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ABSTRACT
Approximate nearest neighbor search (ANNS) is a funda-
mental problem in databases and data mining. A scalable
ANNS algorithm should be both memory-efficient and fast.
Some early graph-based approaches have shown attractive
theoretical guarantees on search time complexity, but they
all suffer from the problem of high indexing time complexity.
Recently, some graph-based methods have been proposed
to reduce indexing complexity by approximating the tradi-
tional graphs; these methods have achieved revolutionary
performance on million-scale datasets. Yet, they still can
not scale to billion-node databases. In this paper, to further
improve the search-efficiency and scalability of graph-based
methods, we start by introducing four aspects: (1) ensur-
ing the connectivity of the graph; (2) lowering the average
out-degree of the graph for fast traversal; (3) shortening
the search path; and (4) reducing the index size. Then,
we propose a novel graph structure called Monotonic Rela-
tive Neighborhood Graph (MRNG) which guarantees very
low search complexity (close to logarithmic time). To fur-
ther lower the indexing complexity and make it practical
for billion-node ANNS problems, we propose a novel graph
structure named Navigating Spreading-out Graph (NSG) by
approximating the MRNG. The NSG takes the four aspects
into account simultaneously. Extensive experiments show
that NSG outperforms all the existing algorithms signifi-
cantly. In addition, NSG shows superior performance in the
E-commercial scenario of Taobao (Alibaba Group) and has
been integrated into their billion-scale search engine.
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Approximate nearest neighbor search (ANNS) has been
a hot topic over decades and provides fundamental support
for many applications in data mining, databases, and in-
formation retrieval [2, 10, 12, 23, 37, 42]. For sparse discrete
data (like documents), the nearest neighbor search can be
carried out efficiently on advanced index structures (e.g.,
inverted index [35]). For dense continuous vectors, various
solutions have been proposed such as tree-structure based
approaches [2,6,8,17,24,36], hashing-based approaches [18,
20, 23, 32, 40], quantization-based approaches [1, 19, 26, 39],
and graph-based approaches [3, 21, 33, 41]. Among them,
graph-based methods have shown great potential recently.
There are some experimental results showing that the graph-
based methods perform much better than some popular al-
gorithms from other types in the commonly used Euclidean
Space [2, 7, 15, 27, 33, 34]. The reason may be that these
methods cannot express the neighbor relationship as well as
the graph-based methods and they tend to check much more
points in neighbor-subspaces than the graph-based methods
to reach the same accuracy [39]. Thus, their search time
complexity involves large factors exponential in the dimen-
sion and leads to inferior performance [22].

Nearest neighbor search via graphs has been studied for
decades [3,13,25]. Given a set of points S in the d-dimensional
Euclidean space Ed, a graph G is defined as a set of edges
connecting these points (nodes). The edge pq defines a
neighbor-relationship between node p and q. Various con-
straints are proposed on the edges to make the graphs suit-
able for ANNS problem. These graphs are now referred to as
the Proximity Graphs [25]. Some proximity graphs like De-
launay Graphs (or Delaunay Triangulation) [4] and Mono-
tonic Search Networks (MSNET) [13] ensure that from any
node p to another node q, there exists a path on which the
intermediate nodes are closer and closer to q [13]. However,
the computational complexity needed to find such a path
is not given. Other works like Randomized Neighborhood
Graphs [3] guarantee polylogarithmic search time complex-
ity. Empirically, the average length of greedy-routing paths
grows polylogarithmically with the data size on the Navi-
gable Small-World Networks (NSWN) [9, 29]. However, the
time complexity of building these graphs is very high (at
least O(n2)), which is impractical for massive problems.

Some recent graph-based methods try to address this prob-
lem by designing approximations for the graphs. For exam-
ple, GNNS [21], IEH [27], and Efanna [15] are based on
the kNN graph, which is an approximation of the Delau-
nay Graph. NSW [33] approximates the NSWN, FANNG
[7] approximates the Relative Neighborhood Graphs (RNG)
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Algorithm 1 Search-on-Graph(G, p, q, l)

Require: graph G, start node p, query point q, candidate pool
size l

Ensure: k nearest neighbors of q
1: i=0, candidate pool S = ∅
2: S.add(p)
3: while i < l do
4: i =the index of the first unchecked node in S
5: mark pi as checked
6: for all neighbor n of pi in G do
7: S.add(n)
8: end for
9: sort S in ascending order of the distance to q

10: If S.size() > l, S.resize(l)
11: end while
12: return the first k nodes in S

[38], and Hierarchical NSW (HNSW) [34] is proposed to
take advantage of properties of the Delaunay Graph, the
NSWN, and the RNG. Moreover, the hierarchical structure
of HNSW enables multi-scale hopping on different layers.

These approximations are mainly based on intuition and
generally lack rigorous theoretical support. In our experi-
mental study, we find that they are still not powerful enough
for billion-node applications, which are in great demand to-
day. To further improve the search-efficiency and scalability
of graph-based methods, we start with how ANNS is per-
formed on a graph. Despite the diversity of graph indices,
almost all graph-based methods [3,7,13,21,27,33] share the
same greedy best-first search algorithm (given in Algorithm
1), we refer to it as the search-on-graph algorithm below.

Algorithm 1 tries to reach the query point with the fol-
lowing greedy process. For a given query q, we are required
to retrieve its nearest neighbors from the dataset. Given a
starting node p, we follow the out-edges to reach p’s neigh-
bors, and compare them with q to choose one to proceed.
The choosing principle is to minimize the distance to q, and
the new iteration starts from the chosen node. We can see
that the key to improve graph-based search is to shorten
the search path formed by the algorithm and reduce the
out-degree of the graph (i.e., reduce the number of choices
of each node). Intuitively, to improve graph-based search we
need to: (1) Ensure the connectivity of the graph to make
sure the query (or the nearest neighbors of the query) is (are)
reachable; (2) Lower the average out-degree of the graph and
(3) shorten the search path to lower the search time complex-
ity; (4) Reduce the index size (memory usage) to improve
scalability. Methods such as IEH [27], Efanna [15], and
HNSW [34], use hashing, randomized KD-trees and multi-
layer graphs to accelerate the search. However, these may
result in huge memory usage for massive databases. We aim
to reduce the index size and preserve the search-efficiency
at the same time.

In this paper, we propose a new graph, named as Mono-
tonic Relative Neighborhood Graph (MRNG), which guar-
antees a low average search time (very close to logarithmic
complexity). To further reduce the indexing complexity, we
propose the Navigating Spreading-out Graph (NSG), which
is a good approximation of MRNG, inherits low search com-
plexity and takes the four aspects into account. It is worth-
while to highlight our contributions as follows.

1. We first present comprehensive theoretical analysis on
the attractive ANNS properties of a graph family called

MSNET. Based on this, we propose a novel graph,
MRNG, which ensures a close-logarithmic search com-
plexity in expectation.

2. To further improve the efficiency and scalability of
graph-based ANNS methods, we consider four aspects
of the graph: ensuring connectivity, lowering the av-
erage out-degree, shortening the search path, and re-
ducing the index size. Motivated by these, we design
a close approximation of the MRNG, called Navigat-
ing Spreading-out Graph (NSG), to address the four
aspects simultaneously. The indexing complexity is
reduced significantly compared to the MRNG and is
practical for massive problems. Extensive experiments
show that our approach outperforms the state-of-the-
art methods in search performance with the smallest
memory usage among graph-based methods.

3. The NSG algorithm is also tested on the E-commercial
search scenario of Taobao (Alibaba Group). The algo-
rithm has been integrated into their search engine for
billion-node search.

