we evaluate the overhead of
adding additional effects to operations. We analyze the impact of
executing increasingly more updates in comparison to the costs of
executing the original operation in strong consistency and Indigo.
These microbenchmark use a Set CRDT to store information.

Operations on a single object: We measure the speedup of an
application modified with IPA versus the original operation running
on Strong. Figure 11 (top) shows that the original operation is
about 28× faster in IPA than in Strong. Adding more updates to
this operation makes the speedup decrease. When we execute 2048
updates to a single object, the average latency is still about 40ms.

Operations over multiple objects: Executing updates on a sin-
gle object imposes a low overhead on the system, because the object
is read and written to storage only once and subsequent updates only
impose processing costs. Now we evaluate the overhead when the
additional effects of modified operations update multiple objects.

The original application reads a varying number of objects to
check some condition and then executes a single write operation
to an object. The modified application checks the same condition,
but executes a write for each object. Figure 11 (bottom) shows
performance dropping faster than when executing updates over
single objects. At 64 objects, it starts to pay off to switch to Strong.

In practice, in the evaluated applications, we require only a few
extra updates per object over a small number of objects. In Twitter,
which needs to execute more writes due to our implementation of
the timeline, we were able to execute them lazily via compensations.

Comparison with Indigo: In Indigo [14], operations might exe-
cute locally if the replica holds some specific reservation. Multiple
operations might be able to execute concurrently at different replicas
if all of them can share the same reservation. If a replica requires
some reservation that is being used exclusively, the replica must
request remote replicas to release the reservation, before acquiring
it. This approach only avoids coordination when a replica holds the
necessary reservations to execute the operation. Thus, the latency of
an application depends on the contention for obtaining reservations.

In this experiment, we evaluate the impact of varying the percent-
age of operations that compete to acquire opposing reservations. We
compare the performance of this solution against executing the same
operation in IPA. Figure 12 shows that the performance of IPA is
equivalent to Indigo with no contention for reservations, and that
the latency of Indigo rises steadily as contention increases.

Despite the overhead for executing the additional effects, IPA
provides a predictable latency of operations, which is not the case for
Indigo, whose operations latency depend on the current distribution
of reservations. Furthermore, our approach is fault-tolerant as a
client can execute operations as long as it can access a single server.
In Indigo, if a server that holds the reservation needed to execute
some operation becomes unavailable, the operation cannot execute.

8. RELATED WORK
Achieving low latency, high availability and data consistency

in distributed systems is difficult, as postulated in the CAP theo-
rem [28]. In recent years, researchers and practitioners have studied
the trade-offs in distributed systems to provide the best consistency
guarantees for different types of applications [20, 22, 39, 8, 37, 14].

414

 0
 50

 100
 150
 200
 250
 300
 350

 0 50 100 150 200 250 300 350 400

L
at

en
cy

 [
m

s]

Throughput [TP/s]

Strong
Indigo

IPA
Causal

Figure 7: Peak throughput for Tournament.

 0

 50

 100

 150

 200

 250

 300

Begin
Finish

Remove

DoM
atch

Enroll

Disenroll

Status

L
at

en
cy

 [
m

s] Indigo
IPA

Causal

Figure 8: Latency of individual operations in
Tournament.

 0

 5

 10

 15

 20

 25

Tweet

Retweet

Del. Tweet

Follow

Unfollow

Add user

Rem user

Timeline

L
at

en
cy

 [
m

s] Causal
Add-Wins
Rem-Wins

Figure 9: Latency of individual operations in
Twitter.

 0

 10

 20

 30

 40

 50

 60

 400 800 1200 1600 2000
 0

 5

 10

 15

 20

 25

L
at

en
cy

 [
m

s]

In
v.

 v
io

la
tio

ns
 c

ou
nt

Throughput [TP/s]

Causal
IPA

Inv. violations

Figure 10: Peak throughput for Ticket bench-
mark. Red dots indicate number of invariant
violations observed during runtime.

