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ABSTRACT
A lot of research has studied how to optimize inverted in-
dex structures in search engines through suitable reassign-
ment of document identifiers. This approach was originally
proposed to allow for better compression of the index, but
subsequent work showed that it can also result in significant
speed-ups for conjunctive queries and even certain types of
disjunctive top-k algorithms. However, we do not have a
good understanding of why this happens, and how we could
directly optimize an index for query processing speed. As a
result, existing techniques attempt to optimize for size, and
treat speed increases as a welcome side-effect.

In this paper, we take an initial but important step to-
wards understanding and modeling speed increases due to
document reordering. We define the problem of minimizing
the cost of queries given an inverted index and a query dis-
tribution, relate it to work on adaptive set intersection, and
show that it is fundamentally different from that of mini-
mizing compressed index size. We then propose a heuristic
algorithm for finding a document reordering that minimizes
query processing costs under suitable cost models. Our ex-
periments show significant increases in the speed of inter-
sections over state-of-the-art reordering techniques.
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1. INTRODUCTION
Large search engines use significant hardware and energy

resources to process billions of user queries per day. This has
motivated a large body of research that aims to reduce the
cost of processing queries, including work on index compres-
sion, caching, optimized top-k query processing, index tier-
ing and clustering, query routing and load-balancing, and
cascading and other optimizations for complex rankers.

Search engines typically use inverted index structures to
efficiently identify suitable candidate results for a query,
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which are then further analyzed and reranked using more
complex rankers. Given the number of documents indexed
by search engines, inverted indexes can reach sizes of many
terabytes, distributed over thousands of machines via index
sharding, and traversal of the index structures during query
time is a significant cost factor for such engines. As a re-
sult, a lot of research has focused on techniques for better
compression and faster traversal of inverted indexes.

In this paper, we focus on one specific approach that has
been studied, document reordering, also called document ID
reassignment. The basic idea, first proposed in [11, 39], is to
assign document IDs (docIDs) to indexed documents such
that consecutive docIDs are assigned to textually similar
documents. The result is that the sequences of docIDs in
the inverted lists that make up the index are becoming more
bursty or skewed, with clusters of close-by or consecutive
docIDs separated by larger docID gaps. In the extreme case,
we might get large runs of consecutive documents that all
contain a particular term, say pages from the same web site
that all contain certain terms common to the site. It is
well known that such bursty sequences of docIDs can be
more succinctly compressed than in the case where docIDs
are assigned to pages at random, and a number of different
approaches for assigning docIDs to documents have been
proposed.

It was observed in [48] that reordering not only decreases
index size, but also substantially increases the speed of con-
junctive queries. Subsequent work in [21, 24, 35, 42] ex-
tended this observation to important classes of disjunctive
top-k algorithms, in particular WAND [13], MaxScore [45],
and more recent Block Max-based approaches [16, 24, 42].
Thus, document reordering has the potential to significantly
increase the efficiency of the candidate selection phase in
search engines, and this benefit arguably outweighs the com-
pression gains in many scenarios. However, we still have
very limited understanding of why this happens (beyond
some naive speculation, e.g., in [48]), and no techniques that
would allow us to model this effect and to optimize the or-
dering directly for increased speed. Instead, reordering tech-
niques typically focus on minimizing compressed size, and
treat any speed gains as a welcome but somewhat mysteri-
ous side-effect.

In this paper, we address this challenge, and study the
problem of computing a document reordering that minimizes
query costs, for the case of conjunctive queries. We formally
define the problem of reordering to minimize cost, given an
index and a query distribution, and discuss its complexity.
We also show that optimizing for cost is quite different from
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optimizing for size, and that there are scenarios where signif-
icant reductions in size give little or no reductions in cost,
and vice versa. Finally, we propose a heuristic algorithm
that searches for document reorderings that minimize query
processing costs under certain cost models, and show that
it achieves significant cost reductions over state-of-the-art
reordering approaches.

The remainder of this paper is organized as follows. In
the next section, we provide some technical background and
discuss related work. Section 3 introduces our approach, de-
fines the basic optimization problem, and discusses its com-
plexity and relationship to the problem of minimizing size.
Section 4 describes our algorithm for document reordering,
while Sections 5 and 6 present the experimental setup and
the results. Finally, Section 8 provides some concluding re-
marks.

2. BACKGROUND AND RELATED WORK
We now provide some necessary technical background and

discuss the most closely related previous work.

2.1 Document Collections and Inverted Indexes
We are given a collection of n documents C = {D0, D2,

. . . , Dn−1}, where each document Di is identified by its doc-
ument ID (docID) i. An inverted index for C is a data
structure that stores for each distinct term t in C the doc-
ument IDs (docIDs) are all documents containing t. More
precisely, an inverted index consists of inverted lists, one
for each term t. Each inverted list is a sequence of post-
ings, where each posting contains the docID of a document
containing t, plus potentially other information such as the
number of times t occurs in the document or the locations
of these occurrences. The postings in each lists are stored in
order of increasing docIDs. Inverted lists are typically stored
in highly compressed form, and many fast and effective com-
pression methods have been proposed in the literature. We
refer to [49] for more details on inverted indexes and index
compression.

2.2 Basic Query Processing and Intersections
Inverted indexes are used in most current search systems

to efficiently process user queries. In a nutshell, we can
think of query processing as happening in several stages,
typically an initial Boolean filter based on conjunctions or
disjunctions, followed by, or in some cases interleaved with,
a first ranking of the documents passing the Boolean filter
based on a fairly simple and fast ranking function such as
BM25. Then several subsequent phases of reranking are
performed where increasingly complex and costly ranking
functions are applied to fewer and fewer of the top results
output by the previous ranker, in order to obtain the final
top-k results [46].

In this paper, we focus on the initial stage, and in partic-
ular on how to efficiently perform conjunctions, or intersec-
tions, between inverted lists. This is basically the problem
of intersecting two or more sorted lists of integers, which
has been studied extensively over several decades as a basic
building block in many applications. It also continues to be
an important operations in state-of-the-art search systems.
In particular, see [25] for recent work on faster intersection
processing, and [36] for background on how intersections
are used inside the current Bing search architecture, which

transforms an incoming user query into a set of intersections
on subsets of the query terms. (Of course, other search
systems may make different choices, and some might rely
more on disjunctions rather than conjunctions in the initial
phase.)

2.3 Intersection Algorithms
We first describe two basic algorithms that are widely used

for intersecting k sorted lists of integers L0 to Lk−1, and then
discuss additional methods and optimizations. Assume that
the lists have been arranged in order of ascending length,
such that L0 is the shortest and Lk−1 is the longest list. We
note that the problem of intersecting two lists of lengths l0
and l1 with l0 ≤ l1 can be solved in timeO(l0·log(l1/l0)), and
there is a matching worst-case information-theoretic lower
bound in the comparison-based model.