2. PRELIMINARIES
We use Ed to denote the Euclidean space under the l2

norm. The closeness of any two points p, q is defined as the
l2 distance, δ(p, q), between them.

2.1 Problem Setting
Various applications in information retrieval and database

management of high-dimensional data can be abstracted as
the nearest neighbor search problem in high-dimensional
space. The Nearest Neighbor Search (NNS) problem is de-
fined as follows [20]:

Definition 1 (Nearest Neighbor Search). Given a
finite point set S of n points in space Ed, preprocess S to
efficiently return a point p ∈ S which is closest to a given
query point q.

This naturally generalizes to the K Nearest Neighbor
Search when we require the algorithm to return K points
(K > 1) which are the closest to the query point. The
approximate version of the nearest neighbor search problem
(ANNS) can be defined as follows [20]:

Definition 2 (ε-Nearest Neighbor Search). Given
a finite point set S of n points in space Ed, preprocess S to
efficiently answer queries that return a point p in S such
that δ(p, q) ≤ (1 + ε)δ(r, q), where r is the nearest neighbor
of q in S.

Similarly, this problem can generalize to the Approximate
K Nearest Neighbor Search (AKNNS) when we re-
quire the algorithm to return K points (K > 1) such that
∀i = 1, ...,K, δ(pi, q) ≤ (1 + ε)δ(r, q). Due to the intrinsic
difficulty of exact nearest neighbor search, most researchers
turn to AKNNS. The main motivation is to trade a little
loss in accuracy for much shorter search time.

For the convenience of modeling and evaluation, we usu-
ally do not calculate the exact value of ε. Instead we use
another indicator to show the degree of the approximation:
precision. Suppose the point set returned by an AKNNS
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Figure 1: (a) is the tree index, (b) is the hashing in-
dex, and (c) is the graph index. The red star is the
query (not included in the base data). The four red
rings are its nearest neighbors. The tree and hash-
ing index partition the space into several cells. Let
each cell contain no more than three points. The
out-degree of each node in the graph index is also
no more than three. To retrieve the nearest neigh-
bors of the query, we need to backtrack and check
many leaf nodes for the tree index. We need to
check nearby buckets with hamming radius 2 for the
hashing index. As for the graph index, Algorithm 1
forms a search path as the red lines show. The or-
ange circles are checked points during their search.
The graph-based algorithm needs the least times of
distance calculation.

algorithm of a given query q is R′ and the correct k near-
est neighbor set of q is R, then the precision (accuracy) is
defined as below [15].

precision(R′) =
|R′ ∩R|
|R′| =

|R′ ∩R|
K

. (1)

A higher precision corresponds to a smaller ε, thus, a higher
degree of approximation. In this paper, we use the precision
as the evaluation metric.

2.2 Non-Graph-Based ANNS Methods
Non-graph-based ANNS methods include tree-based meth-

ods, hashing-based methods, and quantization-based meth-
ods roughly. Some well-known and widely-used algorithms
like the KD-tree [36], R∗ tree [6], VA-file [39], Locality Sen-
sitive Hashing (LSH) [20], and Product Quantization (PQ)
[26] all belong to the above categories. Some works focus
on improving the algorithms (e.g., [2, 18, 19, 23, 32]), while
others focus on optimizing the existing methods according
to different platforms and scenarios (e.g., [10, 12,37,42]).

In the experimental study of some recent works [2, 7, 15,
27, 33, 34], graph-based methods have outperformed some
well-known non-graph-based methods (e.g., KD-tree, LSH,
PQ) significantly. This may be because the non-graph-based
methods all try to solve the ANNS problem by partitioning
the space and indexing the resulting subspaces for fast re-
trieval. Unfortunately, it is not easy to index the subspaces
so that neighbor areas can be scanned efficiently to locate
the nearest neighbors of a given query. See Figure 1 as an
example (the figure does not include the PQ algorithm be-
cause it can be regarded as a hashing method from some
perspective). The non-graph-based methods need to check
many nearby cells to achieve high accuracy. A large number
of distant points are checked and this problem becomes much
worse as the dimension increases (known as the curse of the
dimensionality). Graph-based methods may start from a

distant position to the query, but they approach the query
quickly because they are all based on proximity graphs which
typically express the “neighbor” relationship better.

In summary, non-graph-based methods tend to check much
more points than the graph-based methods to achieve the
same accuracy. This will be shown in our later experiments.

2.3 Graph-Based ANNS Methods
Given a finite point set S in Ed, a graph is a structure

composed of a set of nodes (representing the points) and
edges which link some pairs of the nodes. A node p is called
a neighbor of q if and only if there is an edge between p and q.
Graph-based ANNS solves the ANNS problem defined above
via a graph index. Algorithm 1 is commonly used in most
graph-based methods. In past decades, many graphs are
designed for efficient ANNS. Here we will introduce several
graph structures with appealing theoretical properties.

Delaunay Graphs (or Delaunay Triangulations) are de-
fined as the dual graph of the Voronoi diagram [4]. It is
shown to be a monotonic search network [30], but the time
complexity of high-dimensional ANNS on a Delaunay Graph
is high. According to Harwood et al. [7], Delaunay Graphs
quickly become almost fully connected at high dimension-
ality. Thus the efficiency of the search reduces dramati-
cally. GNNS [21] is based on the (approximate) kNN graph,
which is an approximation of Delaunay Graphs. IEH [27]
and Efanna [15] are also based on the (approximate) kNN
graph. They use hashing and Randomized KD-trees to pro-
vide better starting positions for Algorithm 1 on the kNN
graph. Although they improve the performance, they suffer
from large and complex indices.

Wen et al. [31] propose a graph structure called DPG,
which is built upon an approximate kNN graph. They pro-
pose an edge selection strategy to cut off half of the edges
from the prebuilt kNN graph and maximize the average an-
gle among the remaining edges. Finally, they will make
compensation on the graph to produce an undirected one.
Their intuition is to make the angles among edges to dis-
tribute evenly around each node, but it lacks theoretical
support. According to our empirical study, the DPG suffers
from a large index and inferior search performance.

Relative Neighborhood Graphs (RNG) [38] are not
designed for the ANNS problem in the first place. How-
ever, RNG has shown great potential in ANNS. The RNG
adopts an interesting edge selection strategy to eliminate
the longest edge in all the possible triangles on S. With
this strategy, the RNG reduces its average out-degree to
a constant Cd + o(1), which is only related to the dimen-
sion d and usually very small [25]. However, according to
Dearholt et al.’s study [13], the RNG does not have suffi-
cient edges to be a monotonic search network due to the
strict edge selection strategy. Therefore there is no theo-
retical guarantee on the length of the path. Dearholt et
al. proposed a method to add edges to the RNG and turn it
into a Monotonic Search Network (MSNET) with the min-
imal amount of edges, named as the minimal MSNET [13].
The algorithm is based on a prebuilt RNG, the indexing

complexity of which is O(n2− 2
1+d

+ε), under the general po-
sition assumption [25]. The preprocessing of building the
minimal MSNET is of O(n2 logn + n3) complexity. The
total indexing complexity of the minimal MSNET is huge
for high-dimensional and massive databases. Recent prac-
tical graph-based methods like FANNG [7] and HNSW [34]
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adopt the RNG’s edge selection strategy to reduce the out-
degree of their graphs and improve the search performance.
However, they did not provide a theoretical analysis.