 0
 10
 20
 30
 40

1 2 64 128 512 1024 2048

Sp
ee

d-
up

Number of ops per key

IPA/Strong

 0
 10
 20
 30
 40

1 2 4 8 16 32 64

Sp
ee

d-
up

Number of updated Keys

IPA/Strong

Figure 11: Speedup of executing mul-
tiple writes in IPA versus Strong.

 0
 20
 40
 60
 80

 100

N/A 0 2 5 10 20 50

L
at

en
cy

 [
m

s]

Reservations contention (%)

IPA
Indigo

Figure 12: Latency of operations with vary-
ing percentage of reservation types in com-
parison to no reservations.

Systems that ensure strong consistency [20, 58, 23, 33] require
coordination across replicas, which is expensive in geo-replicated
scenarios. In Megastore [13], data is partitioned at a fine granularity
to achieve low latency, while MDCC [33] exploits commutativity
and protocol optimizations to improve performance. Spanner [20]
and Farm [23] harness custom hardware to improve performance.

Systems that use weak consistency are widely deployed in the
real-world [47, 34], but can be difficult to use [10]. Many systems
provide causal consistency coupled with object convergence and
transactions [39, 57, 40, 8], which all can be implemented efficiently
without hindering the availability of the system.

Convergent data types [45] provide automatic replica conver-
gence, which lessens the programming effort in these systems. How-
ever, data type convergence alone cannot prevent invariant violations
involving multiple objects. To mitigate the problem, RedBlue [37]
and Walter [49] provide support for executing operations under
weak or strong consistency to allow fast operations when invariants
are not at risk, and consistent operations otherwise. Sieve [36] and
Blazes [7] address the problem of automating the use of the most
appropriate consistency alternative, while Indigo [14], Olisipo [38],
Lucy [54], and the Homeostasis protocol [44] try to minimize the
use of the strong consistency path. Despite improving the latency of
operations in the general case, systems that depend on coordination
to execute some operations may still become unavailable and exhibit
high latency. IPA completely avoids the drawbacks of coordination,
while being able to preserve a wide range of invariants.

Helland and Campbell have suggested that applications should
handle invariant violations as part of the application logic, as an
alternative to executing operations under strong consistency to pre-
vent violations [31]. The idea of compensations [27] is to execute
operations optimistically and explicitly rollback the effects when
conflicts are detected. A few systems have explored this model. In
PLANET [42], transactions execute speculatively, allowing the sys-
tem to provide the control back to the client before the transaction
commit confirmation arrives. In Bayou [50], transactions commit

locally and remain in a tentative state, until all replicas agree on the
ordering of operations. Existing systems that use compensations
still use some form of coordination to commit transactions. Our
approach departs from this model by modifying the operations to
ensure they can always commit locally, while preserving invari-
ants. We show that our approach does not modify the semantics of
operations when no conflicting concurrent operations execute.

Recent papers focused on proving correctness of distributed sys-
tems [30, 55]. These proposals complement ours, as they focus on
attesting if implementations conform to some specification, whereas
we aim to provide a methodology for implementing correct applica-
tions on top of the assumptions of our chosen consistency model.

9. CONCLUSION
In this paper, we proposed a novel approach for supporting cor-

rect and highly available applications on top of weak consistency.
By extending operations with additional effects, we can ensure in-
variant preservation at all times with sensible semantics. Our IPA
analysis and tool assist the programmer via static analysis to identify
which operations might lead to an invariant violation, when executed
concurrently, and by suggesting modifications to the operations.

Our experimental evaluation shows that the static analysis can
handle large applications in reasonable time for an offline process,
and that the modified applications have similar performance to their
unmodified counterparts that do not preserve invariants.