The SvS algorithm first intersects the two shortest lists L0

and L1, and then intersects the output with L2, then that
output with L3, and so on. Thus, the algorithm reduces the
problem to a sequence of pairwise intersections. The actual
intersection is performed via forward seeks from the shorter
into the longer list. Here, a forward seek is an operation in
a sorted list that moves a pointer from its current location
in the list forward to a requested value, or to the next larger
value if it does not exist. Forward seeks can be implemented
using a variety of techniques such as block-wise skipping,
galloping, or even interpolation search in some cases [17,
28].

The standard Document-At-A-Time (DAAT) algorithm
for intersection places a pointer at the beginning of each
list. The lists are again sorted by length in ascending order
for efficiency (i.e., L0 is the shortest list). Then it fetches
the next (first) element from L0, and does a forward seek for
a matching element in L1. If this seek is successful, resulting
in a matching item, the algorithm then forward seeks into
L2, L3, and so on, until we either find a match in every
list, or one of the seeks fails. When a seek fails, it usually
returns the next larger item x from the list into which the
seek was performed. We then go back to L0 and seek the
first item that is at least x, and then again try to perform
forward seeks into L1, L2, etc on this item. The algorithm
terminates when a forward seek reaches the end of a list.

While our goal here is to optimize intersections between
k lists, our method focuses on optimizing pairwise intersec-
tions between lists L0 and L1. It is known that for typical
queries and collections, most of the accesses in intersections
occur in the two shortest lists, and thus one would expect
that improving performance on these lists also improves per-
formance on k lists. In fact, we present results in Subsection
6.1 that support this choice, by showing that most of the ac-
cesses occur in the two shortest lists, and in fact that DAAT
and SvS mostly perform the exact same accesses into these
lists. We also note that for the case of two lists, SvS and
DAAT reduce to the same approach, also called zig-zag join
in databases, where we alternate forward seeks into the two
lists.1

The problem of intersecting sorted lists has been exten-
sively studied, and is also related to that of merging sorted
lists [26, 27]. Prior research has provided many optimiza-
tion methods for intersection that can be roughly divided

1Though there are various ways to implement the forward
seeks or lookups at the lower level.
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into four categories: adaptive intersection, hierarchical in-
tersection, hash-based intersection, and parallel intersection.

Adaptive algorithms [3, 4, 5, 6, 7, 8, 18, 19] try to adapt
to a given instance of the intersection problem. This is in
contrast to SvS and DAAT above, which usually drive the
intersection from the shortest to the longest list. Adap-
tive algorithms often assume a comparison-based model, and
try to achieve a number of comparison that is close to the
minimum required for the particular instance. While such
adaptive algorithms can do much better on highly skewed
or bursty data, the adaptivity usually introduces other over-
heads that make the algorithms perform worse than DAAT
and SvS on common data sets in information retrieval [19,
22]. Our work here is influenced by adaptive algorithms,
and in particular [18], but is also different as our goal is
to optimize for the more commonly used SvS and DAAT
approaches rather than for adaptive methods.

Hierarchical approaches utilize data structures such as
AVL trees [14], treaps [12] and skip-lists [28] to speed up
the intersection. A two-level representation of posting lists
was proposed in [37]. The lower level splits the range of do-
cIDs into buckets based on their most significant bits, and
the upper level provides the information leading from the
most significant bits of a docID to the corresponding bucket
in the lower level. This enables better compression for lower
level data, while the upper level allows binary search over
the buckets. In [44], a small partition table is built for the
upper level, and the lower-level data is partitioned into small
subsets consisting of uniformly distributed values, allowing
interpolation search within subsets.

Hash-based representation can speed up intersections sig-
nificantly when the lists have very skewed sizes. This is
achieved by looking up all elements of the shorter lists in
the hash tables of the much longer lists. In [9], Bille pro-
posed a hash-based approach which first maps the elements
in the original set to smaller values using some hash func-
tion. Then it computes the intersection using the hash val-
ues. Since the hash values use fewer bits than the origi-
nal values, this can increase intersection speed. In the end,
the original values in the intersection are recomputed, with
“false positives” removed. Ding [22] provided a hash-based
approach using a two-level representation. The input set is
first partitioned into small subsets, and then the values in
each subset are mapped to bitmaps that have the word-size
of a machine processor. During the intersection, results are
calculated using bit-wise AND instructions. This approach
works especially well when the result set is much smaller
than the input data.

Finally, parallel set intersection algorithms focus on ex-
ploiting multi-core architectures [43, 44], Graphical Process-
ing Units (GPUs) [1, 2, 47], and SIMD instruction sets in
modern CPUs [31, 38] to obtain further improvements in
performance.

Our approach is influenced by the work of Demaine et
al. [18, 19] on adaptive set intersection. In particular, [18]
observes that different instances of the intersection problem
have different complexity, and that adaptive algorithms can
adjust to the complexity of the instance and thus perform
much better on easy problem instances. This lead us to
conjecture that existing reordering methods result in easier
instances of the intersection problem, and that with a suit-
able model we might be able to directly optimize for this.
However, our actual model is quite different and in fact sim-

pler than the one in [18], since the goal of our reordering is
to obtain instances on which the widely used DAAT and SvS
algorithms run faster, rather than instances that are easier
for adaptive algorithms.

2.4 Document Reordering Techniques
Recall that documents in the collection are identified by

document IDs (docIDs), and that the postings in each in-
verted list are sorted by docIDs. Thus, by changing the as-
signment of docIDs to documents, we get different sequences
of docIDs in the resulting inverted lists. This lead to the
idea, first proposed in [11, 39] and later studied, e.g., in [10,
23, 20, 40, 41], of trying to find an assignment of docIDs to
documents that improves the compressibility of the resulting
inverted lists.

The basic idea in these document reordering or docID re-
assignment techniques is to assign consecutive or close-by
docIDs to documents that have a lot of terms in common.
This means that the sequence of integer docIDs in many
of the inverted lists will be clustered, with some dense ar-
eas having many close-by docIDs, and other sparse areas
with large gaps between docIDs. It is well known that such
clustered sequences can be much better compressed than
sequences resulting from random assignment of docIDs to
documents, by using suitable compression techniques such
as Interpolative Coding [33], OptPFD [48], or Partitioned
Elias-Fano [34] that exploit this case.

Most of the proposed document reordering techniques fall
into three classes: (1) heuristics that use ideas such as sort-
ing by URL [40] or by size [29, 48] to assign docIDs, (2)
bottom-Up approaches that connect similar documents with
edges and then assign docIDs via a TSP-like traversal of
the resulting graph [10, 23, 39], and (3) top-down tech-
niques that cluster documents into smaller and smaller sub-
sets based on similarity [10, 11, 20]. Of particular interest to
us here are the recent Recursive Bisection (BP) algorithm in
[20], which is the current state-of-the-art method in terms of
compressed size, and the docID assignment via URL sort-
ing proposed in [40], which is extremely simple while also
obtaining very good compression on suitable data sets. Our
own approach will adapt the BP algorithm to a new objec-
tive.

While document reordering was originally proposed with
the goal of achieving better compression, it was observed in
[48] that is can also significantly increase intersection speed,
by reducing the number of forward seeks performed. Subse-
quently, a number of studies including [24, 32, 35] observed
speed improvements not just for intersection, but also for
several disjunctive top-k query processing algorithms includ-
ing WAND [13], MaxScore [45], and BMW [24].