Navigable Small-World Networks [9, 29] are suitable
for the ANNS problem by their nature. The degree of the
nodes and the neighbors of each node are all assigned accord-
ing to a specific probability distribution. The length of the
search path on this graph grows polylogarithmically with
the network size, O(A[logN ]ν), where A and ν are some
constants. This is an empirical estimation, which hasn’t
been proved. Thus the total empirical search complexity is
O(AD[logN ]ν), D is the average degree of the graph. The
degree of the graph needs to be carefully chosen, which has
a great influence on the search efficiency. Like the other
traditional graphs, the time complexity of building such a
graph is about O(n2) in a naive way, which is impractical
for massive problems. Yury et al. [33] proposed NSW graphs
to approximate the Navigable Small-World Networks and
the Delaunay Graphs simultaneously. But soon they found
that the degree of the graph was too high and there also
existed connectivity problems in their method. They later
proposed HNSW [34] to address this problem. Specifically,
they stacked multiple NSWs into a hierarchical structure
to solve the connectivity problem. The nodes in the upper
layers are sampled through a probability distribution, and
the size of the NSWs shrinks from bottom to top layer by
layer. Their intuition is that the upper layers enable long-
range short-cuts for fast locating of the destination neigh-
borhood. Then they use the RNG’s edge selection strategy
to reduce the degree of their graphs. HNSW is the most effi-
cient ANNS algorithm so far, according to some open source
benchmarks on GitHub1.

Randomized Neighborhood Graphs [3] are designed
for ANNS problem in high-dimensional space. It is con-
structed in a randomized way. They first partition the space
around each node with a set of convex cones, then they se-
lect O(log n) closest nodes in each cone as its neighbors.
They prove that the search time complexity on this graph is
O((log n)3), which is very attractive. However, its indexing
complexity is too high. To reduce the indexing complex-
ity, they propose a variant, called RNG∗. The RNG∗ also
adopts the edge selection strategy of RNG and uses addi-
tional structures (KD-trees) to improve the search perfor-
mance. However, the time complexity of its indexing is still
as high as O(n2) [3].

3. ALGORITHMS AND ANALYSIS

3.1 Motivation
The heuristic search algorithm, Algorithm 1, has been

widely used on various graph indices in previous decades.
The algorithm walks over the graph and tries to reach the
query greedily. Thus, two most crucial factors influencing
the search efficiency are the number of greedy hops between
the starting node and the destination and the computational
cost to choose the next node at each step. In other words,
the search time complexity on a graph can be written as
O(ol), where o is the average out-degree of the graph and l
is the length of the search path.

In recent graph-based algorithms [7, 15, 21, 27, 31, 33, 34],
the out-degree of the graph is a tunable parameter. In our

1https://github.com/erikbern/ann-benchmarks

experimental study, given a dataset and an expected search
accuracy, we find there exist optimal degrees that result in
optimal search performance. A possible explanation is that,
given an expected accuracy, ol is a convex function of o, and
the minima of ol determines the search performance of a
given graph. In the high accuracy range, the optimal degrees
of some algorithms (e.g., GNNS [21], NSW [33], DPG [31])
are very large, which leads to very large graph size. The
minima of their ol are also very large, leading to inferior
performance. Other algorithms [15, 27, 34] use extra index
structures to improve their start position in Algorithm 1 in
order to minimize l directly, but this leads to large indices.

From our perspective, we can improve the ANNS perfor-
mance of graph-based methods by minimizing o and l simul-
taneously. Moreover, we need to make the index as small as
possible to handle large-scale data. What is always ignored
is that one should first ensure the existence of a path from
the starting node to the query. Otherwise, the targets will
never be reached. In summary, we aim to design a graph
index with high ANNS performance from the following four
aspects. (1) ensuring the connectivity of the graph,
(2) lowering the average out-degree of the graph, (3)
shortening the search path, and (4) reducing index
size. Point (1) is easy to achieve. If the starting node varies
with the query, one should ensure that the graph is strongly
connected. If the starting node is fixed, one should ensure all
other nodes are reachable by a DFS from the starting node.
As for point (2)-(4), we address these points simultaneously
by designing a better sparse graph for ANNS problem. Be-
low we will propose a new graph structure called Monotonic
Relative Neighborhood Graph (MRNG) and a theoretical
analysis of its important properties, which leads to better
ANNS performance.

3.2 Graph Monotonicity And Path Length
The speed of ANNS on graphs is mainly determined by

two factors, the length of the search path and the average
out-degree of the graph. Our goal is to find a graph with
both low out-degrees and short search paths. We will begin
our discussion with how to design a graph with very short
search paths. Before we introduce our proposal, we will first
provide a detailed analysis of a category of graphs called
Monotonic Search Networks (MSNET), which are first dis-
cussed in [13] and have shown great potential in ANNS. Here
we will present the definition of the MSNETs.

3.2.1 Definition And Notation
Given a point set S in Ed space, p, q are any two points in

S. Let B(p, r) denote an open sphere such that B(p, r) =

{x|δ(x, p) < r}. Let
−→
pq denote a directed edge from p to q.

First we define a monotonic path in a graph as follows:

Definition 3 (Monotonic Path). Given a finite point
set S of n points in space Ed, p, q are any two points in S
and G denotes a graph defined on S. Let v1, v2, ..., vk, (v1 =
p, vk = q) denote a path from p to q in G, i.e., ∀i = 1, ..., k − 1,

edge
−→

vivi+1 ∈ G. This path is a monotonic path if and only
if ∀i = 1, ..., k − 1, δ(vi, q) > δ(vi+1, q).

Then the monotonic search network is defined as follows:

Definition 4 (Monotonic Search Network). Given
a finite point set S of n points in space Ed, a graph defined
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Figure 2: An illustration of the search in an
MSNET. The query point is q and the search starts
with point p. At each step, Algorithm 1 will select a
node that is the closest to q among the neighbors of
the current nodes. Suppose p, r, s is on a monotonic
path selected by Algorithm 1. The search region
shrinks from sphere B(q, δ(p, q)) to B(q, δ(r, q)), then
to B(q, δ(s, q)). The number of nodes in each sphere
(may be checked) decreases by some ratio at each
step until only q is left in the final sphere.

on S is a monotonic search network if and only if there ex-
ists at least one monotonic path from p to q for any two
nodes p, q ∈ S.

3.2.2 Analysis On Monotonic Search Networks
The Monotonic Search Networks (MSNET) [13] are a cat-

egory of graphs which can guarantee a monotonic path be-
tween any two nodes in the graph. MSNETs are strongly
connected graphs by nature, which ensures the connectiv-
ity. When traveling on a monotonic path, we always make
progress to the destination at each step. In an MSNET,
Dearholt et al. hypothesized that one may be able to use
Algorithm 1 (commonly used in graph-based search) to de-
tect the monotonic path to the destination node, i.e., no
backtracking is needed [13], which is a very attractive prop-
erty. Backtracking means, when the algorithm cannot find a
closer neighbor to the query (i.e., a local optimal), we need
to go back to the visited nodes and find an alternative direc-
tion to move on. The monotonicity of the MSNETs makes
the search behavior of Algorithm 1 on the graph almost def-
inite and analyzable. However, Dearholt et al. [13] failed to
provide a proof of this property. In this section, we will give
a concrete proof of this property.

Theorem 1. Given a finite point set S of n points, ran-
domly distributed in space Ed, and an MSNET G con-
structed on S, a monotonic path between any two nodes p, q
in G can be found by Algorithm 1 without backtracking.

Proof. Due to the space limitation, please see the de-
tailed proof in our technical report [16].

From Theorem 1, we know that we can reach the query
q ∈ S on a given MSNET with Algorithm 1 without back-
tracking, Therefore, the iteration expectation is the same as
the length expectation of a monotonic path in the MSNET.
Before we discuss the length expectation of a monotonic
path in a given MSNET, we first define the MSNETs from
a different perspective, which will help with the analysis.

Lemma 1. Given a graph G on a set S of n points in Ed,
G is an MSNET if and only if for any two nodes p, q, there

is at least one edge
−→
pr such that r ∈ B(q, δ(p, q)).