Acknowledgments
We thank the anonymous reviewers for their comments that helped
improving the paper. This work was partially supported by EU
H2020 LightKone project (732505), and FCT/MCTES grants SFRH/
BD/87540/2012, UID/CEC/04516/2013, UID/CEC/50021/2013, Lis-
boa-01-0145-FEDER-032662 /PTDC/CCI-INF/32662/2017, and
PTDC/CCI-INF/32081/2017. Computing resources were provided
by an Amazon Web Services (AWS) in Education Research Grant.

415

10. REFERENCES
[1] Fusion Ticket. http://www.fusionticket.org/.

Accessed May-2018.
[2] Indigo source code.

https://github.com/SyncFree/Indigo.
Accessed May-2018.

[3] SwiftCloud source code.
https://github.com/SyncFree/SwiftCloud.
Accessed May-2018.

[4] Akka. Distributed Data. https://doc.akka.io/docs/
akka/current/distributed-data.html.
Accessed May-2018.

[5] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain,
A. Bieniusa, N. Preguiça, and M. Shapiro. Cure: Strong
semantics meets high availability and low latency. In
Proceedings of the 36th IEEE International Conference on
Distributed Computing Systems (ICDCS 2016), pages
405–414, Nara, Japan, June 2016.

[6] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: A
Causal+ Consistent Datastore Based on Chain Replication. In
Proceedings 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 85–98, Prague, Czech Republic,
2013. ACM.

[7] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Blazes:
Coordination analysis for distributed programs. In
Proceedings of the IEEE 30th International Conference on
Data Engineering March 31 - April 4, 2014, pages 52–63,
Chicago, Illinois, USA, Apr. 2014.

[8] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. PVLDB, 7(3):181–192, 2013.

[9] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in database
systems. PVLDB, 8(3):185–196, 2014.

[10] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Feral Concurrency Control: An
Empirical Investigation of Modern Application Integrity. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
1327–1342, Melbourne, Victoria, Australia, 2015. ACM.

[11] P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and I. Stoica.
Scalable Atomic Visibility with RAMP Transactions. In
Proceedings 2014 ACM SIGMOD Conference Conference on
Management of Data, SIGMOD ’14, pages 27–38, New York,
NY, USA, 2014. ACM.

[12] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
Causal Consistency. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 761–772, New York, New York, USA,
2013. ACM.

[13] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. In Proceedings of the Conference on
Innovative Data system Research (CIDR), pages 223–234,
2011.

[14] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça,
M. Najafzadeh, and M. Shapiro. Putting Consistency Back
into Eventual Consistency. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys ’15,
pages 6:1–6:16, Bordeaux, France, 2015. ACM.

[15] V. Balegas, N. Preguiça, S. Duarte, C. Ferreira, and

R. Rodrigues. IPA: Invariant-preserving Applications for
Weakly-consistent Replicated Databases. CoRR,
abs/1802.08474, 2018.

[16] V. Balegas, D. Serra, S. Duarte, C. Ferreira, M. Shapiro,
R. Rodrigues, and N. Preguiça. Extending Eventually
Consistent Cloud Databases for Enforcing Numeric Invariants.
In Proceedings of the 34th IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 31–36, Montreal, Canada,
Sept 2015.

[17] Basho. Riak. http://basho.com/, 2017. Accessed
May-2018.

[18] C. Biyikoglu. Under the Hood: Redis CRDTs.
https://goo.gl/tGqU7h. Accessed May-2018.

[19] N. Conway, W. R. Marczak, P. Alvaro, J. M. Hellerstein, and
D. Maier. Logic and Lattices for Distributed Programming. In
Proceedings of the 3rd ACM Symposium on Cloud Computing,
SoCC ’12, pages 1:1–1:14, San Jose, California, 2012. ACM.

[20] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford.
Spanner: Google’s Globally-distributed Database. In
Proceedings 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 251–264,
Hollywood, USA, 2012. USENIX Association.

[21] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag,
Budapest, Hungary, 2008.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. In Proceedings of the 21st ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07,
pages 205–220, Stevenson, Washington, USA, 2007. ACM.