However, while many researchers have obtained speed in-
creases with existing reordering schemes originally designed
for better compression, we currently do not have a good
model for why reordering increases speed, and we have no
methods that can directly optimize the ordering for max-
imum speedup. The main goal in this paper is to make
an initial step in this direction for the case of intersection,
by proposing a framework for understanding and modeling
speed increases, and by proposing an optimization algorithm
that attempts to find a reordering that maximizes speed un-
der a simple model. To the best of our knowledge, no pre-
vious work has attempted to directly optimize intersection
speed via document reordering.
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Figure 1: Illustration of an easier (bottom) and
harder (top) instance of the intersection problem
between two term lists for dog and cat.

3. REORDERING FOR INTERSECTION
In this section, we describe the basic idea underlying our

approach, define the resulting optimization problem, and
discuss how it is fundamentally different from that of re-
ordering for improved compression. Finally, we show that
the problem is NP-Hard, via a reduction to the Minimum
Feedback Arc problem.

3.1 The Basic Idea
Recall that the problem of intersecting two sorted, mono-

tonically increasing lists of integers of lengths l1 and l2 with
l1 <= l2 has a worst-case complexity of O(l1 · log(l2/l1)).
However, as shown in [18], some instances of the intersection
problem are easier than others, and there are fairly simple
algorithms that can adapt to the complexity of a particu-
lar instance [19]. We illustrate this difference in complex-
ity between instances in Figure 1, where we have an easy
instance with longer runs of dog and cat postings, and a
harder instance where postings from the two lists are very
finely interleaved.

This leads to the following natural questions: (1) Do the
document reordering techniques that have been proposed for
improving the compression of inverted indexes also result in
simpler instances of the intersection problem for commonly
occurring queries? (2) Can we design new reordering tech-
niques that directly optimize for intersection speed rather
than compression, by minimizing the complexity of the re-
sulting intersection instances for common queries?

3.2 A More Formal Approach
In order to address these questions, we need to define

a suitable model of the complexity of an intersection in-
stance, simple enough to be used for optimization, but with
a reasonable correspondence to the actual running time of
commonly used algorithms on the instance. Note that the
approach taken in [18] to characterize the complexity of an
instance, based on the encoding sizes of intersection proofs,
does not seem to be useful here, because it seems too com-
plex to optimize for, and because it optimizes for a different
objective, namely, the running time of adaptive algorithms.
Its complexity is partly due to its use of a comparison-based
model, and due to its modeling of k-wise intersection, which
is significantly more complex than the pairwise case. In-
stead, we define a much simpler notion, which we call run
complexity, that formalizes the above intuition of “runs” for
pairwise (two-term) intersection instances. In the following,

Figure 2: An intersection problem with 6 runs,
where there is an intersection of size 3.

we use the term substring of L to refer to a sequence of
consecutive elements in a sorted list of integers L, and use
min(s) and max(s) to refer to the minimum and maximum
element in a substring s.

Definition: Run Complexity. Given a pairwise in-
tersection instance I consisting of two sorted lists of inte-
gers L0 and L1, we say that two substrings s0 in L0 and
s1 in L1 are non-excluding if either max(s1) ≤ min(s2) or
max(s2) ≤ min(s1). A legal partitioning P of L0 and L1 is
a set of substrings such that every element in I is in exactly
one substring in P , and any two substrings in P from dif-
ferent lists are non-excluding. We define the run complexity
of I as the size of the smallest legal partitioning, and refer
to its substrings as runs. End of Definition

Under this definition, the instances in Figure 1 have run
complexities of 9 (top) and 3 (bottom). In fact, for two
disjoint lists, the notion of runs and run complexity is quite
obvious. However, the situation is somewhat more subtle for
instances with non-empty intersection, requiring the some-
what complex definition above. In Figure 2 we show a more
complex example with a legal partitioning of size 6, where
we have an intersection size of 3 between the lists. In fact,
6 is the size of the smallest legal partitioning for this in-
stances, and thus its run complexity. We also note that this
definition is similar to the notion of an alternation of Barbay
and Kenyon [5].

We now make two claims about this definition, and briefly
sketch their proofs.

Claim 1: Given an intersection instance, we can compute
a legal partitioning of minimum size in time linear in the
instance size, i.e., the number of items.

For the proof, note that for any pair of items i1 and i2 from
different lists such that i1 < i2 and there is no other item
j with i1 ≤ j ≤ i2, it is obvious that there is a run ending
with i1 and another run in the other list starting with i2.
Thus, after applying these cuts, the remaining question is
how to cut around items that are in the intersection. Thus,
assume we have a maximal sequence S of k ≥ 1 consecutive
items in both lists that are in the intersection, and let j be
the last item before the first item in S. If this item exists,
it is unique as it is not in the intersection. We now greedily
build runs by adding to the run containing j the next item in
the same list, then creating a run from the next two items
in the other list, then the next two items from the first
list, and so on, until we get to the end of S (if necessary
mopping up a singleton with its own run at the end, or if
possible extending the last run beyond S). If there is no j
preceding S, we can build greedily from the end of S, using
the first element following S, if such an element exists. If
neither exists, then all items are in the intersection, and we
start with a singleton run followed by greedily alternating
as before, followed by a final singleton.

478



Claim 2: Given an intersection instance with run com-
plexity r and an intersection size of c, let Nfs be the number
of forward seeks made by the DAAT algorithm for intersec-
tion on this instance. Then the following holds: r + c ≤
Nfs ≤ r + c+ 1.

To prove this, assume runs have been created with the
process described above. Then the zig-zag algorithm will do
forward seeks to the first item in every run, with the only
exception being the very first run. This first run may be
bypassed if the algorithm starts by first seeking in the other
list, provided this first run does not contain any element in
the intersection. In addition, if a run contains an item in
the intersection as its last element, this item also has to be
visited, since all items in the intersection are visited by the
algorithm. The greedy construction used for Claim 1 creates
exactly c runs where the last item is in the intersection (or
c − 1 in the case where all items are in the intersection,
in which case however the first run is not bypassed). In
addition, we assume one extra seek to an end-of-list sentinel
at the end of one of the two lists.

The importance of Claim 2 is that it shows that the run
complexity can be used as a proxy for minimizing the num-
ber of forward seeks needed. This is because the size c of
the intersection is obviously not affected by the ordering. It
was shown in previous work starting with [48] that the re-
duction in the number of forward seeks seen after reordering
was in turn roughly proportional to the observed reduction
in running time. We now formally set up the problem of
computing an ordering of the documents in a collection as
an optimization problem where we minimize the number of
expected runs for a random query.