Proof. Due to the space limitation, please see the de-
tailed proof in our technical report [16].

From Lemma 1 we can calculate the length expectation
of the monotonic path in the MSNETs as follows.

Theorem 2. Let S be a finite point set of n points uni-
formly distributed in a finite subspace in Ed. Suppose the
volume of the minimal convex hull containing S is VS. The
maximal distance between any two points in S is R. We im-
pose a constraint on VS such that when d is fixed, ∃κ, κVS ≥
VB(R), where κ is a constant independent of n, and VB(R)
is the volume of the sphere with radius R. We define 4r
as 4r = min{|δ(a, b) − δ(a, c)|, |δ(a, b) − δ(b, c)|, |δ(a, c) −
δ(b, c)|}, for all possible non-isosceles triangles abc on S.
4r is a decreasing function of n.

For a given MSNET defined on such S, the length expec-
tation of a monotonic path from p to q, for any p, q ∈ S, is
O(n1/dlog(n1/d)/4r).

Proof. Due to the space limitation, please see the de-
tailed proof in our technical report [16].

Theorem 2 is a general property for all kinds of MSNETs.
The function 4r has no definite expression about n because
it involves randomness. We have observed that, in practice,
4r decreases very slowly as n increases. In experiments,
we estimate the function of 4r on different public datasets,
based on the proposed graph in this paper. We find that
4r is mainly influenced by the data distribution and data
density. Results are shown in the experiment section.

Because O(n
1
d ) increases very slowly when n increases in

high dimensional space, the length expectation of the mono-
tonic paths in an MSNET, O(n1/dlog(n1/d)/4r), will have
a growth rate very close to O(logn). This is also verified in
our experiments. Likewise, we can see that the growth rate
of the length expectation of the monotonic paths is lower
when d is higher.

In Theorem 2, the assumption on the volume of the min-
imal convex hull containing the data points is actually a
constraint on the data distribution. We try to avoid the
special shape of the data distribution (e.g., all points form
a straight line), which may influence the conclusion. For ex-
ample, if the data points are all distributed uniformly on a
straight line, the length expectation of the monotonic paths
on such a dataset will grow almost linearly with n.

In addition, though we assume a uniform distribution of
the data points, the property still holds to some extent on
other various distributions in practice. Except for some ex-
tremely special shape of the data distribution, we can usu-
ally expect that, as the search sphere shrinks at each step
of the search path, the amount of the nodes remaining in
the sphere decreases by some ratio. The ratio is mainly
determined by the data distribution, as shown in Figure 2.

In addition to the length expectation of the search path,
another important factor that influences the search com-
plexity is the average out-degree of the graph. The degree
of some MSNETs, like the Delaunay Graphs, grows when n
increases [4]. There is no unified geometrical description of
the MSNETs, therefore there is no unified conclusion about
how the out-degree of the MSNETs scales.

Dearholt et al. [13] claim that they have found a way to
construct an MSNET with a minimal out-degree. However,
there are two problems with their method. Firstly, they
did not provide analysis on how the degree of their MSNET
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Figure 3: A comparison between the edge selection
strategy of the RNG (a) and the MRNG (b). An
RNG is an undirected graph, while an MRNG is a
directed one. In (a), p and r are linked because there
is no node in lunepr. Because r ∈ luneps, s ∈ lunept,
t ∈ lunepu, and u ∈ lunepq, there are no edges between
p and s, t, u, q. In (b), p and r are linked because
there is no node in lunepr. p and s are not linked
because r ∈ luneps and pr, sr ∈ MRNG. Directed edge
−→
pt ∈ MRNG because

−→
ps /∈ MRNG. However,

−→
tp /∈

MRNG because
−→
ts ∈ MRNG. We can see that the

MRNG is defined in a recursive way, and the edge
selection strategy of the RNG is more strict than
MRNG’s. In the RNG(a), there is a monotonic path
from q to p, but no monotonic path from p to q. In
the MRNG(b), there is at least one monotonic path
from any node to another node.

scales with n. This is mainly because the MSNET they
proposed is built by adding edges to an RNG and lacks a
geometrical description. Secondly, the proposed MSNET
construction method has a very high time complexity (at

least O(n2− 2
1+d

+ε + n2 logn + n3)) and is not practical in
real large-scale scenarios. Below we will propose a new type
of MSNET with lower indexing complexity and constant
out-degree expectation (independent of n). Simply put, the
search complexity on this graph scales with n in the same
speed as the length expectation of the monotonic paths.

3.3 Monotonic Relative Neighborhood Graph
In this section, we describe a new graph structure for

ANNS called as MRNG, which belongs to the MSNET fam-
ily. To make the graph sparse, HNSW and FANNG turn to
RNG [38], but it was proved that the RNG does not have
sufficient edges to be an MSNET [13]. Therefore there is no
theoretical guarantee of the search path length in an RNG,
and the search on an RNG may suffer from long detours.

Consider the following example. Let lunepq denote a re-
gion such that lunepq = B(p, δ(p, q)) ∩ B(q, δ(p, q)) [25].
Given a finite point set S of n points in space Ed, for any two
nodes p, q ∈ S, edge pq ∈ RNG if and only if lunepq ∩S = ∅.
In Figure 3, (a) is an illustration of a non-monotonic path
in an RNG. Node s is in lunepr, so p, s are not connected.
Similarly, t, u, q are not connected to p. When the search
goes from p to q, the path is non-monotonic (e.g., rq < pq).

We find that this problem is mainly due to RNG’s edge
selection strategy. Dearholt et al. tried to add edges to the
RNG [13] to produce an MSNET with the fewest edges, but
this method is very time-consuming. Instead, inspired by
the RNG, we propose a new edge selection strategy to con-

Figure 4: An illustration of the necessity that NNG
⊂ MRNG. If not, the graph cannot be an MSNET.
Path p, q, r, s, t is an example of non-monotonic path
from p to t. In this graph, t is the nearest neighbor
of q but not linked to q. We apply the MRNG’s
edge selection strategy on this graph. According to
the definition of the strategy, t and r can never be
linked. When the search goes from p to t, it must
detour with at least one more step through s. This
problem will be worse in practice.

struct monotonic graphs. The resulting graph may not be
the minimal MSNET but it is very sparse. Based on the new
strategy, we propose a novel graph structure called Mono-
tonic Relative Neighborhood Graph (MRNG). Formally, an
MRNG can be defined as follows:

Definition 5 (MRNG). Given a finite point set S of
n points in space Ed, an MRNG is a directed graph with
the set of edges satisfying the following property: for any

edge
−→
pq ,

−→
pq ∈MRNG if and only if lunepq ∩ S = ∅ or

∀r ∈ (lunepq ∩ S),
−→
pr /∈ MRNG.

We avoid ambiguity in the following way when isosceles
triangles appear. If δ(p, q) = δ(p, r) and qr is the shortest
edge in triangle pqr, we select the edge according to a pre-

defined index, i.e., we select
−→
pq if index(q) < index(r). We

can see that the MRNG is defined in a recursive way. In
other words, Definition 5 implies that for any node p, we
should select its neighbors from the closest to the farthest.
The difference between MRNG’s edge selection strategy and
RNG’s is that, for any edge pq ∈MRNG, lunepq ∩ S is not
necessarily ∅. The difference can be seen in Figure 3 clearly.
Here we show that the MRNG is an MSNET.

Theorem 3. Given a finite point set S of n points. An
MRNG defined on S is an MSNET.

Proof. Due to the space limitation, please see the de-
tailed proof in our technical report [16].