[23] A. Dragojević, D. Narayanan, E. B. Nightingale,
M. Renzelmann, A. Shamis, A. Badam, and M. Castro. No
Compromises: Distributed Transactions with Consistency,
Availability, and Performance. In Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP ’15,
pages 54–70, Monterey, California, 2015. ACM.

[24] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon System
for Dynamic Detection of Likely Invariants. Science of
Computer Programming, 69(1-3):35–45, Dec. 2007.

[25] C. Flanagan and K. R. M. Leino. Houdini, an Annotation
Assistant for ESC/Java. In Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods
for Increasing Software Productivity, FME ’01, pages
500–517, Berlin, Germany, 2001. Springer-Verlag.

[26] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended Static Checking for Java. In
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, PLDI
’02, pages 234–245, Berlin, Germany, 2002. ACM.

[27] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the
1987 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’87, pages 249–259, San
Francisco, USA, 1987. ACM.

[28] S. Gilbert and N. Lynch. Brewer’s Conjecture and the

416

http://www.fusionticket.org/
https://github.com/SyncFree/Indigo
https://github.com/SyncFree/SwiftCloud
https://doc.akka.io/docs/akka/current/distributed-data.html
https://doc.akka.io/docs/akka/current/distributed-data.html
http://basho.com/
https://goo.gl/tGqU7h

Feasibility of Consistent, Available, Partition-tolerant Web
Services. SIGACT News, 33(2):51–59, June 2002.

[29] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and
M. Shapiro. ’Cause I’m Strong Enough: Reasoning About
Consistency Choices in Distributed Systems. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages
371–384, St. Petersburg, USA, 2016. ACM.

[30] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill. IronFleet: Proving
Practical Distributed Systems Correct. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15,
pages 1–17, Monterey, USA, 2015. ACM.

[31] P. Helland and D. Campbell. Building on quicksand. In Online
Proceedings of CIDR 2009 Fourth Biennial Conference on
Innovative Data Systems Research, Asilomar, USA, Jan. 2009.

[32] B. Holt, J. Bornholt, I. Zhang, D. Ports, M. Oskin, and
L. Ceze. Disciplined Inconsistency with Consistency Types. In
Proceedings of the 7th ACM Symposium on Cloud Computing,
SoCC ’16, pages 279–293, Santa Clara, USA, 2016. ACM.

[33] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.
MDCC: Multi-data Center Consistency. In Proceedings 8th
ACM European Conference on Computer Systems, EuroSys
’13, pages 113–126, Prague, Czech Republic, 2013. ACM.

[34] A. Lakshman and P. Malik. Cassandra: A Decentralized
Structured Storage System. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[35] L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM,
21(7):558–565, July 1978.

[36] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and
V. Vafeiadis. Automating the Choice of Consistency Levels in
Replicated Systems. In Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC 14), pages
281–292, Philadelphia, PA, June 2014. USENIX Association.

[37] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making Geo-replicated Systems Fast As
Possible, Consistent when Necessary. In Proceedings 10th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Hollywood, USA,
2012. USENIX Association.

[38] C. Li, N. Preguiça, and R. Rodrigues. Fine-grained
consistency for geo-replicated systems. In Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 359–372, Boston, MA, 2018. USENIX
Association.

[39] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP ’11,
pages 401–416, Cascais, Portugal, 2011. ACM.

[40] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Stronger Semantics for Low-latency Geo-replicated Storage.
In Proceedings 10th USENIX Conference on Networked
Systems Design and Implementation, NSDI’13, pages
313–328, Lombard, USA, 2013. USENIX Association.

[41] P. E. O’Neil. The Escrow Transactional Method. ACM Trans.
Database Syst., 11(4):405–430, Dec. 1986.