Definition: Document Reordering for Faster In-
tersection. Given a collection of documents C and a prob-
ability distribution over all 2-term queries P , the goal is to
compute an ordering of the documents that minimizes the
expected number of runs given a query sampled from P , i.e.,

min
π∈Π

∑
t1,t2∈L

P (t1, t2) · runs(t1, t2, π)

where Π is the set of all permutations of the documents,
L is the set of all terms occurring in the collection, and
runs(t1, t2, π) is the run complexity created by permutation
π on terms t1 and t2. End of Definition

Note that in this definition, we assume two-term queries,
for two reasons. First, the case of more than two terms
is more complex, as seen when looking at the approach in
[18]. Second, it has been shown [37] that in practice, the
running time of an intersection of more than two lists is
dominated by the time to intersect the two shortest lists. We
will revisit this claim in Subsection 6.1, where we provide
additional support for our approach. The distribution P
in the definition assigns to each pair of terms a probability
of occurring in a (memoryless) stream of two-term queries.
In practice, P will be based on a suitable language model
derived from a set of training queries and other data, where
training queries are first pruned to keep only the two terms
with the shortest lists. Thus, while our optimization only
looks at the two shortest lists of a query, the approach will
also yield improvements for longer queries under SvS and
DAAT approaches, as we will show later on real testing data.

As discussed above, we believe that the number of for-
ward seeks that is the goal of our optimization is in fact

Figure 3: Two inverted lists, in blue and red, under
a random order, and under three different document
reorderings.

a decent proxy for running time. In contrast, [18] consid-
ers a comparison-based model that is more complex and we
believe less predictive of actual running time. Moreover, it
is not difficult to modify our optimization to take into ac-
count the length of a forward seek, as discussed later. In this
case, longer seeks could be modeled as having a higher cost,
say logarithmic to account for galloping, or other terms to
account for block-wise decompression effects.

3.3 Optimizing For Size Versus Speed
As mentioned, previous work focused on reordering to

decrease compressed size, and treated speed improvements
as a welcome side effect. However, given that previous
techniques obtain significant improvements in both size and
speed, one could argue that maybe the two objectives are
closely related. In this subsection, we show that they are
in fact fundamentally different problems. More formally, we
show that we can construct cases where reordering greatly
improves both size and speed, other cases where we get great
improvements in size but no improvements in speed, and
cases where we get great improvements in speed but very
little in size.

Our constructions are illustrated in Figure 3, which shows
two inverted lists, in red and in blue, under four different
orderings: a random document ordering, an ordering where
both lists are heavily clustered on the left with few postings
on the right, an ordering where one list is clustered on the
left and the other one on the right, and an ordering where
one list is randomly spread out in the left half and the other
in the right half (from top to bottom). For simplicity, we
show only two lists, and assume that while the collection
may have many other terms, the query distribution P is
dominated by this pair, which has an empty intersection.
More complex scenarios could be built with non-empty in-
tersections and more diverse query distributions.

Note that compared to the random case on the top, the
second case results in significant size reductions for both
lists, as postings are heavily clustered in docID space. How-
ever, the number of runs, and thus forward seeks, is not
decreased at all. The third case shows reductions in size,
due to both lists being clustered in docID space, and also in
speed as the number of runs is significantly reduced, since
both lists are clustered in different areas. Finally, the case
at the bottom shows only two runs, but size decrease is lim-
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ited to about one bit per posting over the random case, as
average gaps are decreased by only a factor of two.

These cases show that optimizing for size and speed are
fundamentally different problems. To optimize for size, we
need to cluster each inverted list in docID space, but it does
not matter how other lists are clustered as each list is com-
pressed by itself. To optimize for speed, on the other hand,
we have to look at pairs of common query terms, and the
goal is to separate the red and blue postings into largely
disjoint clusters. Nonetheless, previous results indicate that
existing techniques seem to be fairly successful at achieving
both goals, and thus might be closer to the third case from
the top. For example, under URL sorting, we could imag-
ine that there are some web domains that are about the red
term and do not contain many occurrences of the blue term,
or vice versa, while some domains are about both terms. In
this case, we would see fewer runs and thus increased speeds
while traversing the former, more common but less useful,
domains, but not while in the latter domains. Of course, our
goal here is do even better in terms of speed by designing
techniques specifically geared towards this goal.

3.4 Problem Complexity
We now show that our problem of finding an document or-

dering that minimizes the expected intersection cost, given
a document collection and query distribution, is NP-hard.
Given the known hardness results for the problem of reorder-
ing documents to minimize compressed size shown in [20],
this is not surprising. However, while those results perform
a reduction from Minimum Linear Arrangement and related
problems, we use a reduction from Minimum Feedback Arc
Set, reflecting the fact that our problem, as discussed above,
is fundamentally based on pairs of term, rather than opti-
mizing a measure for each term and inverted list. Formally,
we have:

Theorem: Given a collection of documents C and a dis-
tribution over all 2-term queries P , it is NP-Hard to compute
an ordering of the documents that minimizes the expected
number of runs for a query sampled from P .

Proof: Given a directed graph G, the Minimum Feed-
back Arc Problem is the problem of ordering the vertices in
G to minimize the number of back edges (feedback arcs),
i.e., edges going from a later to and earlier vertex. Given a
directed graph G = (V,E), we now show how to construct a
document collection C and a query distribution P , such that
solving our document ordering problem also provides an op-
timum solution to the Minimum Feedback Arc Problem on
G.

For each vertex v in V , we create a corresponding docu-
ment Dv in C. Moreover, for each edge ei = (u, v) in E,
we generate two new terms, fromi and toi, and add fromi

to Du and toi to Dv. Moreover, we create two additional
documents S and T , and four additional terms s1, s2, t1,
and t2. We then add s1 and all of the fromi to S, and t2
and all of the toi to T . In addition, we add s2 and t1 to all
nodes Dv where v ∈ V .

Given this document collection, we define our query dis-
tribution. We have |E| queries (toi, fromi) with frequency
0.2/|E| each, and queries (s1, s2) and (t1, t2) with frequency
0.4 each.

Now consider a document ordering where we start with S
and end with T , and where the documents Dv in between
S and T are ordered according to an optimal solution of

the Minimum Feedback Arc problem on the graph G. Let
B be the total number of backward edges in the optimal
solution for G, which is at most |E|/2 as otherwise we could
improve the ordering by reversing it. We will use a series of
observations to show that all optimal solutions are of this
form, or are the reverse of this form.

First, we observe that the expected number of runs for
a random query drawn from P under this ordering is 2 ∗
P (s1, s2) + 2 ∗ P (t1, t2) + (2 + 2 ∗B/|E|)

∑
i P (fromi, toi),

which is 2 + 0.4 ∗B/|E| <= 2.2. This is because any query
(s1, s2) or (t1, t2) results in 2 runs, while a query (fromi, toi)
results in 2 runs if edge ei is a forward edge, and 4 runs
otherwise.

Second, we can assume that any optimal solution starts
with S and ends with T . This is because any solution where
S is arranged in between the documents Dv would result
in 3 instead of 2 runs for any occurrence of query (s1, s2),
resulting in at least 2.4 expected runs per query overall; the
case of T is symmetric. Thus, S and T must be at the
beginning or end. Moreover, if at least half of the edges ei
are forward edges in the document ordering, then S should
be at the beginning and T at the end; if less than half, we
can reverse the ordering without changing the number of
runs, making this also true.