Though different in the structure, MRNG and RNG share
some common edges. We will start with defining the Nearest
Neighbor Graph (NNG) as follows:

Definition 6 (NNG). Given a finite point set S of n
points in space Ed, an NNG is the set of edges such that,

for any edge
−→
pq ,

−→
pq ∈ NNG if and only if q is the closest

neighbor of p in S.

Similarly, we can remove the ambiguity in the NNG by
assigning a unique index for each node and linking the node
to its nearest neighbor with the smallest index. Obviously,
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Figure 5: An illustration of the candidates of edge
selection in NSG. Node p is the node to be pro-
cessed, and m is the Navigating Node. The red
nodes are the k nearest neighbors of node p. The
big black nodes and the solid lines form a possi-
ble monotonic path from m to p, generated by the
search-and-collect routine. The small black nodes
are the nodes visited by the search-and-collect rou-
tine. All the nodes in the figure will be added to the
candidate set of p.

we have MRNG ∩ RNG ⊃ NNG (if a node q is the nearest
neighbor of p, we have lunepq ∩ S = ∅). This is necessary
for MRNG’s monotonicity. Figure 4 shows an example of
the non-monotonic path if we apply MRNG’s edge selection
strategy on some graph G but do not guarantee NNG ⊂
G. The edges in Figure 4 satisfy the selection strategy of
the MRNG except that q is forced not to be linked to its
nearest neighbor t. Because t is the nearest neighbor of q,
we have δ(q, r) > δ(q, t). Because qt is the shortest edge in
triangle qtr and q, r is linked, then rt must be the longest
edge in triangle qtr according to the edge selection strategy
of MRNG. Thus, r, t can not be linked and we can only reach
t through other nodes (like s). Similarly, only when rt is the
longest edge in triangle rst, edge rs and st can coexist in
this graph. Therefore when we go from p to t, we need a
detour at least via nodes r, s. Because δ(q, r) > δ(q, t), it is a
non-monotonic path from p to t. If we don’t guarantee NNG
⊂ MRNG, detours are unavoidable, which may be worse in
practice. It’s easy to verify that a similar detour problem
will also appear if we perform RNG’s edge selection strategy
on G but do not guarantee that NNG ⊂ G.

Here we will discuss the average out-degree of the MRNG.
The MRNG has more edges than the RNG, but it’s still very
sparse because the angle between any two edges sharing the
same node is at least 60◦ (by the definition of MRNG, for
any two edges pq, pr ∈ MRNG, qr must be the longest edge
in triangle pqr and qr /∈ MRNG).

Lemma 2. Given an MRNG in Ed, the max degree of the
MRNG is a constant and independent of n.

Proof. Due to the space limitation, please see the de-
tailed proof in our technical report [16].

Now according to Lemma 2, Theorem 1, Theorem 2, and
Theorem 3, we have that the search complexity in expec-

tation on an MRNG is O(cn
1
d logn

1
d /4r), where c is the

average degree of the MRNG and independent of n, 4r is a
function of n, which decreases very slowly as n increases.

3.4 MRNG Construction
The MRNG can be constructed simply by applying our

edge selection strategy on each node. Specifically, for each

Algorithm 2 NSGbuild(G, l, m)

Require: kNN Graph G, candidate pool size l for greedy search,
max-out-degree m.

Ensure: NSG with navigating node n
1: calculate the centroid c of the dataset.
2: r =random node.
3: n =Search-on-Graph(G,r,c,l)%navigating node
4: for all node v in G do
5: Search-on-Graph(G,n,v,l)
6: E =all the nodes checked along the search
7: add v’s nearest neighbors in G to E
8: sort E in the ascending order of the distance to v.
9: result set R = ∅, p0 = the closest node to v in E

10: R.add(p0)
11: while !E.empty() && R.size() < m do
12: p = E.front()
13: E.remove(E.front())
14: for all node r in R do
15: if edge pv conflicts with edge pr then
16: break
17: end if
18: end for
19: if no conflicts occurs then
20: R.add(p)
21: end if
22: end while
23: end for
24: while True do
25: build a tree with edges in NSG from root n with DFS.
26: if not all nodes linked to the tree then
27: add an edge between one of the out-of-tree nodes and
28: its closest in-tree neighbor (by algorithm 1).
29: else
30: break.
31: end if
32: end while

node p, we denote the set of rest nodes in S as R = S\{p}.
We calculate the distance between each node in R and p,
then rank them in ascending order according to the distance.
We denote the selected node set as L. We add the closest
node in R to L to ensure NNG ⊂ MRNG. Next, we fetch
a node q from R and a node r from L in order to check
whether pq is the longest edge in triangle pqr. If pq is not
the longest edge in triangle pqr, ∀r ∈ L , we add q to L. We
repeat this process until all the nodes in R are checked. This
naive construction runs in O(n2 logn + n2c) time, where c
is the average out-degree of MRNG, which is much smaller
than that of the MSNET indexing method proposed in [13],

which is at least O(n2− 2
1+d

+ε + n2 logn + n3) under the
general position assumption.

3.5 NSG:Practical Approximation For MRNG
Though MRNG can guarantee a fast search time, its high

indexing time is still not practical for large-scale problems.
In this section, we will present a practical approach by ap-
proximating our MRNG and starting from the four criteria
to design a good graph for ANNS. We name it the Nav-
igating Spreading-out Graph (NSG). We first present
the NSG construction algorithm (Algorithm 2) as follows:

i We build an approximate kNN graph with the current
state-of-the-art methods(e.g., [14, 28]).

ii We find the approximate medoid of the dataset. This
can be achieved by the following steps. (1) Calculate
the centroid of the dataset; (2) Treat the centroid as the
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query, search on the kNN graph with Algorithm 1, and
take the returned nearest neighbor as the approximate
medoid. This node is named as the Navigating Node
because all the search will start with this fixed node.

iii For each node, we generate a candidate neighbor set and
select neighbors for it from the candidate sets. This can
be achieved by the following steps. For a given node
p, (1) we treat it as a query and perform Algorithm 1
starting from the Navigating Node on the prebuilt kNN
graph. (2) During the search, each visited node q (i.e.,
the distance between p and q is calculated) will be added
to the candidate set (the distance is also recorded). (3)
Select at most m neighbors for p from the candidate set
with the edge selection strategy of MRNG.

iv We span a Depth-First-Search tree on the graph pro-
duced in previous steps. We treat the Navigating Node
as the root. When the DFS terminates, and there are
nodes which are not linked to the tree, we link them to
their approximate nearest neighbors (from Algorithm 1)
and continue the DFS.

What follows is the motivation of the NSG construction
algorithm. The ultimate goal is to build an approximation
of MRNG with low indexing time complexity.

(i) MRNG ensures there exists at least one monotonic
path between any two nodes, however, it is not an easy task.
Instead, we just pick one node out and try to guarantee
the existence of monotonic paths from this node to all the
others. We name this node as the Navigating Node. When
we perform the search, we always start from the Navigating
Node, which makes the search on an NSG almost as efficient
as on an MRNG.

(ii) The edge selection strategy of the MRNG treats all
the other nodes as candidate neighbors of the current node,
which causes a high time complexity. To speed up this pro-
cess, we want to generate a small subset of candidates for
each node. These candidates contain two parts: (1) As dis-
cussed above, the NNG is essential for monotonicity. Be-
cause it is very time-consuming to get the exact NNG, we
turn to the approximate kNN graph. A high quality approx-
imate kNN graph usually contains a high quality approxi-
mate NNG. It is acceptable when only a few nodes are not
linked to their nearest neighbors. (2) Because the search
on the NSG always starts from the Navigating Node pn,
for a given node p, we only need to consider those nodes
which are on the search path from the pn to p. Therefore
we treat p as the query and perform Algorithm 1 on the
prebuilt kNN graph. The nodes visited by the search and
p’s nearest neighbor in the approximate NNG are recorded
as candidates. The nodes forming the monotonic path from
the Navigating Node to p are very likely included in the can-
didates. When we perform MRNG’s edge selection strategy
on these candidates, it’s very likely that the NSG inherits
the monotonic path in the MRNG from the Navigating Node
to p.