[42] G. Pang, T. Kraska, M. J. Franklin, and A. Fekete. PLANET:
Making Progress with Commit Processing in Unpredictable
Environments. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD

’14, pages 3–14, Snowbird, Utah, USA, 2014. ACM.
[43] D. L. Parnas. Precise Documentation: The Key to Better

Software. In S. Nanz, editor, The Future of Software
Engineering, pages 125–148. Springer, 2010.

[44] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch,
N. Foster, and J. Gehrke. The Homeostasis Protocol: Avoiding
Transaction Coordination Through Program Analysis. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
1311–1326, Melbourne, Victoria, Australia, 2015. ACM.

[45] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A
comprehensive Study of Convergent and Commutative
Replicated Data Types. Research Report RR-7506, INRIA,
Jan. 2011.

[46] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free Replicated Data Types. In Proceedings of the
13th Conference Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, pages 386–400,
Grenoble, France, 2011. Springer-Verlag.

[47] S. Sivasubramanian. Amazon DynamoDB: A Seamlessly
Scalable Non-relational Database Service. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 729–730,
Scottsdale, Arizona, USA, 2012. ACM.

[48] V. B. Sousa. Invariant Preservation in Geo-replicated Data
Stores. PhD thesis, Faculdade de Ciências e Tecnologia,
Universidade NOVA de Lisboa, 12 2017.

[49] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
Storage for Geo-replicated Systems. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 385–400, Cascais, Portugal, 2011. ACM.

[50] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 172–182, Copper
Mountain, Colorado, USA, 1995. ACM.

[51] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy Transactions in Multicore In-memory Databases. In
Proceedings of the 24th ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 18–32, Farminton,
Pennsylvania, USA, 2013. ACM.

[52] W. Vogels. Eventually consistent. Communications of the
ACM, 52(1):40–44, Jan. 2009.

[53] T. Warszawski and P. Bailis. ACIDRain: Concurrency-Related
Attacks on Database-Backed Web Applications. In
Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, pages 5–20, Chicago,
Illinois, USA, 2017. ACM.

[54] M. Whittaker and J. M. Hellerstein. Interactive checks for
coordination avoidance. PVLDB, 2(1):14–27, 2018.

[55] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. D. Ernst, and T. Anderson. Verdi: A Framework for
Implementing and Formally Verifying Distributed Systems. In
Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’15, pages 357–368, Portland, OR, USA, 2015. ACM.

[56] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh,
L. Alvisi, and P. Mahajan. Salt: Combining acid and base in a
distributed database. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’14, pages 495–509, Broomfield, CO,

417

USA, 2014. USENIX Association.
[57] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas,

and M. Shapiro. Write Fast, Read in the Past: Causal
Consistency for Client-Side Applications. In Proceedings of
the 16th Annual Middleware Conference, Middleware ’15,
pages 75–87, Vancouver, BC, Canada, 2015. ACM.

[58] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction Chains: Achieving Serializability with Low
Latency in Geo-distributed Storage Systems. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 276–291, Farminton, Pennsylvania, USA,
2013. ACM.

418

	Introduction
	Background
	Eventual consistency and CRDTs
	Convergence is not enough

	Overview
	IPA approach
	System model
	Principles for IPA

	IPA design
	Specification
	IPA analysis
	Conflict detection
	Conflict repair
	Running the IPA analysis: an example
	Correctness of referential integrity maintenance

	Numerical invariants
	Extending the analysis
	Extending applications

	Code modification
	Limitations

	Implementation
	IPA tool and database support
	New CRDT designs
	CRDTs with touch operations
	Remove with Wildcards
	Compensation CRDTs

	Evaluation
	Invariants covered by IPA
	Classes of invariants
	Invariants in applications
	Summary

	Off-line analysis performance
	Conflict detection
	Conflict repair

	Runtime performance
	System configurations
	Throughput and latency
	Comparing different conflict resolution schemes
	Scalability of compensations
	Microbenchmarks

	Related work
	Conclusion
	References