Thus, we can assume an optimal ordering starts with S,
and ends with T , with some arrangement of the documents
Dv in between. Moreover, the precise ordering of the Dv
between S and T does not impact the number of runs cre-
ated by queries of the form (s1, s2) and (t1, t2), while the
number of runs due to queries of the form (fromi, toi) is
directly proportional to the number of backward edges ei in
the ordering of the Dv, and thus the best ordering of the Dv
would directly provide an optimal solution to the Minimum
Feedback Arc problem on G. End of Proof

We note that the Minimum Feedback Arc problem is in
fact APX-Hard, and hard to approximate to any factor
smaller than 1.3606 (or 2 if the Unique Game Conjecture
is true) [30]. However, our reduction here does not pre-
serve any approximability results. We conjecture that a
more careful construction might be able to establish APX-
Hardness of our ordering problem.

4. ALGORITHMIC APPROACH
In this section, we describe a heuristic algorithm for solv-

ing the optimization problem defined in the previous section.
The algorithm is based on an adaptation of the recent algo-
rithm for reordering based on recursive bisection proposed
in [20], which was shown to outperform previous methods
for both document reordering and graph reordering in terms
of compressed size. We will show how to change the parti-
tioning criterium to focus on decreasing the number of runs.

4.1 The Recursive Bisection Approach (BP)
We now briefly outline the approach in [20], called BP,

for the case of document reordering. The reader may want
to consult [20] for more details. In a nutshell, the algorithm
starts from any initial ordering of the document collection,
and then recursively bisects the collection into smaller and
smaller subsets, as follows:

1. If the subset has less than C documents, sort them by
URL and return.

2. Split the subset into a left half and a right half.
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3. Repeat the following 20 times or until converged:

a. For each document, estimate how moving it to the
other half of the subset would impact compressed
size. That is, if we were to move this document
over, in the process increasing the frequencies of
the document’s terms in the other half and de-
creasing them in the current half, would this de-
crease or increase the expected overall compressed
index size for both halves, assuming a random or-
dering of documents in each half and a log-based
cost model for the expected resulting docID gaps.

b. In each half, sort the documents in decreasing
order of moving benefit.

c. Now swap the highest scoring document in the
left half with the highest scoring document in the
right half, then the second highest, etc., until the
benefit of a swap becomes negative.

4. Recurse on the left half and on the right half.

The repetition in Step 3 is needed because when we estimate
the benefit of moving a document in 3a, this under the as-
sumption that only this document is moved. However, in
3c, we then move a large number of documents, which im-
pacts the estimated benefits in the next operation, so that
we may now want to move additional documents, or may
want to move some documents back. As reported in [20],
after about 20 iterations this process is close to converging
in that very few documents still want to move. Also, once a
subset size of about 20 or less is reached, there is little ben-
efit in recursing further, and we may just sort the subset by
URL (or use some other heuristic) and return that ordering.

In addition to achieving very small compressed sizes, the
BP algorithm is also very fast, with tens of millions of docu-
ments being processed in less than one hour under a highly
optimized implementation. One reason for this is that Step
3a can be performed highly efficiently by first computing
for each term the benefit of moving one posting of the term
to the other side, and then for each document summing up
these precomputed values for all its terms.

4.2 Our Adaptation: BP-RUN
In order to use the Recursive Bisection approach, we mainly

need to modify Step 3a, by using a different definition of the
benefit of moving a document to the other half. As we saw
in Subsection 3.3, when optimizing for size we look at each
inverted list by itself and try to improve its compressibil-
ity. In the context of Step 3a, this means trying to make
each inverted list as imbalanced as possible between the two
halves, by putting most postings into one half. However,
when optimizing for speed, our goal is to separate out com-
mon pairs of terms, by putting most postings of one term
into one half, and most postings of the other term into the
other half.

Now consider two terms t1 and t2, where there are f1

postings of t1 and f2 postings of t2 in a particular subset.
We can now estimate the expected number of runs between
t1 and t2, assuming as before that documents are ordered at
random in that subset, and that the intersection is empty (or
at least much smaller than the two lists). A posting of t1 is
the start of a run if it is not the first among the f1+f2 items,
and if the next smaller item is term t2 rather than t1. Under
a random ordering, this probability is f2/(f1 +f2), and thus

the expected number of runs between t1 and t2 is estimated
as ER(f1, f2) = (f1 · f2)/(f1 + f2) + (f2 · f1)/(f2 + f1) =
2·f1 ·f2/(f2+f1). Note that this estimate ignores “boundary
effects” between different subsets and halves, and assumes
that runs can only start inside a subset. Thus, it is a rough
estimate for the number of runs generated under a random
ordering.

Algorithm 1 BP-RUN
Input: document set D, term lexicon T1 and T2

Output: reordered document set D

1: procedure Partition(D, T1, T2)
2: if size of D < threshold C then
3: FinalizeAndOutput(D)
4: return
5: equally split D into D1 and D2

6: repeat
7: reset T1 and T2

8: for d in D1 do
9: for t in d do

10: T1← IncreaseCount(t, T1)

11: for d in D2 do
12: for t in d do
13: T2 ← IncreaseCount(t, T2)

14: for d in D do
15: gains[d]← GetMoveGain(d, T1, T2)

16: D1 ← sorted D1 in descending order of gains
17: D2 ← sorted D2 in descending order of gains
18: for d1 in D1, d2 in D2 do
19: if gains[d1] + gains[d2] > 0 then
20: swap d1 and d2

21: else
22: break
23: until converged or more than 20 iterations
24: Partition(D1, T1, T2)
25: Partition(D2, T1, T2)

26: procedure GetMoveGain(d, T1, T2)
27: gain← 0
28: for t1 in d do
29: for t2 not in d and prob(t1, t2) > threshold do
30: l1 ← GetCount(t1, T1)
31: l2 ← GetCount(t2, T1)
32: r1 ← GetCount(t1, T2)
33: r2 ← GetCount(t2, T2)
34: gain + = prob(t1, t2) ·B(l1, l2, r1, r2)

return gain

Given the formula above, we can now estimate the benefit
of moving a document D from one half to the other, as
follows: First, for any pair of terms t1 and t2 that do not
occur in D at all, moving D has no impact on the number
of runs on t1 and t2. However, even if only t1 occurs in D,
this may have an impact on the number of runs. Thus, if
we start out with l1 and l2 postings of t1 and t2 in the left
half, and r1 and r2 postings of t1 and t2 in the right half,
then moving a document containing t1 but not t2 from left
to right half has a benefit of B(l1, l2, r1, r2) = ER(l1, l2) +
ER(r1, r2)−ER(l1−1, t2)−ER(r1+1, r2). For the case that
a document containing both t1 and t2, no matter which side
this document is in, there will be an unavoidable comparison
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between this query pair. Besides, this case is much rarer
compared to the the case when the document contains only
t1 and in practice it has negligible impact on the final result.
For efficiency reason, we treat this case the same as the
document containing only t1.