(iii) A possible problem in the above approach is the de-
gree explosion problem for some nodes. Especially, the Nav-
igating Node and nodes in dense areas will act as the “traffic
hubs” and have high out-degrees. This problem is also dis-
cussed in HNSW [34]. They introduced a multi-layer graph
structure to solve this problem, but their solution increased
the memory usage significantly. Our solution is to limit the

out-degrees of all the nodes to a small value m � n by
abandoning the longer edges. The consequence is the con-
nectivity of the graph is no longer guaranteed due to the
edge elimination.

To address the connectivity problem, we introduce a new
method based on the DFS spanning tree as described above.
After this process, all the nodes are guaranteed at least
one path spreading out from the Navigating Node. Though
the proposed method will sacrifice some performance in the
worst case, the detours in the NSG will be minimized if we
build a high-quality approximate kNN graph and choose a
proper degree limitation m.

By approximating the MRNG, the NSG can inherit sim-
ilar low search complexity as the MRNG. Meanwhile, the
degree upper-bound makes the graph very sparse, and the
tree-spanning operation guarantees the connectivity of the
NSG. The NSG’s index contains only a sparse graph and
no auxiliary structures. Our method has made progress on
all the four aspects compared with previous works. These
improvements are also verified in our experiments. The de-
tailed results will be presented in the later sections.

3.5.1 Indexing Complexity of NSG
The total indexing complexity of the NSG contains two

parts, the complexity of the kNN graph construction and
the preprocessing steps of NSG. In the million-scale exper-
iments, we use the nn-descent algorithm [14] to build the
approximate kNN graph on CPU. In the DEEP100M ex-
periments, we use Faiss [28] to build it on GPU because
the memory consumption of nn-descent explodes on large
datasets. We focus on the complexity of Algorithm 2 in this
section.

The preprocess steps of NSG include the search-collect-
select operation and the tree spanning. Because the kNN
graph is an approximation of the Delaunay Graph (an MSN-

ET), the search complexity on it is approximately O(kn
1
d

logn
1
d /4r). We search for all the nodes, so the total com-

plexity is about O(kn
1+d
d logn

1
d /4r). The complexity of

the edge selection is O(nlc), where l is the number of the
candidates generated by the search and c is the maximal de-
gree we set for the graph. Because c and l are usually very
small in practice (i.e., c � n, l � n), this process is very
fast. The final process is the tree spanning. This process
is very fast because the number of the strongly connected
components is usually much smaller than n. We only need
to add a small number of edges to the graph. We can see
that the most time-consuming part is the “search-collect”
part. Therefore the total complexity of these processes is

about O(kn
1+d
d logn

1
d /4r), which is verified in our experi-

mental evaluation in later sections. We also find that 4r is
almost a constant and does not influence the complexity in
our experiments.

In the implementation of this paper, the overall empirical

indexing complexity of the NSG is O(kn
1+d
d logn

1
d + f(n))

(f(n) = n1.16 with nn-descent and f(n) = n logn with
Faiss), which is much lower than O(n2 logn + cn2) of the
MRNG.

3.6 Search On NSG
We use Algorithm 1 for the search on the NSG, and we

always start the search from the Navigating Node. Be-
cause the NSG is a carefully designed approximation of the
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MRNG, the search complexity on the NSG is approximately

O(cn
1
d logn

1
d /4r) on average, where c is the maximal de-

gree of the NSG, and d is the dimension. In our experiments,
4r is about O(n−

ε
d ), 0 < ε � d. So the empirical average

search complexity is O(cn
1+ε
d logn

1
d ). Because 1 + ε � d,

the complexity is very close to O(logn), which is verified in
our experimental evaluation in later sections. Our code has
been released on GitHub2.

4. EXPERIMENTS
In this section, we provide a detailed analysis of exten-

sive experiments on public and synthetic datasets to demon-
strate the effectiveness of our approach.

4.1 Million-Scale ANNS

4.1.1 Datasets
Because not all the recent state-of-the-art algorithms can

scale to billion-point datasets, this experiment is conducted
on four million-scale datasets. SIFT1M and GIST1M are
in the BIGANN datasets3, which are widely used in related
literature [7, 26]. RAND4M and GAUSS5M are two syn-
thetic datasets. RAND4M and GAUSS5M are generated
from the uniform distribution U(0, 1) and Gaussian distri-
bution N(0, 3) respectively. Considering that the data may
lie on a low dimensional manifold, we measure the local in-
trinsic dimension (LID) [11] to reflect the datasets’ degree
of difficulty better. See Table 1 for more details.

To prevent the indices from overfitting the query data, we
repartition the datasets by randomly sampling one percent
of the points out of each training set as a validation set.
Since it’s essential to be fast in the high-precision region
(over 90%) in real scenarios, we focus on the performance
of all algorithms in the high-precision area. We tune their
indices on the validation set to get the best performance in
the high-precision region.

4.1.2 Compared Algorithms
The algorithms we choose for comparison cover various

types such as tree-based, hashing-based, quantization-based
and graph-based approaches. The codes of most algorithms
are available on GitHub and well optimized. For those who
do not release their codes, we implement their algorithms
according to their papers. They are implemented in C++,
compiled by g++4.9 with “O3” option. The experiments of
SIFT1M and GIST1M are carried out on a machine with
i7-4790K CPU and 32GB memory. The experiments on
RAND4M and GAUSS5M are carried out on a machine with
Xeon E5-2630 CPU and 96GB memory. The indexing of
NSG contains two steps, the kNN graph construction and
Algorithm 2. We use the nn-descent algorithm [14] to build
the kNN graphs.

Because not all algorithms support inner-query paral-
lelizing, for all the search experiments, we only evaluate
the algorithms with a single thread. Given that all the com-
pared algorithms have the parallel versions for their index
building algorithms, for time-saving, we construct all the
indices with eight threads.

1. Serial Scan We perform serial scan on the base data
to get the accurate nearest neighbors for the test points.

2https://github.com/ZJULearning/nsg
3http://corpus-texmex.irisa.fr/

Table 1: Information of experimental datasets. We
list the dimension (D), local intrinsic dimension
(LID) [11], the number of base vectors, and the num-
ber of query vectors.

dataset D LID No. of base No. of query
SIFT1M 128 12.9 1,000,000 10,000
GIST1M 960 29.1 1,000,000 1,000
RAND4M 128 49.5 4,000,000 10,000
GAUSS5M 128 48.1 5,000,000 10,000

2. Tree-Based Methods. Flann4 is a well-known AN-
NS library based on randomized KD-tree, K-means
trees, and composite tree algorithm. We use its ran-
domized KD-tree algorithm for comparison. Annoy5

is based on a binary search forest.

3. Hashing-Based Methods. FALCONN6 is a well-
known ANNS library based on multi-probe locality
sensitive hashing.

4. Quantization-Based Methods. Faiss7 is recently
released by Facebook. It contains well-implemented
codes for state-of-the-art product-quantization-based
methods on both CPU and GPU. The CPU version is
used here for a fair comparison.

5. Graph-Based Methods. KGraph8 is based on a
kNN Graph. Efanna9 is based on a composite index
of randomized KD-trees and a kNN graph. FANNG
is based on a kind of graph structure proposed in [7].
They did not release their code. Thus, we implement
their algorithm according to their paper. HNSW10

is based on a hierarchical graph structure, which was
proposed in [34]. DPG11 is based on an undirected
graph whose edges are selected from a kNN graph.
According to an open source benchmark12, HNSW is
the fastest ANNS algorithm on CPU so far.