As in the case of [20], we can precompute the benefit of
moving one posting of t1 from, say, the left half to the right
half, as follows:

Ben(l1, r1) =
∑
t2 6=t1

P (t1, t2) ·B(l1, l2, r1, r2),

where l2 and r2 are the number of postings of t2 in the
left and right half. The case of moving from right to left
is symmetric. As before, the benefit of moving a document
can be computed as the sum of benefits of moving all its
terms. There is however a performance problem with the
above formula, as we cannot afford to loop over all t2 6= t1
in the computation of Ben(l1, r1), as we have millions of
distinct terms. Instead, we loop only over a limited number
of terms t2 such that P (t1, t2) is above a certain threshold
under the distribution P derived from a training query set.
In Algorithm 1, we present pseudo-code for the BP-RUN
algorithm.

4.3 Further Enhancements
We now describe a few more enhancements to the above

algorithm that we explored, as follows:
Splashback: We found that when directly using the for-

mula for B(l1, l2, r1, r2) above, in many scenarios the al-
gorithm never got close to converging in 20 or even more
iterations, as many documents would be repeatedly moved
back and forth between halves. The problem seemed to be
that the formula assumes that we move one posting of t1 to
the other half. However, in Step 3c we actually swap our
document with a document going the other direction, and
there is a chance that this document also contains a t1. In
the extreme case when all documents in the other half al-
ready contain t1, this results in an infinite loop where we try
to add more occurrences of t1 to that side, but each time
another document containing t1 is returned. We decided to
adjust the formula by assuming that the document moving
in the other direction is chosen at random, and thus has a
r1/nr chance of containing t1, where nr is the number of
documents in the right half. Thus, we change the definition
of B(l1, l2, r1, r2) to ER(l1, l2)+ER(r1, r2)−ER(t1−x, t2)−
ER(r1 + x, r2) where x = 1− r1/nr. This idea of moving a
fractional posting seemed odd at first, but resulted in all in-
stances getting close to convergence in 20 iterations or less,
while also improving the resulting number of runs. Thus, we
used this approach in all subsequent experiments. The same
idea is also potentially applicable in the original scenario in
[20], but in tests we did not see any improvements for it.

Considering Boundaries: Recall that our formula
ER(f1, f2) for the expected number of runs did not try to
model the case of a new run starting with the first item of
a half, as this would require information about the items
preceding this one. However, we can extend ER() with two
extra cases: (a) when looking at the first item in the left
half, we have already fixed the ordering to the left, and thus
know whether the preceding posting was t1 or t2; (b) for the
first item in the right half, we can look at the frequencies
of t1 and t2 in the left half to estimate how likely it is that
the last item in the left half was t1 or t2. Thus, a more

complex formula can estimate the expected number of runs
including runs that start at boundaries. We refer to this
version of the algorithm as BP-RUN-CB. As we show later,
this version led to very slight overall improvements.

Neighbor Swapping: We added another optimization
after running the bisection algorithm, where we perform sev-
eral rounds of neighbor swaps, where in odd (even) rounds
we consider swapping documents in positions 2i and 2i + 1
(2i− 1 and 2i), respectively. That is, we swap documents if
this would reduce the expected number of runs. This version
of the algorithm, named BP-RUN-CB-NS, resulted in addi-
tional consistent but fairly limited improvements, as shown
later.

Weighted Cost Models: Finally, instead of treating
each run, and thus each corresponding forward seek, as hav-
ing unit cost, we can apply a cost function that depends on
the distance traveled by a seek. For example, if galloping
is used during forward seeks, then the cost can be modeled
as logarithmic in the distance. Or if index decompression
is done in blocks of B postings, then for seeks of distance
d < B the likelihood of having to decompress a new block
as part of the seek could be estimated as d/B. The exist-
ing BP-RUN approach can fairly easily accommodate such
cost models, by estimating in Step 3a not just the expected
number of runs, but also their expected lengths.

5. EXPERIMENTAL SETUP
In this section, we discuss details about the experimental

setup.
Document Collections: Our experiments were conducted

on two widely used benchmark data sets:

• Gov2 is the TREC 2004 Terabyte Track test collec-
tion, which consists of about 25 million pages from the
gov top level domain crawled in early 2004.

• ClueWeb09B is the ClueWeb 2009 TREC Category
B test collection, which consists of about 50 million
English web pages crawled between January and Febru-
ary 2009.

For each document in the collection, body text was ex-
tracted using Indri2, and terms were lower-cased and stemmed
using the Porter2 stemmer; no stopwords were removed.
The basic statistics for the two collections are reported in
Table 1.

Query Sets: We use the TREC 2006 Terabyte Query
Track queries (Trec06) for experiments on Gov2, and the
TREC 2009 Million Query Track queries (Million09) on
Clueweb09B.

• Trec06 consists of 100k queries. This query set was
collected in 2006 specifically for use with Gov2.

• Million09 consists of 40k queries. This query set was
collected in 2009 for use on ClueWeb09B.

We randomly sampled two sets of 20k queries each from
Trec06 and Million09, drawing only queries with at least two
terms where all terms are present in the collection dictio-
nary. We randomly selected 1k (5%) of the queries for test-
ing and the rest (95%) for training. To obtain the language
model P for two-term queries, we use standard Language

2http://lemurproject.org/indri.php
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Table 1: Basic statistics of the two test collections.

Gov2 ClueWeb09B
Documents 25,205,179 50,220,423

Terms 39,177,863 87,136,498
Postings 5,673,089,220 15,769,928,283

Modeling tools, in particular the MIT Language Modeling
(MITLM) toolkit3, based on Kneser-Ney smoothing. Before
training the model, we kept for each training query only the
two terms with shortest list length. We then thresholded
the query distribution by only using pairs with probability
at least 10−6 according to the language model during Step
3a of the reordering.

Algorithms: We implemented several existing ordering
methods as baselines, in particular random ordering (Ran-
dom), ordering based on URL sorting (URL) [40], ordering
based on recursive bisection (BP) [20], and a version of BP
that weighs terms using a uni-gram query language model
(BP-LM), to show that simply adding term weighting to the
existing approach does not give significant improvements.

For BP and BP-LM, we performed the recursive bisection
by considering all terms in the collection. We stopped the
recursion when the number of documents in the subset is no
more than 12, since this gave us the best performance. For
BP-LM, we weighted the estimated benefits in compression
during Step 3a using the uni-gram weights, thus giving more
weight to terms frequently used in queries. For the two BP
algorithms, we started with URL ordering and also sort each
subset according to URLs at the lowest level of the recursion.

To report numbers for compression, we used several meth-
ods, and include numbers for Partitioned Elias-Fano (PEF)
[34], OptPFD [48], and Binary Interpolative Coding [33]
(BIC). For evaluating query processing speed, we report
results for algorithms for DAAT-type intersection, top-10
WAND, and top-10 Maxscore, using OptPFD with block
size 128. Relative behaviors on PEF were very similar. We
use BM25 as the ranking function in WAND and Maxscore.