6. NSG is the method proposed in this paper. It con-
tains only one graph with a navigating node where the
search always starts.

7. NSG-Naive is a designed baseline to demonstrate
the necessity of NSG’s search-collect-select operation
and the guarantee of the graph connectivity. We di-
rectly perform the edge selection strategy of MRNG
on the edges of the approximate kNN graph to get
NSG-Naive. There is no navigating node, thus, we use
Algorithm 1 with random initialization on NSG-Naive.

4.1.3 Results
A. Non-Graph-Based v.s. Graph-Based. We record

the numbers of distance calculations of Flann (Randomized
KD-trees), FALCONN(LSH), Faiss(IVFPQ), and NSG on
SIFT1M and GIST1M to reach certain search precision. In

4https://github.com/mariusmuja/flann
5https://github.com/spotify/annoy
6https://github.com/FALCONN-LIB/FALCONN
7https://github.com/facebookresearch/faiss
8https://github.com/aaalgo/kgraph
9https://github.com/ZJULearning/efanna

10https://github.com/searchivarius/nmslib
11https://github.com/DBWangGroupUNSW/nns benchmark
12https://github.com/erikbern/ann-benchmarks
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Table 2: Information of the graph-based indices in-
volved in all of our experiments. AOD means the
Average Out-Degree. MOD means the Maximum
Out-Degree. The NN(%) means the percentage of
the nodes which are linked to their nearest neighbor.
Because HNSW contains multiple graphs, we only
report the AOD, MOD, and NN(%) of its bottom-
layer graph (HNSW0) here.

dataset algorithms memory(MB) AOD MOD NN(%)

SIFT1M

NSG 153 25.9 50 99.3
HNSW0 451 32.1 50 66.3
FANNG 374 30.2 98 60.4
Efanna 1403 300 300 99.4
KGraph 1144 300 300 99.4
DPG 632 165.1 1260 99.4

GIST1M

NSG 267 26.3 70 98.1
HNSW0 667 23.9 70 47.5
FANNG 1526 29.2 400 39.9
Efanna 2154 400 400 98.1
KGraph 1526 400 400 98.1
DPG 741 194.3 20899 98.1

RAND4M

NSG 2.7 × 103 174.0 220 96.4
HNSW0 6.7 × 103 161.0 220 76.5
FANNG 5.0 × 103 181.2 327 66.7
Efanna 6.3 × 103 400 400 96.6
KGraph 6.1 × 103 400 400 96.6
DPG 4.7 × 103 246.4 5309 96.6

GAUSS5M

NSG 2.6 × 103 146.2 220 94.3
HNSW0 6.7 × 103 131.9 220 57.6
FANNG 5.2 × 103 152.2 433 53.4
Efanna 7.8 × 103 400 400 94.3
KGraph 7.6 × 103 400 400 94.3
DPG 3.7 × 103 194.0 15504 94.3

our experiments, at the same precision, The other methods
checks tens of times more points than NSG (see the figure
in our technical report [16]). This is the main reason of
the big performance gap between graph-based methods and
non-graph based methods.

B. Check Motivation. In this paper, we aim to de-
sign a graph index with high ANNS performance from the
following four aspects: (1) ensuring the connectivity of the
graph, (2) lowering the average out-degree of the graph and
(3) shortening the search path, and (4) reducing index size.

1. Graph connectivity. Among the graph-based meth-
ods, NSG and HNSW start their search with fixed
node. To ensure the connectivity, NSG and HNSW
should guarantee the other points are reachable from
the fixed starting node. The others should guaran-
tee their graph to be strongly connected because the
search could start from any node. In our experiments,
we find that, except NSG and HNSW, the rest meth-
ods have more than one strongly connected compo-
nents on some datasets. Only NSG and HNSW guar-
antee the connectivity over different datasets (see the
table in our technical report [16]).

2. Lower the out-degree and Shorten the search
path. In Table 2, we can see that NSG is a very
sparse graph compared to other graph-based methods.
Though the bottom layer of HNSW is sparse, it’s much
denser than NSG if we take the other layers into con-
sideration. It’s impossible to count the search path
lengths for each method because the query points are
not in the base data. Considering that all the graph-
based method use the same search algorithm and most

Table 3: The indexing time of all the graph-based
methods. The indexing time of NSG is recorded in
the form t1 + t2, where t1 is the time to build the
kNN graph, and t2 is the time of Algorithm 2.

dataset algorithms time(s) algorithm time(s)

SIFT1M
NSG 140+134 HNSW 376

FANNG 1860 DPG 1120
KGraph 824 Efanna 355

GIST1M
NSG 1982+2078 HNSW 4010

FANNG 34530 DPG 6700
KGraph 4300 Efanna 4335

dataset algorithm time(h) algorithm time(h)

RAND4M
NSG 2.1+2.5 HNSW 5.6

FANNG 38.3 DPG 6.0
KGraph 4.9 Efanna 5.1

GAUSS5M
NSG 2.3+2.5 HNSW 6.7

FANNG 46.1 DPG 6.4
KGraph 5.1 Efanna 5.3

of the time is spent on distance calculations, the search
performance can be a rough indicator of the term ol,
where o is the average out-degree and l is the search
path length. In Figure 6, NSG outperforms the other
graph-based methods on the four datasets. NSG has a
lower ol than other graph-based methods empirically.

3. Reduce the index size. In Table 2, NSG has the
smallest indices on the four datasets. Especially, the
index size of NSG is about 1/2-1/3 of the HNSW,
which is the previous best performing algorithm13. It
is important to note that, the memory occupations of
NSG, HNSW, FANNG, Efanna’s graph, and KGraph
are all determined by the maximum out-degree. Al-
though different nodes have different out-degrees, each
node is allocated the same memory based on the maxi-
mum out-degree of the graphs to enable the continuous
memory access (for better search performance). DPG
cannot use this technique since its maximal out-degree
is too large.

The small index of the NSG owes to approximating our
MRNG and limit the maximal out-degree to a small
value. The MRNG provides superior search complex-
ity upper-bound for NSG. We have tried different aux-
iliary structures to replace the Navigating Node or use
random starting node. The performance is not im-
proved but gets worse sometimes. This means NSG
approximates the MRNG well, and it does not need
auxiliary structures for higher performance.

C. Some Interesting Points:

1. It’s usually harder to search on datasets with higher
local intrinsic dimension due to the “curse of the di-
mensionality”. In Figure 6, as the local intrinsic di-
mension increases, the performance gap between NSG
and the other algorithms is widening.

2. When the required precision becomes high, the perfor-
mance of many methods becomes even worse than that
of the serial scan. NSG is tens of times faster than the
serial scan at 99% precision on SIFT1M and GIST1M.
On RAND4M and GAUSS5M, all the algorithms have
lower speed-up over the serial scan. NSG is still faster
than the serial scan at 99% precision.

13https://github.com/erikbern/ann-benchmarks
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Figure 6: ANNS performance of graph-based algorithms with their optimal indices in high-precision region on
the four datasets (top right is better). Some of the non-graph based methods have much worse performance
than the graph-based ones. So we break the y-axis of SIFT1M and GIST1M figures, and we break the x-axis
of the RAND4M figure (RAND4M1 and RAND4M2) to provide better view of the curves. The x-axis is not
applicable for Serial-Scan because the results are accurate.

3. The indexing of NSG is almost the fastest among graph-
based methods but is much slower than the non-graph-
based methods. Due to the space limit, we only list
the preprocessing time of all the graph-based methods
in Table 3.