Testing details: The algorithms were implemented us-
ing C++11 and compiled using gcc with -O3 optimization.
We did not use any SIMD instructions or special processor
features. The experiments were conducted on a single core
of a 2.5Ghz Intel Xeon Platinum CPU, with 64GiB RAM,
running Ubuntu 16.04. All data structures and indexes are
memory-resident.

6. EXPERIMENTAL EVALUATION
We now present and discuss our experimental results, where

we compare the various methods based on the number of
forward seeks, query processing speed, and compressed in-
dex size. We start out with the running times of the new
method. Our BP-RUN-CB algorithm took about 8 hours to
run on Gov2, and 17 hours on ClueWeb09B, using a single
thread. The running time could be significantly improved
with multiple threads and distributed implementations, as
reported in [20].

6.1 Two-term and Multi-term Intersections
We start with a set of preliminary experiments on SvS and

DAAT to support our claim in Section 3.2 that multi-term

3https://github.com/mitlm/mitlm

intersection times are dominated by the running times on
the two shortest lists, and that optimizing for the shortest
lists can benefit multi-term intersection under both SvS and
DAAT intersection algorithms.

In these experiments, we ran experiments on both Gov2
and Clueweb09B under URL ordering, using for each query
length 1000 queries selected from Trec06 and Million09, re-
spectively. First, in Tables 2 and 3, we show the average
ratio of forward seeks that occur in the two shortest lists,
for SvS and DAAT.

Table 2: Fraction of forward seeks in the two short-
est lists under SvS, for different query lengths.

Query length Avg. 2 3 4 5 ≥6
Gov2 0.8937 1.0000 0.9050 0.8718 0.8494 0.8421

Clueweb09B 0.9187 1.0000 0.9194 0.8964 0.8893 0.8792

Table 3: Fraction of forward seeks in the two short-
est lists under DAAT, for different query lengths.

Query length Avg. 2 3 4 5 ≥6
Gov2 0.8750 1.0000 0.8909 0.8519 0.8201 0.8119

Clueweb09B 0.9064 1.0000 0.9124 0.8881 0.8726 0.8591

For two-term queries, the ratio is obviously 1. However,
for longer queries we still find that most of the work is done
in the shortest lists; even for queries with 6 and more terms,
more than 80% of the accesses are into the two shortest lists.
The average overall ratio for queries of all lengths on both
Gov2 and Clueweb09B is more than 0.87 and 0.90, respec-
tively. The ratio on Gov2 is lower than on Clueweb09B; we
conjecture that this is because Gov2 is known to be more
clustered under URL ordering than Clueweb09B and in fact
contains many page duplicates and near-duplicates, result-
ing in more forward seeks performed outside the two short-
est lists. We can see from the results that the majority of
the forward seeks happen within the two shortest lists for
multi-term queries. This is well known for SvS [37] but also
not surprising for DAAT, which also prioritizes accesses into
shorter lists.

In fact, we next show something much stronger for DAAT:
not only are most of its accesses into the two shortest lists,
but in fact most of these accesses are exactly the same ac-
cesses as performed in SvS on those lists! That is, they are
forward seeks to the same document ID, starting from the
same current document ID, as in the case of SvS.

Table 4: Fraction of total forward seeks under
DAAT that also occur when intersecting only the
two shortest lists, for different query lengths.

Query length Avg. 2 3 4 5 ≥6
Gov2 0.8305 1.0000 0.8482 0.7879 0.7639 0.7523

Clueweb09B 0.8640 1.0000 0.8714 0.8332 0.8133 0.8019

As we see in Table 4,the numbers are almost as high as in
Table 3. Thus, SvS and DAAT in fact perform many of the
exact same accesses, and mainly differ in the order in which
they are performed, with SvS doing a list-wise traversal.
This provides strong support for our claim that optimizing
for the two shortest lists should also result in improvements
for multi-term intersections with DAAT.
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Figure 4: Convergence behavior of BP-RUN-CB:
we show the average percentage of documents that
are swapped between halves in each iteration, for
different depths of the recursion, on Gov2.

6.2 Convergence Behavior
Figure 4 shows that the average percentage of swapped

documents decreases quickly in the first several iterations
of Step 3 in our method BP-RUN-CB. The smaller depths,
on larger subsets, converge faster than the larger depths, on
smaller subsets. Note that the method often does not fully
converge, and in fact there are cases where documents end
up getting swapped forever. However, there are no improve-
ments beyond 20 iterations, so we stop at that point. We
also refer to Figure 5 in [20] for similar observations on BP.

6.3 Forward Seeks
In Table 5, we show how BP-RUN and BP-RUN-CB per-

form in terms of the number of forward seeks, on two-term
queries obtained from the test queries by keeping only the
two terms with the shortest inverted lists. For both Gov2
and ClueWeb09B, we observe that the best setting is to re-
curse up to a minimum subset size of 12. We also see that
BP-RUN-CB usually outperforms BP-RUN, but only by a
very small amount.

Table 5: Average forward seeks per query on two-
term evaluation queries, for Trec06 on Gov2 and
Million09 on Clueweb09B, and for various thresh-
olds on where we stop the recursion.

Gov2 ClueWeb09B
BP-RUN BP-RUN-CB BP-RUN BP-RUN-CB

192 182,886 182,557 1,006,848 1,002,666
96 182,161 181,573 998,336 994,725
48 181,259 180,888 991,938 987,274
24 180,650 180,429 987,131 984,215
12 180,295 180,279 984,783 983,722
6 180,484 180,724 987,444 986,912

Table 6: Average forward seeks per query on two-
term queries, with minimum subset sizes 12 and 24,
and using between 1 and 16 rounds of neighbor swap-
ping at the end, on Gov2.

iterations 1 2 4 8 16
BP-RUN-CB-NS 24 180,068 179,706 179,596 179,401 179,330
BP-RUN-CB-NS 12 179,899 179,520 179,204 179,032 179,001

In Table 6, we see that the neighbor swapping technique
mentioned in Section 4.3 gives only very limited improve-
ments, about a 0.5% reduction in forward seeks after 16
rounds. Given that neighbor swapping slows down reorder-
ing significantly, we decided to not use it in subsequent ex-
periments.

Next, in Table 7, we show the number of forward seeks on
two-term queries for all different reordering methods. We
see that BP-RUN-CB clearly outperforms URL, BP, and the
term-weighted method BP-LM. In particular, it outperforms
BP, the best previous method, by 19.8% on Gov2 and 14.3%
on ClueWeb09B. BP-LM is only slightly better than BP,
showing that merely adding a language model to the existing
approach is not sufficient.

Table 7: Average forward seeks per query on two-
term queries, for Gov2 and ClueWeb09B, under var-
ious document orderings.

Random URL BP BP-LM BP-RUN-CB
Gov2 590,519 236,421 224,684 220,190 180,279

CW09B 2,089,627 1,180,164 1,148,409 1,117,379 983,722

6.4 Query Processing Speed

Table 8: Times in ms for two-term queries on Gov2
and ClueWeb09B, for DAAT-intersection, and for
WAND and Maxscore with k = 10.