4. We count how many edges of the NNG are included in
a given graph (NN-percentage) for all the compared
graph-based methods, which are shown in Table 2.
We can see that HNSW and FANNG suffer from the
same problem: a large proportion of edges between
nearest neighbors are missing (Table 2). It is because
they initialize their graphs with random edges then re-
fine the graphs iteratively. Ideally, they can link all the
nearest neighbors when their indexing algorithms con-
verge to optima, but they don’t have any guarantee on
its convergence, which will cause detour problems as
we have discussed in Section 3.3. This is one of the rea-
sons that the search performance of FANNG is much
worse than the NSG. Another reason is that FANNG is
based on RNG, which is not monotonic. HNSW is the
second best-performing algorithm because HNSW en-
ables fast short-cuts via multi-layer graphs. However,
it results in very large index size.

5. The difference between NSG-Naive and NSG is that
NSG-Naive does not select Navigating Node and does
not ensure the connectivity of the graph. Moreover,
the probability to reserve the monotonic paths is smaller
because its candidates for pruning only cover a small
neighborhood. Though NSG-Naive uses the same edge

selection strategy, the degree of the approximation is
inferior to NSG, which leads to inferior performance.

6. In the optimal index of KGraph and Efanna, the out-
degrees are much larger than NSG. This is because
the kNN graph used in KGraph and Efanna is an ap-
proximation of the Delaunay Graph. As discussed be-
fore, the Delaunay Graph is monotonic, which is al-
most fully connected on high dimensional datasets.
When the k of the kNN graph is sufficiently large, the
monotonicity may be best approximated. However,
the high degree damages the performance of KGraph
and Efanna significantly.

4.1.4 Complexity And Parameters
There are three parameters in the NSG indexing algo-

rithm, k for the kNN graph; l and m for Algorithm 2. In
our experiments, we find that the optimal parameters will
not change with the data scale. Therefore we tune the pa-
rameters by sampling a small subset from the base data and
performing grid search for the optimal parameters.

We estimate the search and indexing complexity of the
NSG on SIFT1M and GIST1M. Due to the space limitation,
please see our technical report [16] for the figures and the de-

tailed analysis. The search complexity is aboutO(n
1
d logn

1
d ).

The complexity of Algorithm 2 is about O(n1+ 1
d logn

1
d ),

where d is approximately equal to the intrinsic dimension.
This agrees with our theoretical analysis. We estimate how
the search complexity scales with K, the number of neigh-
bors required. It’s about O(K0.46) or O((logK)2.7).
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Figure 7: The ANNS performance of NSG and Faiss
on the 100M subset of DEEP1B. Top right is better.

4.2 Search On DEEP100M
The DEEP1B is a dataset containing one billion float vec-

tors of 96 dimension released by Artem et al. [5]. We sample
100 million vectors from it and perform the experiments on a
machine with i9-7980 CPU and 96GB memory. The dataset
occupies 37 GB memory, which is the largest dataset that
the NSG can process on this machine. We build the kNN
graph with Faiss [28] on four 1080Ti GPUs. The time of
building the kNN graph is 6.75 hours and the time of Al-
gorithm 2 is 9.7 hours. The peak memory usage of NSG at
indexing stage is 92GB, and it is 55 GB at searching stage.
We try to run HNSW, but it always triggers the Out-Of-
Memory error no matter how we set the parameters. So we
only compare NSG with Faiss. The result is in Figure 7.

NSG-1core means we build one NSG on the dataset and
evaluate its performance with one CPU core. NSG-16core
means we break the dataset into 16 subsets (6.25 million
vectors each) randomly and build 16 NSG on these sub-
sets respectively. In this way, we can enable inner-query
parallel search for NSG by searching on 16 NSGs simulta-
neously and merging the results to get the final result. We
build one Faiss index (IVFPQ) for the 100 million vectors
and evaluate its performance with one CPU-core (Faiss-
1core), 16 CPU-core (Faiss-16 core), and 1080Ti GPU
(Faiss-GPU) respectively. Faiss supports inner-query par-
allel search. Serial-16core means we perform serial scan in
parallel with 16 CPU cores.

NSG outperforms Faiss significantly in high-precision re-
gion. NSG-16core outperforms Faiss-GPU and is about 430
times faster than Serial-16core at 99% precision. Meanwhile,
building NSG on 6.25 million vectors takes 794 seconds. The
total time of building 16 NSGs sequentially only spends 3.53
hours, which is much faster than building one NSG on the
whole DEEP100M. The reason may be as follows. The com-

plexity of Algorithm 2 is about O(n1+ 1
d logn

1
d ). Suppose we

have a dataset D with n points. We can partition D into r
subsets evenly. The time of building one NSG on D is t1.
The time of building an NSG on one subset is t2. It is easy
to verify that we can have t1 > rt2 if we select a proper r.
Consequently, sequential indexing on subsets can be faster
than on the complete set.

4.3 Search In E-commercial Scenario
We have collaborated with Taobao on the billion-scale

high-dimensional ANNS problem in the E-commercial sce-
nario. The billion-scale data, daily updating, and response
time limit are the main challenges. We evaluate NSG on
the E-commercial data (128-dimension vectors of users and
commodities) with different scales to work out a solution.

We compare NSG with the baseline (a well-optimized im-
plementation of IVFPQ [26]) on the e-commerce database.
We use a 10M dataset to test the performance on a single
thread, and a 45M dataset to test the Distributed Search
performance in a simulation environment. The simulation
environment is a online scenario stress testing system based
on MPI. We split the dataset and place the subsets on dif-
ferent machines. At search stage, we search each subset in
parallel and merge the results to return. In our experiments,
we randomly partition the dataset evenly into 12 subsets and
build 12 NSGs. NSG is 5-10 times faster than the baseline at
the same precision (See our technical report [16] for details)
and meet the response time requirement.

On the complete dataset (about 2 billion vectors), we find
it impossible to build one NSG within one day. So we use
the distributed search solution with 32 partitions. The av-
erage response time is about 5 ms at 98% precision, and
the indexing time is about 12 hours for a partition. The
baseline method (IVFPQ) cannot reach the response time
requirement (responsing within 10 ms at 98% precision) on
the complete dataset.

5. DISCUSSIONS
The NSG can achieve very high search performance at

high precision, but it needs much more memory space and
data-preprocessing time than many popular quantization-
based and hashing-based methods (e.g., IVFPQ and LSH).
The NSG is very suitable for high precision and fast response
scenarios, given enough memory. In frequent updating sce-
narios, the indexing time is also important. Building one
NSG on the large dataset is impractical. The distributed
search solution like our experiments is a good choice.

It’s also possible for NSG to enable incremental indexing.
We will leave this to future works.

6. CONCLUSIONS
In this paper, we propose a new monotonic search net-

work, MRNG, which ensures approximately logarithmic sea-
rch complexity. We propose four aspects (ensuring the con-
nectivity, lowering the average out-degree, shortening the
search paths, and reducing the index size) to design better
graph structure for massive problems. Based on the four
aspects, we propose NSG, which is a practical approxima-
tion of the MRNG and considers the four aspects simulta-
neously. Extensive experiments show the NSG outperforms
the other state-of-the-art algorithms significantly in differ-
ent aspects. Moreover, the NSG outperforms the baseline
method of Taobao (Alibaba Group) and has been integrated
into their search engine for billion-scale search.

7. ACKNOWLEDGEMENTS
The authors would like to thank Tim Weninger and Cami

G Carballo for their invaluable input in this work.This work
was supported by the National Nature Science Foundation
of China (Grant Nos: 61751307).

472



8. REFERENCES
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