Gov2 ClueWeb09B
Inter WAND Maxscore Inter WAND Maxscore

Random 15.44 23.09 17.53 54.61 65.47 55.42
URL 6.04 8.61 10.22 35.01 50.62 40.43
BP 5.59 9.54 10.50 31.82 42.93 35.71

BP-LM 5.42 8.43 10.01 30.68 40.79 34.72
BP-RUN-CB 4.55 9.26 11.10 26.17 37.65 35.70

We now look at actual query processing speeds, rather
than just counting forward seeks. Table 8 and Table 9 re-
port query processing times in milliseconds on Gov2 and
ClueWeb09B under various reorderings. Table 8 shows run-
ning times for just the two terms in each query with the
shortest list lengths, while Table 9 shows the running times
for the full queries. We note that the running times for
multi-term intersection are obtained using a state-of-the-art
DAAT implementation that maintains pointers into all lists.

Table 9: Times in ms for full queries on Gov2
and ClueWeb09B, for DAAT-intersection, and for
WAND and Maxscore with k = 10.

Gov2 ClueWeb09B
Inter WAND Maxscore Inter WAND Maxscore

Random 21.19 47.70 26.85 60.55 75.43 61.98
URL 8.27 19.03 18.46 37.93 63.03 46.98
BP 7.30 19.86 19.35 33.99 50.99 40.39

BP-LM 7.13 18.59 18.24 32.91 50.61 40.35
BP-RUN-CB 6.05 20.11 20.89 28.13 48.76 43.32

We see that for DAAT intersection (Inter, described in
Section 2.3), BP-RUN-CB again performs significantly bet-
ter than the other orderings, and outperforms BP by 18.6%
on Gov2 and 17.8% on ClueWeb09B for two terms, and by
17.1% on Gov2 and 17.2% on ClueWeb09B for the origi-
nal full term queries. This supports our basic assumption
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that we can focus our model and optimization on only the
two terms with the shortest list, and still get similar im-
provements for the full queries even for DAAT intersection
algorithms, as the cost is dominated by accesses in the two
shortest lists.

However, we also see that BP-RUN-CB does not consis-
tently perform better than the other orderings on the dis-
junctive top-k algorithms WAND and Maxscore, in some
cases slightly outperforming the other orderings, and in some
cases underperforming. This is not surprising, as our model
does not really apply to these methods. More precisely, there
is no obvious connection between our definition of run com-
plexity and the number of forward seeks in either WAND or
Maxscore.

6.5 Compression Ratio
Finally, in Table 10, we show the compression in bits per

docID under various orderings and compression methods, on
Gov2 and ClueWeb09B. BP consistently achieves the small-
est index size under all compression methods. BP-LM is
slightly worse as it focuses on lists corresponding to common
query terms. BP-RUN-CB is worse than BP and BP-LM,
and performs similarly to URL. This is to be expected since
BP-RUN-CB does not attempt to minimize compressed size
but instead focuses on reducing expected intersection query
processing costs.

Table 10: Bits per docID for full indexes on Gov2
and ClueWeb09B, for various orderings and com-
pression methods.

Gov2 ClueWeb09B
BIC OptPFD PEF BIC OptPFD PEF

Random 6.36 6.89 6.53 5.59 6.26 6.11
URL 2.80 4.01 3.84 3.78 5.39 4.82
BP 2.18 3.41 3.12 3.20 4.63 4.30

BP-LM 2.34 3.54 3.22 3.59 4.98 4.72
BP-RUN-CB 3.04 4.19 3.67 3.88 5.29 4.83

To summarize, our experimental evaluation showed en-
couraging improvements in both the number of forward seeks
and the actual running times of intersection queries for our
new approach, with speedups of around 17% over the best
previous approach. Not surprisingly, this came at the cost
of a larger compressed size when compared to BP. Also,
somewhat disappointingly, we did not see consistent im-
provements in speed for the disjunctive top-k algorithms
WAND and Maxscore, and we expect that another approach
is needed to optimize for these algorithms.

7. DISCUSSION OF RESULTS
We now discuss our results and point out some limitations.
Size vs. Speed. As shown, our new method improves

over BP in terms of speed, but does worse in terms of com-
pressed size. We believe that in many search engine environ-
ments, speed is more important, but there will certainly be
other cases. One way to look at this is by starting from URL
ordering, which achieved significant improvements in both
size and speed over a random ordering. The BP algorithm
in [20] used an objective function that aims for reduced size,
resulting in significant improvements in size but very limited
improvements in intersection speed over URL, as shown in
our results. Our algorithm BP-RUN chose to go into a dif-
ferent direction, optimizing for speed, and achieved much

better speed than URL and BP, but compressed size was
about the same as URL and worse than BP. Getting im-
provements in both measures would be nice, but under a
BP-type approach these are very different objectives.

Maintenance: One concern about reordering approaches,
including our own, is that they are hard to maintain under
document changes. This is partially true, and reordering
is probably not a good choice under very quickly evolving
document collections such as [15]. However, for collections
evolving at a slower rate, the standard solutions for index
updates which rebuild and merge index structures in the
background (e.g,, the log-merge in Lucene) could be ex-
tended to periodically reorder the collection or parts of it.
Our as yet unoptimized running times for reordering are only
moderately slower than index building times, and could be
improved by, e.g., reducing the threshold in the language
model that we used.

Direct Support for Multiple Terms: As we showed,
by looking at only the two shortest lists, we can in fact
optimize the performance of multi-term queries under the
DAAT and SvS algorithms. Nonetheless, additional im-
provements might be possible by extending the language
model to triplets (3-grams) of query terms, or even quadru-
plets, and changing BP-RUN accordingly. However, we ex-
pect the improvements to be very limited, since as we saw
most accesses are to the shorter lists, and successfully using
triplets might also require larger query traces in order to
get a strong enough language model. Finally, use of large
numbers of triplets would also increase the running time of
BP-RUN.

8. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we studied how to reorder document collec-

tions in order to increase the speed of intersections on the
resulting index. We proposed a model for the complexity
of an instance of the pairwise intersection problem, defined
the problem of reordering to minimize the resulting complex-
ity, and showed that the problem is fundamentally different
from that of reordering for compression. We also proposed
and evaluated a heuristic method based on an adaptation
of the recent algorithm for recursive bisection in [20] that
showed improvement in speed of about 17 percent over the
best previous schemes on two standard data sets.

There are a number of open questions left for future re-
search. We plan to run experiments on weighted cost mod-
els, discussed in Section 4.3, in future work. Minor addi-
tional speedups could also be obtained by improvements in
the language model for two-term queries. We further plan to
study other possible algorithms for finding better orderings.
In fact, we initially attempted to reorder the collection via
a bottom-up TSP-based method, but failed to get any im-
provements over URL sorting and BP. However, there might
be other approaches that can outperform BP-RUN.

One major limitation of our approach is that we did not
see consistent improvements over BP and URL sorting for
disjunctive top-k algorithms such as WAND and Maxscore.
We suspect that these algorithms require a different and
more involved model for instance complexity. This is also
left for future work.
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